-文-选填真题--全国卷2013-2015
2013——2015全国卷1真题(语言基础)
2013—2015高考语文试卷新课标全国1卷语言基础题班级姓名1.下列各句中,加点的成语使用恰当的一项是(3分)( ) A.他性格比较内向,平时沉默寡言,但是一到课堂上就变得振振有词,滔滔不绝,所以他的课很受学生欢迎。
B.泰山几千年来都是文人墨客们向往的圣地,在浩如烟海的中华典籍中,留下了众多颂扬泰山的诗词文章。
C.张经理语重心长的一席话,如电光火石,让小余心头淤积的阴霾顿时消散,再次燃起争创销售佳绩的激情。
D.迅速崛起的快递行业,经过几年的激烈竞争,大部分企业都已经转行或倒闭了,市场上只剩他们几家平分秋色。
2.下列各句中,没有语病的一句是(3分)( )A.对于传说中这类拥有异常可怕力量的动物,尚武的古代欧洲人的真实心态恐怕还是敬畏多于憎恶的。
B.杜绝过度治疗,除了加强宣传教育外,还要靠制度保障医疗机构正常运转,调控盲目扩张的逐利行为。
C.作者观察细致,一泓清潭、汩汩流水、朗朗歌声,都能激发他的灵感,都能从中找到抒情叙事的切入点。
D.过于重视教育功能,文学作文会出现理性捆绑感性,思想大于形象,甚至全无艺术性,变成干巴巴的说教。
3.下面一段文字横线处的语句,衔接最恰当的一组是(3分)( ) 当代艺术博物馆今日举办名为“风物”的展览,展出了几位画家、摄影师的作品。
,。
,,,,能启发我们发现身边的奇景和诗意。
①因此无论多么微不足道的事物都可变成艺术主题②展出的作品大都体现出用细节带出重点的风格特点③彰显出艺术独具的神奇力量④作品展示的都是他们在美国南部腹地、新西兰北岛旅行时留下的记录⑤内容从自然环境、建筑、各类标志,到人物、室内布置,覆盖面很广⑥而且带有叙事意味,每件作品都像日常世界的一个短篇故事A.②⑥⑤④③①B. ②③①④⑤⑥C.④⑤②①⑥③D. ④⑥⑤①③②4.依次填入下列各句横线处的成语,最恰当的一组是(3分)()①医疗质量是关系到病人生命安危的大事,救死扶伤是医务人员_______的天职。
②中国传统的严父慈母型的家庭关系,常令父亲们_______地承担起教育子女的义务。
2013年高考语文全国卷2及答案
语文试卷 第1页(共10页)语文试卷 第2页(共10页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷2)语文使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1. 本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。
满分150分,考试时间150分钟。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 作答时,将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 阅读题甲 必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1~3题。
20世纪后期,陕西凤雏村出土了刻有“凤”字的甲骨四片,这些“凤”字的形体大致相同,均为头上带有象征神权或王权的抽象化了的毛角的短尾鸟。
东汉许慎《说文解字》云:“鸑鷟,凤属,神鸟也。
……江中有鸑鷟,似凫而大,赤目。
”据此,古代传说中鸣于岐山、兆示周王朝兴起的神鸟凤凰,其原型应该是一种形象普通、类似水鸭的短尾水鸟。
那么,普通的短尾鸟“凤”为何在周代变为华冠长尾、祥瑞美丽的神鸟了呢?我们看到,在商代早期和中期的青铜器纹饰中,只有鸟纹而没有凤纹,真正的凤形直到殷商晚期才出现,而且此时是华冠短尾鸟和华丽而饰有眼翎的长尾鸟同时出现,可见“凤”是由鸟演变而来的。
综观甲骨文和商代青铜器,凤鸟的演变应该是鸟在先,凤在后,贯穿整个商代的不是凤而是鸟。
“天命玄鸟,降而生商”,在商人的历史中鸟始终扮演着图腾始祖的重要角色。
《左传》记载郯子说:“我高祖少皞挚之立也,凤鸟适至,故纪于鸟,为鸟师而鸟名。
凤鸟氏历正也,……九扈为九农正。
”凤鸟氏成为“历正”之官,是由于它知天时,九扈成为“九农正”,也是由于它们带来了耕种、耘田和收获的信息。
殷人先祖之所以“鸟师而鸟名”,应该是由于这些随着信风迁徙的鸟,给以少皞为首的商人的农业生产带来了四季节令的消息。
对凤鸟的崇拜起于商代,其鼎盛却在周代。
正是在周代,“凤”完成了其发展程序中最后也是最重要的环节:变为神鸟凤凰。
2013-2015全国卷(文)真题汇编-数列 学生版
高考全国卷文科真题汇编_数列(2013 全国1 文科)6.设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(2013 全国1 文科)17.已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-。
(Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列21211{}n n a a -+的前n 项和。
(2013 全国2 文科)17.已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n -2.(2014 全国1 文科)17.已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
(I )求{}n a 的通项公式;(II )求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和.(2014 全国2 文科)5.等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n s =( )(A ) ()1n n + (B )()1n n - (C )()12n n + (D) ()12n n -(2014 全国2 文科)16.数列满足=,=2,则=_________.(2015 全国1 文科)7.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和。
则S 8=4S 4,a 10=(A )172 (B )192 (C )10 (D )12(2015 全国1 文科)13.在数列{a n }中, a 1=2,a n+1=2a n , S n 为{a n }的前n 项和。
若-S n =126,则n=. {}n a 1+n a n a -112a 1a(2015 全国2 文科)5.n S 是等差数列{a n }的前n 项和,若a 1+ a 3+ a 5=3,则=5S(A )5 (B )7 (C )9 (D )11(2015 全国2 文科)9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a = (A )2 (B )1 (C )21 (D )81。
2013年高考语文试卷和答案
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试语文注意事项:1. 本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。
第Ⅰ卷1至8页,第Ⅱ卷9至10页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷阅读题甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1~3题老子其人其书的时代,自司马迁《史记》以来只有异说,清代学者崇尚考据,对此议论纷纷,如汪中作《老子考异》,力主老子为战国时人,益启争端。
钱穆先生说:“老子伪迹不彰,真相大白,则先秦诸子学术思想之系统条贯始终不明,其源流派别终无可言.”大家都期待这个问题有新的解决线索.过去对于古书真伪及年代的讨论,只能以材料证明纸上材料,没有其它的衡量标准,因而难有定论。
用来印证《老子》的古书,大多收到辨伪家的怀疑,年代确不可移的,恐怕要数到《林非子》。
《吕氏春秋》和《淮南子》,但这几木书戍书太晚,没有多少作用.近年战国秦汉简帛侠籍大黄出上,为学术界提供了许多前所未见的地下材料,这使我们有可能重新考虑《老子》的时代问题。
1973牛长沙马王堆三亏汉基出土的串书,内有《老子》两种版本,甲本字体比较早,不避汉高祖讳,应抄写于高祖即帝位前,乙本避高祖讳,可以抄写于文帝初。
这两本《老子》抄写年代都晚,无益于《老子》著作年代的推定,但乙本前面有《黄帝书》四篇,系。
黄”、“老”合抄之本,则从根本上改变了学术界对早期道家的认识。
郭沐若先生曾指出,道家都是以“发明黄老道德意”为其指归,故也可称之为黄老学派.《老子》和《黄帝书》是道家的经典,在汉初被妙写在《老子》前面的《黄帝书》显然在当时公众心目中已据有崇高位置,不会是刚刚撰就的作品。
同时,《黄帝书》与《申子》、《慎子》、《韩非子》等有许多共通文句,而申不害、慎到、韩非二人均曾学黄老之术,这些共通之处可认作对《皇帝书》的引用阐发。
2013高考考文科+理科试题与答案(word清晰版)
2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ).A .11i 2--B .11+i 2-C .11+i 2D .11i 2-3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .164.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x5.(2013课标全国Ⅰ,文5)已知命题p :∀x ∈R,2x<3x;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 6.(2013课标全国Ⅰ,文6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ).A .Sn =2an -1B .Sn =3an -2C .Sn =4-3anD .Sn =3-2an 7.(2013课标全国Ⅰ,文7)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]8.(2013课标全国Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2=的焦点,P为C 上一点,若|PF |=POF 的面积为( ).A .2B ...49.(2013课标全国Ⅰ,文9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( ).10.(2013课标全国Ⅰ,文10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( ).A .10B .9C .8D .511.(2013课标全国Ⅰ,文11)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π12.(2013课标全国Ⅰ,文12)已知函数f (x )=22,0,ln(1),0.x x x x x ⎧-+≤⎨+>⎩若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,文13)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ²c =0,则t =______.14.(2013课标全国Ⅰ,文14)设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______.15.(2013课标全国Ⅰ,文15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______. 16.(2013课标全国Ⅰ,文16)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,文17)(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式; (2)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和.18.(2013课标全国Ⅰ,文18)(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?19.(2013课标全国Ⅰ,文19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C,求三棱柱ABC-A1B1C1的体积.20.(2013课标全国Ⅰ,文20)(本小题满分12分)已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.21.(2013课标全国Ⅰ,文21)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(2013课标全国Ⅰ,文22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .23.(2013课标全国Ⅰ,文23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,文24)(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|2x-1|+|2x +a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:A解析:∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2. 答案:B 解析:212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-. 3.答案:B解析:由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13. 4. 答案:C解析:∵2e =,∴2c a =,即2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C.5. 答案:B解析:由20=30知,p 为假命题.令h (x )=x 3-1+x 2, ∵h (0)=-1<0,h (1)=1>0, ∴x 3-1+x 2=0在(0,1)内有解.∴∃x ∈R ,x 3=1-x 2,即命题q 为真命题.由此可知只有⌝p ∧q 为真命题.故选B. 6. 答案:D解析:11211321113nnn n a a a q a q S q q --(-)===---=3-2a n ,故选D. 7. 答案:A解析:当-1≤t <1时,s =3t ,则s ∈[-3,3).当1≤t ≤3时,s =4t -t 2. ∵该函数的对称轴为t =2,∴该函数在[1,2]上单调递增,在[2,3]上单调递减. ∴s max =4,s min =3. ∴s ∈[3,4].综上知s ∈[-3,4].故选A. 8. 答案:C解析:利用|PF |=P x +=x P =∴y P =±∴S △POF =12|OF |²|y P |=故选C.9.答案:C解析:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π0,2⎛⎤ ⎥⎝⎦时,f (x )>0,排除A.当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1. 令f ′(x )=0,得2π3x =. 故极值点为2π3x =,可排除D ,故选C. 10. 答案:D解析:由23cos 2A +cos 2A =0,得cos 2A =125. ∵A ∈π0,2⎛⎫⎪⎝⎭,∴cos A =15. ∵cos A =2364926b b +-⨯,∴b =5或135b =-(舍).故选D.11. 答案:A解析:该几何体为一个半圆柱与一个长方体组成的一个组合体.V 半圆柱=12π³22³4=8π, V 长方体=4³2³2=16.所以所求体积为16+8π.故选A. 12. 答案:D解析:可画出|f (x )|的图象如图所示.当a >0时,y =ax 与y =|f (x )|恒有公共点,所以排除B ,C ; 当a ≤0时,若x >0,则|f (x )|≥ax 恒成立.若x ≤0,则以y =ax 与y =|-x 2+2x |相切为界限,由2,2,y ax y x x =⎧⎨=-⎩得x 2-(a +2)x =0. ∵Δ=(a +2)2=0,∴a =-2. ∴a ∈[-2,0].故选D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分. 13.答案:2解析:∵b ²c =0,|a |=|b |=1,〈a ,b 〉=60°,∴a ²b =111122⨯⨯=. ∴b ²c =[t a +(1-t )b ]²b =0,即t a ²b +(1-t )b 2=0.∴12t +1-t =0. ∴t =2. 14.答案:3解析:画出可行域如图所示.画出直线2x -y =0,并平移,当直线经过点A (3,3)时,z 取最大值,且最大值为z =2³3-3=3. 15.答案:9π2解析:如图,设球O 的半径为R , 则AH =23R , OH =3R . 又∵π²EH 2=π,∴EH =1.∵在Rt△OEH 中,R 2=22+13R ⎛⎫ ⎪⎝⎭,∴R 2=98.∴S 球=4πR 2=9π2.16.答案:5-解析:∵f (x )=sin x -2cos xx -φ),其中sin φ=5cos φ=5. 当x -φ=2k π+π2(k ∈Z )时,f (x )取最大值.即θ-φ=2k π+π2(k ∈Z ),θ=2k π+π2+φ(k ∈Z ).∴cos θ=πcos 2ϕ⎛⎫+ ⎪⎝⎭=-sin φ=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)设{a n }的公差为d ,则S n =1(1)2n n na d -+. 由已知可得11330,5105,a d a d +=⎧⎨+=⎩解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n . (2)由(1)知21211n n a a -+=1111321222321n n n n ⎛⎫=- ⎪(-)(-)--⎝⎭,从而数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和为1111111211132321n n ⎛⎫-+-++- ⎪---⎝⎭=12n n-. 18.解:(1)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y . 由观测结果可得x =120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5) =2.3,y =120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2) =1.6.由以上计算结果可得x >y ,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好.19.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB , 所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以 AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以OC =OA 1又A 1C ,则A 1C 2=OC 2+21OA ,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高.又△ABC 的面积S △ABC ABC -A 1B 1C 1的体积V =S △ABC ³OA 1=3. 20.解:(1)f ′(x )=e x(ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)²1e 2x ⎛⎫-⎪⎝⎭. 令f ′(x )=0得,x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2). 21. 解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,(左顶点除外),其方程为22=143x y +(x ≠-2).(2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP RQM r =,可求得Q (-4,0),所以可设l :y =k (x +4). 由l 与圆M=1,解得k=4±. 当k=4时,将4y x =+22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2=47-±, 所以|AB |x 2-x 1|=187.当k=4-时,由图形的对称性可知|AB |=187.综上,|AB |=|AB |=187.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(1)证明:连结DE ,交BC 于点G .由弦切角定理得,∠ABE =∠BCE . 而∠ABE =∠CBE ,故∠CBE =∠BCE ,BE =CE . 又因为DB ⊥BE ,所以DE 为直径,∠DCE =90°, 由勾股定理可得DB =DC .(2)解:由(1)知,∠CDE =∠BDE ,DB =DC , 故DG 是BC 的中垂线, 所以BG=2. 设DE 的中点为O ,连结BO ,则∠BOG =60°.从而∠ABE =∠BCE =∠CBE =30°, 所以CF ⊥BF ,故Rt△BCF外接圆的半径等于2. 23.解:(1)将45cos ,55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0. 将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为 ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}. (2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即a ≤43.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |<x ,则( ). A .A ∩B = B .A ∪B =R C .B ⊆A D .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4D .453.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0),则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3 B .866π3cm3 C .1372π3cm3 D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .810.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则( ). A .{Sn}为递减数列B .{Sn}为递增数列C .{S2n -1}为递增数列,{S2n}为递减数列D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ²c =0,则t =__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n 项和2133n n S a =+,则{an}的通项公式是an =_______. 15.(2013课标全国Ⅰ,理15)设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax +b)的图像关于直线x =-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC 中,∠ABC =90°,ABBC =1,P 为△ABC 内一点,∠BPC =90°. (1)若PB =12,求PA ; (2)若∠APB =150°,求tan ∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|. 21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y =f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f(x)=|2x-1|+|2x +a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B. 2. 答案:D解析:∵(3-4i)z =|4+3i|,∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D.3. 答案:C解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样. 4. 答案:C解析:∵2c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±.∴渐近线方程为12b y x x a =±±.5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3).若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4]. 综上可知,输出的s ∈[-3,4].故选A. 6. 答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3. ∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)³1=0,∴112m a -=-. 又∵a m +1=a 1+m ³1=3,∴132m m --+=.∴m =5.故选C. 8. 答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2³4³12+4³2³2=8π+16.故选A. 9. 答案:B解析:由题意可知,a =2C m m ,b =21C mm +, 又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+), 即132171m m +=+.解得m =6.故选B. 10. 答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b (+)(-)(+)(-)+, 即2121221212=y y y y ba x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2,而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9.∴椭圆E 的方程为22=1189x y +.故选D. 11. 答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax . 当x =0时,不等式为0≥0成立. 当x <0时,不等式等价于x -2≤a . ∵x -2<-2,∴a ≥-2. 综上可知:a ∈[-2,0]. 12. 答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵c =t a +(1-t )b ,∴b ²c =t a ²b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2.14.答案:(-2)n -1解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1n n a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1.∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1.15.答案:5- 解析:f (x )=sin x -2cos xx x ⎫⎪⎭, 令cos α,sin α= 则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ), 所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α=5=-. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15.由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2上为增函数,在(-22)上为减函数,在(-2,-2上为增函数,在(-2∴f (-2=[1-(-22][(-22+8(-2+15] =(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8³(-2)+15]=-3(4-16+15)=-9.f (-2=[1-(-22][(-22+8(-2+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=. 故PA. (2)设∠PBA =α,由已知得PB =sin α.在△PBAsin sin(30)αα=︒-,α=4sin α.所以tan α,即tan ∠PBA. 18.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直. 以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(00),C (0,0,B (-1,0,0).则BC =(1,0,1BB =1AA =(-10),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量, 则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩ n n即0,0.x x ⎧+=⎪⎨-=⎪⎩可取n =,1,-1).故cos 〈n ,1AC 〉=11A C A C⋅ n n=. 所以A 1C 与平面BB 1C 1C所成角的正弦值为5. 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2) =41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14. 所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M , 解得k =4±. 当k时,将y x =+22=143x y +, 并整理得7x 2+8x -8=0,解得x 1,2.所以|AB |2118|7x x -=.当4k =-时,由图形的对称性可知|AB |=187.综上,|AB |=|AB |=187. 21.解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ),故b =2,d =2,a =4,d +c =4.从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1).设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2,则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x -1).由题设可得F (0)≥0,即k ≥1.令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1). 而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0.故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.②若k =e 2,则F ′(x )=2e 2(x +2)(e x -e -2).从而当x >-2时,F ′(x )>0,即F (x )在(-2,+∞)单调递增.而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.③若k >e 2,则F (-2)=-2k e -2+2=-2e -2(k -e 2)<0.从而当x ≥-2时,f (x )≤kg (x )不可能恒成立.综上,k 的取值范围是[1,e 2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE ,交BC 于点G .由弦切角定理得,∠ABE =∠BCE .而∠ABE =∠CBE ,故∠CBE =∠BCE ,BE =CE .又因为DB ⊥BE ,所以DE 为直径,∠DCE =90°,由勾股定理可得DB =DC .(2)解:由(1)知,∠CDE =∠BDE ,DB =DC ,故DG 是BC 的中垂线,所以BG =2. 设DE 的中点为O ,连结BO ,则∠BOG =60°.从而∠ABE =∠BCE =∠CBE =30°,所以CF ⊥BF ,故Rt△BCF . 23.解:(1)将45cos ,55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25, 即C 1:x 2+y 2-8x -10y +16=0.将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0. 由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即43a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013--2015全国卷现代文论述类题答案
2013年至2015年论述文阅读全国I、II卷试题答案2013年I卷1【答案】 B【解析】本题考查筛选并整合文中信息的能力,能力层级为C级。
“使得《老子》一书的时代问题有了解决的可能”与原文“这使我们重新考虑《老子》的时代”说法不一致,将结果夸大了。
2【答案】D【解析】本题考查归纳内容要点,概括中心意思的能力,能力层级为C级。
A项,断章取义,原文“但乙本前面有《黄帝书》四篇,系‘黄’、‘老’合抄之本,则从根本上改变了学术界对早期道家的认识。
”下文还根据“黄”“老”的内容对应关系说明对《老子》成书的影响。
题干中说“这对于《老子》著作的推定没什么用处”就不符合原文意思了。
3【答案】C【解析】本题考查分析概括作者在文中的观点态度的能力,能力层级为C级。
C项,“可见这三人的引用阐发,与《黄帝书》后来享有崇高地位极有关系。
”可是原文并未提及《黄帝书》后来的崇高地位与这三人有关系。
13年II卷1【答案】B【解析】本题考查筛选并整合文中信息的能力,能力层级为C级。
此项不是对“凤”的形象的表述。
2【答案】A【解析】本题考查归纳内容要点,概括中心意思的能力,能力层级为C级。
第二段“真正的凤形直到殷商晚期才出现,而且此时是华冠短尾鸟和华丽而饰有眼翎的长尾鸟同时出现”说明“华丽而饰有眼翎的长尾鸟形状的凤纹”在商代晚期已经出现。
3【答案】B【解析】本题考查分析概括作者在文中的观点态度的能力,能力层级为C级。
周武王参拜商人的神庙“这说明周王室急于把商人的正统接过来,成为中原合法的统治者。
周人之所以宣扬天命,归根结底在于强调“周改殷命”是出自天的意志和抉择。
”2014年I卷1.【试题答案】B【试题解析】原文第三段“悲剧的审美价值的载体只能是文学艺术”和第四段“悲剧成为审美对象只能以文学艺术的形式出现”可以看出,而B项是现实中的真实事件,没有上升到文学艺术层面,所以不属于原文所论悲剧。
2. 【试题答案】C[解析]本题考查学生筛选并整合文中信息的能力。
15(全国卷大纲版).根据热力学定律,下列说法正确的是( )
5【2013上海高考】.液体与固体具有的相同特点是
(A)都具有确定的形状
(B)体积都不易被压缩
(C)物质分子的位置都确定
(D)物质分子都在固定位置附近振动
底水温为4℃,水面温度为17℃,大气压强为1.0×105Pa。当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g=10m/s2,ρ=1.0×103kg/m3)
(1)若用V0表示烧瓶容积,p0表示大气压强,△V示针筒内气体的体积,△p1、△p2表示上述步骤①、②中烧瓶内外气体压强差大小,则步骤①、②中,气体满足的方程分别为_______________、_______________。
(2)由实验数据得烧瓶容积V0=_____ml,大气压强p0=____Pa。
高中物理学习材料
(灿若寒星**整理制作)
15(2013全国卷大纲版).根据热力学定律,下列说法正确的是()
A.电冰箱的工作过程表明,热量可以从低温物体向高温物体传递
B.空调机在制冷过程中,从室内吸收的热量少于向室外放出的热量
C.科技的进步可以使内燃机成为单一的热源热机
D.对能源的过度消耗使自然界的能量不断减少,形成“能源危机”
(3)若该循环过程中的气体为1 mol,气体在A状态时的体积为10 L,在B状态时压强为A状态时的 .求气体在B状态时单位体积内的分子数.(已知阿伏加德罗常数NA=6.0×1023mol-1,计算结果保留一位有效数字)
29【2013上海高考】.(7分)利用如图装置可测量大气压强和容器的容积。步骤如下:
b.做功和热传递都是通过能量转化的方式改变系统内能的
c.温度是描述热运动的物理量,一个系统与另一个系统达到热平衡时两系统温度相同
d.物体由大量分子组成,其单个分子的运动是无规则的,大量分子的运动也是无规律的
2013高考语文题目及参考答案
2013高考全国卷语文试题及答案一、(12题,每题3分)1,下列词语中加点的字,读音全都正确的一组是A.女红.(gōng)安土重.迁(zhîng)商埠.(fǔ)花团锦簇.(cù)B.莅.临(lì)大放厥.词(jué)挟.制(xié)蔫.头耷脑(yān)C.懦.弱(nuî)年高德劭.(shào)两栖.(qī)沁.人心脾(qìn)D.遽.然(jù)精神抖擞.(sǒu)坍.陷(tā)一柱擎.天(qíng)2,下列各句中,加点的成语使用恰当的一项是A.客厅上挂着我们全家在桂林的合影,尽管照片有些褪色,但温馨和美的亲情依然历历在目....。
B.为了完成在全国的市场布局,我们三年前就行动了,特别是在营销策略的制订上可谓处心..积虑..。
C.沉迷网络使小明学习成绩急剧下降,幸亏父母及时发现,并不断求全责备....,他才戒掉了网瘾。
D.他在晚会上出神入化....的近景魔术表演,不仅令无数观众惊叹不已,还引发了魔术道具的热销。
3.下列各句中,没有语病的一句是A.波士顿马拉松赛的两声爆炸,无疑给大型体育比赛的安保工作敲响了警钟,如何确保赛事安全,成为组织方必须面对的新难题。
B.对那些刻苦训练的年轻运动员,即使他们在比赛中偶尔有发挥失常的情况,依然应该受到爱护,决不能一棍子就把人打倒。
C.这次大会的志愿服务工作已经完成了,我们咀嚼、体味这一段经历,没有失落感,有的只是在平凡事物中享受奉献、成长与幸福。
D.深陷债务危机的希腊和西班牙,失业率已经超过20%,主要是由于这两个国家经济衰退和实施大规模财政紧缩政策所导致的。
4.依次填入下面一段文字横线处的语句,衔接最恰当的一组是岳麓书院已有一千多年的历史,,,,,,,特别是各处悬挂的历代楹联,散发出浓郁的文化气息。
①院落格局中轴对称、层层递进②给人一种庄严、幽远的厚重感③它集教学、藏书、祭祀于一体④主体建筑头门、大门、二门、讲堂、御书楼集中于中轴线上⑤门、堂、斋、轩、楼,每一处建筑都很古朴⑥讲堂布置在中轴线的中央,斋舍、专祠等排列于两旁A.②③④⑥⑤①B.②⑥④①⑤③C.③①④⑥⑤②D.③②⑥④①⑤二、(9分,每题3分)大多数环境学论著认为,人类大量排放二氧化碳等温室气体,导致全球气温上升,而全球变暖将使地球两极的冰川融化,海平面上升,进而给人类的生存造成威胁。
2013——2015年全国卷2真题(语言基础)
2013—2015高考语文试卷新课标全国2卷语言基础题班级姓名1.下列各句中,加线的成语使用恰当的一项是(3分)( ) A.荆山之巅的大禹雕像头戴栉风沐雨的斗笠,手握开山挖河的神锸,脚踏兴风作浪的蛟龙,再现了他与洪水搏斗的雄姿。
B.京剧大师梅兰芳先生不仅在舞台上风姿绰约,在日常生活中也气度不凡,无论何时何地,他总能让人为之倾倒。
C.最后几年,由于市场竞争加剧,小家电生产企业加速整合,目前只剩下五六家分庭抗礼,占据了全省60%的市场份额。
D.家庭条件的优越和父母的溺爱,养成了他傲慢狂妄的个性,不管对谁都侧目而视,一副天不怕地不怕的小霸王样子。
2.下列各句中,没有语病的一句是(3分)( )A.很多企业都认识到,为了应对消费需求和竞争格局的变化,必须把改进服务提到与研发新产品同等重要的位置上。
B.一般人常常忽略的生活小事,作者却能够慧眼独具,将之信手拈来,寻找其叙述的价值,成为小说的有机组成部分。
C.在90后的青少年中,科幻迷越来越多,这显示了科幻文化正在崛起,是对长久以来孩子们缺失的想象力的呼唤。
D.数字化时代,文字记录方式发生了重大变化,致使很多人提笔忘字,长此以往,将影响到汉字文化能否很好的传承。
3.依次填入下面一段文字横线处的语句,衔接最恰当的一组是(3分)( )以学校的日子里,我没有什么特别的感觉,_________,_________,_________,_________,_________,_________。
我默默地注视着学校红色的大门,由衷地感谢她带给我的一切。
①很多时候你可能觉得今天跟昨天没什么不同②这时你可能非常留恋过去的日子③突然发现它写得真好④你回过头来,其实一切都在改变⑤不禁哼出一句“月亮的脸偷偷地在改变”⑥现在要离开这个工作了七年的学校A.①②④⑤⑥③ B.①⑥②⑤③④C.⑥②⑤①④③ D.⑥⑤③①④②4.依次填入下列各句横线处的成语,最恰当的一组是(3分)( )①消防工作必须立足于_____,从提高公众的防火意识做起。
2013--2015全国卷现代文论述类题汇编全解
2013年至2015年论述文阅读全国新课标I、II卷试题2013年现代文阅读I卷(9分,每小题3分)老子其人其书的时代,自司马迁《史记》以来只有异说,清代学者崇尚考据,对此议论纷纷,如汪中作《老子考异》,力主老子为战国时人,益启争端。
钱穆先生说:“老子伪迹不彰,真相大白,则先秦诸子学术思想之系统条贯始终不明,其源流派别终无可言.”大家都期待这个问题有新的解决线索.过去对于古书真伪及年代的讨论,只能以材料证明纸上材料,没有其它的衡量标准,因而难有定论。
用来印证《老子》的古书,大多收到辨伪家的怀疑,年代确不可移的,恐怕要数到《林非子》。
《吕氏春秋》和《淮南子》,但这几木书戍书太晚,没有多少作用.近年战国秦汉简帛侠籍大黄出上,为学术界提供了许多前所未见的地下材料,这使我们有可能重新考虑《老子》的时代问题。
1973牛长沙马王堆三亏汉基出土的串书,内有《老子》两种版本,甲本字体比较早,不避汉高祖讳,应抄写于高祖即帝位前,乙本避高祖讳,可以抄写于文帝初。
这两本《老子》抄写年代都晚,无益于《老子》著作年代的推定,但乙本前面有《黄帝书》四篇,系。
黄”、“老”合抄之本,则从根本上改变了学术界对早期道家的认识。
郭沐若先生曾指出,道家都是以“发明黄老道德意”为其指归,故也可称之为黄老学派.《老子》和《黄帝书》是道家的经典,在汉初被妙写在《老子》前面的《黄帝书》显然在当时公众心目中已据有崇高位置,不会是刚刚撰就的作品。
同时,《黄帝书》与《申子》、《慎子》、《韩非子》等有许多共通文句,而申不害、慎到、韩非二人均曾学黄老之术,这些共通之处可认作对《皇帝书》的引用阐发。
申不害和慎到的年代,前人推为战国中期,《皇帝书》不应更晚。
至于《皇帝书》与《老子》的共通之处也甚多,入《皇帝书·经法》篇云“王天下者有玄德”,什么是“玄德。
”文中未见解释,查《老子》五十一章:“生而不有,为而不持,长而不宰,之谓玄德。
”帛书所讲“玄德”显然由此而来。
2013年高考语文试卷全国统一试题和答案
2013年高考语文试卷全国统一试题和答案2013年普通高等学校招生全国统一考试语文注意事项:1.本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷阅读题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1-3题20世纪后期,陕西凤雏村出土了刻有“凤”字的甲骨四片,这些“凤”字的形体大致相同,均为头上带有象征神权或王权的抽象化了的毛角的短尾鸟。
东汉许筷《说文解字》云:“公耸,凤属,神鸟也.……江中有公耸,似兔而大,赤目.”据此,古代传说中鸣于岐山、兆示周王朝兴起的神鸟凤凰,其原型应该是一种形象普通、类似水鸭的短尾水鸟。
那么,普通的短尾鸟“凤”为何在周代变为华冠长尾、祥瑞美丽的神鸟了呢?我们看到,在商代早期和中期的青铜器纹饰中,只有鸟纹而没有凤纹,弄正的凤形直到殷商晚期才出现,而且此时是华冠短尾鸟和华丽而饰有眼翎的长尾鸟同时出现,可见“凤”是由鸟演变而来的.综观甲骨文和商代青铜器,凤鸟的演变应该是鸟在先,凤在后,贯穿整个商代的不是凤而是鸟。
“天命玄鸟,降而生商”,在商人的历史中鸟始终扮演着图腾始祖的重要角色。
《左传》记载郯子说:“我高祖少睐挚之立也,凤鸟适至,故纪于鸟,为鸟师而鸟名。
凤鸟氏历正也,……九扈为九农正.”凤鸟氏成为“历正”之官,是由于它知天时,九扈成为“九农正”,也是由于它们带来了耕种、耘田和收获的信息.殷人先祖之所以“鸟师而鸟名”,应该是由于这些随着信风迁批的鸟,给以少昧为首的商人的农业生产带来了四季节令的消息。
对凤鸟的崇拜起于商代,其鼎盛却在周代。
正是在周代,“凤”完成了其发展程序中最后也是最重要的环节:变为神鸟凤凰。
许多历史资料记载了周王室在克商前后对“天命”的重视。
《尚书》“周书”十二篇中大量出现的“命”字多指天命,“殷革夏命”也是常见的语句。
2013-2015高考数学文科试题及详细解析-全国卷1
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( ) (A ){0}(B ){-1,,0} (C ){0,1}(D ){-1,,0,1}(2)212(1)ii +=-( ) (A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12 (B )13 (C )14 (D )16(4)已知双曲线2222:1x y C a b -=(0,0)a b >>C 的渐近线方程为( ) (A )14y x =± (B )13y x =± (C )12y x =±(D )y x =±(5)已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧(B )p q ⌝∧(C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =,则POF ∆的面积为( )(A )2(B )(C )(D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9(C )8(D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+(C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。
2013-2015高考语言语句排序真题(含答案)
2013—2015全国各地高考语言连贯题汇总1.(2013年课标卷1)依次填入下面一段文字横线处的语句,衔接最恰当的一组是()当代艺术博物馆近日举办名为“风物”的展览,展出了几位画家、摄影师的作品。
,。
,;。
,能启发我们发现身边的奇景和诗意。
①因此无论多么微不足道的事物都可变成艺术主题②展出的作品大部分都体现出细节带出重点的风格特点③彰显出艺术独具的神奇力量④作品展示的都是他们在美国南部腹地、新西兰北岛旅行时留下的记录⑤内容从自然环境、建筑、各类标志,到人物、室内布置,覆盖面很广⑥而且带有叙事意味,每件作品都像日常世界的一个短篇故事A.②⑥⑤④③①B.②③①④⑤⑥ C.④⑤②①⑥③D.④⑥⑤①③②2.(2013年新课标卷2)依次填入下面一段文字横线处的语句,衔接最恰当的一组是()在学校的日子里,我没有什么特别的感觉,__,__,__,__,__,__。
我默默地注视着学校红色的大门,由衷地感谢她带给我的一切。
①很多时候你可能觉得今天跟昨天没什么不同②这时你可能非常留恋过去的日子③突然发现它写得真好④你回过头来,其实一切都在改变⑤不禁哼出一句“月亮的脸偷偷地在改变”⑥现在要离开这个工作了七年的学校A.①②④⑤⑥③B.①⑥②⑤③④C.⑥②⑤①④③D.⑥⑤③①④②3.(2013年全国大纲卷)依次填入下面一段文字横线处的语句,衔接最恰当的一组是()岳麓书院已有一千多年的历史,__,__,__,__,__,__,特别是各处悬挂的历代楹联,散发出浓郁的文化气息。
①院落格局中轴对称、层次递进②给人一种庄严、幽远的厚重感③它集教学、藏书、祭祀于一体④主体建筑头门、大门、二门、讲堂、御书楼集中于中轴线上⑤门、堂、斋、轩、楼,每一处建筑都很古朴⑥讲堂布置在中轴线的中央,斋舍、专祠等排列于两旁A.②③④⑥⑤①B.②⑥④①⑤③C.③①④⑥⑤②D.③②⑥④①⑤4.(2013年北京卷)给下面语句排序,衔接恰当的一项是()①因为较弱的电磁辐射,也会对人的神经系统与心血管系统产生一定的干扰。
2013年-2015年高考卷
2013年2015年高考卷一、选择题(每题4分,共40分)A. 《红楼梦》B. 《百年孤独》C. 《围城》D. 《三体》A. a² + b² = c²B. a² b² = c²C. a² + b² c² = 0D. a² b² + c² = 0A. HappinessB. LuckC. SuccessD. FreedomA. 托里拆利实验B. 帕斯卡实验C. 伽利略实验D. 牛顿实验A. 钠(Na)B. 镁(Mg)C. 铝(Al)D. 硅(Si)A. 线粒体B. 叶绿体C. 内质网D. 高尔基体A. 九一八事变B. 卢沟桥事变C. 八一三事变D. 淞沪会战A. 云贵高原B. 东南丘陵C. 塔里木盆地D. 四川盆地A. 计划经济B. 商品经济C. 社会主义市场经济D. 自然经济A. y = x²B. y = x³C. y = |x|D. y = x² + 1二、填空题(每题4分,共40分)1. 2013年高考语文试卷中,诗句“问君能有几多愁,______”出自哪位诗人?2. 2014年高考英语试卷中,英语单词“environment”的中文意思是______。
3. 2015年高考物理试卷中,光在真空中的传播速度是______m/s。
4. 2013年高考化学试卷中,水的化学式是______。
5. 2014年高考生物试卷中,生物体进行呼吸作用的场所是______。
6. 2015年高考历史试卷中,秦始皇统一六国的时间是______年。
7. 2013年高考地理试卷中,我国最大的沙漠是______。
8. 2014年高考政治试卷中,我国宪法规定公民享有言论、出版、集会、结社、游行、示威的自由,这是公民的______权利。
9. 2015年高考数学试卷中,三角形内角和等于______度。
十五年真题精选(最终版)
十五年真题精选(一)选填篇三角函数2004全国卷2012全国卷解三角形2006全国1立体几何2004全国卷4.已知正四面体ABCD 的表面积为S,其四个面的中心分别为E、F、G、H.设四面体EFGH 的表面积为T.则ST 等于()91.A 94.B 41.C 31.D 2007全国卷15.一个等腰直接三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则三角形的斜边长为.2005全国卷的截面图形是()、、那么,正方体过的中点。
、、分别是、、中,正方体R Q P C B AD AB R Q P D C B A ABCD 111111.6 A.三角形 B.四边形 C.五边形 D.六边形2008卷1)所成角的正弦值等于(与底面则的中心,内的射影为在底面等,的侧棱与底面边长都相已知三棱柱ABC AB ABC ABC A C B A ABC 11111.7-31.A 32.B 33.C 32.D 2004全国卷编号)(写出所以正确结论的确的编号是在一面结论中,结论正④一条直线及其外一点③同一条直线;②两条互相垂直的直线①两条平行直线;的射影有可能是在上、是一个平面,则为不垂直的异面直线,已知________________,.8ααb a b a 解析几何2011全国卷1文9.设两圆12C C 都和两坐标轴相切,且都过(4,1)则两个圆心的距离12||C C =(A)4(B)42(C)8(D)22015新课标110.已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,(0,66A ,当APF∆周长最小时,该三角形的面积为.2008全国卷211.等腰三角形两腰所在直线的方程分别为x+y-2=0和x-7y-4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为()3.A 2.B 31.-C 21.-D 2016新课标112.(5分)(2016•新课标Ⅰ)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)向量2006全国1则()同向,其中后与顺时针旋转且,满足、、如果平面向量的和、、设平面向量.3,2,1i 30||2||b .0.133********=︒==++b a a b b b i i i αααααα0b b b -321=++)(A 0321=+-b b b B )(0321=-+b b b C )(0321=++b b b D )(数列2005全国卷不等式2017新课标三文理1≤+x x ,15.函数f(x)=,则满足_______121()(的取值范围是的x x f x f >-+0,2>x x 函数及其性质2008全国卷22004全国卷17.=+=+=∈)5()2()()2(,21)1())((f f x f x f f R x x f ,则为奇函数,设函数()0.A 1.B 25.C 5.D2017新课标一理18.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A.13,p p B.14,p p C.23,p p D.24,p p 大题篇解三角形2009全国卷22009全国卷1b,sin cos 3cos sin 2,,.222求且,已知的对边长分别为、、中,内角在C A C A bc a c b a C B A ABC ==-∆2005全国卷解析几何2011全国卷2-12.422=++=+OP OB OA P B A C l F y y x F O 满足两点,点、交于与的直线斜率为且轴正半轴上的焦点,过在为椭圆为坐标原点,已知(1)证明:点P 在C 上,设点P 关于O 的对称点为Q(2)证明:A,P,B,Q四点在同一个圆上2017新课标三文5.在直角坐标系xOy 中,曲线22y x m x =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.2008全国卷2.)01,00,2.6两点、,与椭圆相交与相交于点与(直线)是它的两个定点,(),(,设椭圆中心在坐标原点F E D AB k kx y B A >=(1)DF ED 6=若,求k 的值(2)求四边形AEBF 面积的最大值2004全国卷7导数2010全国一卷(理)9.ax x x x f ++=2331)(已知函数的单调性)讨论()(1x f 的值上,求的交点在曲线轴与的直线,若过两点有两个极值点)设(a x f y x l x f x x f x x x x f )())(,()),(,(,)(2221121=选修篇2012新课标选修4-5:不等式选讲1.|2|||)(-++=x a x x f 已知函数(1)的解集时,求不等式当3)(3-≥=x f a (2)的取值范围,求的解集包含若a x x f ]2,1[|4|)(-≤2.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系学科*网,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值.技巧篇全国卷2005______.1=++=∆m OC OB OA m OH H O ABC 则实数(,为,两条边上的高的交点的外接圆的圆心为2017新课标一理的最小值为两点,则、交于与两点,直线、交于与直线作两条互相垂直的直线的焦点,过为抛物线已知||||,,4.221212DE AB E D C l B A Cl l l F x y F +=A.16 B.14 C.12 D.102007全国卷1的面积是,且,垂足为,部分相交于点轴上方的的直线与抛物线在且斜率为,经过,准线为的焦点抛物线AKF K l AK A x F l F x y ∆⊥=34.324.A 33.B 34.C 8.D 2017新课标二文4.过抛物线2:4C y x =的焦点F 3C 于点M (M 在x 的轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为5B.2C.3D.332009全国1十五年真题精选(二)选填篇三角函数2007全国卷11.函数22()cos 2cos 2x f x x =-的一个单调增区间是A.2(,)33ππB.(,)62ππC.(0,)3πD.(,)66ππ-解三角形2014新课标12.(5分)(2014•新课标Ⅰ)已知a,b,c 分别为△ABC 的三个内角A,B,C 的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC 面积的最大值为.立体几何2010全国卷3.点所在直线的距离相等的、、的三条棱与正方体1111111-D A CC AB D C B A ABCD A 有且只有1个B 有且只有2个C.有且只有3个D.有无数个2010全国卷4.已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A)233(B)433(C)3(D)8332004全国卷的距离为则球心到平面三点,如果、、π,球面上有已知求的表面积为ABC BC AC AB C B A ,32.220.5===A.12.B 3.C D.22009全国卷16.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北。
实用类文本2013-2015年高考原题新课标试题6套(有答案详解)..
一. 2013新课标全国卷I卷(河南、河北、陕西、山西等省区考卷)实用类文本阅读(25分)12.阅读下面的文字完成(1)~(4)题(25分)“飞虎将军”陈纳德20世纪三四十年代,中国人民正遭受着日本法西斯的疯狂蹂躏。
战争中,从空中给予日本敌机致命打击的,是赫赫有名的美国“飞虎队”,其队长则是有着“飞虎将军”美称的陈纳德。
1937年,中日之战一触即发,增强中国空军作战能力迫在眉睫,当时,陈纳德已经从美国空军退役,他的朋友,在中国中央信托局担任机要顾问的霍勃鲁克非常欣赏他精湛的飞行技术和过人的军事才能,推荐他来华担任国民政府航空委员会顾问,并给他寄去国民政府航空委员会秘书长宋美龄的亲笔邀请信。
5月,陈纳德来到上海作为期三个月的考察。
在上海,陈纳德受到民众的热情欢迎和宋美龄的接见。
他在日记中写道:“我终于在中国了。
希望能在这里为正在争取名族团结和争取新生活的人民效劳。
”7月7日卢沟桥事变,日本发动全面侵华战争。
陈纳德听到消息,当即决定留在中国,表示愿在任何能尽其所能的岗位上服务。
他认为“中国对日之战,是美国也将卷入的太平洋之战的序幕”,他要为中国,也为自己即将卷入战争的祖国尽一份力量。
此后,陈纳德在芷江,昆明等地筹建航校,训练飞行员,悉心传授战斗机飞行技术和作战技术,他多年前的军事理论著作《防御性追击的作用》终于有了用武之地。
同时,他着手建立一个全国性的地面空袭报警系统,以便战斗机驾驶员及时拦截敌机。
为了增强空军的战斗力,1940年10月,陈纳德赴美招募志愿者,虽然遭遇了很多挫折,但从未放弃。
经过将近一年的艰苦努力,志愿队组建成功,后被编入美国陆军航空队。
1941年12月7日,珍珠港事件爆发,太平洋战争全面展开。
20日,志愿队在昆明和日军进行第一次正面交锋。
日军来犯的10架轰炸机有6架被击落,逃跑的4架中又有3架损于途中。
而志愿队的飞机全部安全返航,只有1名驾驶员受轻伤。
首战告捷,给饱受日机轰炸的昆明人民以极大的鼓舞。
2013_2015新课标全国卷语用题真题(整理吴迎)
2013-2015高考新课标全国卷语用题1.在下面一段文字横线处补写恰当的语句,使整段文字语意完整连贯,内容贴切,逻辑严密。
每处不超过10个字。
(6分)一提到根的作用,可能首先想到①。
这两项是绝大多数植物根系的本职工作。
然而,进化史上最早出现的根,作用却并非吸收水分和吸取养料,而是②,这种早期类型的根被称为假根。
③,是因为这些根内没有运输水分和养料的通道,它仅有的作用就足固定植株。
假根将植物固定在合适的生活环境中,会降低风吹和水流的影响,提高其生存几率。
①②③2.下面是我国的“国家节水标志”,请写出该标志的构图要素及其寓意,要求语意简明,句子通顺,不超过70个字。
(5分)3.在下面一段文字横线处补写恰当的语句,使整段文字语意完整连贯,内容贴切,逻辑严密。
每处不超过12个字。
(5分)大家都知道,①,倘若呼吸停止,生命也将终结,人体通过呼吸,②,排出二氧化碳。
那你可知道土壌也有呼吸?土壤呼吸和人的呼吸一样,也是一个③的过程。
①②③4.下面是某班级春游活动的构思框架,请把这个构思写成一段话,要求内容完整,表述准确,语言连贯,不超过75个字。
(6分〉5、在下面—段文字横线处补写恰当的语句,使整段文字语意完整连赏,内容貼切,逻辑严密。
每处不超过15个字。
(5分)读书的目的仅仅是为了记住书中的内容吗?答案是否定的。
①。
记忆型阅读是我们缺乏想象力的根源之一,因为它容易导致盲从书本知识,从而失去质疑精神。
批判型读是一种创造性阅读,它不追求②,而主张激发想象力和灵感,带着自己的思考,让自己变得更有思想。
能通过阅读提出有价值的质疑,③,通过分析根源找到解决问題的途径和方法,这在泛阅读日益普遍的时候更显得难能可贵。
①②③6.下面是联合国发行的“联合我们的力量”邮票中的主体图形,请写出构图要素,并说明图形寓意,要求语意简明,句子通顺,不超过85个字。
(6分)7.在下面一段文字横线出补写恰当的语句,使整段文字语意完整连贯,内容贴切,逻辑严密。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年普通高等学校招生全国统一考试w一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =( )(A ){1,4}(B ){2,,3} (C ){9,16}(D ){1,,2}(2)212(1)ii +=-( )(A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )错误!未找到引用源。
(B )错误!未找到引用源。
(C )14错误!未找到引用源。
(D )16错误!未找到引用源。
(4)已知双曲线2222:1x y C a b-=(0,0)a b >>的离心率为错误!未找到引用源。
,则C 的渐近线方程为( )(A )14y x =± (B )13y x =± (C )12y x =±(D )y x =±(5)已知命题:p x R ∀∈,23xx<;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧(B )p q ⌝∧ (C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为错误!未找到引用源。
的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于 (A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F 为抛物线2:42C y x =的焦点,P 为C 上一点,若||42PF =,则POF ∆的面积为( ) (A )2(B )22(C )23(D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )(A )10 (B )9 (C )8 (D )5(11)某几何函数的三视图如图所示,则该几何的体积为( ) (A )168π+ (B )88π+ (C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-(13)已知两个单位向量a ,b 的夹角为60,(1)=+-c ta t b ,若0⋅=b c ,则t =_____。
(14)设,x y 满足约束条件 13,10x x y ≤≤⎧⎨-≤-≤⎩,则2z x y =-的最大值为______。
(15)已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为_______。
(16)设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______.2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则MN =( ) (A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}---2、21i =+( )(A )22 (B )2 (C )2 (D )13、设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 4、ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A )232+ (B )31+ (C )232- (D )31-5、设椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )(A )36 (B )13 (C )12 (D )336、已知2sin 23α=,则2cos ()4πα+=( )(A )16 (B )13 (C )12 (D )23 7、执行右面的程序框图,如果输入的4N =,那么输出的S =( )(A )1111234+++ (B )1111232432+++⨯⨯⨯ (C )111112345++++ (D )111112324325432++++⨯⨯⨯⨯⨯⨯8、设3log 2a =,5log 2b =,2log 3c =,则( )(A )a c b >> (B )b c a >> (C )c b a >> (D )c a b >>9、一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )(A) (B) (C) (D)10、设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点。
若||3||AF BF =,则l 的方程为( )(A )1y x =-或!y x =-+ (B )3(1)3y x =-或3(1)3y x =-- (C )3(1)y x =-或3(1)y x =-- (D )2(1)2y x =-或2(1)2y x =--11、已知函数32()f x x ax bx c =+++,下列结论中错误的是( ) (A )0x R ∃∈,0()0f x = (B )函数()y f x =的图象是中心对称图形 (C )若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减 (D )若0x 是()f x 的极值点,则0'()0f x =12、若存在正数x 使2()1x x a -<成立,则a 的取值范围是( )(A )(,)-∞+∞ (B )(2,)-+∞ (C )(0,)+∞ (D )(1,)-+∞二、填空题:本大题共4小题,每小题5分。
(13)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______。
(14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=_______。
(15)已知正四棱锥O ABCD -的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为______。
(16)函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_________。
2014年普通高等学校招生全国统一考试(课标I一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则MB =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(- (2)若0tan >α,则A.0sin >α B. 0cos >α C. 02sin >α D. 02cos >α(3)设ii z ++=11,则=||z A. 21 B. 22 C. 23D. 2(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 25D. 1(5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,学科网则下列结论中正确的是A.)()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数 (6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EBA. ADB.AD 21 C. BC 21 D. BC (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,学科网则输出的M =( )A.203 B.72 C.165 D.15810.已知抛物线C :x y =2的焦点为F ,()yx A 00,是C 上一点,x F A 045=,则=x 0( )A. 1B. 2C. 4D. 8(11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3 (C )-5或3 (D )5或-3(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 (A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. (14)甲、乙、丙三位同学被问到是否去过A 、B 、zxxk C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.(16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测学科网得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .(2014年普通高等学校招生全国统一考试(课标II卷)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。