高频电子线路:第4章

合集下载

高频电子线路-第4章--习题答案

高频电子线路-第4章--习题答案

第4章 正弦波振荡器4.1 分析图P4.1所示电路,标明次级数圈的同名端,使之满足相位平衡条件,并求出振荡频率。

[解] (a) 同名端标于二次侧线圈的下端601260.87710Hz 0.877MHz 2π2π3301010010f LC--===⨯=⨯⨯⨯(b) 同名端标于二次侧线的圈下端606120.77710Hz 0.777MHz 2π1401030010f --==⨯=⨯⨯⨯(c) 同名端标于二次侧线圈的下端606120.47610Hz 0.476MHz 2π5601020010f --==⨯=⨯⨯⨯4.2 变压器耦合LC 振荡电路如图P4.2所示,已知360pF C =,280μH L =、50Q =、20μH M =,晶体管的fe 0ϕ=、5oe 210S G -=⨯,略去放大电路输入导纳的影响,试画出振荡器起振时开环小信号等效电路,计算振荡频率,并验证振荡器是否满足振幅起振条件。

[解] 作出振荡器起振时开环Y 参数等效电路如图P4.2(s)所示。

略去晶体管的寄生电容,振荡频率等于0612Hz =0.5MHz 2π2π2801036010f LC--==⨯⨯⨯略去放大电路输入导纳的影响,谐振回路的等效电导为5661121042.7μS 502π0.51028010e oe oe o G G G G S S Q Lρω--=+=+=⨯+=⨯⨯⨯⨯⨯由于三极管的静态工作点电流EQ I 为12100.712330.6mA 3.3k EQV I ⨯⎛⎫-⎪+⎝⎭==Ω所以,三极管的正向传输导纳等于/0.6/260.023S fe m EQ T Y g I U mA mV ≈===因此,放大器的谐振电压增益为o muo eiU g A G U -==而反馈系数为f oU j M M F j L LU ωω-=≈=-这样可求得振荡电路环路增益值为60.023203842.710280meg M T A F G L -====⨯ 由于T >1,故该振荡电路满足振幅起振条件。

高频电子线路第4章1-7节201310

高频电子线路第4章1-7节201310

Cb c
b'
rb' c
c
rce
Cb' c Cb' e gmVb' e
Cce
c
13
4.2.3 混合π等效电路参数与形式等效电路y 参数的转换
Cb c
根据π等效电路, 写出节点电流方程。
b
rb b '
r b' e Cb e
b +
V1 I1
-
c +
I2 V2
e
I1
+
V1 yi
-
b'
rb' c
c
rce
Cb' c Cb' e gmVb' e

I1
I2
yr

I1 V2
输入短路反向传输导纳
V1 0
+
V1
yi
yr V2
+ yo V2
yf

I2 V1
V2
输出短路正向传输导纳
0
-
yf V1 图4.2.2 y 参数等效电路
-
c
+
yo

I2 V2
输入短路时输出导纳
V1 0
b +
V1 I1
I2 V2
-
-8
e
图4.2.3是晶体管 放大器的基本电路。
17
图4.3.1为单调谐回路
谐振放大器原理性电路与
等效电路,图中为了突出
输入
+
所要讨论的中心问题,故 信号 Vi1
-
略去实际电路中的附属电
路等。
晶体管
a

高频电子线路课件第四章ppt课件

高频电子线路课件第四章ppt课件
相对较低 可到达甚高频段
运用较少
4.3.3 LC三端式振荡器相位平衡条件的判别准那么
C
1、XCE与XBE的电抗性质一样;
X1
2、XBC与XCE、XBE的电抗性质相反;
3、对于振荡频率fo,应满足:
E
X3
XCE+XBE+XBC=0
X2 B
集基一样余相反
C
C1
E
L
C2
B
考毕兹电路
C
L1
E
C
L2
B
哈脱莱电路
gn
1 rn
uD
适用中,隧道二极管具有电压控制型负阻器件特性; 单结晶体管、雪崩管具有电流控制型负阻器件特性。
iD
iD
Q
IQ
Im
uUmcost
0
UQ
uD0
t
0
设将负阻特性直线化,并在任务点
电压UQ上叠加一正弦电压u
Um
iurnUm crnotsImcots
t
u D U Q u U Q U m cot s
0.01uF
200pF 100pF C3 C4
C2 200pF
L 8uH
C55.1pF
C1 51pF
4.5 石英晶体振荡器
频率稳定度可到达10-6~10-11。 石英晶体振荡器的优点: 石英晶体的等效谐振回路有很高的规范性; 石英晶体的Q值可高达数百万量级; 在串并联谐振频率之间很窄的任务频带内,
4.3.1 电感反响式三端振荡器〔哈脱莱电路〕
一、电路方式
C
B E
C E
B
二、交流等效电路
三、起振条件 四、振荡频率
hfe L1M 1 hiehoe L2 M hfe

高频电子线路(第四版) 第4章

高频电子线路(第四版) 第4章

准线性折线分析法的条件如下: (1) 忽略晶体管的高频效应。在此条件下,可以认为功 率晶体管在工作频率下只显示非线性电阻特性,而不显示电 抗效应。因此,可以近似认为,功率晶体管的静态伏安特性
(2) 输入和输出回路具有理想滤波特性。在此条件下, 在 图4.1所示电路中,基极-发射极间电压和集电极-发射极之间 电压仍是余弦波形且相位相反,可写为:
4.2 谐振功率放大器
4.2.1
1. 谐振功率放大器的原理电路如图4.1
图4.1 谐振功率放大器的原理电路
图4.1中要求晶体管发射结为零偏置或负偏置。这时电路 在输入余弦信号电压ub= Ubmcosωt的激励下,晶体管基极和 集电极电流为图4.2(c)、(d)所示的余弦脉冲波形,其中θ是指 一个信号周期内集电极电流导通角2θ的一半,称之为通角, θ出现范围在-2nπ-θ≤θ≤θ+2nπ。根据通角大小的不同,晶体管
θ = arccos Uon U BB U bm
uBE=UBB+Ubmcosωt
(4- 2)
uCE=UCC-Ucmcosωt
(4- 3)
(3) 晶体管的静态伏安特性可近似用折线表示。例如图
4.3所示的晶体管转移特性就采用了折线表示。图中Uon表示 晶体管的起始导通电压。
图4.3 晶体管折线化后的转移特性曲线及iC电流
1) 余弦脉冲分解 图4.3所示是用晶体管折线化后的转移特性曲线绘出的丙 类工作状态下的集电极电流脉冲波形,折线的斜率用G表示。 设输入信号为ub=Ubmcosωt,发射结电压为 uBE=UBB+Ubmcosωt, 晶体管折线化后的转移特性为
① 输出足够的功率; ② 具有高效率的功率转换; ③
高频功率放大器的输出功率是从电源供给功率中转换而 来的,所以在满足功率输出要求的同时,必须注意提高功率 的转换效率。为了提高功率放大器的效率,通常选择放大元 件工作在丙类状态。在这种状态下,晶体管处于非线性工作 区域,晶体管集电极电流通角小于90°。

高频电子线路正弦波振荡器.ppt

高频电子线路正弦波振荡器.ppt

单调谐放大器
高频电子线路——第4章 正弦波振荡器
3.相位(频率)稳定条件
相位稳定条件和频率稳定条件实质上是一回事
正弦信号相位φ和频率ω的关系:
d
dt
dt
振荡器的角频率 增大导致相位不断超前 相位 的不断超前表明角频率 增大
高频电子线路——第4章 正弦波振荡器
(1)相位(频率)稳定过程
原平衡态: L (0 ) f F 0
4.1.2 起振条件
1.起振过程分析
单调谐放大器
刚通电:电路中存在很宽的频谱的电的扰动,幅值很小
通电后:
1)谐振回路的选频功能,从扰动中选出 osc 分量(osc 0)
2)放大器工作在线性放大区, |T (josc)|>1 ,形成增幅振荡
3)忽略晶体管内部相移: f =0
回路谐振: L=0
T (josc) =0,相移为零
起振 过程
平衡 状态
起振 过程
平衡 状态
输出波形:
高频电子线路——第4章 正弦波振荡器
4.1.4 稳定条件
1.平衡状态稳定分析:
(1)振荡电路中存在干扰
单调谐放大器
① 外部:电源电压、温度、湿度的变化,引起管子和回 路参数的变化。
② 内部:存在固有噪声(起振时的原始输入电压,进入平 衡后与输入电压叠加引起波动)。
单调谐放大器
外界干扰后: L (0 ) f F 0
Ub 相位超前 Ub 相位
升高
振荡回路相频特性 L 下降
L () f F 下降
L () f F 0
达到新的平衡 > 0
外界干扰消失后: L () f F 0
Ub 相位滞后 Ub 相位
降低

高频电子线路四章胡宴如 耿苏燕 高等教育出版社

高频电子线路四章胡宴如 耿苏燕 高等教育出版社

11第4章 正弦波振荡器4.1 分析图P4.1所示电路,标明次级数圈的同名端,使之满足相位平衡条件,并求出振荡频率。

[解] (a) 同名端标于二次侧线圈的下端600.87710Hz 0.877MHz f ===⨯=(b) 同名端标于二次侧线的圈下端600.77710Hz 0.777MHz f ==⨯=(c) 同名端标于二次侧线圈的下端600.47610Hz 0.476MHz f ==⨯=4.2 变压器耦合LC 振荡电路如图P4.2所示,已知360pF C =,280μH L =、50Q =、20μH M =,晶体管的fe 0ϕ=、5oe 210S G -=⨯,略去放大电路输入导纳的影响,试画出振荡器起振时开环小信号等效电路,计算振荡频率,并验证振荡器是否满足振幅起振条件。

[解] 作出振荡器起振时开环Y 参数等效电路如图P4.2(s)所示。

12 略去晶体管的寄生电容,振荡频率等于0Hz =0.5MHz f ==略去放大电路输入导纳的影响,谐振回路的等效电导为5661121042.7μS 502π0.51028010e oe oe o G G G G S S Q L ρω--=+=+=⨯+=⨯⨯⨯⨯⨯由于三极管的静态工作点电流EQ I 为12100.712330.6mA 3.3k EQV I ⨯⎛⎫-⎪+⎝⎭==Ω所以,三极管的正向传输导纳等于/0.6/260.023S fe m EQ T Y g I U mA mV ≈===因此,放大器的谐振电压增益为o muo eiU g A G U -== 而反馈系数为f oU j M M F j L LU ωω-=≈=-这样可求得振荡电路环路增益值为60.023203842.710280megM T A F G L -====⨯ 由于T >1,故该振荡电路满足振幅起振条件。

4.3 试检查图P4.3所示振荡电路,指出图中错误,并加以改正。

[解] (a) 图中有如下错误:发射极直流被f L 短路,变压器同各端标的不正确,构成负反馈。

高频电子线路最新版课后习题解答第四章 高频功率放大器习题解答

高频电子线路最新版课后习题解答第四章    高频功率放大器习题解答

思考题与习题4.1 按照电流导通角θ来分类,θ=180度的高频功率放大器称为甲类功放,θ>90度的高频功放称为甲乙类功放,θ=90度的高频功率放大器称为乙类功放,θ<90度的高频功放称为丙类功放。

4.2 高频功率放大器一般采用LC谐振回路作为负载,属丙类功率放大器。

其电流导通角θ<90度。

兼顾效率和输出功率,高频功放的最佳导通角θ= 60~70 。

高频功率放大器的两个重要性能指标为电源电压提供的直流功率、交流输出功率。

4.3 高频功率放大器通常工作于丙类状态,因此晶体管为非线性器件,常用图解法进行分析,常用的曲线除晶体管输入特性曲线,还有输出特性曲线和转移特性曲线。

4.4 若高频功率放大器的输入电压为余弦波信号,则功率三极管的集电极、基极、发射极电流均是余弦信号脉冲,放大器输出电压为余弦波信号形式的信号。

4.5 高频功放的动态特性曲线是斜率为1-的一条曲线。

R∑υ对应的静态特性曲线的交点位于放大区就4.6对高频功放而言,如果动态特性曲线和BEmaxυ称为欠压工作状态;交点位于饱和区就称为过压工作状态;动态特性曲线、BEmax 对应的静态特性曲线及临界饱和线交于一点就称为临界工作状态。

V由大到小变化时,4.7在保持其它参数不变的情况下,高频功率放大器的基级电源电压BB功放的工作状态由欠压状态到临界状态到过压状态变化。

高频功放的集电极V(其他参数不变)由小到大变化时,功放的工作状态由过压状态到电源电压CCV(其它参数不变)由小临界状态到欠压状态变化。

高频功放的输入信号幅度bm到大变化,功放的工作状态由欠压状态到临界状态到过压状态变化。

4.8 丙类功放在欠压工作状态相当于一个恒流源;而在过压工作状态相当于一个恒压源。

集电极调幅电路的高频功放应工作在过压工作状态,而基级调幅电路的高频功放应工作在欠压工作状态。

发射机末级通常是高频功放,此功放工作在临界工作状态。

4.9 高频功率放大器在过压工作状态时输出功率最大,在弱过压工作状态时效率最高。

高频电子线路第四章课后习题答案

高频电子线路第四章课后习题答案

高频电子线路习题参考答案
当LC串联支路的电容取68pF时,在回路电抗为0时振荡,即:
1 50106
1 1 681012
1 109
1 1
1 47106
1 1 109
0
整理后得到:
1598103114 53.732101512 1.068 0
12 53.7321015
53.7322 1030 41.06815981031 31961031
3
高频电子线路习题参考答案
答4-2
(a) 可能振荡,电感三点式反馈振荡器,
(b) 不能,
(c) 不能,
(d) 不能,
(e) 可能振荡,振荡的条件是L1C1回路呈容性,L2C2回路呈感 性,即要求f01<f<f02,这时是一个电感反馈振荡器,
(f) 可能振荡,振荡的条件是LC3支路呈感性,即要求f03<f,这 时是一个电容反馈振荡器
题4-5图
解4-5, 画出的实际电路如下
• •


••
高频电子线路第四章课后习题答案
9
高频电子线路习题参考答案
4-6 振荡器交流等效电路如图所示,工作频室为10 MHZ, (1)计算C1、C2取值范围。(2)画出实际电路。
解4-6
(1)因 为
Beb
2f
1011
2f
1 105
题4-6图
(2f )2 1016 2f 105
f0 2 m a x= 2 5 0 1 0 - 1 6 6 8 1 0 1 2 2 .7 3 1 M H z
因 此 , 要 电 路 振 荡 , 振 高荡 频电频 子率 线路应 第四该 章满 课后足 习题f 1 答m 案a x f 0 2 m a x , f 1 m i n f 0 2 m 21i n

高频电子线路作业及答案(胡宴如 狄苏燕版)四章

高频电子线路作业及答案(胡宴如 狄苏燕版)四章

第4章 正弦波振荡器4.1 分析下图P4.1所示电路,标明次级数圈的同名端,使之满足相位平衡条件,并求出振荡频率。

[解] (a) 同名端标于二次侧线圈的下端600.87710Hz 0.877MHzf ===⨯=(b) 同名端标于二次侧线的圈下端600.77710Hz 0.777MHzf ==⨯=(c) 同名端标于二次侧线圈的下端600.47610Hz 0.476MHzf ==⨯=4.2 变压器耦合振荡电路如图P4.2所示,已知,、、LC 360pF C =280μH L =50Q =,晶体管的、,略去放大电路输入导纳的影响,试画出振荡20μH M =fe 0ϕ=5oe 210S G -=⨯器起振时开环小信号等效电路,计算振荡频率,并验证振荡器是否满足振幅起振条件。

[解] 作出振荡器起振时开环参数等效电路如图P4.2(s)所示。

Yhe b e12略去晶体管的寄生电容,振荡频率等于0Hz =0.5MHzf ==略去放大电路输入导纳的影响,谐振回路的等效电导为5661121042.7μS502π0.51028010e oe oe o G G G G S S Q L ρω--=+=+=⨯+=⨯⨯⨯⨯⨯由于三极管的静态工作点电流为EQ I 12100.712330.6mA 3.3k EQV I ⨯⎛⎫-⎪+⎝⎭==Ω所以,三极管的正向传输导纳等于/0.6/260.023Sfe m EQ T Y g I U mA mV ≈===因此,放大器的谐振电压增益为omuo eiU g A G U -==而反馈系数为f oU j M MF j L LU ωω-=≈=-这样可求得振荡电路环路增益值为60.023203842.710280m e g M T A F G L -====⨯???由于>1,故该振荡电路满足振幅起振条件。

T 4.3 试检查图P4.3所示振荡电路,指出图中错误,并加以改正。

[解] (a) 图中有如下错误:发射极直流被短路,变压器同各端标的不正确,构成负反f L 馈。

高频电子线路4

高频电子线路4

–VBB
理想化
+c
o VBZ
eb
o
–c
vc
t +c o –c
Vbm
然是脉冲状,但由于谐振回路的
Vbm
t
这种滤波作用,仍然能得到正弦 谐振功率放大器转移特性曲线 波形的输出。
谐振功率放大器各部分的电压与电 流的波形图如下页的图所示
eb vb
ib
ic
V BZ t
–VBB t
t ec
V cm
V cm
V CC
功率、效率等随Rp而变 化的特性,就叫做放大
器的负载特性。
t 0 180°
半导通角
<90°
BA
eb=eb max
1
2
C3
Rp 负载增大
D
VCC
Q
Vcm
1.欠压状态
ec min
Vcm
2.临界状态
Vcm
电压、电流随负载变化波形
3.过压状态
1) vc、ic随负载变化的波形vc、ic随负载变化的波形如图所 示,放大器的输入电压是一定的,其最大值为Vbemax,在 负载电阻RP由小至大变化时,负载线的斜率由小变大, 如图中123。不同的负载,放大器的工作状态是不同 的,所得的ic波形、输出交流电压幅值、功率、效率也是 不一样的。
消去cost可得, eb=
–VBB+Vbm
VCC Vcm
ec
另一方面,晶体管的折线化方程为 ic = gc(eb–VBZ)
得出在ic–ec坐标平面上的动态特性曲线(负载线或工作路) 方程: icgcV BB V bm (V C V cC m ec)V BZ
gc V V b cm m ecV bV m C CV B V b V Z c m m V BV B cm

第4章《高频电子线路》_(曾兴雯)_版高等教育出版社课后答案

第4章《高频电子线路》_(曾兴雯)_版高等教育出版社课后答案
4
第4章 正弦波振荡器
第一节
反馈振荡器的原理

一、反馈振荡器的原理分析
组成: (1)放大器
放大器通常是以某种选频网络(如振荡回路)作负载, 是调谐放大器。
(2)反馈网络 一般是由无源器件组成的线性网络。 正反馈: U’i(s)与Ui(s)相位相同。
5
第4章 正弦波振荡器
一、反馈振荡器的原理分析
Ui (s) Us (s) Ui(s)
若 Uo Uc
jL Uc ZL R L e 放大器的负载阻抗 所以 Ic T(j) Yf (j)ZLF(j) Yf ( j)ZL F( j) 1
9
U Uc Uo Ic c 又 K( j) Yf (j)ZL I Ui Ub c Ub 因为 jf Ic Yf ( j) Yf e 晶体管的正向转移导纳 Ub
振幅条件的图解表示
U0 U02 U01 Ub1 Ub2 Ub3 Ub
振荡开始时应为增幅振荡!
12
第4章 正弦波振荡器
四、稳定条件 1、振幅稳定条件
T U i
K U i
0
Ui UiA
0
U i U iA
U’i UiA U’’i
因此,振荡器由增幅振荡过渡到稳幅振荡,是由放
大器的非线性完成的。由于放大器的非线性,振幅稳定 条件很容易满足。
②相位平衡条件,即正反馈条件
U b jX 2 I
U c jX 1 I
X1、X2为同性质电抗元件
判断三端式振荡器能否振荡的原则:
“射同余异”
或 “源同余异”
18
第4章 正弦波振荡器
一、振荡器的组成原则

高频电子线路4章17节201310精品文档

高频电子线路4章17节201310精品文档

Av

-
p1 p 2 y fe Y
-
p1 p 2 y fe
G p

j( C

1) L1
Y
A vop1G p2pyfeGpp 1g po 21y fegi2
+ Vo

G′ p
L1
-
为了获取最大功率增益,应适当地选取p1和p2的值,使负 载导纳YL能与晶体管电路的输出导纳相匹配。匹配条件是:
C
Gp L1 C′i2 g′i2
+ Vo
-
-
yo1 p12yoe
YL p12YL
Y

G′ p
L1
p 1 N N 1 p 2 N N 2G p G p g o 1 g i2C C C o 1 C i 2
Yp1 2(yoeYL )
A v V V oi11
yfe yoeYL
p12yfe Y
20
晶体管
a
+
N
负载YL
Io1 yfeVi1
+ Vo1
1 go1 Co1 Y′L Vo C Gp
N1
-
-
L1
+
N2 Vi2 L2 -
Ci2 gi2
2
b
从上图可知,本级的实际电压增益是:
Av V Vii12
(N NV12i)1Vo1
N1
-
-
L1
+
N2 Vi2 L2 -
2
b
(b) 等效电路
Ci2 gi2
图4.3.1 单调谐回路谐振放大器的原理性电路与等效电路
18
4.3.1 电压增益Av
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章
1、在模拟乘法器上接入调制信号VΩm cosΩt和载波信号V cm cosωc t后将产生(A)
A)ω
c ±Ω B)2ω
c
±Ω C)2ω
c
D)频谱分量
2、利用非线性器件相乘作用来实现频率变换其有用项为( B )
A.一次方项 B。

二次方项 C.高次方项 D.全部项
3.某超外差接收机的中频f
I
=465kHz,输入信号载频fc=810kHz,则本振信号频率为( C )
A.2085kHz B.1740kHz C.1275kHz D.1075kHz 4.混频电路又称变频电路,在变频过程中以下正确叙述是( C )A.信号的频谱结构改变 B.信号的调制类型改变 C.信号的载频改变5.以下几种混频器电路中,输出信号频谱最纯净的是( C )
A.二极管混频器 B.三极管混频器 C.模拟乘法器混频器
6、混频器的作用是改变调幅波的载波频率为固定中频。

(√)
7、模拟乘法器是非线性器件,因此不能实现频谱的线性搬移。

(×)
8、超外差接收机中,中频频率为465KHZ,当接收信号载频为 535kHz 时,本振频率为1000KHz。

9、非线性系统的主要特点是输出信号中除包含输入信号频率外,还会产生(新的频率成分)。

10.振幅调制与解调、混频、频率调制与解调等电路是通信系统的基本组成电路。

它们的共同特点是将输入信号进行频率变换,以获得具有所需新频率分量的输出信号,因此,这些电路都属于频谱搬移电路。

11.混频器按所用非线性器件的不同,可分为二极管混频器、三极管混频器和场效应管混频器等。

12、某非线性器件的伏安特性为i=a1u+a3u3。

试问该器件能否实现相乘作用?答:不能实现相乘作用,因为伏安表达式中没有二次方项。

13. 高频已调波信号和本机振荡信号经过混频后,信号中包含哪些成分?如何取出需要的成分?
答:高频已调波信号和本机振荡信号经过混频后,信号中包含直流分量、基波分量、谐波、和频、差频分量,通过LC并联谐振回路这一带通滤波器取出差频分量,完成混频。

相关文档
最新文档