管理运筹学试卷和答案1

合集下载

管理运筹学复习题及部分参考答案

管理运筹学复习题及部分参考答案

一、名词解释 1.模型 2.线性规划 3.树 4.网络 5.风险型决策二、简答题 1.简述运筹学的工作步骤。

2.运筹学中模型有哪些基本形式 3.简述线性规划问题隐含的假设。

4.线性规划模型的特征。

5.如何用最优单纯形表判断线性规划解的唯一性或求出它的另一些最优解 6.简述对偶理论的基本内容。

7.简述对偶问题的基本性质。

8.什么是影子价格?同相应的市场价格之间有何区别,以及研究影子价格的意义。

9.简述运输问题的求解方法。

10.树图的性质。

11.简述最小支撑树的求法。

12.绘制网络图应遵循什么规则。

三、书《收据模型与决策》2.13 14. 有如下的直线方程:2x 1 +x 2 =4 a. 当x 2 =0 时确定x 1 的值。

当x 1 =0 时确定x 2 的值。

b. 以x 1 为横轴x 2 为纵轴建立一个两维图。

使用a 的结果画出这条直线。

c. 确定直线的斜率。

d. 找出斜截式直线方程。

然后使用这个形式确定直线的斜率和直线在纵轴上的截距。

答案: 14. a. 如果x 2 =0,则x 1 =2。

如果x 1 =0,则x 2 =4。

c. 斜率= -2 d. x 2 =-2 x 1 +4 2.40 你的老板要求你使用管理科学知识确定两种活动(和)的水平,使得满足在约束的前提下总成本最小。

模型的代数形式如下所示。

Maximize 成本=15 x 1 +20 x 2 约束条件约束1:x 1 + 2x 2 10 约束2:2x 1 3x 2 6 约束3:x 1 +x 2 6和x 1 0,x 2 0 a. 用图解法求解这个模型。

b. 为这个问题建立一个电子表格模型。

c. 使用Excel Solver 求解这个模型。

答案: a. 最优解:(x 1 , x 2 )=(2, 4),C=110 b c.活动获利 1 2总计水平A B C 1 2 2 3 1 1 10 10 8 6 6 6 单位成本方案15 20 2 4 $110.00 3.2 考虑具有如下所示参数表的资源分配问题: 资源每一活动的单位资源使用量可获得的资源数量 1 2 1 2 3 2 3 2 1 3 4 10 20 20 单位贡献$20 $30 单位贡献=单位活动的利润b. 将该问题在电子表格上建模。

管理运筹学--答案

管理运筹学--答案

09 <<运筹>>期末考试试卷(A)答案一、不定项选择题(每小题2分共20分)1、A2、B3、ABCD4、ABC5、D6、C7、B8、ABCD9、ABC 10、ABC二、名词解释(每小题4分,共20分)1、运筹学是一门以人机系统的组织、管理为对象,应用数学和计算机等工具来研究各类有限资源的合理规划使用期并提供优化决策方案的科学。

2、线性规划是研究线性约束条件下线性目标函数的极值问题的数学理论和方法。

3、如果系统中包含元素A、B、C、K….等,按照经典意义(非模糊,非统计意义)的原则来聚类。

4、系统的综合性原则是指系统内部各组成部分的联系与协调,包含要素间的协调及系统与环境问题的协调。

5、TSP问题称为“旅行推销员问题”,是指:有N个城市A、B、…….等,它们这间有一定的距离,要求一条闭合路径,由某城市出发,每个城市经历过一次,最终返回原城市,所经历的路程最短。

三、简答题(每小题5分,共28分)1、列出一些企业产品结构优化的柔性模型约束条件。

(1)关键设备的生产能力(2)各类能源的约束(3)工艺的约束(4)产品类结构关系,以及物流过程中上、下游产品供需的约束(5)某些产品的下限约束(6)非负约束2、排队规则:损失制等待制:先到先服务、后到先服务、随机服务、优先权服务混合制3、运筹学的特点:(1)以最优性为核心。

(2)以模型化为特征(3)以计算机为主要实现手段。

(4)多学科交融4、神经元的功能:(1)整合功能(2)兴奋与抑制(3)突触延时与不应期(4)学习、遗忘与疲劳四、应用题。

(每题15分,共45分)1、设A、B的产量为X、Y模型:目标MAX利润=500X+900Y约束条件:9X+4Y≤3604X+5Y≤2003X+10Y≤300X、Y均大于或等于零图解略最优解:X=20千克 Y=24千克利润31600元2、企业在选择运用“农村包围城市”还是“城市中心”的指导思想时,应考虑自己的条件,竞争对手的情况,宏观和中观形势。

全国各院校考研专业课[管理运筹学],近年考试真题答案解析

全国各院校考研专业课[管理运筹学],近年考试真题答案解析

全国各院校考研专业课[管理运筹学],近年考试真题答案解析管理运筹学是考研专业课中的一项重要内容,近年来,各院校对此科目的考试真题难度逐年提高,考查范围广泛,要求考生具备扎实的理论基础和较强的实际应用能力。

以下是对近年考试真题的答案解析,以供考生参考。

一、选择题1. 下列关于线性规划问题的说法,正确的是()。

A. 线性规划问题的目标函数可以是线性的,也可以是非线性的B. 线性规划问题的约束条件必须是线性的C. 线性规划问题的决策变量可以是整数D. 线性规划问题可以没有约束条件答案:B解析:线性规划问题的目标函数和约束条件都必须是线性的。

决策变量可以是实数,但不一定是整数。

2. 在非线性规划中,下列哪个条件是凸规划问题必须满足的()。

A. 目标函数是凸函数B. 约束条件是凸集C. 目标函数和约束条件都是凸函数D. 目标函数和约束条件都是凹函数答案:A解析:凸规划问题要求目标函数是凸函数,而约束条件可以是凸集或非凸集。

二、填空题1. 在目标规划中,如果决策变量有上下界限制,则该问题可以转化为线性规划问题。

答案:对解析:在目标规划中,如果决策变量有上下界限制,可以通过引入松弛变量和人工变量,将问题转化为线性规划问题。

2. 在对偶规划中,原问题的最优解与对偶问题的最优解是相互关联的。

答案:对解析:对偶规划的原问题和对偶问题存在一定的关联性,原问题的最优解与对偶问题的最优解是相互关联的。

三、计算题1. 某企业生产甲、乙两种产品,甲产品的单位利润为100元,乙产品的单位利润为150元。

生产甲产品需要消耗2小时机器时间,1小时人工时间;生产乙产品需要消耗3小时机器时间,2小时人工时间。

企业每周最多可利用机器时间100小时,人工时间80小时。

求企业每周生产甲、乙两种产品的最大利润。

答案:设甲产品生产x件,乙产品生产y件,目标函数为Z=100x+150y。

约束条件为:2x + 3y ≤ 100(机器时间)x + 2y ≤ 80(人工时间)x, y ≥ 0求解得:x=20,y=20,最大利润为5000元。

管理运筹学(本科)(参考答案)

管理运筹学(本科)(参考答案)

上交作业课程题目可以打印,答案必须手写,否则该门成绩0分。

管理运筹学 作业题一、名词解释(每题3分,共15分)1. 可行解:满足某线性规划所有的约束条件(指全部前约束条件和后约束条件)的任意一组决策变量的取值,都称为该线性规划的一个可行解,所有可行解构成的集合称为该线性规划的可行域(类似函数的定义域),记为K 。

2. 最优解:使某线性规划的目标函数达到最优值(最大值或最小值)的任一可行解,都称为该线性规划的一个最优解。

线性规划的最优解不一定唯一,若其有多个最优解,则所有最优解所构成的集合称为该线性规划的最优解域。

3. 状态:指每个阶段开始时所处的自然状态或客观条件。

4. 决策树:决策树(Decision Tree )是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。

由于这种决策分支画成图形很像一棵树的枝干,故称决策树。

5. 最大最小准则:最大最小准则又称小中取大法或悲观法。

为不确定型决策的决策准则之一,其决策的原则是“小中取大”。

这种决策方法的思想是对事物抱有悲观和保守的态度,在各种最坏的可能结果中选择最好的。

决策时从决策表中各方案对各个状态的结果选出最小值,即在表的最右列,再从该列中选出最大者。

这种方法的基本态度是悲观与保守。

其基本思路是首先找出最不利情况下的最大收益。

二、 简答题(每题6分,共24分) 1. 简述单纯形法的基本步骤。

答:(1)把一般线形规划模型转换成标准型;(2)确定初始基可行解;(3)利用检验数j σ对初始基可行解进行最优性检验,若0≤j σ ,则求得最优解,否则,进行基变换;(4)基变换找新的可行基,通过确定入基变量和出基变量,求得新的基本可行解;(5)重复步骤(3)、(4)直至0≤j σ,求得最优解为止。

2. 简述动态规划的基本方程。

答:对于n 阶段的动态规划问题,在求子过程上的最优指标函数时,k 子过程与k+1过程有如下递推关系:对于可加性指标函数,基本方程可以写为n k s f x s r s f k k k k k s D x k k opt k k k ,,2,1)}(),({)(11)( =+=++∈终端条件:f n+1 (s n+1) = 0对于可乘性指标函数,基本方程可以写为n k s f x s r s f k k k k k s D x k k opt k k k ,,2,1)}(),({)(11)( =⨯=++∈终端条件:f n+1 (s n+1) = 13. 简述破圈法求最小生成树的步骤。

运筹学试卷及答案

运筹学试卷及答案

……学院2009—2010学年第二学期09行政管理专业<<运筹学>>期末考试试卷(A)一、不定项选择题(每小题2分共20分)1、配送是一种先进的物资管理模式,其本质是()A、存储集中化B、存储分散化C、运输时间最短D、运送效率最低2、对系统因环境变化显示出来的敏感程度进行分析是()A、变化性分析B、灵敏度分析C、时间序列分析D、线性规划3、物流中心选址主要考虑的因素有()A、供货点到物流中心的费用B、物流中心到用户的费用C、各物流中心的容量限制D、物流中心的个数限制4、下面对AHP评价正确的是()A、本质上是一种思维方式B、是一种定性与定量相结合的的方法C、标度方法及一致性判断具有认知基础D、不是一种定性与定量相结合的的方法5、任意一个顾客的服务时间都是固定的常数B,此时服务时间的分布函数是()A、负指数分布B、正指数分布C、爱尔朗分布D、定长分布6、下列指标是评价一家图书馆的输出指标的是()A、书库面积B、工作人员数量C、图书借出数D、所在地人口7、单纯形算法的一个重要前提是()A、未知数个数不能超过3个B、线性规划问题必须是标准形式C、线性规划问题必须是非标准形式D、线性规划问题可以是标准形式或非标准形式8、运用分析中常用的数学方法有()A、线性规划B、动态规划C、最优控制D、非线性规划9、混沌的主要特征有()A、内随机性B、整体稳定性C、具有分形特征D、整体不稳定性10、运筹学的正确发展之路有()A、理念更新B、以实践为本C、学科交融D、以抽象的理论为主,主要用于高深的理论研究二、名词解释(每小题4分,共20分)1、运筹学2、线性规划3、经典型聚类4、系统的综合性原则5、TSP问题三、简答题(每小题7分,共28分)1、列出一些企业产品结构优化的柔性模型约束条件。

2、排队规则3、运筹学的特点。

4、神经元的功能四、应用题。

(第1题6分,第2题10分,第3题8分,第四题8分)1、货物从仓库送到销售点1、2、3、4、5。

《管理运筹学》考试试卷A,B卷及答案

《管理运筹学》考试试卷A,B卷及答案

《管理运筹学》考试试卷A,B卷及答案一、选择题(每题2分,共20分)1. 运筹学的英文全称是:A. Operation ResearchB. Operation ManagementC. Operational ResearchD. Operations Management2. 线性规划问题的标准形式中,目标函数是:A. 最大化B. 最小化C. 既可以是最大化也可以是最小化D. 无法确定3. 在线性规划中,约束条件可以用以下哪个符号表示?A. ≤B. ≥C. =D. A、B、C都对4. 简单线性规划问题中,如果一个变量在任何解中都不为零,则称这个变量为:A. 基变量B. 非基变量C. 独立变量D. 依赖变量5. 以下哪个方法可以用来求解线性规划问题?A. 单纯形法B. 拉格朗日乘数法C. 对偶理论D. A、B、C都可以二、填空题(每题3分,共15分)6. 在线性规划中,如果一个约束条件的形式为“≥”,则称这个约束为______约束。

7. 在线性规划问题中,若决策变量为非负整数,则该问题为______规划问题。

8. 在目标规划中,目标函数通常表示为______。

9. 在运输问题中,如果产地和销地的数量相等,则称为______。

10. 在排队论中,顾客到达的平均速率通常表示为______。

三、计算题(每题10分,共30分)11. 某工厂生产甲、乙两种产品,甲产品每件利润为200元,乙产品每件利润为150元。

工厂每月最多生产甲产品100件,乙产品150件。

同时,生产甲产品每件需要3小时,乙产品每件需要2小时,工厂每月最多可利用工时为300小时。

试建立该问题的线性规划模型,并求解。

12. 某公司有三个工厂生产同一种产品,分别供应给四个销售点。

各工厂的产量和各销售点的需求量如下表所示。

求最优的运输方案,并计算最小运输成本。

工厂\销售点 A B C D产量 20 30 50需求量 10 20 30 4013. 设某商店有三个售货员,负责四个收款台。

《管理运筹学》复习题及参考答案

《管理运筹学》复习题及参考答案

《管理运筹学》复习题及参考答案一、选择题1. 管理运筹学的研究对象是()A. 生产过程B. 管理活动C. 经济活动D. 运筹问题参考答案:D2. 以下哪个不属于管理运筹学的基本方法?()A. 线性规划B. 整数规划C. 非线性规划D. 人力资源规划参考答案:D3. 在线性规划中,约束条件是()A. 等式B. 不等式C. 方程组D. 矩阵参考答案:B4. 以下哪种方法不属于线性规划的对偶问题求解方法?()A. 单纯形法B. 对偶单纯形法C. 拉格朗日乘数法D. 牛顿法参考答案:D5. 在目标规划中,以下哪个不是目标约束的类型?()A. 等式约束B. 不等式约束C. 目标函数约束D. 线性约束参考答案:C二、填空题1. 管理运筹学的核心思想是______。

参考答案:最优化2. 在线性规划中,最优解存在的条件是______。

参考答案:可行性、有界性3. 整数规划的求解方法主要有______和______。

参考答案:分支定界法、动态规划法4. 在目标规划中,目标函数的求解方法有______、______和______。

参考答案:单纯形法、拉格朗日乘数法、动态规划法5. 非线性规划问题可以分为______、______和______。

参考答案:无约束非线性规划、约束非线性规划、非线性规划的对偶问题三、判断题1. 管理运筹学的研究对象是管理活动。

()参考答案:正确2. 在线性规划中,最优解一定存在。

()参考答案:错误3. 整数规划的求解方法比线性规划复杂。

()参考答案:正确4. 目标规划的求解方法与线性规划相同。

()参考答案:错误5. 非线性规划问题一定比线性规划问题复杂。

()参考答案:错误四、计算题1. 某工厂生产甲、乙两种产品,甲产品每件利润为10元,乙产品每件利润为8元。

生产甲产品每件需消耗2小时机器工作时间,3小时人工工作时间;生产乙产品每件需消耗1小时机器工作时间,2小时人工工作时间。

工厂每周最多可利用机器工作时间100小时,人工工作时间150小时。

大学_管理运筹学试题及答案

大学_管理运筹学试题及答案

管理运筹学试题及答案管理运筹学试题及答案(一)第一题(10分) 标准答案:设xij表示i时会见的j种家庭的人数目标函数:(2分)minZ=25x11+30x21+20x12+24x22 约束:(8分) x11+x21+x12+x22= x11+ x12=x21+ x22 x11+x21700 x12+x22450 xij0(i,j=1,2) 第二题(10分) 标准答案:a. 最优解:x1=4000;x2=10000;最小风险:6(2分)b. 年收入:6000元(2分)c. 第一个约束条件对偶价格:0.057;第二个约束条件对偶价格:-2.167;第三个约束条件对偶价格:0(2分) d. 不能判定(2分)e. 当右边值总投资额取值在780000—1500000之间时,不改变约束条件1的对偶价格;当右边值回报额取值在48000—10之间时,不改变约束条件2的对偶价格;当右边值B的投资额小于10000时,不改变约束条件3的对偶价格。

(2分) 第三题(10分) 标准答案:M为一足够大的数第四题(10分) 标准答案:设目标函数:(2分)maxZ=31x1+35x2+45x3+17x4+15x5+25x6+20x7+43x8+53x9+56x10 约束条件:(8分)110x1+130x2+160x3+90x4+80x5+100x6+90x7+150x8+170x9+190x10820x1+x2+x32 x4+x51 x6+x71 x8+x9+x102xi为0-1变量(i=1,2,…,10) 第五题(10分) 标准答案:阶段3(3分) 20(1分) 第六题(10分) 标准答案:a. 允许缺货的经济生产批量模型:D=台/年;d=台/年;p=6000台/年;C1=100元/年;C2=200元/年;C3=250元/年(3分)b. 允许缺货的经济订购批量模型:D=5000个/年;C1=4元/年; C2=1.6元/次;C3=120元/年(3分)c. 经济生产批量模型:D=250000台/年;p=600000台/年;d=250000台/年;C1=10.8元/年;C3=1350元/次(2分)d. 经济订购批量模型:D=60000件/年;C1=7元/年; C3=720元/次(2分) 第七题(10分) 标准答案:a. 多服务台泊松到达服务负指数分布模型M/M/3:C=3;=0.4人/分钟;=1/3人/分钟(1)p0+p1+p2;(2)Lq;(3)Ws(3分)b. 多服务台泊松到达服务负指数分布模型M/M/3:=30台/小时;=18台/小时(1)Ls;(2)Wq;(3)p2, p1(3分)c. 单服务台泊松到达服务时间任意模型:=2人/小时;=3人/小时(1)Ls;(2)1- p0;(3)1-(p0+p1+p2+ p3+p4)(4分)第八题(10分)标准答案:k=15;h=20;k/(k+h)=3/7;(3分)当Q=8时:;(4分)满足条件望最大。

管理运筹学试卷和答案1汇总

管理运筹学试卷和答案1汇总

《管理运筹学》考试试卷(A)一、( 20 分)下述线性规划问题Max z=-5x1+5x2+13x3ST-x1+x2+3x3 ≤ 20 ——①12x1+4x2+10x3 ≤ 90 ——②x1,x2,x3 ≥ 0先用单纯形法求出最优解,然后分析在下列条件下,最优解分别有什么变化?( 1 )约束条件①的右端常数由 20 变为 30 ;( 2 )约束条件②的右端常数由 90 变为 70 ;( 3 )目标函数中的 x3 的系数由 13 变为 8 ;( 4 )增加一个约束条件③2x1+3x2+5x3 ≤ 50( 5 )将原有约束条件②变为10x1+5x2+10x3 ≤ 100二、( 10 分)已知线性规划问题Max z= 2x1+x2+5x3+6x4 对偶变量2x1 +x3+x4 ≤ 8 y12x1+2x2+x3+2x4 ≤ 12 y2x1,x2,x3,x4 ≥ 0其对偶问题的最优解为 y1*=4 , y2*=1 ,试用对偶问题的性质,求原问题的最优解。

三、( 10 分)某地区有三个化肥厂,除供应外地区需要外,估计每年可供应本地区的数字为:化肥厂 A —— 7 万吨, B —— 8 万吨, C —— 3 万吨。

有四个产粮区需要该种化肥,需要量为:甲地区—— 6 万吨,乙地区—— 6 万吨,丙地区—— 3 万吨,丁地区—— 3 万吨。

已知从各化肥厂到各产粮区的每吨化肥的运价如下表所示(单位:元 / 吨):产粮区甲乙丙丁化肥厂A 5 8 7 3B 4 9 10 7C 8 4 2 9根据上述资料指定一个使总的运费最小的化肥调拨方案。

四、( 10 分)需要分配 5 人去做 5 项工作,每人做各项工作的能力评分见下表。

应如何分派,才能使总的得分最大?B1 B2 B3 B4 B5 A1 1.3 0.8 0 0 1.0 A2 0 1.2 1.3 1.3 0A3 1.0 0 0 1.2 0A4 0 1.05 0 0.2 1.4 A5 1.0 0.9 0.6 0 1.1五、( 10 分)用动态规划方法求解:Max F=4x 1 2 -x 2 2 +2x 3 2 +123x 1 +2x 2 +x 3 =9x1,x2,x3 ≥ 0六、( 10 分)公司决定使用 1000 万元开发 A 、 B 、 C 三种产品,。

管理运筹学

管理运筹学

山东大学 管理运筹学 课程试卷 试卷一一、名词解释1. 可行解:满足所有约束条件的解。

2. 指标函数:衡量全过程策略或k 子过程策略优劣的数量指标。

3. 支撑子图:图G=(V ,E)和),(E V G ''=,若V V '=且 E E ⊆',则称G`为G 的支撑子图。

4. 增广链:f 为一可行流,u 为v s 至v t 的链,令u+= 正向弧,u-= 反向弧 。

若u+中弧皆非饱,且u-中弧皆非零,则称u 为关于f 的一条增广链。

5 最优解 6非劣解二、 判断题1.可行解是满足约束方程和非负条件的解。

( ) 2 .线性规划问题的最优解如果存在一定是唯一的。

()3.状态变量满足无后效性是指系统从某阶段往后的发展,完全由本阶段所处的状态及其之后的决策决定,与系统以前的状态和决策无关。

( )4.决策树是一种由结点和分支构成的由左向右展开的树状图形。

( ) 三、选择题1. 判断线性规划模型是否有最优解主要是根据( )A.非基变量的检验数是否大于0B.基变量的检验数是否大于0C.非基变量的检验数是否小于等于0D.基变量的检验数是否小于等于0 2. 目标规划的目标函数的基本形式是( )A.minz= f(d+,d-)B.minz= f(d+)C.minz= f(d-)D.maxz= f(d+,d-) 3. 目标规划的解是( )A.非劣解B.最优解C.满意解D.可行解 4. 整数规划解的特点是( )A.最优解不一定在顶点上达到B.最优解不一定是松弛问题最优解的邻近整数解C.整数规划的最大函数值小于或等于相应的线性规划的最大目标函数值D.整数规划的最小目标函数值大于或等于相应的线性规划的最小目标函数值二、简答题1. 简述单纯形法的基本步骤; 答:(1)把一般线形规划模型转换成标准型;(2)确定初始基可行解;(3)利用检验数j σ对初始基可行解进行最优性检验,若0≤j σ ,则求得最优解,否则,进行基变换;(4)基变换找新的可行基,通过确定入基变量和出基变量,求得新的基本可行解;(5)重复步骤(3)、(4)直至0≤j σ,求得最优解为止。

运筹学试题及答案4套汇总

运筹学试题及答案4套汇总

《运筹学》试卷一一、(15分)用图解法求解下列线性规划问题二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、为松弛变量,试求表中到的值及各变量下标到的值。

-1311611 -2 002 -111/21/214 07三、(15分)用图解法求解矩阵对策,其中四、(20分)(1)某项工程由8个工序组成,各工序之间的关系为工序 a b c d e f g h —— a a b,c b,c,d b,c,d e 紧前工序试画出该工程的网络图。

(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键线路(箭线下的数字是完成该工序的所需时间,单位:天)五、(15分)已知线性规划问题其对偶问题最优解为,试根据对偶理论求原问题的最优解。

六、(15分)用动态规划法求解下面问题:七、(30分)已知线性规划问题用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。

2-11 02311311111610-3-1-2(1)目标函数变为;(2)约束条件右端项由变为;(3)增加一个新的约束:八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案销地甲乙丙丁产量产地A 4 12 4 11 16B 2 10 3 9 10C 8 5 11 6 22 需求量8 14 12 14 48《运筹学》试卷二一、(20分)已知线性规划问题:(a)写出其对偶问题;(b)用图解法求对偶问题的解;(c)利用(b)的结果及对偶性质求原问题的解。

二、(20分)已知运输表如下:销地B1B2B3B4供应量产地A1 3 2 7 6 50A2 7 5 2 3 60A3 2 5 4 5 25需求量60 40 20 15(1)用最小元素法确定初始调运方案;(2)确定最优运输方案及最低运费。

管理运筹学复习题以及答案

管理运筹学复习题以及答案

第一章运筹学概念一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。

2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。

3.模型是一件实际事物或现实情况的代表或抽象。

4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。

5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。

运筹学研究和解决问题的效果具有连续性。

6.运筹学用系统的观点研究功能之间的关系。

7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。

8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。

9.运筹学解决问题时首先要观察待决策问题所处的环境。

10.用运筹学分析与解决问题,是一个科学决策的过程。

11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。

12.运筹学中所使用的模型是数学模型。

用运筹学解决问题的核心是建立数学模型,并对模型求解。

13用运筹学解决问题时,要分析,定议待决策的问题。

14.运筹学的系统特征之一是用系统的观点研究功能关系。

15.数学模型中,“s·t”表示约束。

16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。

17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。

18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。

二、单选题1.建立数学模型时,考虑可以由决策者控制的因素是(A )A.销售数量B.销售价格C.顾客的需求D.竞争价格2.我们可以通过(C)来验证模型最优解。

A.观察B.应用C.实验D.调查3.建立运筹学模型的过程不包括(A )阶段。

A.观察环境B.数据分析C.模型设计D.模型实施4.建立模型的一个基本理由是去揭晓那些重要的或有关的(B )A数量B变量C约束条件D 目标函数5.模型中要求变量取值(D )A可正B可负C非正D非负6.运筹学研究和解决问题的效果具有(A )A连续性B整体性C 阶段性D再生性7.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。

管理运筹学试卷(2020)

管理运筹学试卷(2020)

《管理运筹学》课程考试试卷考生注意事项:1.本卷共 2 页,请查看试卷是否有缺页或破损。

如有请举手报告以便更换。

2. 考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。

一、不定项选择题(每题2分,共20分)1、配送是一种先进的物资管理模式,其本质是( )A 、存储集中化B 、存储分散化C 、运输时间最短D 、运送效率最低 2、对系统因环境变化显示出来的敏感程度进行分析是( )A 、变化性分析B 、灵敏度分析C 、时间序列分析D 、线性规划 3、物流中心选址主要考虑的因素有( )A 、供货点到物流中心的费用B 、物流中心到用户的费用C 、各物流中心的容量限制D 、物流中心的个数限制 4、下面对AHP 评价正确的是( )A 、本质上是一种思维方式B 、是一种定性与定量相结合的的方法C 、标度方法及一致性判断具有认知基础D 、不是一种定性与定量相结合的的方法 5、任意一个顾客的服务时间都是固定的常数B ,此时服务时间的分布函数是( )A 、负指数分布B 、正指数分布C 、爱尔朗分布D 、定长分布 6、下列指标是评价一家图书馆的输出指标的是( )A 、书库面积B 、工作人员数量C 、图书借出数D 、所在地人口 7、单纯形算法的一个重要前提是( )A 、未知数个数不能超过3个B 、线性规划问题必须是标准形式C 、线性规划问题必须是非标准形式D 、线性规划问题可以是标准形式或非标准形式 8、运用分析中常用的数学方法有( )A 、线性规划B 、动态规划C 、最优控制D 、非线性规划 9、混沌的主要特征有( )A 、内随机性B 、整体稳定性C 、具有分形特征D 、整体不稳定性10、运筹学的正确发展之路有( )A 、理念更新B 、以实践为本C 、学科交融D 、以抽象的理论为主,主要用于高深的理论研究二、名词解释(每题5分,共20分)1、运筹学2、线性规划3、经典型聚类4、系统的综合性原则三、简答题(每题5分,共15分)1、列出一些企业产品结构优化的柔性模型约束条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《管理运筹学》考试试卷(A)
一、( 20 分)下述线性规划问题
Max z=-5x1+5x2+13x3
ST
-x1+x2+3x3 ≤ 20 ——①
12x1+4x2+10x3 ≤ 90 ——②
x1,x2,x3 ≥ 0
先用单纯形法求出最优解,然后分析在下列条件下,最优解分别有什么变化?( 1 )约束条件①的右端常数由 20 变为 30 ;
( 2 )约束条件②的右端常数由 90 变为 70 ;
( 3 )目标函数中的 x3 的系数由 13 变为 8 ;
( 4 )增加一个约束条件③ 2x1+3x2+5x3 ≤ 50
( 5 )将原有约束条件②变为10x1+5x2+10x3 ≤ 100
二、( 10 分)已知线性规划问题
Max z= 2x1+x2+5x3+6x4 对偶变量
2x1 +x3+x4 ≤ 8 y1
2x1+2x2+x3+2x4 ≤ 12 y2
x1,x2,x3,x4 ≥ 0
其对偶问题的最优解为 y1*=4 , y2*=1 ,试用对偶问题的性质,求原问题的最优解。

三、( 10 分)某地区有三个化肥厂,除供应外地区需要外,估计每年可供应本地区的数字为:化肥厂 A —— 7 万吨, B —— 8 万吨, C —— 3 万吨。

有四个产粮区需要该种化肥,需要量为:甲地区——6 万吨,乙地区——6 万吨,
丙地区——3 万吨,丁地区——3 万吨。

已知从各化肥厂到各产粮区的每吨化肥的运价如下表所示(单位:元 / 吨):
根据上述资料指定一个使总的运费最小的化肥调拨方案。

四、( 10 分)需要分配 5 人去做 5 项工作,每人做各项工作的能力评分见下表。

应如何分派,才能使总的得分最大?
五、( 10 分)用动态规划方法求解:
Max F=4x 1 2 -x 2 2 +2x 3 2 +12
3x 1 +2x 2 +x 3 =9
x1,x2,x3 ≥ 0
六、( 10 分)公司决定使用 1000 万元开发 A 、 B 、 C 三种产品,。

经预测估计开发上述三种产品的投资利润率分别为 5% , 7% , 10% 。

由于新产品开发有一定风险,公司研究后确定了下列优先顺序目标:
第一, A 产品至少投资 300 万元;
第二,为分散投资风险,任何一种新产品的开发投资不超过投资总额的 35% ;
第三,应至少留有 10% 的投资总额,以备急用;
第四,使总的投资利润最大。

试建立投资分配方案的目标规划模型。

七、( 10 分)某店仅有一个修理工人,顾客到达过程为 Poisson 流,平均每小时 3 人,修理时间服从负指数分布,平均需 10 分钟。

求:( 1 )店内空闲的概率;( 2 )有 4 个顾客的概率;( 3 )店内顾客的平均数;( 4 )等待服务的顾客的平均数;( 5 )平均等待修理时间。

八、某商店准备在新年前订购一批挂历批发出售,已知每售出一批( 100 本)可获利 70 元,如果挂历在新年前不能售出,每 100 本损失 40 元。

根据以往销售经验,该商店售出挂历的数量如下表所示,如果该商店对挂历只能提出一次订货,问应定几百本,使期望的获利数为最大。

销售量(百本)0 1 2 3 4 5
概率0.05 0.10 0.25 0.35 0.15 0.10
九、( 10 分)某企业要投资一种新产品,投资方案有三个: S 1 、 S 2 、 S
3 ,不同经济形势下的利润如下表所示。

请用:
( 1 )悲观准则决策;
( 2 )后悔值法决策;
( 3 )乐观系数法(= 0.6 )进行决策。

投资方案
不同经济形势
好一般差
S 1 10 0 -1
S 2 25 10 5
S 3 50 0 -40
2.1《管理运筹学》考试试卷(A)参考答案1. 参考答案
目标函数最优值为: 100
x1=0 ,x2 = 20 ,x3= 0
(1)目标函数最优值: 117
x1=0, x2=0 ,x3=9
(2)目标函数最优值为: 90
x1 =0 ,x2 =5, x3 =5
(3)目标函数最优值为: 100
x1=0,x2=20 ,x3 = 0
(4)目标函数最优值为: 95
x1=0,x2=12.5,x3=2.5
(5)目标函数最优值为: 100
x1=0 ,x2=20 ,x3=0
2.参考答案
原问题的对偶问题是:
Min w=8 y1+12 y2
s.t. 2 y1+2 y2≥2 (1)
2 y2≥1 (2)
y1+ y2≥5 (3)
y1+ 2y2≥6 (4)
y1, y2≥0
将y1*=4,y2*=1代入对偶问题约束条件,可知(1)(2)为严格不等式,由互补松驰条件知,x1*=0,x2*=0,由,可知原问题约束为等式,所以x3*=4,x4*=4。

(注:原问题有多重解)
3.参考答案
最优解如下:
起至销点
发点 1 2 3 4
-------- ----- ----- ----- -----
1 0 4 0 3
2 6 2 0 0
3 0 0 3 0
此运输问题的成本为: 89
4.参考答案
6.100000
5.参考答案:
MAXF=174
X1=0.000000
X2=0.000000
X3=9.000000
6.参考答案
设公司投资A产品X1万元,投资B产品X2万元,投资C产品X3万元,则目标规划模型为:Min P1d1-+ P2 (d2++ d3++ d4+)+ P3 d5- +P4 d6-
s.t. X1+d1- - d1+=300
X1+d2- - d2+=1000*35%
X2+d3- - d3+=1000*35%
X3+d4- - d4+=1000*35%
X1+X2+X3+d5- - d5+=1000*10%
5%X1+7%X2+10%X3+d6- - d6+=1000*10%
7.参考答案
店内空闲的概率:0 .5
有4个顾客的概率:0.0313
店内顾客的平均数:1
等待服务的顾客平均数:0.5
平均等待修理时间:0.1667
8.参考答案
k=70,h=40,k/(k+h)=0.63636,Q=3,即:应定购300本挂历,逾期利润144元。

9.参考答案
(使用悲观准则)
策略方案准则值推荐策略
********** ******** **********
1 -1
2 5 YES
3 -40
(使用后悔值准则)
策略方案准则值推荐策略
********** ******** **********
1 40
2 25 YES
3 45
(使用乐观系数准则)
E(S1)=5.6;E(S2)=17(max);E(S3)=14;选择方案S2。

相关文档
最新文档