【初中数学】湖北省鄂州市2012年中考数学模拟试题(二) 通用
2023-2024学年北京市6月初中模拟学业水平考试数学试题+答案解析
2023-2024学年北京市6月初中模拟学业水平考试数学试题一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各数中,比的相反数大的是()A.3B.C.2D.12.中国“二十四节气”已被正式列入联合国救科文组织人类非物质文化遗产代表作品录.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A. B. C. D.3.新能源汽车已经成为全球汽车产业转型发展的主要方向,根据中国乘用车协会的统计数据,2023年第一季度,中国新能源汽车销量为159万辆,同比增长,其中159万用科学记数法表示为()A. B. C. D.4.在某月的月历中圈出相邻的3个数,其和为这3个数的位置可能是()A. B. C. D.5.一元二次方程的根的情况为()A.无实数根B.有两个不相等的实数根C.有两个相等的实数根D.不能判定6.如图,在中,,以B为圆心,适当长为半径画弧交BA于点M,交BC于点N,分别以为圆心,大于的长为半径画弧,两弧相交于点D,射线BD交AC于点E,点F为BC的中点,连接EF,若,则的周长是()A.12B.C.D.7.《九章算术》是人类科学史上应用数学的“算经之首”,其书中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金10两.2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,那么下面列出的方程组中正确的是()A. B. C. D.8.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算时,如图.在中,,,延长CB使,连接AD,得,所以类比这种方法,计算的值为()A. B. C. D.二、填空题:本题共8小题,每小题3分,共24分。
9.因式分解:_______.10.如图,数轴上点M,N表示两个连续整数,点A表示的数是,则点N表示的数是__________.11.甲口袋中装有两个相同的小球,它们上面分别写有数字1和2,乙口袋中装有三个相同的小球,它们上面分别写有数字3,4和5,从两个口袋中各随机摸一个小球,两个小球上的数字都是偶数的概率是__________.12.如图,在A、B两地间修一条笔直的公路,从A地测得公路的走向为北偏东,如果A、B两地同时开工,那么为__________时,才能使公路准确接通.13.已知点,都在反比例函数图象上,则__________.14.方程的解为__________15.如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,如果,小圆直径径为6cm,那么大圆半径为______________16.如图是某停车场的平面示意图,停车场外围的长为30米,宽为18米.停车场内车道的宽都相等.停车位总占地面积为288平方米.设车道的宽为x米,可列方程为__________.三、解答题:本题共12小题,共96分。
湖北省鄂州市年中考数学真题试题(含解析)
2019年湖北省鄂州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.-2019的绝对值是()A. 2019B. −2019C. 12019D. −120192.下列运算正确的是()A. a3⋅a2 =a6B. a7÷a3 =a4C. (−3a)2 =−6a2D. (a−1)2=a2 −13.据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学记数法可表示为()A. 0.1031×106B. 1.031×107C. 1.031×108D. 10.31×1094.如图是由7个小正方体组合成的几何体,则其左视图为()A.B.C.D.5.如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为()A. 45∘ B. 55∘C. 65∘D. 75∘6.已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为()A. 3B. 4.5C. 5.2D. 67. 关于x 的一元二次方程x 2-4x +m =0的两实数根分别为x 1、x 2,且x 1+3x 2=5,则m 的值为( )A. 74B. 75C. 76D. 08. 在同一平面直角坐标系中,函数y =-x +k 与y =aa (k 为常数,且k ≠0)的图象大致是( )A. B.C. D.9. 二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =1.下列结论:①abc <0;②3a +c >0;③(a +c )2-b 2<0;④a +b ≤m (am +b )(m 为实数).其中结论正确的个数为( )A. 1个B. 2个C. 3个D. 4个10. 如图,在平面直角坐标系中,点A 1、A 2、A 3…A n 在x 轴上,B 1、B 2、B 3…B n 在直线y =√33x上,若A 1(1,0),且△A 1B 1A 2、△A 2B 2A 3…△A n B n A n +1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S 1、S 2、S 3…S n .则S n 可表示为( )A. 22a √3B. 22a −1√3C. 22a −2√3D. 22a −3√3二、填空题(本大题共6小题,共18.0分) 11. 因式分解:4ax 2-4ax +a =______.12. 若关于x 、y 的二元一次方程组{a +5a =5a −3a =4a +3的解满足x +y ≤0,则m 的取值范围是______.13. 一个圆锥的底面半径r =5,高h =10,则这个圆锥的侧面积是______. 14. 在平面直角坐标系中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为:d =|aa 0+aa 0+a |√22,则点P (3,-3)到直线y =-23x +53的距离为______. 15. 如图,已知线段AB =4,O 是AB 的中点,直线l 经过点O ,∠1=60°,P 点是直线l 上一点,当△APB 为直角三角形时,则BP =______.16. 如图,在平面直角坐标系中,已知C (3,4),以点C 为圆心的圆与y 轴相切.点A 、B 在x 轴上,且OA =OB .点P 为⊙C 上的动点,∠APB =90°,则AB 长度的最大值为______.三、解答题(本大题共8小题,共72.0分)17. 先化简,再从-1、2、3、4中选一个合适的数作为x 的值代入求值.(a 2−2a a 2−4a +4-4a −2)÷a −4a 2−418. 如图,矩形ABCD 中,AB =8,AD =6,点O 是对角线BD 的中点,过点O 的直线分别交AB 、CD 边于点E 、F . (1)求证:四边形DEBF 是平行四边形; (2)当DE =DF 时,求EF 的长.19. 某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别 ABCDE类型 新闻 体育 动画 娱乐戏曲 人数112040m4请你根据以上信息,回答下列问题:(1)统计表中m 的值为______,统计图中n 的值为______,A 类对应扇形的圆心角为______度; (2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数; (3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.20. 已知关于x 的方程x 2-2x +2k -1=0有实数根.(1)求k 的取值范围;(2)设方程的两根分别是x 1、x 2,且a 2a 1+a 1a 2=x 1•x 2,试求k 的值.21. 为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度AB ,他站在距离教学楼底部E 处6米远的地面C 处,测得宣传牌的底部B 的仰角为60°,同时测得教学楼窗户D 处的仰角为30°(A 、B 、D 、E 在同一直线上).然后,小明沿坡度i =1:1.5的斜坡从C 走到F 处,此时DF 正好与地面CE 平行. (1)求点F 到直线CE 的距离(结果保留根号);(2)若小明在F 处又测得宣传牌顶部A 的仰角为45°,求宣传牌的高度AB (结果22.如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△PAB的内心;,BC=1,求PO的长.(3)若cos∠PAB=√101023.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?24.如图,已知抛物线y=-x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)连接BC,E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.①若△AOC与△BMN相似,请直接写出t的值;②△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.答案和解析1.【答案】A【解析】解:-2019的绝对值是:2019.故选:A.直接利用绝对值的定义进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】B【解析】解:A、原式=a5,不符合题意;B、原式=a4,符合题意;C、原式=9a2,不符合题意;D、原式=a2-2a+1,不符合题意,故选:B.各项计算得到结果,即可作出判断.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.【答案】B【解析】解:将1031万用科学记数法可表示为1.031×107.故选:B.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:从左面看易得其左视图为:故选:A.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左主视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.【答案】B【解析】解:如图,作EF∥AB∥CD,∴∠2=∠AEF=35°,∠1=∠FEC,∵∠AEC=90°,∴∠1=90°-35°=55°,根据平行线的性质和直角的定义解答即可.此题考查平行线的性质,关键是根据平行线的性质得出∠2=∠AEF=35°,∠1=∠FEC.6.【答案】C【解析】解:∵一组数据7,2,5,x,8的平均数是5,∴5=(7+2+5+x+8),∴x=5×5-7-2-5-8=3,∴s2=[(7-5)2+(2-5)2+(5-5)2+(3-5)2+(8-5)2]=5.2,故选:C.先由平均数是5计算x的值,再根据方差的计算公式,直接计算可得.本题考查的是算术平均数和方差的计算,掌握方差的计算公式:一般地设n个数据,x1,x 2,…x n的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(x n-)2],是解题的关键.7.【答案】A【解析】解:∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2-4x+m=0得:()2-4×+m=0,解得:m=,故选:A.根据一元二次方程根与系数的关系得到x1+x2=4,代入代数式计算即可.本题考查的是一元二次方程根与系数的关系,掌握一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=-,x1•x2=是解题的关键.8.【答案】C【解析】解:∵函数y=-x+k与y=(k为常数,且k≠0),∴当k>0时,y=-x+k经过第一、二、四象限,y=经过第一、三象限,故选项A、B 错误,当k<0时,y=-x+k经过第二、三、四象限,y=经过第二、四象限,故选项C正确,选项D错误,故选:C.根据题目中的函数解析式,利用分类讨论的方法可以判断哪个选项中图象是正确的,本题得以解决.本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用一次函数和反比例函数的性质解答.9.【答案】D解:①∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴右侧,∴b<0∵抛物线与y轴交于负半轴,∴c>0,∴abc<0,①正确;②当x=-1时,y>0,∴a-b+c>0,∵,∴b=-2a,把b=-2a代入a-b+c>0中得3a+c>0,所以②正确;③当x=1时,y<0,∴a+b+c<0,∴a+c<-b,∵a>0,c>0,-b>0,∴(a+c)2<(-b)2,即(a+c)2-b2<0,所以③正确;④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最小值为a+b+c,∴a+b+c≤am2+mb+c,即a+b≤m(am+b),所以④正确.故选:D.①由抛物线开口方向得到a>0,对称轴在y轴右侧,得到a与b异号,又抛物线与y 轴正半轴相交,得到c>0,可得出abc<0,选项①正确;②把b=-2a代入a-b+c>0中得3a+c>0,所以②正确;③由x=1时对应的函数值<0,可得出a+b+c<0,得到a+c<-b,由a>0,c>0,-b>0,得到()a+c)2-b2<0,选项③正确;④由对称轴为直线x=1,即x=1时,y有最小值,可得结论,即可得到④正确.本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.10.【答案】D【解析】解:∵△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∴A1B1∥A2B2∥A3B3∥…∥A n B n,B1A2∥B2A3∥B3A4∥…∥B n A n+1,△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∵直线y=x与x轴的成角∠B1OA1=30°,∠OA1B1=120°,∴∠OB1A1=30°,∴OA1=A1B1,∵A1(1,0),∴A1B1=1,同理∠OB2A2=30°,…,∠OB n A n=30°,∴B2A2=OA2=2,B3A3=4,…,B n A n=2n-1,易得∠OB1A2=90°,…,∠OB n A n+1=90°,∴B1B2=,B2B3=2,…,B n B n+1=2n,∴S1=×1×=,S2=×2×2=2,…,S n=×2n-1×2n=;直线y=x与x轴的成角∠B1OA1=30°,可得∠OB2A2=30°,…,∠OB n A n=30°,∠OB1A2=90°,…,∠OB n A n+1=90°;根据等腰三角形的性质可知A1B1=1,B2A2=OA2=2,B3A3=4,…,B n A n=2n-1;根据勾股定理可得B1B2=,B2B3=2,…,B n B n+1=2n,再由面积公式即可求解;本题考查一次函数的图象及性质,等边三角形和直角三角形的性质;能够判断阴影三角形是直角三角形,并求出每边长是解题的关键.11.【答案】a(2x-1)2【解析】解:原式=a(4x2-4x+1)=a(2x-1)2,故答案为:a(2x-1)2原式提取a,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【答案】m≤-2【解析】解:,①+②得2x+2y=4m+8,则x+y=2m+4,根据题意得2m+4≤0,解得m≤-2.故答案是:m≤-2.首先解关于x和y的方程组,利用m表示出x+y,代入x+y≤0即可得到关于m的不等式,求得m的范围.本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.13.【答案】25√5a【解析】解:∵圆锥的底面半径r=5,高h=10,∴圆锥的母线长为=5,∴圆锥的侧面积为π×5×5=,故答案为:.利用勾股定理易得圆锥的母线长,进而利用圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.本题考查圆锥侧面积公式的运用,注意运用圆锥的高,母线长,底面半径组成直角三角形这个知识点.√1314.【答案】813【解析】解:∵y=-x+∴2x+3y-5=0∴点P(3,-3)到直线y=-x+的距离为:=,故答案为:.本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.15.【答案】2或2√3或2√7 【解析】解:∵AO=OB=2,∴当BP=2时,∠APB=90°,当∠PAB=90°时,∵∠AOP=60°,∴AP=OA•tan∠AOP=2,∴BP==2,当∠PBA=90°时,∵∠AOP=60°,∴BP=OB•tan∠1=2,故答案为:2或2或2.分∠APB=90°、∠PAB=90°、∠PBA=90°三种情况,根据直角三角形的性质、勾股定理计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.16.【答案】16【解析】解:连接OC 并延长,交⊙C 上一点P ,以O 为圆心,以OP 为半径作⊙O ,交x 轴于A 、B ,此时AB 的长度最大,∵C (3,4),∴OC==5,∵以点C 为圆心的圆与y 轴相切.∴⊙C 的半径为3,∴OP=OA=OB=8,∵AB 是直径,∴∠APB=90°,∴AB 长度的最大值为16,故答案为16.连接OC 并延长,交⊙C 上一点P ,以O 为圆心,以OP 为半径作⊙O ,交x 轴于A 、B ,此时AB 的长度最大,根据勾股定理和题意求得OP=8,则AB 的最大长度为16.本题考查了切线的性质,坐标和图形的性质,圆周角定理,找到OP 的最大值是解题的关键.17.【答案】解:原式=[a (a −2)(a −2)2-4a −2]÷a −4a 2−4=[a a −2-4a −2])÷a −4a 2−4=a −4a −2•(a −2)(a +2)a −4 =x +2∵x -2≠0,x -4≠0,∴x ≠2且x ≠4,∴当x =-1时,原式=-1+2=1.【解析】先化简分式,然后将x 的值代入计算即可.本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.18.【答案】(1)证明:∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠DFO =∠BEO ,又因为∠DOF =∠BOE ,OD =OB ,∴△DOF ≌△BOE (ASA ),∴DF =BE ,又因为DF ∥BE ,∴四边形BEDF 是平行四边形;(2)解:∵DE =DF ,四边形BEDF 是平行四边形∴四边形BEDF 是菱形,∴DE =BE ,EF ⊥BD ,OE =OF ,设AE =x ,则DE =BE =8-x在Rt △ADE 中,根据勾股定理,有AE 2+AD 2=DE 2∴x 2+62=(8-x )2,解之得:x =74, ∴DE =8-74=254,在Rt △ABD 中,根据勾股定理,有AB 2+AD 2=BD2 ∴BD =√62+82=10,∴OD =12 BD =5,在Rt △DOE 中,根据勾股定理,有DE 2 -OD 2=OE 2,∴OE =√(254)2−52=154, ∴EF =2OE =152.【解析】(1)根据矩形的性质得到AB ∥CD ,由平行线的性质得到∠DFO=∠BEO ,根据全等三角形的性质得到DF=BE ,于是得到四边形BEDF 是平行四边形;(2)推出四边形BEDF 是菱形,得到DE=BE ,EF ⊥BD ,OE=OF ,设AE=x ,则DE=BE=8-x 根据勾股定理即可得到结论.本题考查了矩形的性质,平行四边形的判定和性质,全等三角形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键.19.【答案】25 25 39.6【解析】解:(1)∵样本容量为20÷20%=100,∴m=100-(11+20+40+4)=25,n%=×100%=25%,A 类对应扇形的圆心角为360°×=39.6°,故答案为:25、25、39.6.(2)1500×=300(人)答:该校最喜爱体育节目的人数约有300人;(3)画树状图如下:共有12种情况,所选2名同学中有男生的有6种结果,所以所选2名同学中有男生的概率为.(1)先根据B 类别人数及其百分比求出总人数,再由各类别人数之和等于总人数求出m ,继而由百分比概念得出n 的值,用360°乘以A 类别人数所占比例即可得;(2)利用样本估计总体思想求解可得.本题考查了扇形统计图,条形统计图,树状图等知识点,能正确画出树状图是解此题的关键.20.【答案】(1)解:∵原方程有实数根,∴b 2-4ac ≥0∴(-2)2-4(2k -1)≥0∴k ≤1(2)∵x 1,x 2是方程的两根,根据一元二次方程根与系数的关系,得:x 1+x 2 =2,x 1 •x 2 =2k -1 又∵a 2a 1+a 1a 2=x 1•x 2,∴a 12+a 22a 1⋅a 2=a 1⋅a 2∴(x 1+x 2)2-2x 1 x 2 =(x 1 •x 2)2∴22-2(2k -1)=(2k -1)2解之,得:a 1=√52,a 2=−√52.经检验,都符合原分式方程的根 ∵k ≤1∴a =−√52.【解析】(1)根据一元二次方程x 2-2x+2k-1=0有两个不相等的实数根得到△=(-2)2-4(2k-1)≥0,求出k 的取值范围即可;(2)根据根与系数的关系得出方程解答即可.本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.21.【答案】解:(1)过点F 作FG ⊥EC 于G ,依题意知FG ∥DE ,DF ∥GE ,∠FGE =90° ;∴四边形DEFG 是矩形;∴FG =DE ;在Rt △CDE 中,DE =CE •tan ∠DCE ;=6×tan30 o =2√3 (米);∴点F 到地面的距离为2√3 米; (2)∵斜坡CF i =1:1.5.∴Rt △CFG 中,CG =1.5FG =2√3×1.5=3√3,∴FD =EG =3√3+6.在Rt △BCE 中,BE =CE •tan ∠BCE =6×tan60 o =6√3.∴AB =AD +DE -BE .=3√3+6+2√3-6√3=6-√3≈4.3 (米).答:宣传牌的高度约为4.3米.【解析】(1)过点F 作FG ⊥EC 于G ,依题意知FG ∥DE ,DF ∥GE ,∠FGE=90° ;得到四边形DEFG 是矩形;根据矩形的性质得到FG=DE ;解直角三角形即可得到结论;(2)解直角三角形即可得到结论.本题考查的是解直角三角形的应用-仰角俯角问题,正确标注仰角和俯角、熟记锐角三角函数的定义是解题的关键.22.【答案】(1)证明:连结OB ,∵AC 为⊙O 的直径,∴∠ABC =90°,∵AB ⊥PO ,∴PO ∥BC∴∠AOP =∠C ,∠POB =∠OBC ,OB =OC ,∴∠OBC =∠C ,∴∠AOP =∠POB ,在△AOP 和△BOP 中, {aa =aa∠aaa =∠aaa aa =aa,∴△AOP ≌△BOP (SAS ),∴∠OBP =∠OAP ,∵PA 为⊙O 的切线,∴∠OAP =90°,∴∠OBP =90°,∴PB 是⊙O 的切线;(2)证明:连结AE ,∵PA 为⊙O 的切线,∴∠PAE +∠OAE =90°,∵AD ⊥ED ,∴∠EAD +∠AED =90°,∵OE =OA ,∴∠OAE =∠AED ,∴∠PAE =∠DAE ,即EA 平分∠PAD ,∵PA 、PD 为⊙O 的切线,∴PD 平分∠APB∴E 为△PAB 的内心;(3)解:∵∠PAB +∠BAC =90°,∠C +∠BAC =90°,∴∠PAB =∠C ,∴cos ∠C =cos ∠PAB =√1010,在Rt △ABC 中,cos ∠C =aa aa =1aa =√1010,∴AC =√10,AO =√102,∵△PAO ∽△ABC , ∴aa aa =aa aa ,∴PO =aa aa ⋅aa =√1021⋅√10=5.【解析】(1)连结OB ,根据圆周角定理得到∠ABC=90°,证明△AOP ≌△BOP ,得到∠OBP=∠OAP ,根据切线的判定定理证明;(2)连结AE ,根据切线的性质定理得到∠PAE+∠OAE=90°,证明EA 平分∠PAD ,根据三角形的内心的概念证明即可;(3)根据余弦的定义求出OA ,证明△PAO ∽△ABC ,根据相似三角形的性质列出比例式,计算即可.本题考查的是三角形的内切圆和内心、相似三角形的判定和性质、切线的判定,掌握切线的判定定理、相似三角形的判定定理和性质定理是解题的关键.23.【答案】解:(1)由题意可得:y =100+5(80-x )整理得y =-5x +500;(2)由题意,得:w =(x -40)(-5x +500)=-5x 2+700x -20000=-5(x -70)2+4500∵a =-5<0∴w 有最大值即当x =70时,w 最大值=4500∴应降价80-70=10(元)答:当降价10元时,每月获得最大利润为4500元;(3)由题意,得:-5(x -70)2+4500=4220+200解之,得:x 1=66,x 2 =74,∵抛物线开口向下,对称轴为直线x =70,∴当66≤x ≤74时,符合该网店要求而为了让顾客得到最大实惠,故x =66∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.【解析】(1)直接利用销售单价每降1元,则每月可多销售5条得出y 与x 的函数关系式;(2)利用销量×每件利润=总利润进而得出函数关系式求出最值;(3)利用总利润=4220+200,求出x 的值,进而得出答案.此题主要考查了二次函数的应用,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案,正确得出w 与x 之间的函数关系式是解题关键.24.【答案】解:(1))∵点A 、B 关于直线x =1对称,AB =4,∴A (-1,0),B (3,0),代入y =-x 2+bx +c 中,得:{−1−a +a =0−9+3a +a =0,解得{a =3a =2,∴抛物线的解析式为y =-x 2+2x +3,∴C 点坐标为(0,3);(2)设直线BC 的解析式为y =mx +n ,则有:{3a +a =0a =3,解得{a =3a =−1,∴直线BC 的解析式为y =-x +3,∵点E 、F 关于直线x =1对称,又E 到对称轴的距离为1,∴EF =2,∴F 点的横坐标为2,将x =2代入y =-x +3中,得:y =-2+3=1,∴F (2,1);(3)①如下图,MN =-4t 2+4t +3,MB =3-2t ,△AOC 与△BMN 相似,则aa aa =aa aa 或aaaa ,即:3−2a −4a 2+4a +3=3或13,解得:t =32或-13或3或1(舍去32、-13、3),故:t =1;②∵M (2t ,0),MN ⊥x 轴,∴Q (2t ,3-2t ),∵△BOQ 为等腰三角形,∴分三种情况讨论,第一种,当OQ =BQ 时,∵QM ⊥OB ∴OM =MB∴2t =3-2t∴t =34;第二种,当BO =BQ 时,在Rt △BMQ 中∵∠OBQ =45°,∴BQ =√2aa ,∴BO =√2aa ,即3=√2(3−2a ),∴t =6−3√24;第三种,当OQ =OB 时,则点Q 、C 重合,此时t =0而t >0,故不符合题意综上述,当t =34秒或6−3√24秒时,△BOQ 为等腰三角形.【解析】(1)将A 、B 关坐标代入y=-x 2+bx+c 中,即可求解;(2)确定直线BC 的解析式为y=-x+3,根据点E 、F 关于直线x=1对称,即可求解;(3)①△AOC 与△BMN 相似,则,即可求解;②分OQ=BQ 、BO=BQ 、OQ=OB 三种情况,分别求解即可.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
湖北鄂州市中考数学 模拟试题试卷(二)
2012年鄂州市中考数学模拟试题(二)(时间:120分钟 分值:120分)一、选择题:1.4×(-12)的结果是( )A 、-4B 、-2C 、-14 D 、32【解析】4×(-12)=-4×12=-2.2.下列图形中,是中心对称图形的是( )【解析】A 、C 、D 均为轴对称图形,只有B 是中心对称图形. 【答案】B3.(2011·深圳)下列运算正确的是( )A .x 2+x 3=x 5B .(x +y )2=x 2+y 2C .x 2·x 3=x 6D .(x 2)3=x 6【解析】(x 2)3=x 2×3=x 6.【答案】D4.下列运算正确的是( )A .(-2a 2)3=-8a 6B .a 3+a 3=2a 6C .a 6÷a 3=a 2D .a 3·a 3=2a 3【解析】∵(-2a 2)3=(-2)3·(a 2)3=-8·a 6,故选A . 【答案】A5.如图,直线l 1∥l 2,∠1=40°,∠2=75°,则∠3等于( )A .55°B .60°C .65°D .70°【解析】如下图所示,由l 1∥l 2得∠5=∠1=40°, ∵∠4=∠2=75°,∴∠3=180°-40°-75°=65°.【答案】C6.(2011·陕西)在△ABC 中,若三边BC 、CA 、AB 满足BC ∶CA ∶AB =5∶12∶13,则cosB =________.( )A .512B .125C .513D .1213【解析】设BC =5x ,则CA =12x ,AB =13x .∵(5x )2+(12x )2=169x 2=(13x )2,∴△ABC是直角三角形且∠C =90°,∴cosB =BC AB =513.7.如图是由四个完全相同的正方体组成的几何体,这个几何体的左视图是( )【解析】由三视图知识可知,该几何体的左视图是“ ” 【答案】C8.不等式2x +3≥5的解集在数轴上表示正确的是( )【解析】解2x +3≥5得x ≥1,故选D .【答案】D9.在平行四边形、等边三角形、菱形、等腰梯形中既是轴对称图形又是中心对称图形的是( )A .平行四边形B .等边三角形C .菱形D .等腰梯形【解析】菱形既是轴对称图形又是中心对称图形,平行四边形只是中心对称图形,等边三角形与等腰梯形只是轴对称图形. 【答案】C10.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A =25°,则∠D等于( )A .20°B .30°C .40°D .50°【解析】连接OC ,则OC ⊥CD ,∠COD =2∠A =50°,∴∠D =90°-50°=40°. 【答案】C11.(2011·扬州)如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2.将△ABC 绕点C 按顺时针方向旋转n 度后得到△EDC ,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A .30,2B .60,2【解析】由BC =CD =2,∠B =60°可得△BCD 是等边三角形,则∠BCD =60°,即n =60.∠CFD =90°,DF =12DC =1,CF =22-12=3,∴S 阴=12×1×3=32.12.现给出下列四个命题:①无公共点的两圆必外离;②位似三角形是相似三角形;③菱形的面积等于两条对角线的积;④对角线相等的四边形是矩形.其中真命题的个数是( )A .1B .2C .3D .4【解析】无公共点的两圆除外离,还有内含,故命题①是假命题;位似三角形一定是相似三角形,命题②是真命题;菱形的面积等于两条对角线乘积的一半,命题③是假命题;对角线相等的四边形不一定是矩形,命题④是假命题. 【答案】A二、填空题(每小题3分,共15分)13.使4x -1有意义的x 的取值范围是____________. 【解析】当4x -1≥0即x ≥14时,4x -1有意义.【答案】x ≥1414.(2011·莆田)若一个正多边形的一个外角为40°,则这个正多边形是______边形.【解析】设正多边形的边数为n ,则n =360°40°=9.【答案】九15.⊙O 1和⊙O 2的半径分别为3 cm 和4 cm ,若⊙O 1和⊙O 2相外切,则圆心距O 1O 2=______cm . 【解析】两圆相外切,则有O 1O 2=3+4=7(cm ). 【答案】716.在如图所示的矩形纸片上作随机扎针实验,则针头扎在阴影区域的概率为________.【解析】将阴影区域移至一起,则有P (针头扎在阴影区域)=14.17.(2011·佛山)如图,物体从点A 出发,按照A →B (第1步)→C (第2步)→D →A →E →F →G →A →B …的顺序循环运动,则第2 011步到达点________处.【解析】由题意知,每隔8步物体到达同一点,∵2 011÷8=251……3,所以第2 011步到达D 点. 【答案】D三、解答题(本大题包括8个小题,共69分)18.(6分)(2011·重庆)先化简,再求值:(x -1x -x -2x +1)÷2x 2-x x 2+2x +1,其中x 满足x 2-x -1=0.【答案】解:原式=[x -x +x x +-x x -x x +]÷x x -x +2=x 2--x 2-2x x x +·x +2x x -=2x -1x x +·x +2x x -=x +1x2.∵x 2-x -1=0,∴x 2=x +1.∴原式=x +1x +1=1.19.(8分)贵阳市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛.同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如图所示的两幅统计图.请你根据图中所给信息解答下列问题:(1)一等奖所占的百分比是________;(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整;(3)各奖项获奖学生分别有多少人?【答案】解:(1)10%.(2)20÷10%=200(人),在此次比赛中,一共收到200份参赛作品.200×20%=40,补充条形统计图如图所示.(3)200×24%=48(人),200×46%=92(人),即此次比赛中一等奖获奖学生有20人,二等奖获奖学生有40人,三等奖获奖学生有48人,优秀奖获奖学生有92人.20.(9分)(2011·烟台)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2,并写出点C2的坐标;(3)将△A2B2C2平移得到△A3B3C3,使点A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3(4,-1),在坐标系中画出△A3B3C3,并写出点A3,B3的坐标.【答案】(1)C1(-1,-3) (2)C2(3,1) (3)A3(2,-2),B3(2,-1).21.(8分)如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的小鸟,将随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率;(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少(用树形图或列表法求解)?【答案】解:(1)P (小鸟落在草坪上)=69=23.(2)用“树形图”或表格列出所有等可能的结果:(如图所示)所以编号为1、2的2个小方格空地种植草坪的概率P =6=3.22.(8分)(2011·苏州)如图,小明在大楼30米高(即PH =30米)的窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处的俯角为60°,已知该山坡的坡度i (即tan ∠ABC )为1∶3,点P 、H 、B 、C 、A 在同一个平面上.点H 、B 、C 在同一条直线上,且PH ⊥HC .(1)山坡坡角(即∠ABC )的度数等于________度;(2)求A 、B 两点间的距离(结果精确到0.1米,参考数据:3≈1.732). 【答案】解:(1)30 (2)由题意得∠PBH =60°,∠APB =45°. ∵∠ABC =30°,∴∠ABP =90°. 在Rt △PHB 中,PB =PHsin∠PBH=203,在Rt △PBA 中,AB =PB =203≈34.6. 答:A 、B 两点间的距离约为34.6米.23.(9分)(2011·菏泽)如图,BD 为⊙O 的直径,AB =AC ,AD 交BC 于点E ,AE =2,ED =4. (1)求证:△ABE ∽△ADB ; (2)求AB 的长;(3)延长DB 到F ,使得BF =BO ,连接FA .试判断直线FA 与⊙O 的位置关系,并说明理由.【答案】(1)证明:∵ AB =AC ,∴∠ABC =∠C , ∵∠C =∠D ,∴∠ABC =∠D , 又∵∠BAE =∠EAB ,∴△ABE ∽△ADB , (2)解:∵△ABE ∽△ADB ,∴AB AD =AE AB,∴AB 2=AD ·AE =(AE +ED )·AE =(2+4)×2=12,∴AB =2 3.(3)直线FA 与⊙O 相切,理由如下:连接OA ,∵BD 为⊙O 的直径,∴∠BAD =90°, ∴BD =AB 2+AD 2=12++2=43,BF =BO =12BD =2 3.∵AB =23,∴BF =BO =AB ,则有∠OAF =90°, ∴直线FA 与⊙O 相切.24.(9分)2011年4月28日,以“天人长安,创意自然——城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园.这次世园会的门票分为个人票、团体票两大类,其中个人票设置有三种:某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票张数是A种票张数的3倍还多8张.设需购A种票张数为x,C种票张数为y. (1)写出y与x之间的函数关系式.(2)设购票总费用为w元,求出w(元)与x(张)之间的函数关系式.(3)若每种票至少购买1张,其中购买A种票不少于20张,则共有几种购票方案?并求出购票总费用最少时,购买A、B、C三种票的张数.【答案】解:(1)y=-4x+92.(2)w=60x+100(3x+8)+150(-4x+92),即w=-240x+14 600.(3)由题意,得{x≥20,-4x>0.解得20≤x<23.∵x是正整数,∴x可取20、21、22.∴共有3种购票方案.∵k=-240<0,∴w随着x的增大而减小,当x=22时,w的取值最小.即当A种票购买22张时,购票的总费用最少.∴当购票总费用最少时,购买A、B、C三种票张数分别为22,74,4.25.(12分)用长度一定的不锈钢材料设计成外观为矩形的框架(如图①②③中的一种).设竖档AB =x 米,请根据以上图案回答下列问题:(题中的不锈钢材料总长度均指各图中所有黑线的长度和,所有横档和竖档分别与AD 、AB 平行)(1)在图①中,如果不锈钢材料总长度为12米,当x 为多少时,矩形框架ABCD 的面积为3平方米?(2)在图②中,如果不锈钢材料总长度为12米,当x 为多少时,矩形框架ABCD 的面积S 最大?最大面积是多少?(3)在图③中,如果不锈钢材料总长度为a 米,共有n 条竖档,那么当x 为多少时,矩形框架ABCD 的面积S 最大?最大面积是多少?【答案】解:(1)由题意,BC 的长为(4-x )米.依题意得x (4-x )=3,即x 2-4x +3=0.解得x 1=1,x 2=3. 即当AB 的长度为1米或3米时,矩形框架ABCD 的面积为3平方米.(2)S =x (4-43x )=-43x 2+4x =-43(x -32)2+3.∴当x =32时,S 有最大值3.∴当x 为32时,矩形框架ABCD 的面积S 最大,最大面积是3平方米.(3)S =13x (a -nx )=-n 3x 2+a 3x =-n 3(x -a 2n )2+a212n.∵-n3<0,∴当x =a 2n 时,S 有最大值,S 最大=a 212n.因此,当x 为a 2n 时,矩形框架ABCD 的面积S 最大,最大面积是a 212n平方米.。
(中考精品卷)湖北省鄂州市中考数学真题(原卷版)
2022年湖北省鄂州市初中毕业生学业水平考试数学真题一、选择题(本大题共10小题,每小题3分,共计30分)1. 实数9的相反数等于( )A. ﹣9B. +9C. 19D. ﹣19 2. 下列计算正确的是( )A. b +b 2=b 3B. b 6÷b 3=b 2C. (2b )3=6b 3D. 3b ﹣2b =b3. 孙权于公元221年4月自公安“都鄂”,在西山东麓营建吴王城,并取“以武而昌”之意,改鄂县为武昌,下面四个汉字中,可以看作是轴对称图形的是( )A. B. C. D. 4. 如图所示的几何体是由5个完全相同的小正方体组成,它的主视图是( )A. B. C. D.5. 如图,直线l 1∥l 2,点C 、A 分别在l 1、l 2上,以点C 为圆心,CA 长为半径画弧,交l 1于点B ,连接AB .若∠BCA =150°,则∠1的度数为( )A 10° B. 15° C. 20° D. 30° 6. 生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n来表.示.即:21=2,22=4,23=8,24=16,25=32,……,请你推算22022的个位数字是( )A 8 B. 6 C. 4 D. 2 7. 数形结合是解决数学问题常用的思想方法.如图,一次函数y =kx +b (k 、b 为常数,且k <0)的图象与直线y =13x 都经过点A (3,1),当kx +b <13x 时,x 的取值范围是( )A. x >3B. x <3C. x <1D. x >1 8. 工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A 、B 、E 三个接触点,该球的大小就符合要求.图(2)是过球心及A 、B 、E 三点的截面示意图,已知⊙O 的直径就是铁球的直径,AB 是⊙O 的弦,CD 切⊙O 于点E ,AC ⊥CD 、BD ⊥CD ,若CD =16cm ,AC =BD =4cm ,则这种铁球的直径为( )A. 10cmB. 15cmC. 20cmD. 24cm 9. 如图,已知二次函数y =ax 2+bx +c (a 、b 、c 为常数,且a ≠0)的图像顶点为P (1,m ),经过点A (2,1);有以下结论:①a <0;②abc >0;③4a +2b+c =1;④x >1时,y 随x 的增大而减小;⑤对于任意实数t ,总有at 2+bt ≤a +b ,其中正确的有( ).A. 2个B. 3个C. 4个D. 5个 10. 如图,定直线MN ∥PQ ,点B 、C 分别为MN 、PQ 上的动点,且BC =12,BC 在两直线间运动过程中始终有∠BCQ =60°.点A 是MN 上方一定点,点D 是PQ 下方一定点,且AE ∥BC ∥DF ,AE =4,DF =8,ADBC 在平移过程中,AB +CD 的最小值为( )AB.C.D.二、填空题(本大题共6小题,每小题3分,共计18分)11.= .12. 为了落实“双减”,增强学生体质,阳光学校篮球兴趣小组开展投篮比赛活动.6名选手投中篮圈的个数分别为2,3,3,4,3,5,则这组数据的众数是_____.13. 若实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,则11a b的值为 _____. 14. 中国象棋文化历史久远.某校开展了以“纵横之间有智意 攻防转换有乐趣”为主题的中国象棋文化节,如图所示是某次对弈的残局图,如果建立平面直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),那么“兵”在同一坐标系下的坐标是_____..15. 如图,已知直线y =2x 与双曲线k y x=(k 为大于零的常数,且x >0)交于点A ,若OA,则k 的值为 _____.16. 如图,在边长为6的等边△ABC 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则△ABP 的周长为 _____.三、解答题(本大题共8小题,共计72分.解答应写出必要的文字说明、证明过程或演算步骤)17. 先化简,再求值:21a a +﹣11a +,其中a =3. 18. .为庆祝中国共产主义青年团成立100周年,某校举行了“青年大学习,强国有我”知识竞赛活动.李老师赛后随机抽取了部分学生成绩(单位:分,均为整数),按成绩划分为A 、B 、C 、D 四个等级,并制作了如下统计图表(部分信息未给出):等级成绩x /分 人数 A90≤x ≤100 15 B80≤x <90 a C70≤x <80 18 D x <70 7的(1)表中a = ,C 等级对应的圆心角度数为 ;(2)若全校共有600名学生参加了此次竞赛,成绩A 等级的为优秀,则估计该校成绩为A 等级的学生共有多少人?(3)若A 等级15名学生中有3人满分,设这3名学生分别为T 1,T 2,T 3,从其中随机抽取2人参加市级决赛,请用列表或树状图的方法求出恰好抽到T 1,T 2的概率. 19. 如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,且∠CDF =∠BDC 、∠DCF =∠ACD .(1)求证:DF =CF ;(2)若∠CDF =60°,DF =6,求矩形ABCD 的面积.20. 亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C 处看见飞机A 的仰角为45°,同时另一市民乙在斜坡CF 上的D 处看见飞机A 的仰角为30°,若斜坡CF 的坡比=1:3,铅垂高度DG =30米(点E 、G 、C 、B 在同一水平线上).求:(1)两位市民甲、乙之间的距离CD ;(2)此时飞机的高度AB ,(结果保留根号)21. 在“看图说故事”话动中,某学习小组设计了一个问题情境:小明从家跑步去体育场,在那里锻炼了一阵后又走到文具店买圆规,然后散步走回家.小明离家距离y (km )与他所用的时间x (min )的关系如图所示:的(1)小明家离体育场的距离为 km ,小明跑步的平均速度为 km/min ;(2)当15≤x ≤45时,请直接写出y 关于x 的函数表达式;(3)当小明离家2km 时,求他离开家所用的时间.22. 如图,△ABC 内接于⊙O ,P 是⊙O 的直径AB 延长线上一点,∠PCB =∠OAC ,过点O 作BC 的平行线交PC 的延长线于点D .(1)试判断PC 与⊙O 的位置关系,并说明理由;(2)若PC =4,tan A =12,求△OCD 的面积.23. 某数学兴趣小组运用《几何画板》软件探究y =ax 2(a >0)型抛物线图象.发现:如图1所示,该类型图象上任意一点M 到定点 F (0,14a)的距离MF ,始终等于它到定直线l :y =﹣14a上的距离MN (该结论不需要证明),他们称:定点F 为图象的焦点,定直线l 为图象的准线,y =﹣14a 叫做抛物线的准线方程.其中原点O 为FH 的中点,FH =2OF =12a ,例如,抛物线y =12x 2,其焦点坐标为F (0,12),准线方程为l :y =﹣12.其中MF =MN ,FH =2OH =1.(1)【基础训练】请分别直接写出抛物线y =2x 2的焦点坐标和准线l 的方程: , .(2)【技能训练】如图2所示,已知抛物线y =18x 2上一点P 到准线l 的距离为6,求点P 的坐标; (3)【能力提升】如图3所示,已知过抛物线y =ax 2(a >0)的焦点F 的直线依次交抛物线及准线l 于点A 、B 、C .若BC =2BF ,AF =4,求a 的值;(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段AB 分为两段AC 和CB ,使得其中较长一段AC 是全线段AB 与另一段CB 的比例中项,即满足:AC AB =BC AC 这个数称为“黄金分割”把点C 称为线段AB 的黄金分割点.如图4所示,抛物线y =14x 2的焦点F (0,1),准线l 与y 轴交于点H (0,﹣1),E 为线段HF 的黄金分割点,点M 为y 轴左侧的抛物线上一点.当MH MF 时,请直接写出△HME 的面积值.24. 如图1,在平面直角坐标系中,Rt △OAB 的直角边OA 在y 轴的正半轴上,且OA =6,斜边OB =10,点P 为线段AB 上一动点.(1)请直接写出点B 的坐标;(2)若动点P 满足∠POB =45°,求此时点P 的坐标;(3)如图2,若点E 为线段OB 的中点,连接PE ,以PE 为折痕,在平面内将△APE 折叠,点A 的对应点为A ',当PA '⊥OB 时,求此时点P 的坐标;(4)如图3,若F 为线段AO 上一点,且AF =2,连接FP ,将线段FP 绕点F 顺时针方向旋转60°得线段FG ,连接OG ,当OG 取最小值时,请直接写出OG 的最小值和此时线段FP 扫过的面积。
第十八章全国通用版中考数学:《平行四边形》与坐标系结合压轴题(二)—解析版
第十八章专题:《平行四边形》与坐标系结合压轴题(二)1.如图,在平面直角坐标系中,AB //OC, A (0, 12), B (a, c) , C (b, 0),并且a, b满足b= 府市 /口' + 16. 一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点 B 运动;动点Q 从点。
出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P 运动到点B时,点Q随之停止运动.设运动时间为t (秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,APQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.(1) •, b= ^a-21 J^T^+16,••.a=21, b=16,故B (21, 12) C (16, 0); (2)由题意得:AP=2t, QO=t,贝U: PB=21-2t , QC=16-t,•••当PB=QC时,四边形PQCB是平行四边形,.•.21-2t=16-t,解得:t=5,,P (10, 12) Q (5, 0);(3)当PQ=CQ 时,过Q 作QN^AB,由题意得:122+t2=(16-t) 2, 解得:t=3.5,故P (7, 12), Q (3.5, 0),当PQ=PC时,过P作PM ±x轴,由题意得:QM=t , CM=16-2t ,则t=16-2t,解得:t=16, 2t=32, 3 3故P( 32,12), Q(16,3 30).2.如图1,在平面直角坐标系中, AB ,y 轴于点A, BC ,x 轴于点B,点D 为线段BC 的中点,若AB=a , CD=b ,且J 2 a 8 v 5 +/4我 a +2屈=b .连接AD ,在线段OC 上取一点E,使/ EAD= / DAB .(1)贝U a=, b=(2)求证:AE=OE+CD ;【解答】(1) a =4 v15 , b =2 后,(2)由(1)可知 AB=4 75, CD=BD=2 V 5 , • . AB=CB ,,.AB ±y 轴于点 A, BC±x 轴于点 B,,乙 BAO= / B= / AOC=90° ,••・四边形ABCO 是矩形,••・AB=CB , ••・四边形ABCO 是正方形,延长 CO 至u M ,使得 OM=BD ,贝u ^ABD AOM , ,/4=/M, Z1 = Z2=Z3,. OA//BC, . ・/4=/2+/5=/5+/3=/EAM , . . / M= / EAM , • . AE=EM=OE+OM=OE+BD ••• BD=CD , .1. AE=OE+CD .(3)如图 2 中,设 AE=EM=x .在 RtAAOE 中,AO 2+OE 2=AE 2, - x 2= (4<5 ) 2+ (x-2 J 5 ) 2, . . x=5石, OE=3 而,•.D (4V 5, 2 45), E (3V5 , 0), •. F (0, -6V5 )风0)3.如图,在平面直角坐标系中,有一矩形ABCD,其中A(0, 0), B (m, 0) , D (0, n), m是最接近质的整数,n是16的算术平方根,若将4ABC沿矩形又•角线AC所在直线翻折,点B落在点E处,AE与边CD相交于点M .(1)求AC的长;(2)求4AMC的面积;(3)求点E的坐标.【解答】(1)•' m是最接近#5的整数,• ' m=8,.「n 是16 的算术平方根,,n=4,,B (8, 0), D (0, 4),.••点C 矩形ABCD 的一个顶点,..C (8, 4),,AB=8, BC=4 ,AC=4 J5 ,(2)由折叠有,CE=AD=BC=4 , AE=AB=8 ,设DM=x 则CM=8-x ,・. /ADM= / CEM , /AMD=/CME, /.A ADM ^ACEM , • .AM=CM=8-x , ME=MD , 在RtAADM 中,AD=4 , DM=x , AM=8-x ,根据勾股定理有:AD2+DM 2=AM 2,即:16+x2= (8-x) 2, •1- x=3 , DM=3 , CM=5 , S AAMC = —Ch/|X AD=)>^M=10,2 2(3)过点E作EFXCD,如图,由(2)有,CM=5 , CE=4, ME=DM=3在Rt^CEM 中,由射影定理得,CE2=CFXCM , 16=CFX5,,CF=3.2,••・Ma CE=CMK EF (直角三角形的面积的两种计算) ,,EF=2.4,• . DF=CD -CF=4.8 , BC+EF=6.4 , . . E (4.8, 6.4)4 .已知正方形OABC 在平面直角坐标系中,点 A, C 分别在x 轴,y 轴的正半轴上,等腰直角三角形OEF 的直角顶点O 在原点,E, F 分别在OA, OC 上,且OA=4 , OE=2 .将AOEF 绕点O 逆 时针旋转,得△OE I F I ,点E, F 旋转后的对应点为Ei, Fi.(I )①如图①,求EiFi 的长;②如图②,连接CFi, AEi,求证△OAEi^^OCFi;「(II)将AOEF 绕点O 逆时针旋转一周,当 OEi//CFi 时,求点Ei 的坐标(直接写出结果即可)姝 姝CB C 石【解答】(I )①解:二.等腰直角三角形 OEF 的直角顶点O 在原点,OE=2, / EOF=90 , OF=OE=2 ,「. EF=2 血,・ ••将AOEF 绕点 O 逆时针旋转,得△OE i F i, ••.E i F i =EF=2 J 2 ; ②证明:四边形OABC 为正方形,OC=OA .・ •・将AOEF 绕点 O 逆时针旋转,得 △OE i F i,AOE i =/COF i, • △OEF 是等腰直角三角形,・•.△OEiFi 是等腰直角三角形, ••OE i =OF i.在 AOAE i 和 ^OCF i 中,OA=OC, /AOEi=/COF i, OEi=OFi% E・•.△OAE 卢^OCF i (SAS);(n)解:••• OEXOF,卜过点F与OE平行的直线有且只有一条,并与OF垂直,当三角板OEF绕。
湖北省武汉市中考数学模拟试卷(含解析)-人教版初中九年级全册数学试题
2016年某某省某某市中考数学模拟试卷一、选择题1.已知实数x,y满足;,y4+y2=3,则+y4的值为()A.7 B.C.D.52.若n满足(n﹣2015)2+(2016﹣n)2=1,则(n﹣2015)(2016﹣n)=()A.﹣1 B.0 C.D.13.如图,A为DE的中点,设S1=S△DBC,S2=S△ABC,S3=S△EBC,则S1,S2,S3的关系是()A.S2=(S1+S3)B.S2=(S3﹣S1)C.S2=(S1+S3)D.S2=(S3﹣S1)4.图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则sin∠CBE=()A.B.C.D.5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B. C.D.二、填空题6.如图,指出第6排第7列的数是,2016是排列的数.7.已知x轴上有点A(﹣1,0),B(3,0)两点,y=x2+2kx+k2﹣3的图象与线段AB有交点时,k 的取值X围是.8.如图,已知正方体的棱长为2cm,沿一个顶点C和两棱的中点的连线AB截取出三棱锥D﹣ABC,则这个三棱锥的表面积为cm2.9.如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN 于点F,C,过点C作AM的垂线CD,垂足为D,若CD=CF,则=.10.已知t是实数,若a,b是关于x的一元二次方程x2﹣2x+t﹣1=0的两个非负实根,则(a2﹣1)(b2﹣1)的最小值是.三、解答题11.如图,在直角坐标系中有正方形OABC,以OA为直径作⊙M,在半圆上有一动点P,连接PO、PA、PB、PC,已知A(4,0).(1)OP=2时,P点的坐标是;(2)求当OP为多少时,△OPC为等腰三角形;(3)设P(a,b),S△POC=S1,S△POA=S2,S△PAB=S3,求出S=2S1S3﹣S22的最大值,并求出此时P的坐标.12.设a,b,c为互不相等的实数,且满足关系式:b2+c2=2a2+16a+14①bc=a2﹣4a﹣5②.求a的取值X围.13.如图,平面坐标系中,AB交矩形ONCM于E、F,若=(m>1),且双曲线y=也过E、F两点,记S△CEF=S1,S△OEF=S2,用含m的代数式表示.14.如图,PA、PB是⊙O的两条切线,PEC是一条割线,D是AB与PC的交点,若PE=2,CD=1,求DE的长.2016年某某省某某市华中师大一附中中考数学模拟试卷参考答案与试题解析一、选择题1.已知实数x,y满足;,y4+y2=3,则+y4的值为()A.7 B.C.D.5【考点】换元法解分式方程;解一元二次方程﹣公式法.【专题】计算题.【分析】根据方程特点设=m,y2=n,则已知可化为4m2﹣2m﹣3=0,n2+n﹣3=0.解一元二次方程求m、n,再求所求代数式的值即可.【解答】解:因为x2>0,y2≥0,设=m,y2=n,则已知可化为4m2﹣2m﹣3=0,n2+n﹣3=0.解得, =m=,y2=n=,所以=4()2+()2=7故选A.【点评】用换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.2.若n满足(n﹣2015)2+(2016﹣n)2=1,则(n﹣2015)(2016﹣n)=()A.﹣1 B.0 C.D.1【考点】完全平方公式.【分析】根据完全平方公式得出[(n﹣2015+(2016﹣n)]2=(n﹣2015)2+(2016﹣n)2+2(n﹣2015)(2016﹣n)=1+2(n﹣2015)(2016﹣n),即可得出答案.【解答】解:∵(n﹣2015)2+(2016﹣n)2=1,∴[(n﹣2015)+(2016﹣n)]2=(n﹣2015)2+(2016﹣n)2+2(n﹣2015)(2016﹣n)=1+2(n﹣2015)(2016﹣n),∴1=1+2(n﹣2015)(2016﹣n),∴(n﹣2015)(2016﹣n)=0,故选B.【点评】本题考查了完全平方公式,能灵活运用公式进行变形是解此题的关键.3.如图,A为DE的中点,设S1=S△DBC,S2=S△ABC,S3=S△EBC,则S1,S2,S3的关系是()A.S2=(S1+S3)B.S2=(S3﹣S1)C.S2=(S1+S3)D.S2=(S3﹣S1)【考点】三角形的面积.【分析】作DM⊥BC于M,AN⊥BC于N,EH⊥BC于H,根据梯形中位线定理得到AN=(DM+EH),根据三角形的面积公式计算即可判断.【解答】解:作DM⊥BC于M,AN⊥BC于N,EH⊥BC于H,则DM∥AN∥EH,∵A为DE的中点,∴AN是梯形DMHE的中位线,∴AN=(DM+EH),S1+S3=×BC×DM+×BC×EH=×BC×(DM+EH)=×BC×2AN=2S2,∴S2=(S1+S3),故选:C.【点评】本题考查的是三角形的面积计算,掌握三角形的面积公式、梯形的中位线定理是解题的关键.4.图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则sin∠CBE=()A.B.C.D.【考点】切线长定理;相似三角形的判定与性质;锐角三角函数的定义.【专题】计算题.【分析】取BC的中点O,则O为圆心,连接OE,AO,AO与BE的交点是F,则易证AO⊥BE,△BOF ∽△AOB,则sin∠CBE=,求得OF的长即可求解.【解答】解:取BC的中点O,则O为圆心,连接OE,AO,AO与BE的交点是F∵AB,AE都为圆的切线∴AE=AB∵OB=OE,AO=AO∴△ABO≌△AEO(SSS)∴∠OAB=∠OAE∴AO⊥BE在直角△AOB里AO2=OB2+AB2∵OB=1,AB=3∴AO=易证明△BOF∽△AOB∴BO:AO=OF:OB∴1: =OF:1∴OF=sin∠CBE==故选D.【点评】本题主要考查了切线长定理,以及三角形的相似,求角的三角函数值的问题转化为求线段的比的问题.5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B. C.D.【考点】相交弦定理;勾股定理.【专题】计算题.【分析】设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.利用相交弦定理,求出m与r的关系,即用r表示出m,即可表示出所求比值.【解答】解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选D.【点评】本题考查了相交弦定理,即“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”.熟记并灵活应用定理是解题的关键.二、填空题6.如图,指出第6排第7列的数是42 ,2016是45 排10 列的数.【考点】规律型:数字的变化类.【分析】先根据图形找到第n行第n+1列的数为:n(n+1),以此确定第6排第7列的数,从表格中发现:第n排第1列的数为n2,第n行递减的数有n个,由此可计算2016是第45排的数,452﹣9=2016,可确定是第几列.【解答】解:由图可知:第1行2列:2=1×2,第2行3列:6=2×3,第3行4列:12=3×4,第4行5列:20=4×5,∴第6排第7列的数是:6×7=42,又知道第n排第1列的数为n2,第n行递减的数有n个,2016=452﹣9,即2016是第45行第10列,故答案为:42,45,10.【点评】本题是数字类的变化题,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况,得出规律解决问题.7.已知x轴上有点A(﹣1,0),B(3,0)两点,y=x2+2kx+k2﹣3的图象与线段AB有交点时,k 的取值X围是3+≤k或﹣3﹣≤k≤1﹣.【考点】二次函数图象上点的坐标特征.【分析】令y=0得出抛物线与x轴的交点坐标,列出不等式即可解决问题.【解答】解:令y=0,得x2+2kx+k2﹣3=0,解得x=﹣k±,∵二次函数y=x2+2ax+3的图象与线段AB有交点,抛物线与x轴交于(﹣k+,0),(﹣k﹣,0),开口向上,∴当﹣1≤﹣k+≤3时,抛物线与线段AB有交点,即﹣3+≤k;或当﹣1≤﹣k﹣≤3时,抛物线与线段AB有交点,即﹣3﹣≤k≤1﹣;故答案为3+≤k或﹣3﹣≤k≤1﹣.【点评】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用图象解决问题,把问题转化为不等式,属于中考常考题型.8.如图,已知正方体的棱长为2cm,沿一个顶点C和两棱的中点的连线AB截取出三棱锥D﹣ABC,则这个三棱锥的表面积为4 cm2.【考点】勾股定理;认识立体图形;几何体的表面积.【专题】计算题.【分析】求出△ADB、△ADC、△CDB的面积,根据勾股定理求出AB、BC、AC的长,再利用海伦公式求出△ADC的面积,将四个三角形的面积相加即可求出三棱锥的表面积.【解答】解:∵AD=DB=1cm,DC=2cm,∴AB==cm,BC=AC==cm,S△ACB==cm2;S△ADB=×1×1=;S△ADC=S△CDB=×1×2=1;∴这个三棱锥的表面积为1+1++=4cm2.故答案为4cm2.【点评】本题考查了勾股定理、认识立体图形、几何体的表面积,熟悉海伦公式及能将立体图形平面化是解题的关键.9.如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN 于点F,C,过点C作AM的垂线CD,垂足为D,若CD=CF,则=.【考点】矩形的性质;相似三角形的判定与性质.【分析】由于AD∥BC,易得△AEF∽△CBF,那么AE:BC=AF:FC,因此只需求得AF、FC的比例关系即可.可设AF=a,FC=b;在Rt△ABC中,由射影定理可知AB2=AF•AC,联立CD=CF=AB,即可求得AF、FC的比例关系,由此得解.【解答】解:设AF=a,FC=b;∵AM⊥AB,BN⊥AB,∴AM∥BN;∴△AEF∽△CBF;∴AE:BC=AF:FC=a:b;Rt△ABC中,BF⊥AC,由射影定理,得:AB2=AF•AC=a(a+b);∵AM⊥AB,BN⊥AB,CD⊥AM,∴四边形ABCD是矩形,∴CD=AB=CF=b;∴b2=a(a+b),即a2+ab﹣b2=0,()2+()﹣1=0解得=(负值舍去);∴==.【点评】此题主要考查了矩形的性质、直角三角形及相似三角形的性质.能够正确的在Rt△ABC中求得AF、FC的比例关系是解答此题的关键.10.已知t是实数,若a,b是关于x的一元二次方程x2﹣2x+t﹣1=0的两个非负实根,则(a2﹣1)(b2﹣1)的最小值是﹣3 .【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】a,b是关于x的一元二次方程x2﹣2x+t﹣1=0的两个非负实根,根据根与系数的关系,化简(a2﹣1)(b2﹣1)即可求解.【解答】解:∵a,b是关于x的一元二次方程x2﹣2x+t﹣1=0的两个非负实根,∴可得a+b=2,ab=t﹣1≥0,∴t≥1,又△=4﹣4(t﹣1)≥0,可得t≤2,∴2≥t≥1,又(a2﹣1)(b2﹣1)=(ab)2﹣(a2+b2)+1=(ab)2﹣(a+b)2+2ab+1,∴(a2﹣1)(b2﹣1),=(t﹣1)2﹣4+2(t﹣1)+1,=t2﹣4,又∵2≥t≥1,∴0≥t2﹣4≥﹣3,故答案为:﹣3.【点评】本题主要考查了根与系数的关系及根的判别式,属于基础题,关键要掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.三、解答题11.如图,在直角坐标系中有正方形OABC,以OA为直径作⊙M,在半圆上有一动点P,连接PO、PA、PB、PC,已知A(4,0).(1)OP=2时,P点的坐标是(1,);(2)求当OP为多少时,△OPC为等腰三角形;(3)设P(a,b),S△POC=S1,S△POA=S2,S△PAB=S3,求出S=2S1S3﹣S22的最大值,并求出此时P的坐标.【考点】圆的综合题.【分析】(1)根据正方形的性质求出OA=AB=BC=CO=4,根据圆周角定理得到∠OPA=90°,根据勾股定理求出OE、PE,得到答案;(2)分PC=PO、CO=CP两种情况,根据等腰三角形的性质以及勾股定理计算即可;(3)用a、b分别表示出S1、S2、S3,根据射影定理求出b2=a(4﹣a),根据二次函数的性质解答即可.【解答】解:(1)∵点A的坐标为(4,0),∴OA=4,∵四边形OABC为正方形,∴OA=AB=BC=CO=4,∵OA为⊙M的直径,∴∠OPA=90°,OP=2,OA=4,∴∠OAP=30°,∴∠OPE=30°,又OP=2,∴OE=1,PE=,∴P(1,);(2)如图2,当PC=PO时此时P位于四边形OABC的中心,过点P作PE⊥OA于E,作PF⊥OC于F,则四边形OEPF是正方形,∴PE=OE=OA=2,∴OP=2,如图3,当CO=CP时,以点C为圆心,CO为半径作圆与弧OA的交点为点P.连PO,连接PM,CM,CM交OP于点G,在△ADO和△PDO中,,∴△ADO≌△PDO,∴CM⊥OP,OG=PG,∵OC=4,OM=2,∴CM=2,∴OG==,则OP=2OG=,当OP为2或时,△OPC为等腰三角形;(3)∵P(a,b),OA=AB=CO=4,∴S1=2a,S3=8﹣2a,b2=4a﹣a2,S2=2b,如图2,P(a,b),由射影定理得,PE2=OE•AE,即b2=a(4﹣a),∴S=2×2a×(8﹣2a)﹣(2b)2=8(4a﹣a2)﹣4b2=﹣4(a﹣2)2+16,当a=2时,S最大=16,当a=2时,b==2,∴P的坐标为(2,2).【点评】本题考查的是圆周角定理、全等三角形的判定和性质、正方形的性质、二次函数的解析式的求法以及二次函数的性质的综合运用,灵活运用相关的定理、正确作出辅助线是解题的关键.12.(2011•富阳市校级自主招生)设a,b,c为互不相等的实数,且满足关系式:b2+c2=2a2+16a+14①bc=a2﹣4a﹣5②.求a的取值X围.【考点】解一元二次方程﹣公式法;根的判别式.【专题】方程思想.【分析】先通过代数式变形得(b+c)2=2a2+16a+14+2(a2﹣4a﹣5)=4a2+8a+4=4(a+1)2,即有b+c=±2(a+1).有了b+c与bc,就可以把b,c可作为一元二次方程x2±2(a+1)x+a2﹣4a﹣5=0③的两个不相等实数根,由△=4(a+1)2﹣4(a2﹣4a﹣5)=24a+24>0,得到a>﹣1.再排除a=b和a=c 时的a的值.先设a=b和a=c,分别代入方程③,求得a的值,则题目要求的a的取值X围应该是在a>﹣1的前提下排除求得的a值.【解答】解:∵b2+c2=2a2+16a+14,bc=a2﹣4a﹣5,∴(b+c)2=2a2+16a+14+2(a2﹣4a﹣5)=4a2+8a+4=4(a+1)2,即有b+c=±2(a+1).又bc=a2﹣4a﹣5,所以b,c可作为一元二次方程x2±2(a+1)x+a2﹣4a﹣5=0③的两个不相等实数根,故△=4(a+1)2﹣4(a2﹣4a﹣5)=24a+24>0,解得a>﹣1.若当a=b时,那么a也是方程③的解,∴a2±2(a+1)a+a2﹣4a﹣5=0,即4a2﹣2a﹣5=0或﹣6a﹣5=0,解得,或.当a=c时,同理可得或.所以a的取值X围为a>﹣1且且.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的求根公式:x=(b2﹣4ac≥0).同时考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式b2﹣4ac和根与系数的关系.13.如图,平面坐标系中,AB交矩形ONCM于E、F,若=(m>1),且双曲线y=也过E、F两点,记S△CEF=S1,S△OEF=S2,用含m的代数式表示.【考点】相似三角形的判定与性质;反比例函数系数k的几何意义.【分析】过点F作FG⊥y轴于点G,根据平行线证出三角形相似得出ME:MC的值,设出点C的坐标,表示出点E、F的坐标,结合三角形的面积公式找出S1、S2的值,二者相比即可得出结论.【解答】解:过点F作FG⊥y轴于点G,如图所示:∵CM⊥y轴,FG⊥y轴,∴CM∥FG,MC=FG,∴△BME∽△BGF,∴===,设点C的坐标为(a,b),则E(,b),F(a,),∴S1=×(a﹣)•(b﹣)=ab;S2=a•b﹣•﹣•﹣ab=ab.∴=.【点评】此题主要考查了相似三角形的判定与性质、反比例函数的综合应用以及三角形面积求法,根据已知表示出E,F的点坐标是解题关键.14.如图,PA、PB是⊙O的两条切线,PEC是一条割线,D是AB与PC的交点,若PE=2,CD=1,求DE的长.【考点】切割线定理;勾股定理;切线的性质.【专题】计算题;综合题.【分析】连接PO交AB于H,设DE=x,由勾股定理得,(x+2)2+x=2(x+3),从而求出x的值即可.【解答】解:连接PO交AB于H,由切线长定理可知,OP平分∠APB,而PA=PB,∴PO⊥AB,设DE=x,则PA2=PE•PC=2(x+3).在Rt△APH中,AP2=AH2+PH2,即AH2+PH2=2(x+3)①,在Rt△PHD中,PH2+DH2=(x+2)2②,又AD•DB=ED•DC,而AD•DB=(AH﹣DH)(AH+DH)=AH2﹣DH2,∴AH2﹣DH2=x•1③,由①②③得(x+2)2+x=2(x+3),解得DE=x=.【点评】本题考查的是切割线定理,切线的性质定理,勾股定理.。
湖北省各地市2023-中考数学真题分类汇编-02填空题(基础题)知识点分类①
湖北省各地市2023-中考数学真题分类汇编-02填空题(基础题)知识点分类①一.科学记数法—表示较大的数(共2小题)1.(2023•十堰)2023年5月30日上午,我国载人航天飞船“神舟十六号”发射圆满成功,与此同时,中国载人航天办公室也宣布计划在2030年前实现中国人首次登陆距地球平均距离为38.4万千米的月球,将384000000用科学记数法表示为 .2.(2023•黄石)据《人民日报》(2023年5月9日)报道,我国海洋经济复苏态势强劲,在建和新开工的海上风电项目建设总规模约为18000000千瓦,比上年同期翻一番.其中18000000用科学记数法表示为 .二.算术平方根(共2小题)3.(2023•荆州)若|a﹣1|+(b﹣3)2=0,则= .4.(2023•鄂州)计算:= .三.实数大小比较(共1小题)5.(2023•武汉)写出一个小于4的正无理数是 .四.实数的运算(共2小题)6.(2023•湖北)计算4﹣1﹣+(3﹣)0的结果是 .7.(2023•黄石)计算:(﹣)﹣2+(1﹣)0﹣2cos60°= .五.规律型:数字的变化类(共1小题)8.(2023•恩施州)观察下列两行数,探究第②行数与第①行数的关系:﹣2,4,﹣8,16,﹣32,64,…①0,7,﹣4,21,﹣26,71,…②根据你的发现,完成填空:第①行数的第10个数为 ;取每行数的第2023个数,则这两个数的和为 .六.因式分解-提公因式法(共1小题)9.(2023•黄石)因式分解:x(y﹣1)+4(1﹣y)= .七.因式分解-运用公式法(共1小题)10.(2023•恩施州)因式分解:a(a﹣2)+1八.零指数幂(共1小题)11.(2023•湖北)计算:= .九.二次根式的乘除法(共1小题)12.(2023•恩施州)计算:×= .一十.根与系数的关系(共1小题)13.(2023•随州)已知关于x的一元二次方程x2﹣3x+1=0的两个实数根分别为x1和x2,则x1+x2﹣x1x2的值为 .一十一.全等三角形的判定与性质(共1小题)14.(2023•湖北)如图,△BAC,△DEB和△AEF都是等腰直角三角形,∠BAC=∠DEB=∠AEF=90°,点E在△ABC内,BE>AE,连接DF交AE于点G,DE交AB于点H,连接CF.给出下面四个结论:①∠DBA=∠EBC;②∠BHE=∠EGF;③AB=DF;④AD=CF.其中所有正确结论的序号是 .一十二.直角三角形斜边上的中线(共1小题)15.(2023•荆州)如图,CD为Rt△ABC斜边AB上的中线,E为AC的中点.若AC=8,CD =5,则DE= .一十三.勾股定理的应用(共1小题)16.(2023•恩施州)《九章算术》被称为人类科学史上应用数学的“算经之首”.书中记载:“今有户不知高、广,竿不知长短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?”译文:今有门,不知其高宽;有竿,不知其长短,横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽和对角线的长各是多少(如图)?答:门高、宽和对角线的长分别是 尺.一十四.多边形内角与外角(共1小题)17.(2023•湖北)若正n边形的一个外角为72°,则n= .一十五.圆周角定理(共1小题)18.(2023•随州)如图,在⊙O中,OA⊥BC,∠AOB=60°,则∠ADC的度数为 .一十六.圆内接四边形的性质(共1小题)19.(2023•襄阳)如图,四边形ABCD内接于⊙O,点E在CD的延长线上.若∠ADE=70°,则∠AOC= 度.一十七.位似变换(共1小题)20.(2023•鄂州)如图,在平面直角坐标系中,△ABC与△A1B1C1位似,原点O是位似中心,且=3.若A(9,3),则A1点的坐标是 .一十八.概率公式(共1小题)21.(2023•襄阳)古隆中、米公祠、水镜庄、习家池是襄阳市4处有代表性的充满浓厚人文气息的旅游景点,若小平同学随机选择一处去游览,她选择古隆中的概率是 .一十九.列表法与树状图法(共1小题)22.(2023•湖北)有四张背面完全相同的卡片,正面分别画了等腰三角形,平行四边形,正五边形,圆,现将卡片背面朝上并洗匀,从中随机抽取一张,记下卡片上的图形后(不放回),再从中随机抽取一张,则抽取的两张卡片上的图形都是中心对称图形的概率为 .湖北省各地市2023-中考数学真题分类汇编-02填空题(基础题)知识点分类①参考答案与试题解析一.科学记数法—表示较大的数(共2小题)1.(2023•十堰)2023年5月30日上午,我国载人航天飞船“神舟十六号”发射圆满成功,与此同时,中国载人航天办公室也宣布计划在2030年前实现中国人首次登陆距地球平均距离为38.4万千米的月球,将384000000用科学记数法表示为 3.84×108 .【答案】3.84×108.【解答】解:384000000=3.84×108.故答案为:3.84×108.2.(2023•黄石)据《人民日报》(2023年5月9日)报道,我国海洋经济复苏态势强劲,在建和新开工的海上风电项目建设总规模约为18000000千瓦,比上年同期翻一番.其中18000000用科学记数法表示为 1.8×107 .【答案】1.8×107.【解答】解:18000000=1.8×107,故答案为:1.8×107.二.算术平方根(共2小题)3.(2023•荆州)若|a﹣1|+(b﹣3)2=0,则= 2 .【答案】2.【解答】解:|a﹣1|+(b﹣3)2=0,∵|a﹣1|≥0,(b﹣3)2≥0,∴a﹣1=0,b﹣3=0,则a=1,b=3,那么==2,故答案为:2.4.(2023•鄂州)计算:= 4 .【答案】见试题解答内容【解答】解:∵42=16,∴=4,故答案为4.三.实数大小比较(共1小题)5.(2023•武汉)写出一个小于4的正无理数是 (答案不唯一) .【答案】(答案不唯一).【解答】解:一个小于4的正无理数是(答案不唯一).故答案为:(答案不唯一).四.实数的运算(共2小题)6.(2023•湖北)计算4﹣1﹣+(3﹣)0的结果是 1 .【答案】1.【解答】解:原式=﹣+1=1,故答案为:1.7.(2023•黄石)计算:(﹣)﹣2+(1﹣)0﹣2cos60°= 9 .【答案】9.【解答】解:(﹣)﹣2+(1﹣)0﹣2cos60°=9+1﹣2×=9+1﹣1=9,故答案为:9.五.规律型:数字的变化类(共1小题)8.(2023•恩施州)观察下列两行数,探究第②行数与第①行数的关系:﹣2,4,﹣8,16,﹣32,64,…①0,7,﹣4,21,﹣26,71,…②根据你的发现,完成填空:第①行数的第10个数为 (﹣2)10 ;取每行数的第2023个数,则这两个数的和为 ﹣22024+2024 .【答案】(﹣2)10,﹣22024+2024.【解答】解:观察数列可得,第①行数的第10个数为(﹣2)10,第①行数的第2023个数为(﹣2)2023,第②行数的第2023个数为(﹣2)2023+2024,∵(﹣2)2023+(﹣2)2023+2024=﹣22024+2024,∴取每行数的第2023个数,这两个数的和为﹣22024+2024.故答案为:(﹣2)10,﹣22024+2024.六.因式分解-提公因式法(共1小题)9.(2023•黄石)因式分解:x(y﹣1)+4(1﹣y)= (y﹣1)(x﹣4) .【答案】(y﹣1)(x﹣4).【解答】解:x(y﹣1)+4(1﹣y)=x(y﹣1)﹣4(y﹣1)=(y﹣1)(x﹣4).七.因式分解-运用公式法(共1小题)10.(2023•恩施州)因式分解:a(a﹣2)+1= (a﹣1)2 .【答案】(a﹣1)2.【解答】解:a(a﹣2)+1=a2﹣2a+1=(a﹣1)2,故答案为:(a﹣1)2.八.零指数幂(共1小题)11.(2023•湖北)计算:= 2 .【答案】2.【解答】解:原式=1+1=2.故答案为:2.九.二次根式的乘除法(共1小题)12.(2023•恩施州)计算:×= 6 .【答案】6.【解答】解:×===6,故答案为:6.一十.根与系数的关系(共1小题)13.(2023•随州)已知关于x的一元二次方程x2﹣3x+1=0的两个实数根分别为x1和x2,则x1+x2﹣x1x2的值为 2 .【答案】2.【解答】解:∵关于x的一元二次方程x2﹣3x+1=0的两个实数根分别为x1和x2,∴x1+x2==3,x1x2==1,∴x1+x2﹣x1x2=3﹣1=2.故答案为:2.一十一.全等三角形的判定与性质(共1小题)14.(2023•湖北)如图,△BAC,△DEB和△AEF都是等腰直角三角形,∠BAC=∠DEB=∠AEF=90°,点E在△ABC内,BE>AE,连接DF交AE于点G,DE交AB于点H,连接CF.给出下面四个结论:①∠DBA=∠EBC;②∠BHE=∠EGF;③AB=DF;④AD=CF.其中所有正确结论的序号是 ①③④ .【答案】①③④.【解答】解:∵△BAC,△DEB都是等腰直角三角形,∴∠ABC=∠DBE=45°,∴∠ABC﹣∠ABE=∠DBE﹣∠ABE,∴∠EBC=∠DBA,故①正确;∵△DEB和△AEF都是等腰直角三角形,∴BE=DE,AE=EF,∠BED=∠AEF=90°,∴∠BEA=∠DEF,∴△BEA≌△DEF(SAS),∴AB=DF,∠ABE=∠EDF,∠BAE=∠DFE.故③正确;∵∠BEH=∠GEF=90°,∴∠ABE+∠BHE=90°,∠EGF+∠DFE=90°,∵BE>AE,∴∠ABE≠∠AEB,∴∠ABE≠∠DFE,∴∠BHE≠∠EGF;∵∠BAC=90°,∠EAF=45°,∴∠BAE+∠FAC=45°,又∵∠AFD+∠EFG=45°,∠BAE=∠DFE,∴∠DFA=∠FAC,∴DF∥AC,∵AB=DF,AB=AC,∴DF=AC,∴四边形DFCA为平行四边形,∴DA=CF.故④正确.故答案为:①③④.一十二.直角三角形斜边上的中线(共1小题)15.(2023•荆州)如图,CD为Rt△ABC斜边AB上的中线,E为AC的中点.若AC=8,CD =5,则DE= 3 .【答案】3.【解答】解:∵CD为Rt△ABC斜边AB上的中线,CD=5,∴AB=2CD=10,∵∠ACB=90°,AC=8,∴BC==6,∵E为AC的中点,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC=3,故答案为:3.一十三.勾股定理的应用(共1小题)16.(2023•恩施州)《九章算术》被称为人类科学史上应用数学的“算经之首”.书中记载:“今有户不知高、广,竿不知长短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?”译文:今有门,不知其高宽;有竿,不知其长短,横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽和对角线的长各是多少(如图)?答:门高、宽和对角线的长分别是 8,6,10 尺.【答案】8,6,10.【解答】解:设门对角线的长为x尺,则门高为(x﹣2)尺,门宽为(x﹣4)尺,根据勾股定理可得:x2=(x﹣4)2+(x﹣2)2,即x2=x2﹣8x+16+x2﹣4x+4,解得:x1=2(不合题意舍去),x2=10,10﹣2=8(尺),10﹣4=6(尺).答:门高8尺,门宽6尺,对角线长10尺.故答案为:8,6,10.一十四.多边形内角与外角(共1小题)17.(2023•湖北)若正n边形的一个外角为72°,则n= 5 .【答案】5.【解答】解:∵正n边形的一个外角为72°,∴n=360÷72=5,故答案为:5.一十五.圆周角定理(共1小题)18.(2023•随州)如图,在⊙O中,OA⊥BC,∠AOB=60°,则∠ADC的度数为 30° .【答案】30°.【解答】解:如图,连接OC,∵OA⊥BC,∴=,∴∠AOC=∠AOB=60°,∴∠ADC=∠AOC=30°,故答案为:30°.一十六.圆内接四边形的性质(共1小题)19.(2023•襄阳)如图,四边形ABCD内接于⊙O,点E在CD的延长线上.若∠ADE=70°,则∠AOC= 140 度.【答案】140.【解答】解:∵四边形ABCD内接于⊙O,∠ADE=70°,∴∠B=∠ADE=70°,∴∠AOC=2∠B=140°.故答案为:140.一十七.位似变换(共1小题)20.(2023•鄂州)如图,在平面直角坐标系中,△ABC与△A1B1C1位似,原点O是位似中心,且=3.若A(9,3),则A1点的坐标是 (3,1) .【答案】(3,1).【解答】解:∵△ABC与△A1B1C1位似,且原点O为位似中心,且=3,点A (9,3),∴×9=3,×3=1,即A1点的坐标是(3,1),故答案为:(3,1).一十八.概率公式(共1小题)21.(2023•襄阳)古隆中、米公祠、水镜庄、习家池是襄阳市4处有代表性的充满浓厚人文气息的旅游景点,若小平同学随机选择一处去游览,她选择古隆中的概率是 .【答案】.【解答】解:古隆中、米公祠、水镜庄、习家池这4处有代表性的旅游景点,被抽到的可能性是均等的,共有4种等可能出现的结果,而选择古隆中的只有1种,所以选择古隆中的概率是,故答案为:.一十九.列表法与树状图法(共1小题)22.(2023•湖北)有四张背面完全相同的卡片,正面分别画了等腰三角形,平行四边形,正五边形,圆,现将卡片背面朝上并洗匀,从中随机抽取一张,记下卡片上的图形后(不放回),再从中随机抽取一张,则抽取的两张卡片上的图形都是中心对称图形的概率为 .【答案】.【解答】解:设等腰三角形,平行四边形,正五边形,圆分别为A,B,C,D,根据题意画树状图如下:共有12种等可能的结果,其中抽取的两张卡片上的图形都是中心对称图形的结果有2种,∴抽取的两张卡片上的图形都是中心对称图形的概率为=,故答案为:.。
初中数学九年级专项训练中考数学试题分类汇编(平均数,中位数,众数,方差)
平均数,中位数,众数,方差一、选择题1.(浙江省衢州市)为参加电脑汉字输入比赛,甲和乙两位同学进行了 6 次测试,成绩如下表:甲和乙两位同学 6 次测试成绩 ( 每分钟输入汉字个数 ) 及部分统计数据表有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是( )A、甲的方差大于乙的方差,所以甲的成绩比较稳定;B、甲的方差小于乙的方差,所以甲的成绩比较稳定;C、乙的方差小于甲的方差,所以乙的成绩比较稳定;D、乙的方差大于甲的方差,所以乙的成绩比较稳定;答案: C2.(淅江金华)金华火腿闻名遐迩。
某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500 克的火腿心片。
现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()A、甲B、乙C、丙 D 、不能确定答案: A3.(浙江义乌 )国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003 年至 2007 年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是()A.6969 元B.7735 元C.8810 元D.10255元答案: B4.(湖南益阳)某班第一小组 7 名同学的毕业升学体育测试成绩 (满分 30 分 )依次为: 25,23,25,23,27,30,25,这组数据的中位数和众数分别是A. 23,25B. 23,23C. 25,23D. 25,25答案: D5.(浙江省绍兴市 )在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为 8.7,6.5, 9.1, 7.7,则这四人中,射击成绩最稳定的是()A.甲B.乙C.丙D.丁答案: B6.(四川巴中市)下列命题是真命题的是()A.对于给定的一组数据,它的平均数一定只有一个B.对于给定的一组数据,它的中位数可以不只一个C.对于给定的一组数据,它的众数一定只有一个D.对于给定的一组数据,它的极差就等于方差答案: A7.(四川巴中市)用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17 的平均数约为 () A. 14.15B.14.16C.14.17D.14.20答案: B8.(陕西省)在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中 8 位工作者的捐款分别是 5 万, 10 万, 10 万, 10 万, 20 万, 20 万,50 万, 100 万.这组数据的众数和中位数分别是()A.20 万, 15 万B.10 万,20 万C.10 万,15 万D.20万,10万答案: C9.(北京)众志成城,抗震救灾.某小组7 名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30, 50,25,135.这组数据的众数和中位数分别是()A.50,20B. 50,30C.50,50D.135,50答案: C10.(湖北鄂州)数据的众数为,则这组数据的方差是()A. 2B.C.D.答案: B11.(浙江省嘉兴市)已知甲、乙两组数据的平均数分别是,,方差分别是,,比较这两组数据,下列说法正确的是()A.甲组数据较好B.乙组数据较好C.甲组数据的极差较大D.乙组数据的波动较小答案:D12.(山东省枣庄市)小华五次跳远的成绩如下(单位:m): 3.9, 4.1, 3.9, 3.8, 4.2.关于这组数据,下列说法错误的是()A.极差是 0.4B.众数是 3.9C.中位数是 3.98D.平均数是 3.98答案: B13.(山东济南)“迎奥运,我为先” 联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题 . 联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20 张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10 张,发现有2 张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是()A.60 张B.80 张C.90张D.110答案: B14.(湖北黄石)若一组数据2, 4,, 6,8 的平均数是 6,则这组数据的方差是()A.B.8C.D.40答案: B15.( 湖南益阳 )某班第一小组7名同学的毕业升学体育测试成绩(满分 30 分)依次为: 25,23,25,23,27,30,25,这组数据的中位数和众数分别是 ( )A. 23,25B. 23,23C. 25,23D. 25,25答案: D16.( 重庆 )数据2,1,0,3,4的平均数是()A、0B、1C、 2D、3答案: C17.( 08 厦门市)某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差答案: C18.(08 乌兰察布市)十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,中位数为,众数为,则有()A.B.C.D.答案: B19.(08 绵阳市)某校初三·一班 6 名女生的体重(单位:kg)为:353638 404242 则这组数据的中位数等于().A.38B.39C.40D.42答案: B20.(浙江金华)金华火腿闻名遐迩。
备战中考2012年中考数学新题分类汇编中考真题模拟新题分式与分式方程
第7章 分式与分式方程一、选择题1.(2010湖北孝感,6,3分)化简x y x yy x x⎛⎫--÷⎪⎝⎭的结果是( ) A.1yB. x y y +C. x y y -D. y【答案】B2. (2011山东威海,8,3分)计算:211(1)1mm m+÷⋅--的结果是( ) A .221m m --- B .221m m -+- C .221m m --D .21m -【答案】B3. (2011四川南充市,8,3分) 当8、分式21+-x x 的值为0时,x 的值是( ) (A )0 (B )1 (C )-1 (D )-2 【答案】B4. (2011浙江丽水,7,3分)计算1a -1 – aa -1的结果为( ) A. 1+aa -1B. -a a -1C. -1D.1-a【答案】C5. (2011江苏苏州,7,3分)已知2111=-b a ,则ba ab-的值是 A.21 B.-21C.2D.-2 【答案】D6. ( 2011重庆江津, 2,4分)下列式子是分式的是( ) A.2x B.1+x x C. y x +2 D. 3x 【答案】B.7. (2011江苏南通,10,3分)设m >n >0,m 2+n 2=4mn ,则22m n mn-的值等于A. 336D. 3【答案】A8. (2011山东临沂,5,3分)化简(x -x 1-x 2)÷(1-x 1)的结果是( ) A .x1B .x -1C .x 1-xD .1-x x【答案】B9. (2011广东湛江11,3分)化简22a b a b a b---的结果是 A a b + B a b - C 22a b - D 1【答案】A10.(2011浙江金华,7,3分)计算1a -1 – aa -1的结果为( ) A.1+a a -1 B. -aa -1C. -1D.1-a 【答案】C 二、填空题1. (2011浙江省舟山,11,4分)当x 时,分式x-31有意义. 【答案】3x ≠2. (2011福建福州,14,4分)化简1(1)(1)1m m -++的结果是 【答案】m3. (2011山东泰安,22 ,3分)化简:(2x x+2-x x-2)÷x x 2-4的结果为 。
襄阳市谷城县中考数学模拟试卷(2)含答案解析
湖北省襄阳市谷城县中考数学模拟试卷(2)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各数中,﹣3的倒数是()A.3 B.C.D.﹣32.(3分)下列运算正确的是()A.a2+a3=a5 B.(a+2b)2=a2+2ab+b2C.a6÷a3=a2D.(﹣2a3)2=4a63.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④4.(3分)不等式组的解集在数轴上表示为()A.B.C.D.5.(3分)下列各数中最小的数是()A.B.﹣1 C.D.06.(3分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A.B.C.D.7.(3分)5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人,如表是苏炳添近五次大赛参赛情况:则苏炳添这五次比赛成绩的众数和中位数分别为()比赛日期﹣8﹣4﹣5﹣21﹣9﹣28﹣5﹣20﹣5﹣31比赛地点英国伦敦中国北京韩国仁川中国北京美国尤金成绩(秒)10.1910.0610.1010.069.99A.10.06秒,10.06秒B.10.10秒,10.06秒C.10.06秒,10.10秒D.10.08秒,10.06秒8.(3分)如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°9.(3分)已知AC⊥BC于C,BC=a,CA=b,AB=c,下列图形中⊙O与△ABC的某两条边或三边所在的直线相切,则⊙O的半径为的是()A.B.C.D.10.(3分)在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.12.(3分)在﹣2、1、﹣3这三个数中,任选两个数的积作为k的值,使反比例函数y=的图象在第一、三象限的概率是.13.(3分)若干个工人装卸一批货物,每个工人的装卸速度相同,如果这些工人同时工作,则需10小时装卸完毕;现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸完毕,且最后参加的一个人装卸的时间是第一个人的,则按改变的方式装卸,自始至终共需时间小时.14.(3分)如图,从热气球上看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为90m,则这栋楼高为(精确到0.1 m).15.(3分)四边形ABCD是正方形,点E是直线AB上的一动点,且△AEC是以AC为腰的等腰三角形,则∠BCE的度数为.16.(3分)如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分别为边AB、AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为.三.解答题(共9小题,满分59分)17.(6分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.18.(6分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1?19.(6分)已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;(3)当kx+b>时,请根据图象直接写出x的取值范围.20.(6分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数.(3)请估计全校共征集作品的什数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.(7分)如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.22.(8分)如图,在△ABC中,AB=8,BC=5,AC=7,点D在△ABC的外接圆⊙O上,BC=BD,CD交AB于点E.(1)求证:△ABC∽△CBE.(2)求BE的长.23.(10分)重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:z(元/m2)5052545658…x(年)12345…(1)求出z与x的函数关系式;(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.(参考数据:,,)24.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E 在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.25.已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.湖北省襄阳市谷城县中考数学模拟试卷(2)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:∵相乘得1的两个数互为倒数,且﹣3×﹣=1,∴﹣3的倒数是﹣.故选:B.2.【解答】解:∵a2+a3≠a5,∴选项A不正确;∵(a+2b)2=a2+4ab+b2,∴选项B不正确;∵a6÷a3=a3,∴选项C不正确;∵(﹣2a3)2=4a6,∴选项D正确.故选:D.3.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.4.【解答】解:,由①得,x>1,由②得,x≥2,故此不等式组得解集为:x≥2.在数轴上表示为:.故选:A.5.【解答】解:根据实数比较大小的方法,可得﹣<﹣<﹣1<0,∴各数中最小的数是:﹣.故选:C.6.【解答】解:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.故选:A.7.【解答】解:在这一组数据中10.06是出现次数最多的,故众数是10.06;而将这组数据从小到大的顺序排列为:9.99,10.06,10.06,10.10,10.19,处于中间位置的那个数是10.06,那么由中位数的定义可知,这组数据的中位数是10.06.故选:A.8.【解答】解:∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC﹣∠ADE=30°.故选:C.9.【解答】解:设⊙O的半径为r,A、∵⊙O是△ABC内切圆,=(a+b+c)•r=ab,∴S△ABC∴r=;B、如图,连接OD,则OD=OC=r,OA=b﹣r,∵AD是⊙O的切线,∴OD⊥AB,即∠AOD=∠C=90°,∴△ADO∽△ACB,∴OA:AB=OD:BC,即(b﹣r):c=r:a,解得:r=;C、连接OE,OD,∵AC与BC是⊙O的切线,∴OE⊥BC,OD⊥AC,∴∠OEB=∠ODC=∠C=90°,∴四边形ODCE是矩形,∵OD=OE,∴矩形ODCE是正方形,∴EC=OD=r,OE∥AC,∴OE:AC=BE:BC,∴r:b=(a﹣r):a,∴r=;D、解:设AC、BA、BC与⊙O的切点分别为D、F、E;连接OD、OE;∵AC、BE是⊙O的切线,∴∠ODC=∠OEC=∠DCE=90°;∴四边形ODCE是矩形;∵OD=OE,∴矩形ODCE是正方形;即OE=OD=CD=r,则AD=AF=b﹣r;连接OB,OF,由勾股定理得:BF2=OB2﹣OF2,BE2=OB2﹣OE2,∵OB=OB,OF=OE,∴BF=BE,则BA+AF=BC+CE,c+b﹣r=a+r,即r=.故选:C.10.【解答】解:解法一:逐项分析A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x===<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x===<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二:系统分析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.12.【解答】解:画树状图得:∵共有6种等可能的结果,任选两个数的积作为k的值,使反比例函数y=的图象在第一、三象限的有2种情况,∴任选两个数的积作为k的值,使反比例函数y=的图象在第一、三象限的概率是:=.故答案为:.13.【解答】解:设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活x+小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,…,平均每人干活的时间也是小时,根据题设,得=10,解得x=16(小时);设共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y﹣1)t小时,按题意,得16﹣(y﹣1)t=16×,即(y﹣1)t=12,解此不定方程得,,,,,,即参加的人数y=2或3或4或5或7或13.故答案为:16.14.【解答】解:过点A作AD⊥BC,垂足为D.在Rt△ADC中,有CD=ADtan60°=AD=90,在Rt△ABD中,有BD=ADtan30°=AD=30.故这栋楼高BC为90+30=120≈207.8(m).故答案为:207.8m.15.【解答】解:当AC=AE时,以A为圆心,AC为半径作圆交直线AB于点E,当E在BA的延长线时,∴∠EAC=135°,∴∠BEC=22.5°,∴∠BCE=∠BCA+∠BEC=67.5°当E在AB的延长线时,∴∠EAC=45°,∴∠ACE=67.5°∴∠BCE=∠ACE﹣∠ACB=22.5°当AC=CE时,当以C为圆心AC为半径作圆交直线AB于点E ∴∠EAC=∠CEA=45°,∴∠BCE=45°,故答案为:67.5°或45°或22.5°16.【解答】解:连接BH、BH1,∵∠ACB=90°,∠CAB=30°,BC=2,∴AB=4,∴AC==2,在Rt△BHC中,CH=AC=,BC=2,根据勾股定理可得:BH=;∴S扫=S扇形BHH1﹣S扇形BOO1==π.三.解答题(共9小题,满分59分)17.【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y ﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z ﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.18.【解答】解:(1)设经过x秒,使△PBQ的面积等于8cm2,依题意有(6﹣x)•2x=8,解得x1=2,x2=4,经检验,x1,x2均符合题意.故经过2秒或4秒,△PBQ的面积等于8cm2;(2)设经过y秒,线段PQ能否将△ABC分成面积相等的两部分,依题意有△ABC的面积=×6×8=24,(6﹣y)•2y=12,y2﹣6y+12=0,∵△=b2﹣4ac=36﹣4×12=﹣12<0,∴此方程无实数根,∴线段PQ不能否将△ABC分成面积相等的两部分;(3)①点P在线段AB上,点Q在线段CB上(0<x<4),设经过m秒,依题意有(6﹣m)(8﹣2m)=1,m2﹣10m+23=0,解得m1=5+,m2=5﹣,经检验,m1=5+不符合题意,舍去,∴m=5﹣;②点P在线段AB上,点Q在射线CB上(4<x<6),设经过n秒,依题意有(6﹣n)(2n﹣8)=1,m2﹣10n+25=0,解得n1=n2=5,经检验,n=5符合题意.③点P在射线AB上,点Q在射线CB上(x>6),设经过k秒,依题意有(k﹣6)(2k﹣8)=1,k2﹣10k+23=0,解得k1=5+,k2=5﹣,经检验,k1=5﹣不符合题意,舍去,∴k=5+;综上所述,经过(5﹣)秒,5秒,(5+)秒后,△PBQ的面积为1.19.【解答】解:(1)过P 作PC ⊥y 轴于C , ∵P (,n ), ∴OC=n ,PC=, ∵tan ∠BOP=, ∴n=4, ∴P (,4),设反比例函数的解析式为y=, ∴a=4,∴反比例函数的解析式为y=, ∴Q (4,),把P (,4),Q (4,)代入y=kx +b 中得,,∴,∴直线的函数表达式为y=﹣x +;(2)过Q 作QD ⊥y 轴于D ,则S △POQ =S 四边形PCDQ =×(+4)×(4﹣)=;(3)由图象知, 当﹣x +>时,或x <020.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为:抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,C班有24﹣(4+6+4)=10件,补全条形图如图所示,扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;故答案为:150°;(3)∵平均每个班=6件,∴估计全校共征集作品6×30=180件.(4)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好选取的两名学生性别相同的概率为=.21.【解答】(1)解:∵四边形ABCD是平行四边形,∴∠D=∠B,∵BF=DE,∠DCE=∠BCF,∴△CDE≌△CBF(AAS),∴CD=CB,∴▱ABCD是菱形,∴AD=AB,∴AD﹣DE=AB﹣BF,即AE=AF,∵∠A=60°,∴△AEF是等边三角形,∵EF=2,=×22=;∴S△AEF(2)证明:如图2,延长DP交BC于N,连结FN,∵四边形ABCD是菱形,∴AD∥BC,∴∠EDP=∠PNC,∠DEP=∠PCN,∵点P是CE的中点,∴CP=EP.∴△CPN≌△EPD,∴DE=CN,PD=PN.又∵AD=BC.∴AD﹣DE=BC﹣CN,即AE=BN.∵△AEF是等边三角形,∴∠AEF=60°,EF=AE.∴∠DEF=120°,EF=BN.∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=60°,∴∠ABC=120°,∴∠ABC=∠DEF.又∵DE=BF,BN=EF.∴△FBN≌△DEF,∴DF=NF,∵PD=PN,∴PF⊥PD.22.【解答】(1)证明:∵BC=BD,∴∠BCE=∠BDC.∵∠BDC=∠BAC,∴∠BCE=∠BAC.∵∠CBE=∠ABC,∴△ABC∽△CBE.(2)解:∵△ABC∽△CBE,∴=,即=,∴BE=.23.【解答】解:(1)由题意,z与x是一次函数关系,设z=kx+b(k≠0)把(1,50),(2,52)代入,得∴,∴z=2x+48.(2)当1≤x≤6时,设收取的租金为W1百万元,则W1=()•(2x+48)=∵对称轴∴当x=3时,W1最大=243(百万元)当7≤x≤10时,设收取的租金为W2百万元,则W2=()•(2x+48)=∵对称轴∴当x=7时,W2最大=(百万元)∵243>∴第3年收取的租金最多,最多为243百万元.(3)当x=6时,y=百万平方米=400万平方米当x=10时,y=百万平方米=350万平方米∵第6年可解决20万人住房问题,∴人均住房为:400÷20=20平方米.由题意:20×(1﹣1.35a%)×20×(1+a%)=350,设a%=m,化简为:54m2+14m﹣5=0,△=142﹣4×54×(﹣5)=1276,∴∵,∴m1=0.2,(不符题意,舍去),∴a%=0.2,∴a=20答:a的值为20.24.【解答】解:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=2,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠ABF=45°,∴△CEA∽△BFA,∴y====(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE===,∴x=,∴AB=x+2=.25.【解答】解:(1)∵抛物线y=ax2+bx﹣2(a≠0)过点A,B,∴,解得:,∴抛物线的解析式为:y=x2﹣x﹣2;∵y=x2﹣x﹣2=(x﹣)2﹣,∴C(,﹣).(2)如图1,以AB为直径作圆M,则抛物线在圆内的部分,能使∠APB为钝角,∴M(,0),⊙M的半径=.∵P′是抛物线与y轴的交点,∴OP′=2,∴MP′==,∴P′在⊙M上,∴P′的对称点(3,﹣2),∴当﹣1<m<0或3<m<4时,∠APB为钝角.(3)方法一:存在;抛物线向左或向右平移,因为AB、P′C′是定值,所以A、B、P′、C′所构成的多边形的周长最短,只要AC′+BP′最小;第一种情况:抛物线向右平移,AC′+BP′>AC+BP,第二种情况:向左平移,如图2所示,由(2)可知P(3,﹣2),又∵C(,﹣)∴C'(﹣t,﹣),P'(3﹣t,﹣2),∵AB=5,∴P″(﹣2﹣t,﹣2),要使AC′+BP′最短,只要AC′+AP″最短即可,点C′关于x轴的对称点C″(﹣t,),设直线P″C″的解析式为:y=kx+b,,解得∴直线y=x+t+,当P″、A、C″在一条直线上时,周长最小,∴﹣+t+=0∴t=.故将抛物线向左平移个单位连接A、B、P′、C′所构成的多边形的周长最短.方法二:∵AB、P′C′是定值,∴A、B、P′、C′所构成的四边形的周长最短,只需AC′+BP′最小,①若抛物线向左平移,设平移t个单位,∴C′(﹣t,﹣),P″(﹣2﹣t,﹣2),∵四边形P″ABP′为平行四边形,∴AP″=BP′,AC′+BP′最短,即AC′+AP″最短,C′关于x轴的对称点为C″(﹣t,),C″,A,P″三点共线时,AC′+AP″最短,K AC′=K AP″,,∴t=.②若抛物线向右平移,同理可得t=﹣,∴将抛物线向左平移个单位时,A、B、P′、C′所构成的多边形周长最短.。
2012年6月最新整理全国各地中考数学模拟试题分类汇编 2--43.图形的变换
A(第1题图)图形的变换(图形的平移、旋转与轴对称)一、选择题1、(2012年浙江五模)将抛物线122--=x y 向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为( ) A .23个单位 B .1个单位 C .21个单位 D .2个单位 答案:A2、(2012年浙江五模)如图,在Rt △ABC 中,AB =CB ,BO ⊥AC 于点O ,把△ABC 折叠,使AB落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连结DE 、EF .下列结论:①tan ∠ADB =2;②图中有4对全等三角形; ③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上;④BD =BF ; ⑤S 四边形DFOE = S △AOF ,上述结论中错误的个数是( )A .1个B .2个C .3个D .4个答案:B3、(2012年浙江绍兴八校自测模拟)下列图形不是..轴对称图形的是( ) A . B . C . D .答案:C4、(2012年浙江绍兴八校自测模拟)平面直角坐标系中,点A 的坐标为(4,3),将线段OA 绕原点O 逆时针旋转90°得到OA ′,则点A ′的坐标是( ) A .(-4,3) B .(-3,4) C .(3,-4) D .(4,-3) 答案:B5、(2012年浙江绍兴县一模)由左图所示的地板砖各两块所铺成的下列图案中,既是轴对称图形,又是中心对称图形的是( )答案:A6、(2012年浙江绍兴县一模)如图,△ABC 纸片中,AB =BC >AC ,点D 是AB 边的中点,点E在AC 上,将纸片沿DE 折叠,使点A 落在BC 边上的点F 处.则下列结论成立的个数有( )①△BDF 是等腰直角三角形; ②∠DFE =∠CFE ; ③DE 是△ABC 的中位线; ④BF +CE =DF +DE . A .1个 B .2个 C .3个 D . 4个 答案:B7、(2012年重庆外国语学校九年级第二学期期中)下列图形中不是..中心对称图形的是()答案:C8、(保沙中学2012二模)将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =3,则BC 的长为( )A .1B .2 C.2 D .3答案:B答案:C 10、(广州海珠区2012毕业班综合调研)下列图形中,不是中心对称图形的是( )A. B. C. D.答案:B 11、(广州海珠区2012毕业班综合调研)如图所示,已知在三角形纸片ABC 中,∠BCA =90°,第6题图∠BAC =30°,AB =6,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为( ) A .6B .3C .32 D答案:C12、(2012荆门东宝区模拟) 下列图案是部分汽车的标志,其中是中心对称图形的是(A. B.C.D.答案:A13、(2012江西高安)如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为()A .①③B . ①④C .②③D .②④答案:A针方向旋转 90后的图形14、(2012广西北海市模拟)将图形 按顺时是····················( )答案:B 15、(2012江苏江阴市澄东一模 )下列五种图形:①平行四边形 ②矩形 ③菱形 ④正方形 ⑤等腰梯形.其中既是中心对称图形又是轴对称图形的共有多少种 ( ) A .2 B .3 C .4 D .5 答案:B16、(2012江苏南京市白下区一模)下列轴对称图形中,只用一把无刻度的直尺不能..画出对称轴的是 A .菱形B .矩形C .等腰梯形D .正五边形答案:B 17、(2012年济宁模拟)下列轴对称图形中,只有两条对称轴的图形是( )C① ② ③ ④DC B A A . B . C .D .答案:A18、(2012四川夹江县模拟)下列图形中,是中心对称图形的是( )答案:B19、(2012四川乐山市市中区毕业会考)点(-1,2)关于原点对称的点的坐标是 (A )(1,2) (B )(-1,-2) (C )(2,-1) (D )(1,-2) 答案:D20、(2012年河北一模)下列图形是中心对称图形的是( )答案:D21、(2012年荆州模拟)如图,在Rt △ABC 中,∠BAC =900,∠B =600,△A 11C B 可以由△ABC 绕点 A 顺时针旋转90得到(点B 1与点B 是对应点,点C 1与点C 是对应点),连接CC ’,则∠CC ’B ’的度数是( )。
湖北鄂州市鄂城区2012年12月九年级第二次月考数学试题(含答案)
2012年秋九年级第二次月考数学试卷命题人:燕矶中学 曹 伟 (2012.12.13)一、选择题(每小题3分,共30分) 1、下列计算正确的是( )A .12=12⋅B .43=1-C .63=2÷D .4=2± 2、用配方法解方程05632=-+x x 时,原方程应变形为 ( )A .()4132=+x B .()8132=+x C .()4132=-x D .()5132=-x3、已知a 、b 、c 是△ABC 的三边长,那么方程2()04ccx a b x +++=的根的情况是( ) A .没有实数根 B .有两个相等的实数根 C .有两个不相等的同号实数根 D .有两个异号实数 4、一元二次方程2310xx 与2330x x 的所有实数根的和等于( )A. -3B. -6C. 6D. 3 5、如图,在平面直角坐标系中,将ABC △向右平移3个单位长度后得111A B C △,再将111A B C △绕点O 旋转180°后得到222A B C △,则下列说法正确的是( ) A .1A 的坐标为()31,B .113ABB A S =四边形C .222B C =D .245AC O ∠=°6、如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( ) A .3 B .4 C .32D .247、如图,已知AB 是⊙O 的直径,且⊙O 于点A ,弧︿EC =弧︿CB .则下列结论中不一定正确的是( )A. BA ⊥DAB. OC //AEC. ∠COE =2∠CAED. OD ⊥AC8、如图,⊙O 的外切正六边形ABCDEF 的边长为2,则图中 阴影部分的面积为( ).A .-3π2B .-32π3 C .-32π2D .-322π39、从下列四张卡片中任取一张,卡片上的图形是中心对称图形的概 率为( )A. 0B.14 C. 12 D. 3410、抛物线y =ax 2﹣2x +1与x 轴没有交点,则该抛物线的顶点所在的象限是( )A .第四象限B .第三象限C .第二象限D .第一象限 二、填空题(24分) 11、函数31x y x +=-中自变量x 的取值范围是 12、已知32+是关于x 的一元二次方程042=+-m x x 的一个根,则m =13、如果关于x 的一元二次方程22110kx k x -++=x +1=0有两个不相等的实数根,那么k 的取值范围是14、如图,从一个直径为43dm 的圆形铁皮中剪出一个圆心角为60°的扇形ABC ,并将剪下来的扇形围成一个圆锥,则圆锥的底面半径为 dm .15、如图,已知正方形ABCD 的边长为1,以顶点A 、B 为圆心,1为半径的两弧交于点E ,以顶点C 、D 为圆心,1为半径的两弧交于点F ,则EF 的长为 .16、.如图正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕其顶点A 旋转,在旋转过程中,当BE=DF 时,∠BAE 的大小可以是 .17、现有5根小木棒,长度分别为:2,3,4,5,7(单位:cm ),从中任意取出3根,首尾顺次相接,它们能搭成三角形的概率是 。
人教版中考模拟考试数学试卷及答案(共七套)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
【3套试卷】中考数学免费试题及答案
中考一模数学试卷及答案一、选择题(共10 题,每小题3分,共30分)1. 由5a=6b(a≠0,b≠0),可得比例式( )A.B.C.D.2.若△ABC∽△DEF,相似比为3∶2,则对应面积的比为( )A.3∶2 B.3∶5 C.4∶9 D.9∶43.如图是由几个大小相同的小立方块所搭成的几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )A.B.C.D.4.如图,下列条件中,可以判定△ACD和△ABC相似的是( )A.B.C.AC2=AD·AB D.CD2=AD·BD 5.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于( )A.B.C.D.6.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=500米,∠BDE=55°,使A、C、E在一条直线上,那么点E与D的距离是( )A.500cos55°米B.500cos35°米C.500sin55°米D.500tan55°米7.已知反比例函数,则下列结论中不正确的是( )A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小8.小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为( )A.210x+90(18-x)<2.1B.210x+90(18-x)≥2100C.210x+90(18-x)≤2100D.210x+90(18-x)≥2.19.如图所示,河堤横断面迎水坡AB的坡比是1∶,堤高BC=5 m,则坡面AB的长是( )A.10 m B.m C.15 m D.m10.已知二次函数的图象如图所示,则反比例函数与一次函数的图象可能是( )A.B.C.D.二、填空题(共6 题,每小题3分,共18分)11. 已知反比例函数的图像经过点(-3,-1),则k= .12.已知,将如图的三角板的直角顶点放置在直线AB上的点O处,使斜边CD∥AB.则∠α的余弦值为.13.如图,路灯距离地面8 m,身高1.6 m的小明站在距离灯的底部(点O)20 m的A处,则小明的影子AM的长为 m.14.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.15.已知一个圆锥的三视图如图所示,则这个圆锥的侧面积为.16.如图,平行于x轴的直线与函数(k1>0,x>0),(k2>0,x>0)的图象分别交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1-k2的值为.三、解答题(共9 题,72分)17.(4分)计算:.18.(4分)如图已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2∶1.19.(4分)如图,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长.20.(6分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气球内的气压大于140 kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01 m3)21.(8分)如图:直线y=x与反比例函数(k>0)的图象在第一象限内交于点A(2,m).(1)求m、k的值;(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式.22.(10 分)如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连接AG,作DE⊥AG于点E,BF⊥AG于点F,设.(1)求证:AE=BF;(2)连接BE,DF,设∠EDF=α,∠EBF=β.求证:23.(10 分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若,求tan∠BDC的值.24.(12 分)已知:A(a,y1),B(2a,y2)是反比例函数(k>0)图象上的两点.(1)比较y1与y2的大小关系;(2)若A、B两点在一次函数第一象限的图象上(如图所示),分别过A、B两点作x轴的垂线,垂足分别为C、D,连接OA、OB,且,求a的值;(3)在(2)的条件下,如果3m=﹣4x+24,,求使得m>n的x的取值范围.25.(14 分)在平面直角坐标系中,点A(m,m+1)在反比例函数的图象上.(1)求点A的坐标;(2)若直角∠NAM绕点A旋转,射线AN分别交x轴、y轴于点B、N,射线AM交x轴于点M,连接MN.①当点B和点N分别在x轴的负半轴和y轴的正半轴时,若△BAM∽△MON,求点N的坐标;②在直角∠NAM绕点A旋转的过程中,∠AMN的大小是否会发生变化?请说明理由.答案:1-5 BDCCB6-10 ADBAC11.312.13.514. 915.16.817.解:原式.18.解:(1)如图所示,点C1的坐标是(2,﹣2);(2)如图所示.19.解:∵AD⊥BC于点D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∵AB=8,∠ABD=30°,∴,.在Rt△ADC中,∵∠CAD=45°,∠ADC=90°,∴∠ACD=∠CAD=45°∴DC=AD=4,∴.20.解:(1)设,由题意知,所以k=96,故该函数的解析式为;(2)当P=140 kPa时,(m3).所以为了安全起见,气体的体积应不少于0.69 m3.21.解:(1)∵直线y=x经过点A(2,m),∴m=2,∴A(2,2),∵A在的图象上,∴k=4.(2)设B(0,n),由题意:,∴n=﹣2,∴B(0,﹣2),设AB所在直线的解析式为y=k′x+b,则有,∴,∴AB所在直线的解析式为y=2x﹣2.22.解:(1)∵四边形ABCD是正方形,∴∠BAF+∠EAD=90°,又∵DE⊥AG,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,又∵BF⊥AG,∴∠DEA=∠AFB=90°,又∵AD=AB∴Rt△DAE≌Rt△ABF,∴AE=BF(2)易知Rt△BFG∽Rt△DEA,所以,在Rt△DEF和Rt△BEF中,,∴∴23.(1)证明:∵DC是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠OAC=∠ACO,∴∠DAC=∠CAO,∴AC平分∠DAB.(2)解:设线段AD与⊙O相交于点M如图,连接BM、OC交于点N.∵AB是直径,∴∠AMB=90°,由(1)知AD∥OC,∴∠ONB=∠AMB=90°=∠CNB,由垂径定理可知MN=BN∵OC=OB,∴∠OCB=∠OBC,∴,设BN=4k,BC=5k,则CN=3k,∵∠CDM=∠DMN=∠DCN=90°,∴四边形DMNC是矩形,∴DM=CN=3k,MN=BN=4k,CD∥BM,∴∠CDB=∠DBM,∴.24.解:(1)∵A、B是反比例函数(k>0)图象上的两点,∴a≠0,当a>0时,A、B在第一象限,由a<2a可知,y1>y2,同理,a<0时,y1<y2;(2)∵A(a,y1)、B(2a,y2)在反比例函数(k>0)的图象上,∴,,∴y1=2y2.又∵点A(a,y1)、B(2a,y2)在一次函数的图象上,∴,,∴,∴b=4a,∵又∵∴∴,∴a2=4,∵a>0,∴a=2.(3)由(2)得,A(2,),B(4,),将A,B两点代入得解得∴一次函数的解析式为,反比例函数的解析式为:,A、B两点的横坐标分别为2、4,∵3m=﹣4x+24,,∴、,因此使得m>n的x的取值范围就是反比例函数的图象在一次函数图象下方的点中横坐标的取值范围,从图象可以看出2<x<4或x<0.25.解:(1)∵点A(m,m+1)在反比例函数的图象上.∴;解得m1=3,m2=-4∵m>0,∴m=3,∴点A的坐标是(3,4).(2)①如图,过点A作AC⊥y轴于C,作AD⊥x轴于D,则AC=3,AD=4,∠ACN=∠ADM=90°,设ON=x,则CN=4﹣x,∵△BAM∽△MON,∴∠ABM=∠NMO∴NB=NM,∵NO⊥BM,∴OB=OM=OA=5∵CA∥BO,∴△CAN∽△OBN,∴∴,解得∴点N的坐标为(0,);②在直角∠NAM绕点A旋转的过程中,∠AMN的大小不会发生变化.理由:当点B和点N分别在x轴的负半轴和y轴的正半轴时,∵∠CAD=∠NAM=90°,∴∠CAN=∠DAM,∴△CAN∽△DAM,∴∴∴∠AMN的大小不会发生变化.当点B和点N分别在x轴的非负半轴和y轴的非正半轴时,同理可证∠AMN的大小不会发生变化.中考第一次模拟考试数学试卷姓名:得分:日期:一、选择题(本大题共10 小题,共40 分)1、(4分) 点关于原点对称的点的坐标是()A. B. C. D.2、(4分) 下列事件中,属于随机事件的是()B.某篮球运动员投篮一次,命中.A.掷一枚质地均匀的正方体骰子,向上的一面点数小于7C.在只装了红球的袋子中摸到黑球D.在三张分别标有数字2,4,6,的卡片中摸两球,数字和是偶数3、(4分) 如图,点E在四边形ABCD的边BC的延长线上,则下列两个角是同位角的是()A.和B.C.D.4、(4分) 下列事件中,最适合采用全面调查的是()A.对某班全体学生出生日期的调查B.对全国中小学生节水意识的调查C.对某批次的灯泡使用寿命的调查.D.对厦门市初中学生每天阅读时间的调查5、(4分) 对于的图象,下列叙述正确的是()B.开口向下A.顶点坐标为C.当,y随x的增大而增大D.对称轴是直线6、(4分) 青山村种的水稻2010年平均每公顷产7200kg,设水稻每公顷产量的年平均增长率为x,则2012年平均每公顷比2011年增加的产量是()A. B. C. D.7、(4分) 如图,正六边形中,分别是的中点,绕正六边形的中心经逆时针旋转后与重合,则旋转角度是()A.60°B.90°C.120°D.180°8、(4分) 已知两个不同的一元二次方程的判别式互为相反数,下列判断正确的是()A.两个方程一定都有解B.两个方程一定没有解C.两个方程一定有公共解D.两个方程至少一个方程有解.9、(4分) 某创意工作室6位员工的月工资如图所示,因业务需要,现决定招聘一名新员工,若新员工的工资为元,则下列关于现在7位员工工资的平均数和方差的说法正确的是()A.平均数不变,方差变大B.平均数不变,方差变小C.平均数不变,方差不变D.平均数变小,方差不变10、(4分) 已知(其中为常数,且),乐老师在用描点法画其的图象时,列出如下表格,根据该表格,下列判断中不正确的是()A. B.一元二次方程没有实数根C.当时D.一元二次方程有一根比3大二、填空题(本大题共 6 小题,共24 分)11、(4分) 计算:=12、(4分) 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为13、(4分) 方程的根是14、(4分) 一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是15、(4分) 已知,计算16、(4分) 如图,在菱形中,分别是边的中点,于点P,,则的度数是三、解答题(本大题共9 小题,共86 分)17、(8分) (1)不等式组的解集.(2)先化简,再求值:其中18、(8分) 画出函数的图象19、(8分) 在两个不透明的袋子中分别装入一些相同的纸牌,甲袋内的4张牌分别标记数字1、2、3、4:乙袋内的3张牌分别标记数字2、3、4.从甲、乙两个袋子里分别随机摸出一张牌,求两张牌上的标数相同的概率.20、(8分) 如图,在,以为直径的分别交于点,点F在的延长线上,且.(1)求证:直线是的切线。
中考数学仿真模拟测试题(附答案解析)
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。
2012年湖北省鄂州市中考数学试题
BCD九年级中考数学试题一、选择题(每小题3分,共18分) 1. 下列运算正确的是【 】 A .B .532=+ C .a 2a 4=a 8 D .(﹣a 3)2=a 62. 第六次人口普查公布的数据表明,登记的全国人口数量约为13.4亿人,这个数据用科学记数法表示为【 】A.134×107人B.13.4×108 人C.1.34×109人D.1.34×1010人 3. 某校九年级8位同学一分钟跳绳的次数如下:168, 164, 183, 168, 150,172,176, 185,则由这组数据得到的下列结论中错误的是【 】 A .中位数为159 B .众数为168 C 极差为35 D .平均数为170.754.在平面直角坐标系中,将抛物线2y x x 6=--向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为【 】A .1B .2C .3D .6 5. 如图,AB 是⊙O 的直径,C ,D 是⊙O 的弦,∠CDB=20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为【 】 A .40° B .50° C .60° D .70°6. 如图,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 的中点重合,若AB=2,BC=3,则△FC B '与△B 'DG 的面积之比为【 】A.9:4B.3:2C.4:3D.16:9 二、填空题(每小题3分,共27分) 7.计算:(02cos 451=--︒ .8. 若将三个数11,7,3-表示在数轴上,其中能被如图所示的墨迹覆盖的数 是__________________.9. 将一副三角板如图放置,使点A 在DE 上,BC ∥DE ,则∠AFC 的度数为________.10. 下列函数中,当x ﹤0时,函数值y 随x 的增大而增大的序号有________.5题图 6题图 8题图 9题图DBAD① y x = ② 21y x =-+ ③ 1y x=- ④ 23y x = 11. 如图,在平面直角坐标系中,将△ABC 绕点P 旋转得到△DEF ,则点P 的坐标为 .12. 在3×3的方格纸中,点A 、B 、C 、D 、E 、F 分别位于如图所示的小正方形的顶点上.从A 、D 、E 、F 四点中先后任意取两个不同的点,以所取的 这两点及B 、C 为顶点画四边形,所画四边形是平行四边形的概率为______.13 . 如图,在矩形ABCD 中,AB=2,BC=32,以BC 为直径的半圆O 交对角线BD 于点E ,则图中阴影部分的面积为______.12题图 13题图14题图14. 如图,已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=DC=5,点P 在BC 上移动,则当PA+PD 取最小值时,在△APD 中AP 边上的高为________.15. 某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长为6m ,8m .现在将其扩建成成等腰三角形,且扩充部分是以8m 为直角边的直角三角形,则扩建后的等腰三角形花圃的周长为_______.三、解答题(本大题共8个小题,满分75分)16.先化简1)11(22-÷+-+a aa a a ,再从1,-1和2中选一个你认为合适的数作为a 的值代入求值.17. 如图,AD ∥FE ,点B 、C 在AD 上,∠1=∠2,BF =BC .⑴求证:四边形BCEF 是菱形⑵若AB =BC =CD ,求证:△ACF ≌△BDE17题图11题图18. 省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校1500名学生中随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示).请根据图中提供的信息,解答下列问题. (1) 这次共抽取________名学生进行调查;(2) 补全条形图,并计算扇形统计图中m=______; (3) 扇形统计图中乘公交车的圆心角的度数是多少?(4)若从该校骑自行车上学的学生中随机选择100名,则该校骑自行车上学的小明被选中的概率是多少?19. 数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m .经测量,得到其它数据如图所示,其中∠CAH=30°,∠DBH=60°,AB=l0m .请你根据以上数据计算GH 的长.≈1.73,要求结果精确到0.1m)20. 如图,已知直线12y x =与双曲线(0)ky k x=>交于A ,B 两点,且点A 的横坐标为4. (1)求k 的值; (2)若双曲线(0)ky k x=>上一点C 的纵坐标为8,求△AOC 的面积; (3)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P ,Q 两点(P 点在第一象限),若由点A ,B ,P ,Q 为顶点组成的四边形面积为24,求点P 的坐标.21. 为支持玉树抗震救灾,某市A 、B 、C 三地现分别有赈灾物资100吨、100吨、80吨,需全部运往玉树重灾地区D 、E 两县,根据灾区情况,这批赈灾物资运往D 县的数量比运往E 县的数量的2倍少20吨.(1)求这赈灾物资运往D 、E 两县的数量各是多少?乘公交车学生上学方式扇形统计图 骑自行车 20%14%其他步行 m %(2)若要求C 地运往D 县的赈灾物资为60吨,A 地运往D 的赈灾物资为x 吨(x 为整数),B 地运往D 县的赈灾物资数量小于A 地运往D 县的赈灾物资数量的2倍,其余的赈灾物资全部运往E 县,且B 地运往E 县的赈灾物资数量不超过25吨,则A 、B 两地的赈灾物资运往D 、E 两县的方案有几种?(3)已知A 、B 、C 三地的赈灾物资运往D 、E 两县的费 用如右表所示,为及时将这批赈灾物资运往D 、E 两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最少是多少?22. (1)如图(1),正方形AEGH 的顶点E 、H 在正方形ABCD 的边上,直接写出HD ∶GC ∶EB的结果(不必写计算过程);(2)将图(1)中的正方形AEGH 绕点A 旋转一定角度,如图(2),求HD ∶GC ∶EB ; (3)把图(2)中的正方形都换成矩形,如图(3),且已知DA ∶AB =HA ∶AE =m :n ,此时HD ∶GC ∶EB 的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).23. 如图,在平面直角坐标系中,直线3342y x =-与抛物线214y x bx c =-++交于A 、B 两点,点A 在x 轴上,点B 的横坐标为-8.(1)求该抛物线的解析式; (2)点P 是直线AB 上方..的抛物线上一动点(不与点A 、B 重合),过点P作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E.①设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关 系式,并求出l 的最大值;②连接PA ,以PA 为边作图示一侧的正方形APFG.随着点P 的运动,正方形的大小、位置也随之改变.当顶点F 或G 恰好落在y 轴上时,直接写出对应的点P 的坐标.GH EDCBA(1)ABCDEGH(3)(2) DCBAG HE。
鄂州市梁子湖区2012年初中毕业生学业水平考试数学模拟试题(附答案)
鄂州市宅俊中学2011年初中毕业升学考试模拟试卷▄ ▄ 数 学 答 题 卡姓 名: 准考证号 班 级: ▄一、1. 2.3. 4. 5. 6. 7. 8.二、 9 10 11 12 13 14 15 16[A] [A] [A] [A] [A] [A] [A] [A] [B] [B] [B] [B] [B] [B] [B] [B] [C] [C] [C] [C] [C] [C] [C] [C] [D] [D] [D] [D] [D] [D] [D] [D]三、解答题17、▄1. 答题前,考生先将自己的姓名、准考证号、考场号、座位号用碳素笔或钢笔填写清楚,并认真按核准条形码上的准考证号及姓名,在规定的位置贴好条形码。
2. 选择题使用2B 铅笔填涂,其他试题用碳素笔或钢笔书写,字体工整、笔迹清楚,按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
3. 保持卡面清洁,不要折叠、不要弄破,选择题修改时,用橡皮擦擦干净,其他试题修改禁用涂改液和不干胶条。
注意事项贴条形码区(切勿贴出虚线框外)请在各题目的答题区域内作答,超出黑色矩形框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形框限定区域的答案无效填涂范例 正确填涂错误填涂 √ × ○●18、19、(1)表一中甲农村户口:乙班总人数:(2)(3)20、▄ 请在各题目的答题区域内作答,超出黑色矩形框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形框限定区域的答案无效21、22、 ▄请在各题目的答题区域内作答,超出黑色矩形框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形框限定区域的答案无效23、▄请在各题目的答题区域内作答,超出黑色矩形框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形框限定区域的答案无效FE D CBA45°37°24、▄请在各题目的答题区域内作答,超出黑色矩形框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形框限定区域的答案无效25、(1)(2)▄请在各题目的答题区域内作答,超出黑色矩形框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形框限定区域的答案无效。
2019-2020年湖北省中考数学各地区模拟试题分类(武汉市专版)(二)——《方程与不等式》含解析
2019-2020年湖北省中考数学各地区模拟试题分类(武汉市专版)(二)——《方程与不等式》一.选择题1.(2020•武汉模拟)方程4x2=81的一次项系数为()A.4 B.0 C.81 D.﹣81 2.(2020•武汉模拟)我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,裁一张边长为1的正方形纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落在线段EA上,折出点B的新位置F,因而EF=EB,类似地,在AB上折出点M,使AM=AF,表示方程x2+x﹣1=0的一个正根的线段是()A.线段BM B.线段AM C.线段BE D.线段AE 3.(2020•青山区模拟)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:今有甲种袋子中装有黄金9枚(每枚黄金重量相同),乙种袋子中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲种袋子比乙种袋子轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,则可建立方程为()A.B.C.D.4.(2020•武汉模拟)如果m、n是一元二次方程x2+x=4的两个实数根,那么多项式2n2﹣mn﹣2m的值是()A.16 B.14 C.10 D.6 5.(2020•武汉模拟)关于x的方程2x2+3x﹣7=0的根的情况,正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根6.(2020•武汉模拟)将关于x的一元二次方程x(x+2)=5化成一般式后,a、b、c的值分别是()A.1,2,5 B.1,﹣2,﹣5 C.1,﹣2,5 D.1,2,﹣5 7.(2020•武汉模拟)若x1,x2是一元二次方程x2﹣3x+2=0的两根,则x1+x2+x1x2的值是()A.﹣1 B.﹣5 C.5 D.1 8.(2020•武汉模拟)栖树一群鸦,鸦树不知数;三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何?歌谣大意是:一群乌鸦落在一片树上,如果三个乌鸦落在一棵树上,那么就有五个乌鸦没有树可落;如果五个乌鸦落在一棵树上,那么就有一棵树没有落乌鸦,请问乌鸦和树各多少?若设乌鸦有x只,树有y棵,由题意可列方程组()A.B.C.D.9.(2020•硚口区模拟)我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.10.(2020•武汉模拟)某生产车间共90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使1个螺栓配套2个螺帽,应如何分配工人才能使每天生产的螺栓和螺帽刚好配套,设生产螺栓x人,生产螺帽y人,由题意列方程组()A.B.C.D.11.(2020•江汉区校级一模)若关于x的不等式2x﹣a≤0的正整数解是1,2,3,则a的取值范围是()A.6<a<7 B.7<a<8 C.6≤a<7 D.6≤a<8 12.(2020•武汉模拟)关于x的方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m≥3 C.m≤3且m≠2 D.m<3 13.(2020•武汉模拟)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9 B.3(x+2)=2x﹣9C.+2=D.﹣2=二.填空题14.(2020•武汉模拟)已知3是一元二次方程x2+m=0的一个根,则该方程的另一个根是.15.(2020•武汉模拟)如果关于x的一元二次方程mx2+4x﹣1=0没有实数根,那么m的取值范围是.16.(2020•武汉模拟)已知,如图是一个三角形点阵,从上向下数有无数多行,其中第一行有一个点,第二行有两个点,…,第n行有n个点,容易发现,三角形点阵中前4行的点数和是10.若三角形点阵中前a行的点数之和为300,则a的值为.17.(2020•武汉模拟)一元二次方程x(x﹣5)=0的根为.18.(2020•武汉模拟)为响应全民阅读活动,某校面向社会开放图书馆.自开放以来,进馆人次逐月增加,第一个月进馆200人次,前三个月累计进馆872人次.若进馆人次的月增长率相同,为求进馆人次的月增长率.设进馆人次的月增长率为x,依题意可列方程为.19.(2020•武汉模拟)若x=1为方程x2﹣m=0的一个根,则m的值为.20.(2020•武昌区校级模拟)已知﹣3是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是三.解答题21.(2020•硚口区模拟)解方程:3(2x+3)=11x﹣6.22.(2020•武汉模拟)解一元二次方程:x2+2x﹣1=0.23.(2020•武汉模拟)已知3是一元二次方程x2﹣2x+a=0的一个根,求a的值和方程的另一根.24.(2020•硚口区模拟)为了抓住武汉园博园元宵灯会的商机,某商店决定购进A、B两种艺术纪念品.若购进A种纪念品8件,B种纪念品3件,需要95元,若购进A种纪念品5件,B种纪念品6件,需要80元.(1)求购进A,B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过765元,那么该商店共有几种进货方案?25.(2019•江夏区校级模拟)商场从厂家购进了A,B两种型号的空气净化器,已知一台A 型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)商场决定用不超过14000元从厂家购进A、B两种型号的空气净化器共10台,且B 型空气净化器的台数少于A型空气净化器的台数的2倍,问商场有几种进货方案?如果这10台空气净化器在进价的基础上都加价50%销售并售完,采用上面哪一方案利润最大.(3)为了增大B型空气净化器的销量,电器商社决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天电器商社销售B型空气净化器的利润为3200元,请问电器商社应将B型空气净化器的售价定为多少元?26.(2019•东西湖区模拟)某商店计划一次购进两种型号的手机共110部,销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元,其中A型手机的进货量不超过B型手机的2倍,且商店最多购进B型手机50台.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)设购进B型手机n部,销售手机的总利润为y元,怎么进货才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,请设计出手机销售总利润最大的进货方案.27.(2019•武汉一模)母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒.已知A、B两种礼盒的单价比为2:3,单价和为200元(1)求A、B两种礼盒的单价分别是多少元?(2)该店主进这两种礼盒花费不超过9720元,B种礼盒的数量是A种礼盒数量的2倍多1个,且B种礼盒的数量不低57个,共有几种进货方案?28.(2019•青山区模拟)为迎接军运会,市政府准备采购若干套健身器材免费提供给社区,经考察,某体育器材公司有A,B两种型号的健身器可供选择.(1)体育器材公司2017年每套A型健身器的售价为2.5万元,经过连续两年降价,2019年每套售价为1.6万元,求每套A型健身器年平均下降率n;(2)2019年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项费总计不超过112万元,不少于110万元.采购合同规定:每套A型健身器售价为1.6万元,每套B型健身器售价为1.5(1﹣n)万元.①有几种采购方案?②安装完成后,若每套A型和B型健身器一年的养护费分别是购买价的a%(5≤a≤8)和10%.市政府计划支出W万元进行养护.问每年养护费的最低费用为多少?29.(2019•硚口区模拟)某公司根据市场需求销售A、B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划用不超过9.8万元购进A,B两种型号的净水器共50台,其中A型、B 型净水器每台售价分别为2500元、2180元,设A型净水器为x台.①求x的取值范围.②若公司决定从销售A型净水器的利润中每台捐献a(100<a<150)元给贫困村饮水改造爱心工程,求售完这50台净水器后获得的最大利润.参考答案一.选择题1.解:方程4x2=81的一般形式是4x2﹣81=0,它的一次项系数是0,故选:B.2.解:设AM=AF=x,由题意知EF=BE=,在Rt△ABE中,AB2+BE2=AE2,即1+()2=(x+)2,整理得x2+x﹣1=0,即AM为方程x2+x﹣1=0的一个正数根.故选:B.3.解:设每枚黄金重x两,每枚白银重y两,依题意,得:.故选:C.4.解:∵n是一元二次方程x2+x=4的根,∴n2+n=4,即n2=﹣n+4,∵m、n是一元二次方程x2+x=4的两个实数根,∴m+n=﹣1,mn=﹣4,∴2n2﹣mn﹣2m=2(﹣n+4)﹣mn﹣2m=﹣2(m+n)﹣mn+8=2+4+8=14.故选:B.5.解:由题意可知:△=9+4×2×7>0,故选:A.6.解:方程整理得:x2+2x﹣5=0,则a,b,c的值分别是1,2,﹣5,故选:D.7.解:∵x1,x2是一元二次方程x2﹣3x+2=0的两根,∴x1+x2+x1x2=3+2=5.故选:C.8.解:设诗句中谈到的鸦为x只,树为y棵,则可列出方程组为:.故选:D.9.解:设大马有x匹,小马有y匹,由题意得:,故选:D.10.解:设生产螺栓x人,生产螺帽y人,根据总人数可得方程x+y=90;根据生产的零件个数可得方程2×15x=24y,可得方程组:.故选:C.11.解:解不等式2x﹣a≤0,得:x≤,∵不等式2x﹣a≤0的正整数解是1,2,3,∴3≤<4,解得:6≤a<8,故选:D.12.解:当m﹣2=0,即m=2时,方程变形为2x+1=0,解得x=﹣;当m﹣2≠0,则△=22﹣4(m﹣2)≥0,解得m≤3且m≠2,综上所述,m的范围为m≤3.故选:A.13.解:设有x辆车,则可列方程:3(x﹣2)=2x+9.故选:A.二.填空题(共7小题)14.解:将x=3代入方程,得:9+m=0,则m=﹣9,∴方程为x2﹣9=0,解得x=±3,∴方程的另一个根为﹣3,故答案为:﹣3.15.解:根据题意得m≠0且△=42﹣4m×(﹣1)<0,解得m<﹣4.故答案为:m<﹣4.16.解:依题意,得:1+2+3+…+a=300,整理,得:a2+a﹣600=0,解得:a1=24,a2=﹣25(不合题意,舍去).故答案为:24.17.解:方程x(x﹣5)=0,可得x=0或x﹣5=0,解得:x1=0,x2=5,故答案为:x1=0,x2=518.解:设进馆人次的月平均增长率为x,则由题意得:200+200(1+x)+200(1+x)2=872,故答案为:200+200(1+x)+200(1+x)2=872.19.解:将x=1代入x2﹣m=0,m=1,故答案为:1.20.解:设方程的另一根为a,∵﹣3是一元二次方程x2﹣4x+c=0的一个根,∴﹣3+a=4,解得a=7,故答案为:7.三.解答题(共9小题)21.解:3(2x+3)=11x﹣6,6x+9=11x﹣6,9+6=11x﹣6x,15=5x,x=3.22.解:方程变形得:x2+2x=1,配方得:x2+2x+1=2,即(x+1)2=2,开方得:x+1=±,解得:x1=﹣1+,x2=﹣1﹣.23.解:将x=3代入x2﹣2x+a=0中得32﹣6+a=0,解得a=﹣3,将a=﹣3代入x2﹣2x+a=0中得:x2﹣2x﹣3=0,解得x1=3,x2=﹣1,所以a=﹣3,方程的另一根为﹣1.24.解:(1)设A、B两种纪念品的价格分别为x元和y元,则,解得.答:A、B两种纪念品的价格分别为10元和5元.(2)设购买A种纪念品t件,则购买B种纪念品(100﹣t)件,则750≤5t+500≤765,解得50≤t≤53,∵t为正整数,∴t=50,51,52,53,即有四种方案.第一种方案:购A种纪念品50件,B种纪念品50件;第二种方案:购A种纪念品51件,B种纪念品49件;第三种方案:购A种纪念品52件,B种纪念品48件;第四种方案:购A种纪念品53件,B种纪念品47件.25.解:(1)设每台B型空气净化器的进价为x元,则每台A型净化器的进价为(x+300)元,根据题意得:,解得:x=1200,经检验,x=1200是原方程的根,∴x+300=1500.答:每台B型空气净化器的进价为1200元,每台A型空气净化器的进价为1500元.(2)设A型空气净化器购进x台,则B型空气净化器(10﹣x)台.由1500x+1200(10﹣x)≤14000和10﹣x<2x解得x的范围<x≤,可取4,5,6三种方案.当x=6时,y最大=6900元.(3)设B型空气净化器的售价为x元,根据题意得:(x﹣1200)(4+)=3200,整理得:(x﹣1600)2=0,解得:x1=x2=1600.答:电器商社应将B型空气净化器的售价定为1600元.26.解:(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意,得:,答:每部A型手机的销售利润为150元,每部B型手机的销售利润为100元;(2)设购进B型手机n部,则购进A型手机(110﹣n)部,则y=150(110﹣n)+100n=﹣50n+16500,其中,110﹣n≤2n,即n≥36,∴y关于n的函数关系式为y=﹣50n+16500 (36≤n≤50);∵﹣50<0,∴y随n的增大而减小,∵n≥36,且n为整数,∴当n=37时,y取得最大值,最大值为﹣50×37+16500=14650(元),答:购进A型手机73部、B型手机37部时,才能使销售总利润最大;(3)设购进B型手机n部,则购进A型手机(110﹣n)部,根据题意,得:y=150(110﹣n)+(100+m)n=(m﹣50)n+16500,其中,36≤n≤50(n为整数),①当30<m<50时,y随n的增大而减小,∴当n=37时,y取得最大值,即购进A型手机73部、B型手机37部时销售总利润最大;②当m=50时,m﹣50=0,y=16500,即商店购进B型电脑数量满足36≤n≤50的整数时,均获得最大利润;③当50<m<70时,y随n的增大而增大,∴当n=50时,y取得最大值,即购进A型手机60部、B型手机50部时销售总利润最大.27.解:(1)设A种礼盒单价为x元,B种礼盒单价为y元,依据题意得:,答:A种礼盒单价为80元,B种礼盒单价为120元;(2)设购进A种礼盒a个,B种礼盒(2a+1)个,依据题意可得:,解得:28≤a≤30,∵a的值为整数,∴a的值为:28、29、30,∴共有三种进货方案.28.解:(1)依题意列方程,2.5(1﹣n)2=1.6(1﹣n)2=1﹣n=±1﹣n=或1﹣n=﹣解得,n=或n=∵0<n<1∴n=.(2)①设采购A型号健身器材x套,采购B型号健身器材则(80﹣x)套,采购专项总费用为y元.依题意,y=1.6x+1.5(1﹣n)(80﹣x).把n=代入上式得,y=1.6x+1.2(80﹣x)整理得,y=0.4x+96.由题意,110≤y≤112∴110≤0.4x+96≤112.解得,35≤x≤40.又∵x应为整数∴x=35,36,37,38,39,40.故有6套方案.②依题意,W=1.6•a%x+1.2×10%(80﹣x)整理得,W=(1.6•a%﹣0.12)x+9.6.∵5≤a≤8∴﹣0.04≤1.6•a%﹣0.12≤0.0008故当a=5时,即W=﹣0.04x+9.6时应有W的最小值.又∵﹣0.04<0∴W随x的增大而减小∴当x=40时,由W的最小值为8.答:(1)年平均下降率为.(2)①有6种方案.②每年养护费的最低费用为8万元.29.解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m﹣200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m﹣200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)①根据题意得:2000x+1800(50﹣x)≤98000,解得:x≤40∴x的取值范围为:0≤x≤40且为x整数;②总利润w=(2500﹣2000)x+(2180﹣1800)(50﹣x)﹣ax=(120﹣a)x+19000,∵100<a<150,∴i).当100<a<120时,120﹣a>0,w随x增大而增大,∴当x=40时,w取最大值,最大值为(120﹣a)×40+19000=23800﹣40a,ii).当a=120时,w为一个定值w=0+19000=19000,iii)当120<a<150时,120﹣a<0,w随x的增大而减小,∴当x=0时,w取最大值,其最大值为:(120﹣a)×0+19000=19000,综上,当100<a<120时,19000<23800﹣40a<19800,∴售完这50台净水器后获得的最大利润为23800﹣40a.。
湖北省孝感市2021年中考数学试题(含解析)
湖北省孝感市2021年中考数学试题一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的,不读、错涂或涂的代号超过一个,一律得0分)1. 的倒数是()A. 4B. -4C.D. 16【答案】B【解析】分析:根据乘积是1的两个数互为倒数解答.详解:∵-×(-4)=1,∴的倒数是-4.故选:B.点睛:此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数.2. 如图,直线,若,,则的度数为()A. B. C. D.【答案】C【解析】分析:依据三角形内角和定理,即可得到∠ABC=60°,再根据AD∥BC,即可得出∠2=∠ABC=60°.详解:∵∠1=42°,∠BAC=78°,∴∠ABC=60°,又∵AD∥BC,∴∠2=∠ABC=60°,故选:C.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.3. 下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A. B. C. D.【答案】B【解析】分析:先根据在数轴上表示不等式解集的方法得出该不等式组的解集,再找出符合条件的不等式组即可.详解:A、此不等式组的解集为x<2,不符合题意;B、此不等式组的解集为2<x<4,符合题意;C、此不等式组的解集为x>4,不符合题意;D、此不等式组的无解,不符合题意;故选:B.点睛:本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.4. 如图,在中,,,,则等于()A. B. C. D.【答案】A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.详解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故选:A.点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.5. 下列说法正确的是()A. 了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B. 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C. 三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是D. “任意画一个三角形,其内角和是”这一事件是不可能事件【答案】D【解析】分析:根据随机事件的概念以及概率的意义结合选项可得答案.详解:A、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,此选项错误;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,此选项错误;C、三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是,此选项错误;D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,此选项正确.故选:D.点睛:此题主要考查了概率的意义,关键是弄清随机事件和必然事件的概念的区别.6. 下列计算正确的是()A. B. C. D.【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.7. 如图,菱形的对角线,相交于点,,,则菱形的周长为()A. 52B. 48C. 40D. 20【答案】A【解析】分析:由勾股定理即可求得AB的长,继而求得菱形ABCD的周长.详解:∵菱形ABCD中,BD=24,AC=10,∴OB=12,OA=5,在Rt△ABO中,AB==13,∴菱形ABCD的周长=4AB=52,故选:A.点睛:此题考查了菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质8. 已知,,则式子的值是()A. 48B.C. 16D. 12【答案】D【解析】分析:先通分算加法,再算乘法,最后代入求出即可.详解:(x-y+)(x+y-)===(x+y)(x-y),当x+y=4,x-y=时,原式=4×=12,故选:D.点睛:本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.9. 如图,在中,,,,动点从点开始沿向点以以的速度移动,动点从点开始沿向点以的速度移动.若,两点分别从,两点同时出发,点到达点运动停止,则的面积随出发时间的函数关系图象大致是()A. B. C. D.【答案】C【解析】分析:根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.详解:由题意可得:PB=3-t,BQ=2t,则△PBQ的面积S=PB•BQ=(3-t)×2t=-t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选:C.点睛:此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.10. 如图,是等边三角形,是等腰直角三角形,,于点,连分别交,于点,,过点作交于点,则下列结论:①;②;③;④;⑤.A. 5B. 4C. 3D. 2【答案】B【解析】分析:①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP和∠F AG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB即可得证;⑤设PF=x,则AF=2x、AP=x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△P AF∽△EAH得,从而得出a与x的关系即可判断.详解:∵△ABC为等边三角形,△ABD为等腰直角三角形,∴∠BAC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,∴△CAD是等腰三角形,且顶角∠CAD=150°,∴∠ADC=15°,故①正确;∵AE⊥BD,即∠AED=90°,∴∠DAE=45°,∴∠AFG=∠ADC+∠DAE=60°,∠F AG=45°,∴∠AGF=75°,由∠AFG≠∠AGF知AF≠AG,故②错误;记AH与CD的交点为P,由AH⊥CD且∠AFG=60°知∠F AP=30°,则∠BAH=∠ADC=15°,在△ADF和△BAH中,∵,∴△ADF≌△BAH(ASA),∴DF=AH,故③正确;∵∠AFG=∠CBG=60°,∠AGF=∠CGB,∴△AFG∽△CBG,故④正确;在Rt△APF中,设PF=x,则AF=2x、AP=x,设EF=a,∵△ADF≌△BAH,∴BH=AF=2x,△ABE中,∵∠AEB=90°、∠ABE=45°,∴BE=AE=AF+EF=a+2x,∴EH=BE-BH=a+2x-2x=a,∵∠APF=∠AEH=90°,∠F AP=∠HAE,∴△P AF∽△EAH,∴,即,整理,得:2x2=(-1)ax,由x≠0得2x=(-1)a,即AF=(-1)EF,故⑤正确;故选:B.点睛:本题主要考查相似三角形的判定与性质,解题的关键是掌握等腰三角形与等边三角形的性质、全等三角形与相似三角形的判定与性质等知识点.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分,请将结果直接填写在答题卡相应位置上)11. 一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳的平均距离,即149600000千米,用科学记数法表示1个天文单位是__________千米.【答案】【解析】试题分析:科学技术是指a×10n,1≤lal<10,n为原数的整数位数减一.考点:科学计数法.12. 如图是一个几何体的三视图(图中尺寸单位:),根据图中数据计算,这个几何体的表面积为__________.【答案】【解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.13. 如图,抛物线与直线的两个交点坐标分别为,,则方程的解是__________.【答案】,【解析】分析:根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2-bx-c=0的解.详解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2-bx-c=0的解为x1=-2,x2=1.所以方程ax2=bx+c的解是x1=-2,x2=1故答案为x1=-2,x2=1.点睛:本题考查抛物线与x轴交点、一次函数的应用、一元二次方程等知识,解题的关键是灵活运用所学知识,学会利用图象法解决实际问题14. 已知的半径为,,是的两条弦,,,,则弦和之间的距离是__________.【答案】2或14【解析】分析:分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.详解:①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF-OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.点睛:本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.15. 我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【答案】11【解析】分析:由已知数列得出a n=1+2+3+…+n=,再求出a10、a11的值,代入计算可得.详解:由a1=1,a2=3,a3=6,a4=10,…,知a n=1+2+3+…+n=,∴a10==55、a11==66,则a4+a11-2a10+10=10+66-2×55+10=-24,故答案为:-24.点睛:本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n=1+2+3+…+n=.16. 如图,在平面直角坐标系中,正方形的顶点的坐标为,点在轴正半轴上,点在第三象限的双曲线上,过点作轴交双曲线于点,连接,则的面积为__________.【答案】7【解析】分析:作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.详解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB,∴AG=DH=-x-1,∴DG=BM,∴1-=-1-x-,x=-2,∴D(-2,-3),CH=DG=BM=1-=4,∵AG=DH=-1-x=1,∴点E的纵坐标为-4,当y=-4时,x=-,∴E(-,-4),∴EH=2-=,∴CE=CH-HE=4-=,∴S△CEB=CE•BM=××4=7.故答案为:7.点睛:本题考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考填空题的压轴题.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17. 计算.【答案】13.【解析】分析:原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.详解:原式.点睛:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18. 如图,,,,在一条直线上,已知,,,连接.求证:四边形是平行四边形.【答案】证明见解析.【解析】分析:由AB∥DE、AC∥DF利用平行线的性质可得出∠B=∠DEF、∠ACB=∠F,由BE=CF可得出BC=EF,进而可证出△ABC≌△DEF(ASA),根据全等三角形的性质可得出AB=DE,再结合AB∥DE,即可证出四边形ABED是平行四边形.详证明:∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F.∵BE=CF,∴BE+CE=CF+CE,∴BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.又∵AB∥DE,∴四边形ABED是平行四边形.点睛:本题考查了平行线的性质、平行四边形的判定以及全等三角形的判定与性质,利用全等三角形的性质找出AB=DE是解题的关键.19. 在孝感市关工委组织的“五好小公民”主题教育活动中,我市蓝天学校组织全校学生参加了“红旗飘飘,引我成长”知识竞赛,赛后随机抽取了部分参赛学生的成绩,按从高分到低分将成绩分成,,,,五类,绘制成下面两个不完整的统计图:根据上面提供的信息解答下列问题:(1)类所对应的圆心角是________度,样本中成绩的中位数落在________类中,并补全条形统计图;(2)若类含有2名男生和2名女生,随机选择2名学生担任校园广播“孝心伴我行”节目主持人,请用列表法或画树状图求恰好抽到1名男生和1名女生的概率.【答案】(1)72,,补图见解析;(2)【解析】分析:(1)首先用C类别的学生人数除以C类别的人数占的百分率,求出共有多少名学生;然后根据B类别百分比求得其人数,由各类别人数和等于总人数求得D的人数,最后用360°乘以样本中D类别人数所占比例可得其圆心角度数,根据中位数定义求得答案.(3)若A等级的4名学生中有2名男生2名女生,现从中任意选取2名担任校园广播“孝心伴我行”节目主持人,应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.详解:(1)∵被调查的总人数为30÷30%=100人,则B类别人数为100×40%=40人,所以D类别人数为100-(4+40+30+6)=20人,则D类所对应的圆心角是360°×=72°,中位数是第50、51个数据的平均数,而第50、51个数据均落在C类,所以中位数落在C类,补全条形图如下:(2)列表为:男1 男2 女1 女2男1 --男2男1 女1男1 女2男1男2 男1男2 --女1男2 女2男2女1 男1女1 男2女1 --女2女1女2 男1女2 男2女2 女1女2 --由上表可知,从4名学生中任意选取2名学生共有12种等可能结果,其中恰好选到1名男生和1名女生的结果有8种,∴恰好选到1名男生和1名女生的概率为.点睛:此题考查了扇形统计图、条形统计图和列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.20. 如图,中,,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交于点;②作边的垂直平分线,与相交于点;③连接,.请你观察图形解答下列问题:(1)线段,,之间的数量关系是________;(2)若,求的度数.【答案】(1);(2)80°.【解析】分析:(1)根据线段的垂直平分线的性质可得:P A=PB=PC;(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°-2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论. 详解:(1)如图,P A=PB=PC,理由是:∵AB=AC,AM平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴P A=PB,∴P A=PB=PC;故答案为:P A=PB=PC;(2)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=180°-2×70°=40°,∵AM平分∠BAC,∴∠BAD=∠CAD=20°,∵P A=PB=PC,∴∠ABP=∠BAP=∠ACP=20°,∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°.点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.21. 已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.【答案】(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥0,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.详解:(1)证明:原方程可变形为x2-5x+6-p2-p=0.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥0,∴无论p取何值此方程总有两个实数根;(2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.22. “绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元. 【解析】分析:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据数量=总价÷单价结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于m 的分式方程,解之经检验后即可得出结论;(2)根据购买资金=A型净水器的进价×购进数量+B型净水器的进价×购进数量结合购买资金不超过9.8万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,由总利润=每台A型净水器的利润×购进数量+每台B型净水器的利润×购进数量-a×购进A型净水器的数量,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.详解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m-200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)根据题意得:2000x+180(50-x)≤98000,解得:x≤40.W=(2500-2000)x+(2180-1800)(50-x)-ax=(120-a)x+19000,∵当70<a<80时,120-a>0,∴W随x增大而增大,∴当x=40时,W取最大值,最大值为(120-a)×40+19000=23800-40a,∴W的最大值是(23800-40a)元.点睛:本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.23. 如图,中,,以为直径的交于点,交于点,过点作于点,交的延长线于点.(1)求证:是的切线;(2)已知,,求和的长.【答案】(1)证明见解析;(2)【解析】分析:(1)连接OD,AD,由圆周角定理可得AD⊥BC,结合等腰三角形的性质知BD=CD,再根据OA=OB知OD∥AC,从而由DG⊥AC可得OD⊥FG,即可得证;(2)连接BE.BE∥GF,推出△AEB∽△AFG,可得,由此构建方程即可解决问题;详解:(1)连接OD,AD,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,又∵OA=OB,∴OD∥AC,∵DG⊥AC,∴OD⊥FG,∴直线FG与⊙O相切;(2)连接BE.∵BD=2,∴CD=BD=2,∵CF=2,∴DF==4,∴BE=2DF=8,∵cos∠C=cos∠ABC,∴,∴,∴AB=10,∴AE=,∵BE⊥AC,DF⊥AC,∴BE∥GF,∴△AEB∽△AFG,∴,∴,∴BG=.点睛:本题主要考查圆的切线的判定、圆周角定理、相似三角形的判定与性质及中位线定理等知识点,熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.24. 如图1,在平面直角坐标系中,已知点和点的坐标分别为,,将绕点按顺时针分别旋转,得到,,抛物线经过点,,;抛物线经过点,,.(1)点的坐标为________,点的坐标为________;抛物线的解析式为________,抛物线的解析式为________;(2)如果点是直线上方抛物线上的一个动点.①若,求点的坐标;②如图2,过点作轴的垂线交直线于点,交抛物线于点,记,求与的函数关系式.当时,求的取值范围.【答案】(1),,:,:.(2)①符合条件的点的坐标为或.②.【解析】分析:(1)根据旋转的性质,可得C,E,F的坐标,根据待定系数法求解析式;(2)①根据P点关于直线CA或关于x轴对称直线与抛物线交点坐标,求出解析式,联立方程组求解;②根据图象上的点满足函数解析式,可得P、N、M纵坐标,根据平行于y轴直线上两点间的距离是较大的较大的纵坐标间较小的纵坐标,可得二次函数,根据x取值范围讨论h范围.详解:(1)由旋转可知,OC=6,OE=2,则点C坐标为(-6,0),E点坐标为(2,0),分别利用待定系数法求C1解析式为:y=-x2−4x−6,C2解析式为:y=-x2−2x+6(2)①若点P在x轴上方,∠PCA=∠ABO时,则CA1与抛物线C1的交点即为点P设直线CA1的解析式为:y=k1x+b1∴解得∴直线CA1的解析式为:y=x+2联立:,解得或,∴;∴符合条件的点的坐标为或.②设直线的解析式为:,∴,解得,∴直线的解析式为:,过点作于点,则,∴,,,,当时,的最大值为21.∵,当时,;当时,;当时,的取值范围是.点睛:本题考查二次函数综合题,解(1)的关键是利用旋转的性质得出C,E的坐标,又利用了待定系数法;解(2)①的关键是利用解方程组,要分类讨论,以防遗漏;解(2)②的关键是利用平行于y轴直线上两点间的距离是较大的较大的纵坐标间较小的纵坐标得出二次函数,又利用了二次函数的性质.。
(完整word版)湖北省鄂州市2012年中考数学试题
2012年中考数学试题(湖北鄂州卷)(本试卷满分120分,考试时间120分钟)一、选择题(A 、B 、C 、D 四个答案中,有且只有一个是正确的,每小题3分,共30分) 1.在实数0,-π,3,-4中,最小的数是【 】A.0B.-πC.3D.-4【答案】D 。
2. 2011年3月11日,日本发生了里氏9.0级大地震,导致当天地球自转时间减少了0.秒,将0.用科学记数法表示为【 】A.71016-⨯ B.6106.1-⨯C.5106.1-⨯D.51016.0-⨯【答案】B 。
3.下列运算正确的是【 】A.x 3+x 2=2x 6B.3x 3÷x=2x 2C.x 4·x 2=x 8D.(x 3)2=x 6【答案】D 。
4.四张完全相同的卡片上分别画有平行四边形、菱形、等腰梯形、圆,现从中任 意抽取一张,卡片上所画的图形恰好是中心对称图形的概率为【 】A.43B.1C.21 D.41 【答案】A 。
5.如左下图是一个由多个正方体堆积而成的几何体俯视图。
图中所示数字为该小 正方体的个数,则这个几何体的左视图是【 】【答案】D 。
6.如下图OA=OB=OC 且∠ACB=30°,则∠AOB 的大小是【 】A.40°B.50°C.60°D.70°7.把抛物线2y x bx 4=++的图像向右平移3个单位,再向上平移2个单位,所得 到的图象的解析式为2y x 2x 3=-+,则b 的值为【 】A.2B.4C.6D.8【答案】B 。
8.直线1y x 12=--与反比例函数ky x =的图象(x<0)交于点A ,与x 轴相交于点B ,过点B 作x 轴垂线交双曲线于点C ,若AB=AC ,则k 的值为【 】A .-2B .-4C .-6D .-8【答案】B 。
9、如图,四边形OABC 为菱形,点A 、B 在以O 为圆心的弧上,若OA=2,∠1=∠2,则扇形ODE 的面积为【 】A.π34B.π35C.π2D.π3【答案】A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省鄂州市2012年中考数学模拟试题(二)(时间:120分钟 分值:120分)一、选择题:1.4×(-12)的结果是( )A 、-4B 、-2C 、-14D 、32【解析】4×(-12)=-4×12=-2.2.下列图形中,是中心对称图形的是( )【解析】A 、C 、D 均为轴对称图形,只有B 是中心对称图形. 【答案】B3.(2011·深圳)下列运算正确的是( )A .x 2+x 3=x 5B .(x +y )2=x 2+y 2C .x 2·x 3=x 6D .(x 2)3=x 6 【解析】(x 2)3=x 2×3=x 6. 【答案】D4.下列运算正确的是( )A .(-2a 2)3=-8a 6B .a 3+a 3=2a 6C .a 6÷a 3=a 2D .a 3·a 3=2a 3 【解析】∵(-2a 2)3=(-2)3·(a 2)3=-8·a 6,故选A . 【答案】A5.如图,直线l 1∥l 2,∠1=40°,∠2=75°,则∠3等于( ) A .55° B .60° C .65° D .70°【解析】如下图所示,由l 1∥l 2得∠5=∠1=40°, ∵∠4=∠2=75°,∴∠3=180°-40°-75°=65°.【答案】C6.(2011·陕西)在△ABC 中,若三边BC 、CA 、AB 满足BC ∶CA ∶AB =5∶12∶13,则cosB =________.( )A .512B .125C .513D .1213【解析】设BC =5x ,则CA =12x ,AB =13x .∵(5x )2+(12x )2=169x 2=(13x )2,∴△ABC 是直角三角形且∠C =90°,∴cosB =BC AB =513.7.如图是由四个完全相同的正方体组成的几何体,这个几何体的左视图是( )【解析】由三视图知识可知,该几何体的左视图是“ ” 【答案】C8.不等式2x +3≥5的解集在数轴上表示正确的是( )【解析】解2x +3≥5得x ≥1,故选D . 【答案】D9.在平行四边形、等边三角形、菱形、等腰梯形中既是轴对称图形又是中心对称图形的是( ) A .平行四边形 B .等边三角形 C .菱形 D .等腰梯形【解析】菱形既是轴对称图形又是中心对称图形,平行四边形只是中心对称图形,等边三角形与等腰梯形只是轴对称图形. 【答案】C10.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A =25°,则∠D 等于( )A .20°B .30°C .40°D .50°【解析】连接OC ,则OC ⊥CD ,∠COD =2∠A =50°,∴∠D =90°-50°=40°. 【答案】C11.(2011·扬州)如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2.将△ABC 绕点C 按顺时针方向旋转n 度后得到△EDC ,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A .30,2B .60,2【解析】由BC =CD =2,∠B =60°可得△BCD 是等边三角形,则∠BCD =60°,即n =60.∠CFD =90°,DF =12DC =1,CF =22-12=3,∴S 阴=12×1×3=32.12.现给出下列四个命题:①无公共点的两圆必外离;②位似三角形是相似三角形;③菱形的面积等于两条对角线的积;④对角线相等的四边形是矩形.其中真命题的个数是( ) A .1 B .2 C .3 D .4【解析】无公共点的两圆除外离,还有内含,故命题①是假命题;位似三角形一定是相似三角形,命题②是真命题;菱形的面积等于两条对角线乘积的一半,命题③是假命题;对角线相等的四边形不一定是矩形,命题④是假命题. 【答案】A二、填空题(每小题3分,共15分)13.使4x -1有意义的x 的取值范围是____________. 【解析】当4x -1≥0即x ≥14时,4x -1有意义.【答案】x ≥1414.(2011·莆田)若一个正多边形的一个外角为40°,则这个正多边形是______边形.【解析】设正多边形的边数为n ,则n =360°40°=9.【答案】九15.⊙O 1和⊙O 2的半径分别为3 cm 和4 cm ,若⊙O 1和⊙O 2相外切,则圆心距O 1O 2=______cm .【解析】两圆相外切,则有O 1O 2=3+4=7(cm ). 【答案】716.在如图所示的矩形纸片上作随机扎针实验,则针头扎在阴影区域的概率为________.【解析】将阴影区域移至一起,则有P (针头扎在阴影区域)=14.17.(2011·佛山)如图,物体从点A 出发,按照A →B (第1步)→C (第2步)→D →A →E →F →G →A →B …的顺序循环运动,则第2 011步到达点________处.【解析】由题意知,每隔8步物体到达同一点,∵2 011÷8=251……3,所以第2 011步到达D 点. 【答案】D三、解答题(本大题包括8个小题,共69分)18.(6分)(2011·重庆)先化简,再求值:(x -1x -x -2x +1)÷2x 2-x x 2+2x +1,其中x 满足x 2-x -1=0.【答案】解:原式=[x -x +x x +-x x -x x +]÷x x -x +2=x 2--x 2-2x x x +·x +2x x -=2x -1x x +·x +2x x -=x +1x2.∵x 2-x -1=0,∴x 2=x +1.∴原式=x +1x +1=1.19.(8分)贵阳市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛.同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如图所示的两幅统计图.请你根据图中所给信息解答下列问题:(1)一等奖所占的百分比是________;(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整;(3)各奖项获奖学生分别有多少人?【答案】解:(1)10%.(2)20÷10%=200(人),在此次比赛中,一共收到200份参赛作品.200×20%=40,补充条形统计图如图所示.(3)200×24%=48(人),200×46%=92(人),即此次比赛中一等奖获奖学生有20人,二等奖获奖学生有40人,三等奖获奖学生有48人,优秀奖获奖学生有92人.20.(9分)(2011·烟台)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点C 1的坐标;(2)画出△ABC 绕原点O 顺时针方向旋转90°后得到的△A 2B 2C 2,并写出点C 2的坐标; (3)将△A 2B 2C 2平移得到△A 3B 3C 3,使点A 2的对应点是A 3,点B 2的对应点是B 3,点C 2的对应点是C 3(4,-1),在坐标系中画出△A 3B 3C 3,并写出点A 3,B 3的坐标. 【答案】(1)C 1(-1,-3) (2)C 2(3,1) (3)A 3(2,-2),B 3(2,-1).21.(8分)如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的小鸟,将随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率; (2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少(用树形图或列表法求解)?【答案】解:(1)P (小鸟落在草坪上)=69=23.(2)用“树形图”或表格列出所有等可能的结果:(如图所示)所以编号为1、2的2个小方格空地种植草坪的概率P =26=13.22.(8分)(2011·苏州)如图,小明在大楼30米高(即PH =30米)的窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处的俯角为60°,已知该山坡的坡度i (即tan ∠ABC )为1∶3,点P 、H 、B 、C 、A 在同一个平面上.点H 、B 、C 在同一条直线上,且PH ⊥HC .(1)山坡坡角(即∠ABC )的度数等于________度;(2)求A 、B 两点间的距离(结果精确到0.1米,参考数据:3≈1.732). 【答案】解:(1)30 (2)由题意得∠PBH =60°,∠APB =45°. ∵∠ABC =30°,∴∠ABP =90°.在Rt △PHB 中,PB =PHsin ∠PBH =203,在Rt △PBA 中,AB =PB =203≈34.6. 答:A 、B 两点间的距离约为34.6米.23.(9分)(2011·菏泽)如图,BD 为⊙O 的直径,AB =AC ,AD 交BC 于点E ,AE =2,ED =4. (1)求证:△ABE ∽△ADB ; (2)求AB 的长;(3)延长DB 到F ,使得BF =BO ,连接F A .试判断直线F A 与⊙O 的位置关系,并说明理由.【答案】(1)证明:∵ AB =AC ,∴∠ABC =∠C , ∵∠C =∠D ,∴∠ABC =∠D ,又∵∠BAE =∠EAB ,∴△ABE ∽△ADB ,(2)解:∵△ABE ∽△ADB ,∴AB AD =AEAB ,∴AB 2=AD ·AE =(AE +ED )·AE =(2+4)×2=12,∴AB =2 3.(3)直线F A 与⊙O 相切,理由如下:连接OA ,∵BD 为⊙O 的直径,∴∠BAD =90°, ∴BD =AB 2+AD 2=12++2=43,BF =BO =12BD =2 3.∵AB =23,∴BF =BO =AB ,则有∠OAF =90°, ∴直线F A 与⊙O 相切.24.(9分)2011年4月28日,以“天人长安,创意自然——城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园.这次世园会的门票分为个人票、团体票两大类,其中个人票设置有三种:某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票张数是A种票张数的3倍还多8张.设需购A种票张数为x,C种票张数为y.(1)写出y与x之间的函数关系式.(2)设购票总费用为w元,求出w(元)与x(张)之间的函数关系式.(3)若每种票至少购买1张,其中购买A种票不少于20张,则共有几种购票方案?并求出购票总费用最少时,购买A、B、C三种票的张数.【答案】解:(1)y=-4x+92.(2)w=60x+100(3x+8)+150(-4x+92),即w=-240x+14 600.(3)由题意,得{x≥20,92-4x>0.解得20≤x<23.∵x是正整数,∴x可取20、21、22.∴共有3种购票方案.∵k=-240<0,∴w随着x的增大而减小,当x=22时,w的取值最小.即当A种票购买22张时,购票的总费用最少.∴当购票总费用最少时,购买A、B、C三种票张数分别为22,74,4.25.(12分)用长度一定的不锈钢材料设计成外观为矩形的框架(如图①②③中的一种).设竖档AB=x米,请根据以上图案回答下列问题:(题中的不锈钢材料总长度均指各图中所有黑线的长度和,所有横档和竖档分别与AD、AB平行)(1)在图①中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积为3平方米?(2)在图②中,如果不锈钢材料总长度为12米,当x 为多少时,矩形框架ABCD 的面积S 最大?最大面积是多少?(3)在图③中,如果不锈钢材料总长度为a 米,共有n 条竖档,那么当x 为多少时,矩形框架ABCD 的面积S 最大?最大面积是多少?【答案】解:(1)由题意,BC 的长为(4-x )米.依题意得x (4-x )=3,即x 2-4x +3=0.解得x 1=1,x 2=3.即当AB 的长度为1米或3米时,矩形框架ABCD 的面积为3平方米. (2)S =x (4-43x )=-43x 2+4x =-43(x -32)2+3.∴当x =32时,S 有最大值3.∴当x 为32时,矩形框架ABCD 的面积S 最大,最大面积是3平方米.(3)S =13x (a -nx )=-n 3x 2+a 3x =-n 3(x -a 2n )2+a 212n .∵-n 3<0,∴当x =a 2n 时,S 有最大值,S 最大=a 212n.因此,当x 为a 2n 时,矩形框架ABCD 的面积S 最大,最大面积是a 212n 平方米.。