NUF8152MUT2G;SZNUF8152MUT2G;中文规格书,Datasheet资料

合集下载

MEMORY存储芯片N25Q128A11EF840F中文规格书

MEMORY存储芯片N25Q128A11EF840F中文规格书

Figure 62: PROGRAM/ERASE Issued to Locked BlockR/B#I/OxtLocked blockREAD STATUSBLOCK LOCK READ STATUS (7Ah)The BLOCK LOCK READ STATUS (7Ah) command is used to determine the protection status of individual blocks. The address cycles have the same format, as shown below,and the invert area bit should be set LOW. On the falling edge of RE# the I/O pins output the block lock status register, which contains the information on the protection status of the block.Table 20: Block Lock Status Register Bit DefinitionsFigure 63: BLOCK LOCK READ STATUSBLOCK LOCK READ STATUSBlock addressCLECE#WE#ALERE#I/OxFigure 66: OTP DATA PROGRAM Operation with RANDOM DATA INPUT (After Entering OTP Opera-tion Mode)WE#CE#ALECLE RE#R/B#I/OxOTP DATA PROTECT (80h-10)The OTP DATA PROTECT (80h-10h) command is used to prevent further programming of the pages in the OTP area. To protect the OTP area, the target must be in OTP opera-tion mode.To protect all data in the OTP area, issue the 80h command. Issue n address cycles in-cluding the column address, OTP protect page address and block address; the column and block addresses are fixed to 0. Next, write 00h data for the first byte location and issue the 10h command. R/B# goes LOW for the duration of the array programming time, t PROG.After the data is protected, it cannot be programmed further. When the OTP area is pro-tected, the pages within the area are no longer programmable and cannot be unprotec-ted.The READ STATUS (70h) command is the only valid command for reading status in OTP operation mode. The RDY bit of the status register will reflect the state of R/B#. Use of the READ STATUS ENHANCED (78h) command is prohibited.When the target is ready, read the FAIL bit of the status register to determine if the oper-ation passed or failed.If the OTP DATA PROTECT (80h-10h) command is issued after the OTP area has already been protected, R/B# goes LOW for t OBSY. After t OBSY, the status register is set to 60h.4Gb, 8Gb, 16Gb: x8, x16 NAND Flash Memory One-Time Programmable (OTP) OperationsTwo-Plane OperationsEach NAND Flash logical unit (LUN) is divided into multiple physical planes. Eachplane contains a cache register and a data register independent of the other planes. Theplanes are addressed via the low-order block address bits. Specific details are providedin Device and Array Organization.Two-plane operations make better use of the NAND Flash arrays on these physicalplanes by performing concurrent READ, PROGRAM, or ERASE operations on multipleplanes, significantly improving system performance. Two-plane operations must be ofthe same type across the planes; for example, it is not possible to perform a PROGRAMoperation on one plane with an ERASE operation on another.When issuing two-plane program or erase operations, use the READ STATUS (70h)command and check whether the previous operation(s) failed. If the READ STATUS(70h) command indicates that an error occurred (FAIL = 1 and/or FAILC = 1), use theREAD STATUS ENHANCED (78h) command to determine which plane operation failed.Figure 70: TWO-PLANE PAGE READWE#ALERE#I/OxR/B#Notes: 1.Column and page addresses must be the same.2.The least significant block address bit, BA6, must be different for the first- and second-plane addresses.Figure 71: TWO-PLANE PAGE READ with RANDOM DATA READR/B# RE# I/OxR/B# RE# I/Ox1 1Figure 72: TWO-PLANE PROGRAM PAGER/B#I/Ox1st-plane address2nd-plane address。

MS8152维修手册

MS8152维修手册

MS8152維修手冊For MS8152 CD_ROM(MSI 光電產品部)version :1.0撰寫人員:KenHsieh日期:2002.4.11[ 電控組件 ]CDROM Chip (RFIC DSP DECODER MPU) MT1199ERead Only Memory (Flash ROM) W29C011AP Cache Buffer RAM (64Kx8bits) M10B11664A-35J 4-ch Power Driver BA5954FP Spindle Motor Driver BA6849FMAudio amp APA2308 POWER REGION DC 12V 5V 3.3VMT1199EW29C011APM10B11664A-35J BA5954FPBA6849FMAPA2308一、 C DROM Chip (DSP DECODER MPU)MT1199E CDROM Chip內涵主要四個區塊電路, 分別為RFIC、DSP、DECODER及MPU四大區塊電路.1. RFIC:主要用途是將PUH近來的訊號做前置的處理, 再將訊號送至DSP區域2. DSP:用途主要有兩個, 一是將RF訊號做解碼的處理, 另一則是伺服控制訊號的電路.3. DECODER:他的腳色是扮演與外部系統的一個溝通管道,也就接收PC端的命令及通知PC端目前CDROM狀態, 另一個就是CDROM與PC資料進出的管道.4. MPU:內含的MPU屬於8032-40ns的MPU, 再CDROM裡面是一個負責協調電路, 協調DSP DECODER及一些控制開關.二、 f lash PROM (BIOS)使用的零件:Winbond W29C011AP主要是存放CD-ROM韌體的地方, 一般稱他為CD-ROM BIOS, 內部所存放的為控制CD-ROM伺服介面及所有相關的程式, 因為我們所使用的MCU為8032, 所以此BIOS內所存的為8032 System程式. 一般我們會更據一些客戶的需求做一些控制上的修改, 就是修改BIOS內的程式. BIOS是屬於控管部份, 請注意BIOS版本及Checksum是否正確.三、Memory Buffer (DRAM 64 x 8 mbits)使用的零件:M10J118664A-35J光碟片讀取出的訊號經過DSP資料處理解碼出來的數位訊號, 存放在此電路中, 當外界PC向Decoder讀取資料時,Decoder會從此電路將資料讀入在送給PC端.也就是說碟片的資料讀出之後是先放入RAM中, 再由RAM中讀取出.四、4-ch Power Driver使用的零件:ROHM BA5954FPPower Driver主要控制CD-ROM上2組線圈及2組Motor, 所以一般又稱為4-channel Driver IC,四組線圈分別為Foucs 、Track、Sled Motor及Tray In/Out Motor.1. Foucs 線圈是在光學讀取頭上一組控制Lens垂直移動方向的線圈. 主要是能夠控制此Foucs線圈, 將雷射光束很精確的打在光碟片的反射層上.2. Track線圈是在光學讀取頭上一組控制Lens水平移動方向的線圈. 主要是能夠控制此Track線圈, 將雷射光束很精確的鎖在光碟片上記錄軌道上.3. Sled Motor主要是移動光學讀取頭在光碟片有效儲存資料的範圍上移動. 另外在做資料大距離循軌的動作Seek時, 此時就會驅動Sled Motor來帶動整個Sled System, 使光學頭大距離水平移動.4. Tray In/Out Motor 主要是傳動承載光碟片Tray 盤做進出動作.五、Spindle Motor Driver使用的零件:BA6849FM此Driver IC最主要是控制CD-ROM主馬達的定速轉動、加速及減速的功能, 以目前MS8152 52x CD-ROM來說, 在讀一般資料碟片時, DSP伺服控制電路會控制此IC會將主馬達加速到10400rpm轉速, 此電路為CD-ROM中最消耗功率的部分.六、Audio AMP使用的零件:APA2308CD-ROM讀取Audio Disc ( 音樂 CD ), DSP會將RF訊號解碼後送至Audio IC, 此IC會將訊號做放大在送至PhoneJack, 將耳機或喇叭插入 PhoneJack 就可以聽到音樂. 但是一般給PC音效卡的訊號視同一組訊號, 但是它並不會透過Audio IC做放大的處理.七、POWER REGION (DC 12V、5V、3.3V)以DESTOP CDROM主要電源來自PC端POWER CORE, 以12V及5V為主, 因MT1199E大部份線路使用3.3V系統, 所以我們在利用Regulator元件做降壓, 將5V轉成3.3V, 以目前MS8152就使用DC 12V、5V、3.3V三個電源系統.6[ 步驟四 ][ 步驟五 ][ 注意事項 ]◎維修站設施及人員請做好ESD防護措施, 以免對PCBA或LOADER PUH造成毀壞.◎維修站維修人員需準備一片好的PCBA及一台正常LOADER, 如遇到光碟機可以正常工作, 但在Performance無法達到的狀況下, 可以用交叉方式驗證, 採步驟七方法, 以便過濾PCBA、LOADER及相容性的問題。

ISP815中文资料

ISP815中文资料

CE(SAT)
(V)
Collector-emitter saturation voltage V
IF = 20mA IC = 5mA
IF = 1mA VCE = 2V
1.0
0.5
0 -30 0 25 50 75 Ambient temperature TA ( °C ) 100
DB92414-AAS/A3
50mA 1.5
5mA
200
(V)
Collector-emitter Saturation Voltage vs. Forward Current
Collector-emitter saturation voltage V
150
100
50
0 -30 0 25 50 75 100 125 Ambient temperature TA ( °C ) Forward Current vs. Ambient Temperature 60
4/10/00
DB92414-AAS/A3
元器件交易网
Collector Power Dissipation vs. Ambient Temperature =1mA
CE(SAT)
30mA
Collector power dissipation P C (mW)
6 5 4 3 2 1 0
7.62 4.0 3.0 0.5 13° Max 0.26
3.0
DESCRIPTION ISP825X The ISP815, ISP825, ISP845 series of optically ISP825 coupled isolators consist of infrared light emitting diodes and NPN silicon photodarlingtons in space efficient dual in line plastic packages.

Dell PowerEdge R815 硬件用户手册说明书

Dell PowerEdge R815 硬件用户手册说明书

目录
5
冷却导流罩 . . . . . . . . . . . . . . . . . . . . . . . 82 卸下冷却导流罩 . . . . . . . . . . . . . . . . . . 82 安装冷却导流罩 . . . . . . . . . . . . . . . . . . 83
光盘驱动器 . . . . . . . . . . . . . . . . . . . . . . . 78 卸下光盘驱动器 . . . . . . . . . . . . . . . . . . 78 安装光盘驱动器 . . . . . . . . . . . . . . . . . . 79
电源设备. . . . . . . . . . . . . . . . . . . . . . . . . 80 卸下电源设备 . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 81 卸下电源设备挡片 . . . . . . . . . . . . . . . . 82 安装电源设备挡片 . . . . . . . . . . . . . . . . 82
冷却风扇 . . . . . . . . . . . . . . . . . . . . . . . . . 93 卸下冷却风扇 . . . . . . . . . . . . . . . . . . . 93 安装冷却风扇 . . . . . . . . . . . . . . . . . . . 94 卸下冷却风扇部件. . . . . . . . . . . . . . . . . 95 安装冷却风扇部件. . . . . . . . . . . . . . . . . 96

OCP8151规格书中文版

OCP8151规格书中文版

Package Type Carrier Width(W)
Pitch(P)
Reel Size(D)
SOP-8L
12.0±0.1 mm
4.0±0.1 mm
330±.1 mm
Note: Carrier Tape Dimension, Reel Size and Packing Minimum
Packing Minimum 2500pcs
Page 5 - 10
Rev 1.0 May.23, 2012
OCP8151
高精度原边反馈恒流转换器
应用信息
OCP8151是一款高精度离线式专用LED恒流驱动器,可应用于输出功率7W以内的LED恒流驱动电源。它采用原边 反馈技术,无需TL431、光耦和反馈电路便能实现很好的线电压调整率和负载调整率,极大的节约了系统成本和尺寸空 间。
-
V
2
uA
Page 4 - 10
Rev 1.0 May.23, 2012
典型参数特征
18
17
16
15
14
Vcc_th(V)
13
12
11
10
9
8
-40
-10
20
50
80
Temperature(℃)
芯片启动电压对温度的变化
110
140
2
1.6
1.2
0.8
0.4
ΔIOUT(%)
0
-0.4
-0.8
-1.2
推荐工作范围
符号
参数
范围
单位
VCC
电源电压
8.0~17.5
V
TA
工作环境温度

WX-08U2用户手册说明书

WX-08U2用户手册说明书

User Manual Ver0.1 TPC-WX08U28寸人脸支付平板ARM Cortex™_A17架构RK32881.8GHz CPU8”LCD触控式电容屏2G内存,8G EMMC电子盘1x RJ45GbE LAN,1x RS232COM1x MICRO USB,2x USB2.0Port1x Mini SD卡座,1x SIM卡座支持3G/4G通讯、内置蓝牙+WIFI模块支持DC-12V电源输入版权声明随附本产品发行的文件为深圳市英康仕电子有限公司2019年版权所有,并保留相关权利。

针对本手册中相关产品的说明,深圳市英康仕电子有限公司保留随时变更的权利,恕不另行通知。

未经深圳市英康仕电子有限公司公司书面许可,本手册所有内容不得通过任何途径以任何形式复制、翻印、翻译或者传输。

本手册以提供正确、可靠的信息为出发点。

但是深圳市英康仕电子有限公司公司对于本手册的使用结果,或者因使用本手册而导致其它第三方的权益受损,概不负责。

认可声明Rock chip为瑞芯微的商标。

ARM为ARMLtd.的商标。

.所有其它产品名或商标均为各自所属方的财产。

如需技术支持和服务,请访问深圳市英康仕电子有限公司网站:产品质量保证(1年)从购买之日起,英康仕为原购买商提供1年的产品质量保证。

但对那些未经授权的维修人员维修过的产品不予提供质量保证。

英康仕对于不正确的使用、灾难、错误安装产生的问题有免责权利。

如果英康仕产品出现故障,在质保期内我们提供免费维修或更换服务。

对于出保产品,我们将会酌情收取材料费、人工服务费用。

请联系相关销售人员了解详细情况。

如果您认为您购买的产品出现了故障,请遵循以下步骤:1.收集您所遇到的问题信息(例如,CPU主频、使用的英康仕产品及其它软件、硬件等)。

请注意屏幕上出现的任何不正常信息显示。

2.打电话给您的供货商,描述故障问题。

请借助手册,产品和任何有帮助的信息。

3.如果您的产品被诊断发生故障,请从您的供货商那里获得RMA(Return MaterialAuthorization)序列号。

N32G455系列芯片技术手册说明书

N32G455系列芯片技术手册说明书

N32G455xB/xC/xE数据手册N32G455系列采用32 bit ARM Cortex-M4F内核,最高工作主频144MHz,支持浮点运算和DSP指令,集成多达512KB Flash,144KB SRAM,4x12bit 5Msps ADC,4xOPAMP,7xCOMP,2x1Msps 12bit DAC,支持多达24通道电容式触摸按键,集成多路U(S)ART、I2C、SPI、QSPI、USB、CAN通信接口,1xSDIO接口,内置密码算法硬件加速引擎关键特性●内核CPU―32位ARM Cortex-M4 内核+ FPU,单周期硬件乘除法指令,支持DSP指令和MPU―内置8KB 指令Cache缓存,支持Flash加速单元执行程序0 等待―最高主频144MHz,180DMIPS●加密存储器―高达512KByte片内Flash,支持加密存储、多用户分区管理及数据保护,支持硬件ECC校验,10万次擦写次数,10年数据保持―144KByte片内SRAM(包含16KByte Retention RAM),Retention RAM支持硬件奇偶校验●时钟―HSE:4MHz~32MHz外部高速晶体―LSE:32.768KHz外部低速晶体―HSI:内部高速RC OSC 8MHz―LSI:内部低速RC OSC 40KHz―内置高速PLL―支持1路时钟输出,可配置为可配置系统时钟、HSE、HSI或PLL后分频输出●复位―支持上电/掉电/外部引脚复位―支持可编程的低电压检测及复位―支持看门狗复位●通信接口―7个U(S)ART接口, 最高速率达4.5 Mbps,其中3个USART接口(支持1xISO7816,1xIrDA,LIN),4个UART接口―3个SPI接口,速度高达36 MHz,其中2个支持I2S―1个QSPI接口,速率高达144 Mbps―4个I2C接口,速率高达1 MHz,主从模式可配,从机模式下支持双地址响应―1个USB2.0 Full speed Device接口―2个CAN 2.0B总线接口―1个SDIO接口,支持SD/MMC/eMMC格式―XFMC接口,可扩展SRAM,PSRAM,NOR/NAND Flash存储器,TFT LCD显示●高性能模拟接口―4个12bit 5Msps高速ADC,可配置为12/10/8/6bit模式,6bit 模式下采样率高达9Msps,多达40路外部单端输入通道,支持差分模式―4个轨到轨运算放大器,内置最大32倍可编程增益放大―多达7个高速模拟比较器,内置64级可调比较基准―多达24通道电容式触摸按键,支持低功耗状态下唤醒―2个12bit DAC,采样率1Msps―支持外部输入独立参考电压源―所有模拟接口支持1.8~3.6V全电压工作●最大支持80个支持复用功能的GPIOs,最大翻转速度50MHz,大多数GPIO支持5V耐压.●2个高速DMA控制器,每个控制器支持8通道,通道源地址及目的地址任意可配●RTC实时时钟,支持闰年万年历,闹钟事件,周期性唤醒,支持内外部时钟校准●定时计数器― 2 个16bit高级定时计数器,支持输入捕获、输出比较、PWM输出以及正交编码输入等功能,最高控制精度6.9nS。

MB85RC16PNF-G-JNE1;中文规格书,Datasheet资料

MB85RC16PNF-G-JNE1;中文规格书,Datasheet资料

FUJITSU SEMICONDUCTORDATA SHEETCopyright©2011 FUJITSU SEMICONDUCTOR LIMITED All rights reserved 2011.6Memory FRAM16 K (2 K × 8) Bit I 2CMB85RC16■DESCRIPTIONThe MB85RC16 is an FRAM (F erroelectric Random Access Memory) chip in a configuration of 2,048 words × 8 bits, using the ferroelectric process and silicon gate CMOS process technologies for forming the nonvolatile memory cells.Unlike SRAM, the MB85RC16 is able to retain data without using a data backup battery.The memory cells used in the MB85RC16 have at least 1010 Read/Write operation endurance per bit, which is a significant improvement over the number of read and write operations supported by other nonvolatile memory products.The MB85RC16 can provide writing in one byte units because the long writing time is not required unlike Flash memory and E 2PROM. Therefore, the writing completion waiting sequence like a write busy state is not required.■FEATURES•Bit configuration : 2,048 words × 8 bits •Operating power supply voltage : 2.7 V to 3.6 V •Operating frequency : 1 MHz (Max) •T wo-wire serial interface : Fully controllable by two ports: serial clock (SCL) and serial data (SDA).•Operating temperature range : − 40 °C to + 85 °C •Data retention : 10 years ( + 75 °C) •Read/Write endurance : 1010 times •Package : Plastic / SOP , 8-pin (FPT -8P-M02)•Low power consumption : Operating current 0.1mA (Max: @1 MHz), Standby current 0.1 μA (Typ)DS501-00001-2v0-EMB85RC16■PIN FUNCTIONAL DESCRIPTIONSPinNumberPin Name Functional Description1 to 3NC Unconnected pins Leave it unconnected.4VSS Ground pin5SDA Serial Data I/O pinThis is an I/O pin of serial data for performing bidirectional communication of mem-ory address and writing or reading data. It is possible to connect some devices. It is an open drain output, so a pull-up resistance is required to be connected to the external circuit.6SCL Serial Clock pinThis is a clock input pin for input/output timing serial data. Data is sampled on the rising edge of the clock and output on the falling edge.7WP Write Protect pinWhen Write Protect pin is “H” level, writing operation is disabled. When Write Pro-tect pin is “L” level, the entire memory region can be overwritten. Reading operation is always enabled regardless of the Write Protect pin state. The write protect pin is internally pulled down to VSS pin, and that is recognized as “L” level (the state that writing is enabled) when the pin is the open state.8VDD Supply Voltage pinMB85RC16■I2C (Inter-Integrated Circuit)The MB85RC16 has the two-wire serial interface and the I2C bus, and operates as a slave device.The I2C bus defines communication roles of “master” and “slave” devices, with the master side holding the authority to initiate control. Furthermore, a I2C bus connection is possible where a single master device is connected to multiple slave devices in a party-line configuration.2MB85RC16■I2C COMMUNICATION PROTOCOLThe I2C bus provides communication by two wires only, therefore, the SDA input should change while SCL is the “L” level. However, when starting and stopping the communication sequence, SDA is allowed to change while SCL is the “H” level.•Start ConditionTo start read or write operations by the I2C bus, change the SDA input from the “H” level to the “L” level while the SCL input is in the “H” level.•Stop ConditionTo stop the I2C bus communication, change the SDA input from the “L” level to the “H” level while the SCL input is in the “H” level. In the reading operation, inputting the stop condition finishes reading and enters the standby state. In the writing operation, inputting the stop condition finishes inputting the rewrite data.Note : The FRAM device does not need the programming wait time (t WC) after issuing the Stop Condition during the write operation.MB85RC16■ACKNOWLEDGE (ACK)In the I2C bus, serial data including memory address or memory information is sent in units of 8 bits. The acknowledge signal indicates that every 8 bits of the data is successfully sent and received. The receiver side usually outputs the “L” level every time on the 9th SCL clock after every 8 bits are successfully trans-mitted. On the transmitter side, the bus is temporarily released on this 9th clock to allow the acknowledge signal to be received and checked. During this released period, the receiver side pulls the SDA line down to indicate that the communication works correctly.If the receiver side receives the stop condition before transmitting the acknowledge “L” level, the read operation ends and the I2C bus enters the standby state. If the acknowledge “L” level is not detected, and the Stop condition is not sent, the bus remains in the released state without doing anything.■MEMORY ADDRESS STRUCTUREThe MB85RC16 has the memory address buffer to store the 11-bit information for the memory address.As for byte write, page write and random read commands, the complete 11-bit memory address is configured by inputting the memory upper address (3 bits) and the memory lower address (8 bits), and saving to the memory address buffer and access to the memory is performed.As for a current address read command, the complete 11-bit memory address is configured by inputting the memory upper address (3 bits) and by the memory address lower 8-bit which has saved in the memory address buffer, and saving to the memory address buffer and access to the memory is performed.MB85RC16■DEVICE ADDRESS WORDF ollowing the start condition, the 8 bit device address word is input. Inputting the device address word decideswhether the master or the slave drives the data line. However, the clock is always driven by the master. The device address word (8bits) consists of a device T ype code (4bits), memory upper address code (3bits), anda Read/Write code (1bit).•Device Type Code (4bits)The upper 4 bits of the device address word are a device type code that identifies the device type, and are fixed at “1010” for the MB85RC16.•Memory Upper Address Code (3bits)Following the device type code, the 3 bits of the memory upper address code are input.The slave address selection is not performed by the external pin setting on this device. These 3 bits are not the setting bits for the slave address, but the upper 3-bit setting bits for the memory address.•Read/Write Code (1bit)The 8th bit of the device address word is the R/W (Read/Write) code. When the R/W code is “0” input, a write operation is enabled, and the R/W code is “1” input, a read operation is enabled for the MB85RC16. If the device code is not “1010”, the Read/Write operation is not performed and the standby state is chosen.MB85RC16■DATA STRUCTUREThe master inputs the device address word (8 bits) following the start condition, and then the slave outputs the Acknowledge “L” level on the ninth bit. After confirming the Acknowledge response, the sequential 8-bit memory lower address is input, to the byte write, page write and random read commands.As for the current address read command, inputting the memory lower address is not performed, and the address buffer lower 8-bit is used as the memory lower address.When inputting the memory lower address finishes, the slave outputs the Acknowledge “L” level on the ninth bit again.Afterwards, the input and the output data continue in 8-bit units, and then the Acknowledge “L” level is output for every 8-bit data.MB85RC16■FRAM ACKNOWLEDGE -- POLLING NOT REQUIREDThe MB85RC16 performs the high speed write operations, so any waiting time for an ACK* by the acknowl-edge polling does not occur.*: In E2PROM, the Acknowledge Polling is performed as a progress check whether rewriting is executed or not.It is normal to judge by the 9th bit of Acknowledge whether rewriting is performed or not after inputting the start condition and then the device address word (8 bits) during rewriting.■WRITE PROTECT (WP)The entire memory array can be write protected by setting the WP pin to the “H” level. When the WP pin is set to the “L” level, the entire memory array will be rewritten. Reading is allowed regardless of the WP pin's “H” level or “L” level.Do not change the WP signal level during the communication period from the start condition to the stop condition.Note : The WP pin is pulled down internally to VSS pin, therefore if the WP pin is open, the pin status is detected as the “L” level (write enabled).MB85RC16■COMMAND•Byte WriteIf the device address word (R/W “0” input) is sent after the start condition, an ACK responds from the slave.After this ACK, write memory addresses and write data are sent in the same way, and the write ends by•Page WriteIf data is continuously sent after the following address when the same command (expect stop condition) as Byte Write was sent, a page write is performed. The memory address rolls over to first memory address (000H)at the end of the address. Therefore, if more than 2 Kbytes are sent, the data is overwritten in orderMB85RC16•Current Address ReadIf the last write or read operation finishes correctly up to the end of stop condition, the memory address that was accessed last remains in the memory address buffer (the length is 11 bits).When sending this command without turning the power off, it is possible to read from the memory address n+1 which adds 1 to the total 11-bit memory address n, which consists of the memory upper address 3-bit from the device address word input and the lower 8-bit of the memory address buffer. If the memory address n is the last address, it is possible to read with rolling over to the head of the memory address (000H). The current address (address that the memory address buffer indicates) is undefined immediately after turning•Random ReadThe one byte of data from the memory address as saved in the memory address buffer can be read out synchronously to SCL by specifying the address in the same way as for a write, and then issuing another start condition and sending the Device Address Word (R/W “1” input).Setting values for the first and the second memory upper address codes should be the same.The final NACK (SDA is the “H” level) is issued by the receiver that receives the data. In this case, this bit is分销商库存信息: FUJITSUMB85RC16PNF-G-JNE1。

NUC微控制器产品系列说明书

NUC微控制器产品系列说明书
112 µA/MHz @ 正常模式 1.5 µA @ 掉电模式
M251 Feature
。 Arm® Cortex®-M23 。 运行速度可达 48 MHz
M252 Feature
。 USB 2.0 全速设备无需外 挂晶振
M253 Feature
。 USB 2.0 全速设备无需外 挂晶振
。 高达五路 UART 。 CAN FD x1
2
Low Power
TrustZone
AEC-Q100
Market Trend
随着电子应用对低功耗或电池供电的需 求日益增加,现今的应用必须尽量降低 能源消耗,甚至在极端情况下,可能需 要倚赖单颗电池来维持长达 15 至 20 年 运转
低功耗应用情景包含手持式设备、居家、 AIoT、IIoT (工业物联网) 等应用情景, 使用范围十分广泛
(Programmable Serial I/O) • USB 2.0 全速装置无需外挂晶振 • 独立的 RTC 电源 VBAT 管脚
Highlight
• 支持 1.8 V ~ 5.5 V 串行接口,可连接不同电压 装置
*USCI: Universal Serial Control Interface Controller
C
1.8 3.3 5 M253
CU
3.3 5 M071
1.8 3.3 5 M252
U
3.3 5 M051
1.8 3.3 5 M251
3.3 5 Mini51
3.3 5 3.3 5
1.8 3.3 Nano100
M480 M460 M471 M453 M452 M451
E CU E CU
U C
U
Arm9™

浩鑫电子产品文档说明书

浩鑫电子产品文档说明书

Motor Application Marketing Department PM & Technology ManagerMotor Application Market TrendElecctrolysis3%Standby 3%Electronics 10%Heat 19%Light 19%Motors 46%Global Electricity consumptionElecctrolysis Standby Electronics Heat Light MotorsBLDC PMSMResource :IEA Energy Efficiency SeriesAC MotorBDC Global WarmingCarbon NeutralRenewable EnergyHigh EfficiencyK M SeriesMCU basedHome ApplianceN M SeriesMCU basedGeneral-purposedK A SeriesASICDedicatedK M SeriesMCU basedHome ApplianceN M SeriesMCU basedGeneral-purposedK A SeriesASICDedicatedNuMotor MCU Series Product Roadmap64kB17.5kB29.5kB NM1100128 kBNM1200NM1120NM1244NM1234NM1530LQFP48(7x7mm^2)LQFP64(10x10mm^2)LQFP100(14x14mm^2)LQFP48(7x7mm^2)TSSOP20(4.4x6.5mm^2)QFN33(5x5mm^2)LQFP48(7x7mm^2)QFN20(4x4mm^2)TSSOP20(4.4x6.5mm^2)TSSOP28(4.4x9.7mm^2)QFN48(7x7mm^2)LQFP48(7x7mm^2)48MHz2kB RAM48MHz2kB RAM, I 2C x 1, SPI x 1CAN2.0b/MDU/OPA x 2/QEI/2 motors compatible72MHz, 8kB/16kB RAM, I 2C x 1, SPI x 3, ECAP60MHz/Standby < 1µA/DAC x 2/DMA8kB RAM, I 2C x 2, SPI x 1, ECAP , OPA x 172MHz/OPA x 3/PGA x1/DAC x 2 /QEI8kB/16kB RAM, I 2C x 3, SPI x 2 , ECAP48MHz/PGA x 14kB RAM, I 2C x 2, SPI x 2, ECAPCortex-M0,HDIV,-40~105℃,2.5V~5.5V,HIRC 1%@25°C ,16-bit PWM, 24-bit Timer, 12/10-bit ADC, UART,ACMPBMSSelection Guide for MCU SeriesSPI?I2C?NoNM1530PGA or OPA?StartQEI ?NM1234DAC?GDMA?NM1244NM1120NoNM1200NM1100HIRC HDIV PWM Timer UART ADC ACMPCommon FeaturesCAN 2.0BNo YesYesNoNo YesYes YesNuMotor MCP Series Product RoadmapMCU ApplicationMS51NM1120NM1244Single phaseThree phaseNM18002QFN24(4x4)40V200V600VNM18107QFN32(5x5)NM1817LQFP44(10x10)NM18440LQFP48(7x7)Built-in functions:•5V LDO•Comparators•Shoot-through protection •Thermal protection •UVLOMCU Gate DriverMarket for Cooling Fan7.1411.3724681012YearB i l l i o n (U S D )Global Cooling Fan Market20212025Resource: RESEARCH AND MARKETSCAGR is about12.34%.Home ApplicationPCRefrigeratorTelecomAutomotiveHighlights•12V-24V Fan •PN gate driver•Supports 4-Wire Programming •Passive part ➟Active control unitGate DriverInverterMS51Hall Element Hall IC……DetectionCommunicationUART/I 2CCommandAnalog Digital : directinput5cm3cm+Highlights•200V application : 110VAC, 24~96VDC •LQFP48(7x7)•Up to 29 GPIONM1244200VGate DriverHand DrierCooling fanin refrigeratorCeiling fanSoy-milk makerTools for DevelopmentTiny Board Motor System Board MCU +NuLinkMCU +GateDriver +MosFETNT-NM1200NT-NM1120NT-NM1230NT-NM1240NT-NM1530NK-NM1200L NK-NM1120L NK-NM1230L NK-NM1240LNK-NM1530L NM1200_BSP_CMSIS NM1120_BSP_CMSIS NM1230_BSP_CMSIS NM1240_BSP_CMSIS NM1530_BSP_CMSISNuMotor_NM1200NuMotor_NM1120NuMotor_NM1240NuMotor_NM1230NuMotor_NM1530NuMotor_NM18002YHardware Software NK-NM18107L NK-NM18002 NK-NM18440 NK-NM1817HWe Provide ……Balanced Product LineTechnical consultShipment > 100kkHigh qualityLong life cycleProduct Lines for Motors in NuvotonK M SeriesMCU basedHome ApplianceN M SeriesMCU basedGeneral-purposedK A SeriesASICDedicatedHome ApplianceInverter controller•High-end model•Core: Cortex-M7 160MHz •Flash: 256~512KB •Data Flash: 64KB •PIN: 100~144Middle-end model •Core: AM32R 120MHz •Flash: 128~512KB •Data Flash: 16~64KB •PIN: 48~144Low-end model •Core: Cortex-M4 120MHz •Flash: 128~256KB •Data Flash: 8~32KB •PIN: 48~100High-end Model •Middle-end Model•Low-end ModelReference for Air conditionerApplicationDevice DriverMiddlewareTorque ControlLead AngleField WeakeningResonance AvoidanceSensorless Sinewave Control1-shunt current Detection ControlStandby FnCommunicati on I/FTemp Protection IPM Fo ProtectionOC, OV, UV ProtectionOther Protections (Customer Specific Requirements)compressor Control IPField Oriented Control3-shunt current Detection ControlField Oriented ControlSensorless Sinewave ControlFan motor Control IPIt is easy to use because it implements the required IP.compressorFan motorActive PFC3 shunt1 shuntAC100V/200V~240VdcActive PFC ControlPFC Control IPmain SequenceEEPROMWith our 20 years of experience in Inverter MCU technology development and production knowhow, we can offer“3S”NTC Inverter MCU ConceptsS peed up developmentProduct development is always a battle against schedule.⇒Simple is best.Destruction of power devices canlead to fire.⇒Safety is first.Parts around the microcomputer⇒Built-in is implemented.•Motor parameters are extracted in 1 minute (accuracy No. 1 in industry) and then automatically adjusted.•Ensure processing time by synchronizing so that multiple motor control tasks do not conflict.•AD and comparator pin assignments are stress-free with internal settings •Various protection circuits protectdevices from multiple perspectives•The internal mask function can avoidaccidental system stop due to noise.•Supports certification such as ISO60730•Built-in operational amplifier(differential input and negative input aresupported)•Each comparator has an internalreference voltage(external reference withnoise isn't required)•The number of parts can be reduced andwiring can be simply routed.S peed up development S afety ensuring S ave system costInverter MCU Series ProductQFP144QFP128QFP80QFP48QFP100QFP64Type nameROM/RAMKM1M7BF02N512kB/64kBKM1M7BF00N512kB/64kBKM1M7BF02M384kB/48kBKM1M7BF00M384kB/48kBKM1M7BF02K256kB/32kBKM1M7BF00K256kB/32kBKM1M7CF05K256kB/64kB Under planningKM1M7CF04K256kB/64kB Under planningKM1M7CF03K256kB/64kB Under planningKM103HFD5N512kB/32kKM103HFD6N512kB/32kKM103HFD7N512kB/32kKM103HFD8N512kB/32kKM103HFD4M408kB/20kBKM103HFD5M408kB/20kBKM103HFD6M408kB/20kBKM103HFD7M408kB/20kBKM103HFD8M408kB/20kBKM103HFD4K264kB/16kBKM103HFD5K264kB/16kBKM103HFD6K264kB/16kBKM103HFD7K264kB/16kBKM1M4BF04K264kB/16kBKM1M4BF03K264kB/16kBKM1M4BF02K264kB/16kBKM1M4BF05G136kB/16kBKM1M4BF04G136kB/16kBKM1M4BF03G136kB/16kBKM1M4BF02G136kB/16kBKM103HFB3K264kB/20kBKM103HFB4K264kB/20kBKM103HFB5K264kB/20kBKM103HFB6K264kB/20kBKM103HFB3G132kB/16kBKM103HFB4G132kB/16kBperformance80MHz120MHz +iRAM160MHz +iRAM120MHzNew M4-series Under developmentNew ArmCortex-M4series KM103HFBx KM7BFBFx KM103HFDxNew Arm Cortex-M7 seriesNow planning ARM-M7Higher performanceProduct Lines for Motors in NuvotonK M SeriesMCU basedHome ApplianceN M SeriesMCU basedGeneral-purposedK A SeriesASICDedicatedThe Applications needed for “Smart Factory” have significant growth rateGlobal Market TrendServerCAGR 9%Base stationCAGR 20%FACAGR 9%Others(Source: Fuji Keizai)M o t o r u n i t s (b i l l i o n p c s )123Year 202020212022202320242025Fan-motor market20406080100120140202020212022202320242025C a m e r a u n i t s (m i l l i o n p c s )Surveillance camera market(Source: All The Research)Year CAGR 14%Customize “Core Technology” to realize our proposalOur SolutionCorrection Amplitude & Phase Hall signal BEMF phaseMotor Current phase(Core Technology)Phase ControlFor High Speed Advanced Phase& Rapid Softswitch A P Ra S For Low Vibration AP CSolutionAPRaS optimizes motor performance and enable to set more than 100 krpmWhat is APRaSAPC APRaSHall signalBEMF phaseAdvanced PhaseSpeedNo APRaSAPRaSAPRaS optimizes waveforms at high speed.Advanced phaseRapid SoftswitchMotor current phaseMotorICCommand GeneratorPre DriverHall DetectionMDUTY Speed CommandHallRapid Soft Switch ControlAdvanced Phase Control Power FETAPRaS increases maximum rotation speedBenefit High Air flowTechnologyAPRaSNo APRaS (Conventional)APRaS⇒Realize high air flowIf same size,102030405060708090100110120130Speed [krpm]242018161412Rapid Softswitching&Advanced PhaseRealize High Speed OperationUse Case (Lens Driver)MarketPanTilt ZoomFocusIrisKA41908BImageSensorMMMMCUFocusZoomIrisZoomdrFocusdrIrisdrSIFStepper StepperActuatorMMPan/tiltDriver ICKA44180A x 2Stepper StepperSurveillance IPCAMCAP (Correction Amplitude & Phase) function reduces Acoustic noiseWhat is CAPDue to manufacture variationBEMF UnbalancePhase MisalignmentN o i s e L e v e l (d B )-15-10-505101520253035 2.50H z32.50H z62.50H z92.50H z122.50H z152.50H z182.50H z212.50H z242.50H z272.50H z302.50H z332.50H z362.50H z392.50H z422.50H z452.50H z482.50H z512.50H z542.50H z572.50H z602.50H z632.50H z662.50H z692.50H z722.50H z752.50H z782.50H z812.50H z842.50H z872.50H z902.50H z932.50H z962.50H z992.50H zFrequency (Hz)Noise IssueRealizeLow vibration& Quick MonitoringTechnologyCAPCurrent set for each phasePhase correction by 0.7deg-15-10-505101520253035 2.50H z32.50H z62.50H z92.50H z122.50H z152.50H z182.50H z212.50H z242.50H z272.50H z302.50H z332.50H z362.50H z392.50H z422.50H z452.50H z482.50H z512.50H z542.50H z572.50H z602.50H z632.50H z662.50H z692.50H z722.50H z752.50H z782.50H z812.50H z842.50H z872.50H z902.50H z932.50H z962.50H z992.50H z-10dBFrequency (Hz)N o i s e L e v e l (d B )CAP functionLow noiseOur solutionKA Series PortfolioFan MTDFor Single PhaseFor Three PhaseKA44171AKA44168A KA44169AKA44169ABKA44170A KA44143APackageHQFN203mm x 3mm 0.4mm pitchMSOP83mm x 4.9mm 0.65mm pitch TSSOP145mm x 6.4mm 0.65mm pitchHQFN244mm x 4mm 0.4mm pitch Absolute max. rated voltage/current 39V/Pre-Driver 35V/1.4A 36V/1.4A 36V/1.6A 28V/2.2A Ron (Upper + Lower)External FET 1.6Ω1.6Ω 1.25Ω1.0ΩPhase control APRaSAPCAPCIF : INPUT / OUTPUTPWM or VSP / FG orLDNon / FG PWM / FG+LDVSP / FGPWM / FG+LD PWM or VSP /FG+LD FeatureHigh speed(~100Krpm)Smallest driver General functionHighspeed (~15Krpm)1 Hall /Silent driveStepper MTDFor Lens driverFor General purposeKA41908BKA44180APackageHQFN446mm x 6mm 0.4mm pitchHQFN365mm x 5mm 0.4mm pitchAbsolute max. rated voltage/current MVCC:6V, DVDD:4V / 0.25A(Stepper),0.15A(Actuator)37V/1.5A Ron (Upper + Lower) 2.5Ω(Stepper) , 5Ω(Actuator) 1.4ΩStepper Driver 2ch (for Zoom / Focus)1ch Actuator Driver 1ch (for Iris)-IF : INPUT / OUTPUTSPI /SPI Parallel / NFALT FeatureBuilt-in Hall Iris controlHigh speed/High torqueLine-upProduct Lines for Motors in NuvotonK M SeriesMCU basedHome ApplianceN M SeriesMCU basedGeneral-purposedK A SeriesASICDedicatedSynchronize with Nuvoton NOW!Tools, Datasheets, BSPs, Example Codes, Circuits, Manuals areReady!12。

宽压大功率超高速双运放AD815中文

宽压大功率超高速双运放AD815中文

a特征灵活的配置差分输入和输出驱动器或两个单端驱动程序高输出功率电力包装26 dBm微分ADSL线车道的应用40 V p - P的差分输出电压,R L= 50500 mA最小输出驱动器/放大器,R L = 5耐热增强SOIC400 mA最小输出驱动器/放大器,R L= 10低失真–66 dB @ 1 MHz THD, R L = 200 , V OUT= 40 V p - P0.05%和0.45差分增益和相位,R L = 25(6反向端接视频负载)高速120 MHz带宽(–3 dB)900 V/ s微分转换率70 ns建立时间0.1%热关断应用ADSL, HDSL和VDSL线路接口驱动器线圈或变压器驱动器CRT收敛性和散光调整视频分配放大器双绞线电缆驱动器产品说明高输出电流微分驱动器AD815功能框图15-Lead通孔的SIP (Y)和表面贴装DDPAK (VR )151413TAB IS +VS121110987654321NC = NO CONNECTREFER TO PAGE 3 FOR 24-LEAD SOIC PACKAGENC NC NC NC +IN2–IN2OUT2+VS–V S OUT1–IN1+IN1NC NC NCAD815耦合比1:1更大的变压器匝数比.该低谐波失真–66 dB @ 1 MHz到200Ω与宽带宽和高电流驱动结合,使为通信应用,如差分驱动器理想至于ADSL, HDSL和用户线接口VDSL.该AD815微分900第V / µs和高负载驱动摆率为快速线圈或变压器的动态控制适宜,和0.05%和0.45°差分增益视频性能and phase into a load of 25Ω使多达12反向端接负荷驱动.三包装样式可用,和各地的工作工业温度范围(–40°C到+85°C).最大输出功率为实现与权力包装供通孔安装(Y)和表面(VR).的安装24-lead SOIC (RB)是驾驶能力全额26 dBm ADSL适当的散热.+15V100由有能力的AD815两个高速放大器供应一500 mA.最低它们通常配置作为驱动器使本40 V PP输出信号差±15 V用品.这可以进一步增加与一个使用–40TOTAL HARMONIC DISTORTION – dBc –50–60–70–80–90–100–110100R L = 50(DIFFERENTIAL)R L = 200(DIFFERENTIAL)V S = 15VG = +10V OUT = 40V p-p1/2AD815AMP1499R 1= 15V IN =4Vp-p110G = +10499V D =40Vp-pR L 120V OUT =40Vp-p1001k10k 100k FREQUENCY – Hz1M10MAMP21/2AD815–15VR 2= 151:2TRANSFORMER总谐波失真与频率订户线路差动驱动器REV的. B由ADI公司提供的信息被认为是准确和可靠.但是,没有承担责任的模拟装置使用,也没有侵犯任何专利或其它第三方权利这可能是由于它的使用.没有获发牌照以暗示或否则根据ADI公司的任何专利或专利的权利.其中技术的方式,P.O.盒9106,诺伍德,MA 02062-9106, U.S.A.电话:781/329-4700万维网网址: 传真:781/326-8703©模拟装置,Inc., 1999AD815–SPECIFICATIONS(@ T = +25 C, V =A S15 V dc, R FB= 1 k和R LOAD= 100V S±15±5±15±5±15±15±15±5,±15±5,±15±5,±15±15±15±5±15最小10090除非另有说明)AD815ATyp 最大120110401090070–661.851.8190.050.45510200.50.5101021081530245901505575100单位MHzMHzMHzMHzV/µsnsdBcnV/√HzpA/√HzpA/√Hz%学位mVmVmVµV/°CmVmVmVµV/°CµAµAµAµAµAµAMΩMΩMΩΩpF±V±VdBdB±V±V±V±VmAmAmAAΩdB±1830404055VmAmAmAmAdB模型动态性能小信号带宽(–3 dB)带宽(0.1 dB)微分转换率建立时间0.1%噪音/谐波性能总谐波失真输入电压噪声输入电流噪声(+I IN)输入电流噪声(–I IN)微分增益误差差分相位误差DC性能输入失调电压条件G = +1G = +1G = +2G = +2V OUT= 20 V的P -磷,G = +210 V步骤,G = +2f = 1 MHz, R LOAD= 200Ω,V OUT= 40 V p - Pf = 10千赫,G = +2(单端)f = 10千赫,G = +2f = 10千赫,G = +2NTSC, G = +2, R LOAD= 25ΩNTSC, G = +2, R LOAD= 25Ω800 T MIN– T MAX输入失调电压漂移差分偏移电压T MIN– T MAX 差分偏移电压漂移输入电流偏置T MIN– T MAX +输入电流偏置T MIN– T MAX 差分输入电流偏置T MIN– T MAX 开环转阻T MIN– T MAX 输入特性差分输入电阻差分输入电容输入共模电压范围共模抑制比差分共模抑制比输出特性电压摆幅T MIN– T MAXT MIN– T MAX单端,R LOAD= 25Ω差分,R LOAD= 50ΩT MIN– T MAXR LOAD= 5ΩR LOAD= 10Ω+Input–Input±15±15±15±5±5,±15±5,±15±15±5±15±15±15±5±15±15±15±15±5±15±5±15±5,±15±5,±15±5,±15±5,±15±5,±15 1.00.5±5±155.0578011.01.12122.55003504007151.413.53.56510011.71.82324.57504005001.013–65输出电流1, 2VR, YRB-24短路电流输出电阻匹配特性串音电源工作范围3静态电流f = 1 MHzT MIN– T MAXT MIN– T MAX2330电源抑制比T MIN– T MAX–55–66附注1输出电流限制在24-lead SOIC 包装最大功率耗散.见绝对最大额定值和降额曲线.2见图12的带宽,增益,输出驱动器建议操作范围.3观察最高结温度降额曲线.规格如有变更,恕不另行通知.–2–REV的. BAD815电源电压. . . . . . . . . . . . . . . . . . . . . . . . . . .±18 V总计内部功耗2塑料(Y和VR) . . 3.05瓦(观察降额曲线)小外形 (RB) . . 2.4瓦(观察降额曲线)输入电压(共模). . . . . . . . . . . . . . . . . . . .±V S 差分输入电压. . . . . . . . . . . . . . . . . . . . . . . .±6 V输出短路持续时间. . . . . . . . . . . . . . . . . . . . . .观察功率降额曲线只能对地短路存储温度范围Y, VR和RB 包装 . . . . . . . . . . . . . . . –65°C到+125°C 工作温度范围AD815A . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C到+85°C 铅温度范围(焊接,10秒). . . . . . . +300°C附注1上述最大绝对额定值上市,可能引起佩尔马-nent损坏设备.这是一个额定值只是强调,功能运作,在这些或以上的任何其他条件显示设备在运行这说明部分将得不到保证.暴露在绝对最大额定值长时间会影响器件的可靠性.2规范适用于设备与0英尺在空气/分钟的空气流量:15-Lead通孔与表面装载:θJA = 41°C /瓦; 24-Lead表面装载:θJA = 52°C/W.绝对最大额定值1最大功耗最大功率可安全通过AD815消退是有限的,在结温上升有关.该塑料封装的最大安全结温部分是由玻璃化转变温度塑料,约150°C.暂时可能会超过这个限额导致在性能参数变化,由于在改变应力由电路小片 包装发挥.超过交界温度的175°C长时间会导致设备故障.该AD815具有热关断保护,从而保证,该电路小片最高结温度仍然低于一安全的水平,即使在输出短路到地.短路对任一电源的输出会导致设备故障.为了确保正常运行,重要的是要观察降额曲线,并参照对权力的考虑部分.还必须指出,在高(同相)的增益配置(与低增益电阻值),高层次的输入过驱动可能导致大的输入误差电流,这可能导致在输入阶段的一个重大的功耗.这股力量计算时,必须包括结温上升由于全内的权力.14MAXIMUM POWER DISSIPATION –Watts 13121110987654321T J = 150 C引脚配置24-Lead热增强型SOIC (RB-24)NC 1NC 2NC 3NC 45THERMAL HEAT TABS+V S *624 NC 23 NC 22 NC 21 NCθJA= 16 C/WSOLDERED DOWN TO COPPER HEAT SINK (STILL AIR = 0FT/MIN)AD815 AVR, AYθJA= 41 C/W(STILL AIR = 0FT/MIN)NO HEAT SINKAD815 AVR, AYAD81520THERMALHEAT TABS +V S *TOP VIEW 19(Not to Scale) 187817+IN1 9–IN1 10OUT1 11–V S 1216 +IN215 –IN214 OUT213 +VSθJA= 52 C/W(STILL AIR = 0 FT/MIN)NO HEAT SINKAD815ARB-2470 8090–50 –40 –30 –20 –10 0 10 20 30 40 50 60AMBIENT TEMPERATURE –CNC = NO CONNECT*HEAT TABS ARE CONNECTED TO THE POSITIVE SUPPLY.积最大功耗与温度的关系订购指南模型AD815ARB-24AD815ARB-24-REEL AD815AVR AD815AY AD815AYS AD815-EB温度范围–40°C到+85°C –40°C到+85°C –40°C到+85°C –40°C到+85°C –40°C到+85°C包装描述24-Lead热增强SOIC 24-Lead热增强SOIC15-Lead表面装载 DDPAK15-Lead通孔交错的SIP信息和90°引脚形式15-Lead通孔直交错的SIP信息和引脚形式评估板包装选项RB-24RB-24VR-15Y-15YS-15注意ESD(静电放电)敏感器件.静电像4000 V容易高堆积在人体和测试设备,可排出而不被发现.虽然AD815特征专有ESD保护电路,可永久性损伤发生在受到高能静电放电设备.因此,适当ESD 预防措施建议,以避免性能退化或丧失功能.WARNING!ESD SENSITIVE DEVICEREV的. B –3–AD815–Typical性能特点AD81520Volts3634V S =SUPPLY CURRENT –mA 1532302826V S =242220018–405V 15VCOMMON-MODE VOLTAGE RANGE –105510SUPPLY VOLTAGE –15Volts20–200204060JUNCTION TEMPERATURE –C80100图1.输入共模电压范围与电源电压图4.总电源电流与温度的关系40SINGLE-ENDED OUTPUT VOLTAGE – V p-p 80DIFFERENTIAL OUTPUT VOLTAGE –V p-p33TOTAL SUPPLY CURRENT –mA T A = +25 C3030NO LOAD602720R L = 50(DIFFERENTIAL)R L = 25(SINGLE-ENDED)402410202100510SUPPLY VOLTAGE –15Volts0201824681012SUPPLY VOLTAGE –Volts1416图2.输出电压摆幅与电源电压图5.总电源电流与电源电压30SINGLE-ENDED OUTPUT VOLTAGE – Volts p-p V S =2515V60DIFFERENTIAL OUTPUT VOLTAGE –Volts p-p 100INPUT BIAS CURRENT –A –10–20–30–40–50–60SIDE A, B V S =15V,+I B5V502040V S =5V1530SIDE B –I BSIDE ASIDE B SIDE A–I B 15V10010V S =55V2010–70V S =–80–40–200204060JUNCTION TEMPERATURE –C8010100LOAD RESISTANCE – (Differential –1k) (Single-Ended –10k /2)图3.输出电压摆幅与负载电阻图6.输入偏置电流与温度的关系–4–REV的. BAD815–2INPUT OFFSET VOLTAGE – mV –4V S =–6–8–10V S =–12–14–4015V–401k–60–2.0 –1.6 –1.20–0.8 –0.40.40.8LOAD CURRENT –Amps5V80T A = 25 C6040RTI OFFSET –mV20–20VINf = 0.1Hz 10049.91kV S =5VV S =10VV S =15V1/2AD815V OUTR L =5–200204060JUNCTION TEMPERATURE –C 80100 1.2 1.6 2.0图7.输入失调电压随温度的变化热图10.非线性与输出电流驱动750V S =SHORT CIRCUIT CURRENT – mA700SOURCE65015VCLOSED-LOOP OUTPUT RESISTANCE –10010V S =5V600SINK5501V S =15V0.15000.01450–60–40–2020406080100JUNCTION TEMPERATURE – C12014030k100k300k1M 3M 10M FREQUENCY –Hz30M100M300M图8.短路电流与温度的关系图11.闭环输出阻抗与频率的关系15T A = 25 C R L = 25V S =RTI OFFSET – mV55VV S =10VV S =15VDIFFERENTIAL OUTPUT VOLTAGE –V p-p40T A = 25 C V S = ±15VR L = 10030R L = 5020R L = 2510R L = 10–16–12–8–404V OUT – Volts8121620241068FREQUENCY –MHz121410VINf = 0.1Hz 10049.9–51/2AD815V OUT R L =25–101k–15–201k图9.增益非线性与输出电压图12.大信号频率响应REV的. B –5–AD815100100120110VOLTAGE NOISE – nV/√HzTRANSIMPEDANCE –dBINVERTING INPUT CURRENT NOISECURRENT NOISE – pA/√Hz100908070605040INPUT VOLTAGE NOISE1001kFREQUENCY – Hz10k301100k1001k 10k 100k1M FREQUENCY –Hz10M PHASE100500PHASE –Degrees0–50–100–150–200–250100MTRANSIMPEDANCE1010NONINVERTING INPUTCURRENT NOISE110图13.输入电流和电压噪声与频率的关系图16.开环阻与频率的关系90TOTAL HARMONIC DISTORTION –dBc 80V S =7060504030201010k562V IN562562SIDE BSIDE A562V OUT15V–40–50–60–70–80–90–100–110100R L = 50(DIFFERENTIAL)R L = 200(DIFFERENTIAL)V S = 15VG = +10V OUT = 40V p-pCOMMON-MODE REJECTION – dB1/2AD815100k1MFREQUENCY – Hz10M 100M1k10k 100k FREQUENCY –Hz1M 10M图14.共模抑制与频率的关系图17.总谐波失真与频率的关系0OUTPUT SWING FROM ±V TO 0 –Volts –10–20–30PSRR – dB –40–PSRR–50–60–70–80–90–1000.010.1110FREQUENCY – MHz100300+PSRRV S = 15V G = +2R L = 1001081%6420–2–4–61%–8020604070SETTLING TIME –ns801000.1%GAIN = +2V S = 15V0.1%–10图15.电源抑制与频率的关系图18.输出摆幅稳定时间和错误对比–6–REV的. BAD815700G = +10SINGLE-ENDED SLEW RATE – V/ s (PER AMPLIFIER)DIFFERENTIAL SLEW RATE –V/ s600500G = +24003002001000051015OUTPUT STEP SIZE – V p-p202580060040020012001000OPEN-LOOP TRANSRESISTANCE –M4SIDE B3SIDE A2–T Z1SIDE B+T ZSIDE A14005–40–200204060JUNCTION TEMPERATURE –C80100图19.摆率和输出步长图22.开环转阻与温度的关系–85V S =SIDE B–80SIDE A–75OUTPUT SWING –Volts +PSRR15V15V S =1415VR L = 150+V OUT| –VOUT|+V OUT12| –VOUT|11–PSRRR L = 25PSRR – dB 13–70SIDE A–65SIDE B–60–40–20204060JUNCTION TEMPERATURE – C8010010–40–200204060JUNCTION TEMPERATURE –C80100温度曲线图20. PSRR 图23.单端输出摆幅与温度–74–732726OUTPUT SWING –Volts –72CMRR – dB –71–70–69–CMRR–68–67–66–40+CMRR23V S = 15V R L = 5025–V OUT +VOUT24–20204060JUNCTION TEMPERATURE –C8010022–40–20204060JUNCTION TEMPERATURE –C80100温度曲线图21. CMRR图24.差分输出摆幅与温度REV的. B –7–AD815DIFF PHASE – Degrees6 BACK TERMINATED LOADS (25 )0.040.030.020.010.00–0.01–0.02–0.03–0.040.0100.0050.000–0.005–0.010–0.015–0.020–0.025–0.0300.50.40.30.20.10.0–0.1–0.2–0.30.120.100.080.060.040.020.00–0.02–0.04DIFF GAIN – %15V0.1NORMALIZED FLATNESS –dB 0–0.1–0.2–0.3–0.4–0.5–0.6–0.70.1V IN10049.9499499100V OUT5V BB AA15V–1–2–3–4–5–6–7–8–9300NORMALIZED FREQUENCY 15VPHASEG = +2R F = 1k NTSCGAIN1234567891011DIFF GAIN – %PHASEGAING = +2R F = 1k NTSCPHASE34567891011GAINDIFF PHASE – Degrees 2 BACK TERMINATED LOADS (75 )12110FREQUENCY –MHz100图25.差分增益和差分相位(每放大器)图与频率28.带宽,G = +2–10NORMALIZED OUTPUT VOLTAGE –dB–20–30CROSSTALK – dB –40–50–60–70SIDE A–80–90–100–1100.03G = +2R F = 499V S = 15V, 5V V IN = 400mVrms R L = 100SIDE B1V S =–1–2–3V IN–449.9–5–6–70.1124499100100V OUTSIDE B15VSIDE A0.1110FREQUENCY – MHz100300110FREQUENCY –MHz100300图26. Output-to-Output 串音与频率的关系图29. –3与频率dB带宽,G = +5210OUTPUT VOLTAGE – dB –1–2–3–4–5–6–7–90.149.9562100100%V S = 15V V IN = 0 dBmSIDE ASIDE B10090V IN100V OUT5V1 s110FREQUENCY – MHz100300图27. –3与频率dB带宽,G = +1图30. 40 V页微分正弦波,R L= 50Ω,f = 100千赫–8–REV的. BAD815562+15V10 F0.1 F8R F+15V10 F0.1 FR S81/2 AD815100V INPULSE GENERATORT R/T F= 250ps 50–15V71/2 AD8150.1 F RL= 100V INPULSEGENERATORTR/TF= 250ps10070.1 F10 F–15VR L= 10010 F50图31.测试电路,增益= +1SIDE A图35.测试电路,增益= 1 + R F/R SG = +1R F= 698R L= 100SIDE AG = +5R F= 562R L= 100R S= 140SIDE B SIDE B100mV20ns5V100ns 图32. 500 mV阶跃响应,G = +1图36. 20 V阶跃响应,G = +5SIDE A G = +1R F= 562R L= 100562+15V10 F0.1 F562V INPULSEGENERATORT R/T F= 250ps5510078SIDE B1/2 AD8150.1 F10 F–15VR L= 100 1V20ns图33. 4 V阶跃响应,G = +1图37.测试电路,增益= –1SIDE A G = +1R F= 562R L= 100SIDE A G = –1R F= 562R L= 100SIDE B SIDE B2V50ns 100mV20ns 图34. 10 V阶跃响应,G = +1图38. 500 mV阶跃响应,G = –1REV的. B–9–AD815选择反馈和增益电阻SIDE A G = –1R F= 562 R L= 100SIDE B 晴朗的规模收益平直度将在一定程度上,随反馈电阻.因此,它建议,一旦最佳电阻值已经确定,1%宽容应使用的值,如果它是理想的维持平直度以上表的生产lots.广泛I显示最佳值几个有用的配置.这些应作为在任何应用的角度出发.电阻值表I.1V20nsR F( )G=+1–1+2+5+105624994994991kR G( )499499125110图39. 4 V阶跃响应,G = –1操作原理该AD815是双高电流反馈放大器(500 mA)输出电流能力.作为电流反馈放大器,AD815的开放式循环的行为表示为阻,∆V O/∆I–IN,或T Z.开环阻的行为就像开环电压增益一个电压反馈放大器,也就是说,它有一个大的dc值并在大约6 dB /倍频程的频率降低.由于R IN成正比1 /克M,的等效电压增益刚刚T Z×g M,其中g M问题是跨导输入的阶段.以此为一个具有增益输出放大器,图40,基本分析得出以下结果:T Z (S)V O=G×V IN TZ (S)+G×RIN+RF其中:R FR GR IN= 1/g M≈25ΩG=1+R FRGR INR NV IN印刷电路板布局注意事项正如所预期的宽频放大器,PC板寄生可以影响整个闭环性能.令人关注的在输出杂散电容和反相输入节点.如果地面平面是用于对电路板的同一面,信号的痕迹,一个空间(5 mm分钟)应由各地信号线,以减少耦合.电源旁路V OUT充足的电力供应旁路优化时可能是至关重要的一个高频率的电路性能.在电感电源引线可以产生共振电路形式高峰在放大器的响应.此外,如果大电流瞬变必须提供给负载,然后旁路电容器(通常比1更大µF)将被要求提供最好的建立时间和最低的失真.并行组合10.0µF和0.1µF建议.在一些低频率申请,比10更大的旁路电容µF可必要的.由于大负载电流的交付AD815,必须给予特别考虑到小心绕过.在两个电源旁路电容的接地回路,以及常见的信号必须是“明星”连接,如图所示41.+V S+IN图40.电流反馈放大器工作R FRG (OPTIONAL)R F+OUT认识到G×R IN<< R F低收益,它可以被视为第一批订单,为了这个放大器的带宽是独立的增益(G).考虑到额外的极点相,过量贡献高频率,有一个反馈电阻低于最低这可能会导致峰值或振荡.这其实是用来确定最佳反馈电阻,RF.在实践中在反相输入端的寄生电容也将增加相在反馈回路,所以挑选一个最佳值的RF可能是困难的.实现和维护获得比在0.1 dB更好平直度上述10 MHz频率需要仔细考虑几个问题.–10––IN–OUT–V S图41.信号地在“星”连配置REV的. BAD815DC ERRORS AND NOISE有三个主要的噪声和失调方面考虑电流反馈放大器.偏移误差是指公式如下.对于噪声误差的条款root-sum-squared 给予净输出错误.在下面的电路(图42),他们是输入失调(V IO )这在乘以输出出现电路的噪声增益(1 + R F /R G ),同相输入当前(I BN ×R N )也乘以噪声增益,而反相输入电流,当它们之间的分歧R F和RG随后乘以噪声增益总是出现在输出为I BI×R F .的输入电压噪声的AD815在比2 nV/√Hz.虽然少,低增益反相输入电流噪声倍R F 是主要噪声源.小心布局和设备配套,并有助于更好地抵消为AD815漂移规范相比,许多其他电流反馈放大器.典型的性能曲线在下面可以用方程来预测结合在任何的应用程序AD815性能. R R V OUT =V IO × 1+F ±I BN ×R N × 1+F ±I BI ×R F R G R G  RFR GI BI图44给出了输出电压摆幅之间的关系成各种载荷和功率消耗的AD815 (P IN).鉴于此数据为正弦波和方波(最差案)的条件.应该指出的是,这些图表大部分电阻(相位<±10°)负载.当功耗需求已经确定,公式1和对图图45可以用来选择合适的散热配置.f = 1kHz 4SQUARE WAVESINE WAVEP IN– Watts3R L = 1002R L = 2001R L = 50102030V OUT – Volts p-p40图44.总功耗对比差分输出电压V OUTR NI BN通常情况下,AD815将直接焊接到铜焊垫.图图45θJA 对铜焊垫大小.该数据属于铜对pads环氧玻璃机板都连接双方G10连同上5 mm中心贯穿件网格.这些数据表明,100 ohms或负载较少,通常不会要求任何比这更多.这是一个AD815的功能15-lead权力的SIP 包装.一个重要组成部分θJA 是热电阻包装到散热器.给出的数据是直接的焊接铜连接的包装 焊垫.使用的散热器无论是使用或不使用绝缘垫圈油脂会增加这个电话号码.现在存在着几种选择干热连接,系统蒸发散.这些都是从贝格基斯特可作为部分# SP600-90.请与这些产品的制造商的详细资料他们的申请.35图42.输出失调电压力的几点思考该500 mA的AD815驱动能力使其能够车道a 50Ω在40 V页加载时它被配置为差分驱动器.这意味着功耗,P IN,近5瓦.为确保可靠性,该AD815结温应保持在比175°C.扣除这个原因,在AD815将需要一些形式的散热最申请.在图43热图给出了结温之间的基本关系(TJ)和各部件θJA .T J =T A +P INθJAT J1θA(JUNCTION TO DIE MOUNT)30AD815AVR, AY(θJC= 2 C/W)θB(DIE MOUNT T ACASE T JP INTO CASE)θJA– C/W 25θA+θB=θJCθCAθJAT A20θJC15WHERE:P IN = DEVICE DISSIPATIONT A = AMBIENT TEMPERATURET J = JUNCTION TEMPERATURE θJC = THERMAL RESISTANCE – JUNCTION TO CASE θCA= THERMAL RESISTANCE – CASE TO AMBIENT100.5k1k1.5k2k2.5kCOPPER HEAT SINK AREA (TOP AND BOTTOM) –mm2图45.电力包装热电阻与热沉陷区图43.的各种包装热击穿抗性REV的. B –11–AD815其他力的几点思考还有其他的考虑适用于电源AD815.首先,正如许多电流反馈放大器,有一在电源电流增加时,提供一个大peak-to-peak 在高电压,频率,电阻负载.此行为是受在放大器的输出负载存在.图12总结了AD815.全功率响应能力这些曲线向驱动器应用微分(e.g.,图49或图53).最大连续在图12,peak-to-peak输出电压与频率的各种绘制阻性负载.在连续的基础上超过这个值可以损坏AD815.该AD815配备了热敏关闭电路.这电路确保了AD815 电路小片温度保持低于安全水平.在正常工作时,电路将关闭在大约AD815 180°C并允许电路回头约140°C.这个内置的滞后意味着持续的热过载将循环之间上电和断电条件.热循环通常发生在一个1 ms率几秒钟,这取决于在功耗和热时间常数包装和散热.数字46和47说明开车后OUT1到+铁路热关机操作,和OUT2到–铁路,然后短路到地每个AD815.的AD815输出不会损坏在这短暂的运作状态,但在超载情况应予删除.OUT 110090电阻器应放置在每个输出端串联.见图该电路可提供48.到注册到800负载mA 12.5Ω.499+15V0.1 F549910 F110041/2AD8158650499499R L10100111/2AD8157190.1 F–15V10 F图48.高电流输出并联运行微分运算各种电路配置,可用于鉴别如果一对差分驱动信号AD815.操作是无济于事,能,这两个半可以用在一个典型的仪器配置提供一个差分输入电路和输出.图49电路就是这样一个例子.随着电阻所示,电路的增益,增益是可以11.通过更改值的R G.此电路中,然而,不提供共模抑制.+15V+IN10040.1 F10 FOUT 11/2AD81586OUT 2 100%5RF499R LRF499VOUTV IN5V200 sR G100图46. OUT2地短路,方波OUT1, R F= 1 kΩ, R G= 222Ω10–IN100111/2AD8157OUT 290.1 F100 9010 F–15VOUT 1图49.全差分操作创建差分信号OUT 210 0%如果只有一个单端信号可用来驱动AD815和差分输出信号需要,一些电路可以用于执行single-ended-to-differential转换.5ms5V图47. OUT1地短路,方波OUT2, R F= 1 kΩ, R G= 222Ω并联运行为了增加驱动电流,负载都放大器,在AD815可并行连接.每个放大器应设置为相同的增益,以同样的信号驱动.为了确保这两个放大器共享当前,小一个电路来执行,这是用一个双运放预驱动器被配置为一noninverter和逆变器.该如图所示电路50执行此功能.它uses一AD826双运放同一个放大器增益和设置在+1在–1.获得另一方的1 kΩ整个输入电阻终端的追随者,使噪声增益(NG = 1)平等到inverter's.两个输出则差异驱动没有共同的模信号一阶AD815投入.–12–REV的. BAD815+15V+15V0.1 F38+15V0.1 F 1004810 FV IN481k21/2AD8261k151/2AD8156AMP 151/2AD8156R F 499R LR F499R G 100R F1402R L R F2499V OUTR G 1001k61k1/2AD826410751000.1 F111/2AD8157109AMP 2111/2AD81579–15V–15V0.1 F 10 F–15V图50.差分驱动器单端差分转换器图52.直接Single-Ended-to-Differential转换另一个方法创建一个从单一的差分信号端信号是使用变压器中心抽头次级.变压器的中心抽头接地,两个次级绕组连接获得对面极性信号的AD815放大器的两个输入.该为AD815投入偏置电流由该中心提供自来水通过变压器绕组接地连接.使用变压器的一个优点是它能够提供电路之间的路段和隔离,以提供良好的共模抑制.缺点是变压器有没有dc反应,有时会大,重,且价格昂贵.该电路如图51.+15V安培1有其+输入与输入信号驱动的,而+腺苷酸2输入接地.因此,放大器的输入– 2其输出驱动虚地的潜力.因此,安培1配置为五同相增益,(1 + R F1/R G ),因为R G 是连接到放大器2's –输入虚地.当输入放大器+ 1驱动的一个信号,同样信号出现在放大器的输入,这个信号– 1.作为服务输入放大器2配置为增益的–5, (–R F2/R G ).因此,两个输出朝着相反的方向具有相同的增益和建立一个平衡的差分信号.该电路可以工作在不同的收益适当的电阻选择.但在一般情况下,为了改变所产生的收益电路,至少有两个电阻值将被改变.在此外,在此配置的两个运amps噪声增益将永远是一个不同的,因此带宽将不匹配.第二个电路,有没有对上述缺点在上面的电路产生一个差分输出电压反馈在电流反馈运算amps在AD815.对运放出来该电路,在图53,画可作为高功率差分线驱动器,如ADSL需要(非对称数字用户环路)线路驱动.该AD815的运算amps每个配置为单位增益通过反馈电阻跟随(R A ).每个运算放大器的输出也推动通过两个R为其他单位增益反相器B s,创建一个完全对称的电路.100480.1 F10 F50502001/2AD815561kR L1k10100111/2AD815790.1 F–15V10 F图51.与变压器输入差动驱动器直接Single-Ended-to-Differential转换两种类型的电路可以产生差分输出信号一个没有任何其他组件使用单端输入比电阻.这些首先是如图52.如果+输入放大器2接地和一个小积极的信号是适用于放+ 1,输入输出的AMP 1会饱和驱动的积极方向和输出驱动放大器2饱和负方向.这是类似的方式与传统运算放大器在不加任何行为反馈.REV的. B –13–AD815~20pF十二通道视频分配放大器+15VR I49948R F4990.1 F6该AD815高电流使它能够驱动多达十二标准75Ω反向端接视频负载.图54是一这样的应用程序示意图.10 F50(OPTIONAL)V CC V INAMP151/2 AD815250(50 ) (OPTIONAL)R A499R A499R B499R B499100输入视频信号终止75Ω并应用到对每两个放大器的同相AD815.投入放大器配置为两个增益,以补偿divide-by-two每个电缆终端的功能.六个独立75Ω每个放大器的输出电阻是用于电缆回终止.在这种方式下,所有电缆都比较独立于任何电缆互相干扰小会不会对其他连接线的效果.驾驶时以这种方式6个视频电缆,看到的负载每个放大器的输出电阻,等于150Ω/6或25Ω.差分增益和差分相位0.05%是0.45°.+15V0.1 F49910 F1275 10AMP2111/2AD8155097VCC0.1 F–15V10 F图53. Single-Ended-to-Differential 驱动器如果一个电阻(R F)连接从输出到放大器2+负反馈的放大器1,投入是提供哪些关闭循环.输入电阻(R I)将使看起来像一个电路与传统的差分运算放大器的反相配置输出.反相输入输出运算放大器这种双变Pin 4,的安培1.积极投入该电路从输入输出增益,要么将被±R F/ R I.或者是single-ended-to-differential增益为2×R F/R I.差分输出可应用于一初级变压器.如果每个输出摆幅±10 V,有效摆动对变压器初级是40 V的P -磷.可选的电容器可以添加,以防止变压器因电流的任何dc到dc在AD815.输出偏移4995864100VIDEO IN7510011AD81512VIDEO OUTTO 75CABLES91074994990.1 F–15V10 F图54.视频分配放大器驱动AD81512视频电缆C1 B2B1B3J1–15VR148+15VTP4 TP3TP2+15VC20.1 FR3J5C310 F6T1R7C6R8175R223R15C9310R149118JP1126R20J412214R19R5R2R41J22C131/2AD8155U1R6R17J7R162TP13–15VC100.1 FJ3R9R10117R21R121/2AD81510U1C1110 F9R13J6R11R18图55. AD815评估板电路图–14–REV的. BAD815图56. AD815 AVR评估板汇编图图57. AD815 AVR评估板布局(元件层)图58. AD815 AVR评估板布局(焊接面)REV的. B–15–AD815外形尺寸在显示尺寸英寸和(mm).0.110(2.79) 0.152 (3.86)BSC 0.148 (3.76)0.394(10.007)0.137(3.479)0.516TYP(13.106)0.042(1.066)TYP0.080 (2.03)0.065 (1.65)2 PLACES0.079 (2.006)DIA2 PLACES 0.063 (1.60)0.057 (1.45)0.110(2.79)BSC0.152 (3.86)0.148 (3.76)0.394(10.007)0.516 (13.106)0.137(3.479)TYP0.063 (1.60)0.057 (1.45)0.694 (17.63)0.684 (17.37)0.426 (10.82)0.416 (10.57)115115 PIN 10.146 (3.70) 0.138 (3.50)0.600 (15.24)BSC0.798 (20.27)0.778 (19.76)8°0°0.024 (0.61)0.014 (0.36)0.671±0.006(17.043±0.152)SHORT0.080 (2.03) LEAD0.065 (1.65)2 PLACES0.042(1.066)TYP0.079 (2.006)DIA2 PLACES0.182 (4.62)0.172 (4.37)0.426 (10.82)0.416 (10.57)0.088 (2.24)0.068 (1.72)0.666±0.006(16.916±0.152)LONGLEADPIN 10.798 (20.27)0.778 (19.76)0.024 (0.61)0.014 (0.36)0.182 (4.62)0.172 (4.37)0.100 (2.54)BSC0.031 (0.79)SEATING0.024 (0.60) PLANESEATINGPLANE0.050(1.27)BSC0.031 (0.79)0.024 (0.60)0.209±0.010(5.308±0.254)0.700 (17.78) BSC24-Lead热增强SOIC(RB-24)0.6141 (15.60)0.5985 (15.20)241315-Lead通孔和交错的SIP信息直引脚形式(YS-15)0.1100.152 (3.86)(2.79)BSC 0.148 (3.76)0.063 (1.60)0.057 (1.45)0.137(3.48)TYP0.042(1.07)TYP0.516 (13.106)0.394(10.007)0.4193 (10.65)0.3937 (10.00)0.2992 (7.60)0.2914 (7.40)0.694 (17.63)0.684 (17.37)0.426 (10.82)0.416 (10.57)112PIN 10.1043 (2.65)0.0926 (2.35)0.0291 (0.74)x 45°0.0098 (0.25)1150.080 (2.03)0.627±0.010(15.926±0.254)SHORTLEAD0.601±0.010(15.265 0.710 (18.03)±0.254)0.690 (17.53)LONGLEAD0.176 (4.47)0.150 (3.81)0.065 (1.65)2 PLACESPIN 10.700 (17.78) BSC0.798 (20.27)0.778 (19.76)0.079(2.007) DIA2 PLACES0.182 (4.62)0.172 (4.37)SEATINGPLANE0.031 (0.79)0.024 (0.60)0.050 (1.27)BSC–16–REV的. B印刷U.0.0118 (0.30)0.0040 (0.10)0.0500(1.27)BSC8°0.0201 (0.51)0°SEATING 0.0125 (0.32)0.0130 (0.33) PLANE0.0091 (0.23)0.0500 (1.27)0.0157 (0.40)0.024 (0.61)0.014 (0.36)0.169 0.200(4.29) (5.08)BSC BSC0.691±0.010(17.551±0.254)0.766±0.010(19.456±0.254)0.791±0.010(20.091±0.254)0.694 (17.63)0.684 (17.37)C2106 15-Lead表面装载 DDPAK(VR-15)15-Lead通孔和交错的SIP信息90引脚形式(Y-15)。

DXTA92-13;中文规格书,Datasheet资料

DXTA92-13;中文规格书,Datasheet资料

Symbol PD RθJA
Tj, TSTG
Value 1
125 -55 to +150
Unit W °C/W °C
Electrical Characteristics @TA = 25°C unless otherwise specified
Characteristic OFF CHARACTERISTICS (Note 4) Collector-Base Breakdown Voltage Collector-Emitter Breakdown Voltage Emitter-Base Breakdown Voltage Collector-Base Cut-off Current Emitter-Base Cut-off Current ON CHARACTERISTICS (Note 4) Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage
SOT89-3L
COLLECTOR
3E
2,4
C4
2C
1B TOP VIEW
1 BASE
3 EMITTER
Schematic and Pin Configuration
Maximum Ratings @TA = 25°C unless otherwise specified
Characteristic Collector-Base Voltage Collector-Emitter Voltage Emitter-Base Voltage Continuous Collector Current
LIFE SUPPORT Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.

Mini-Circuits USB RF SP8T Switch 产品说明书

Mini-Circuits USB RF SP8T Switch 产品说明书

USB-1SP8T-63HUSB RF SP8T Switch50Ω 10 to 6000 MHzSolid stateCase Style: QM2280Product OverviewMini-Circuits’ USB-1SP8T-63H is a low cost, absorptive SP8T switch with USB control. The fast switching, solid state switch operates from 10 MHz to 6000 MHz with 200 ns typical switch transition speed. High linearity (+50 dBm typ IP3), and high isolation (80 dB typical) allow the model to be used for a wide variety of RF applications.Full software support is provided for USB control, including our user-friendly GUI application for Windows and a full API with programming instructions for Windows and Linux environments (both 32-bit and 64-bit systems). The latest version of the full software package can be downloaded from https:///softwaredownload/solidstate.html at any time.The USB-1SP8T-63H is housed in a compact, low profile, rugged metal case (6.5” x 2.00” x 0.475”) with 9 SMA (F) connectors (COM,and J1 to J8), a USB Mini-B port for power and two data bus connectors for Master / Slave connections to other modules.The Big Deal• Very high isolation, 80 dB typ• High speed switch transition, 200 ns typ • High power handling, +30 dBm max • Daisy-chain control of up to 35 modulesTypical Applications• Cellular handset / BTS testing• High volume production testing / ATE • Design verification testing• RF signal routing / switch matricesModel No.DescriptionQty.USB-1SP8T-63H Switch Matrix1Included AccessoriesMUSB-CBL-3+2.6 ft USB cable1Rev. E M177161EDR-11446/1Software PackageTrademarks: Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Linux is a registered trademark of Linus Torvalds. Pentium is a registered trademark of Intel Corporation. Neither Mini-Circuits nor the Mini-Circuits USB-1SP8T-63H are affiliated with or endorsed by the owners of the above referenced trademarks Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation.Key Features1 Max power at through path derates linearly from +30 dBm @ 40 MHz to +23 dBm @10 MHz2 Compression and IP3 may degrade below 100 MHz.3 IP3 Tested with 1 MHz span between signals.4 Transition time spec represents the time that the RF signal paths are interrupted during switching and thus is specified without communication delays.5 Minimum dwell time is the shortest time that can be achieved between 2 switch transitions when programming an automated switch sequence.6 Switching time(USB) is the time from issuing a single software command via USB to the switch state changing. The most significant factor is the host PC, influenced by CPU load and USB protocol. The time shown is an estimate for a medium CPU load and USB 2.0 connection.7 Current consumption specified for a single unit without any slave modules.8 Pass through current is the maximum current handling of a unit with slave modules attached. If controlling a large number of slave modules additional power supplies should be included to ensure this limit is not exceeded. See page 5 for details.Simplified DiagramConnectionsRF SP8T Switch (J1 to J8, COM)(SMA female)USB(USB type Mini-B receptacle)Serial In (Digital Control 2 port)(Digital Snap Fit Connector)Serial Out (Digital Control 1 port)(Digital Snap Fit Connector)Absolute Maximum RatingsOperating Temperature 0°C to 50°C Storage Temperature -20°C to 60°CDC supply voltage max.6V RF power @ 10 - 6000 MHz into termination +24 dBmRF power @ Through path10 to 40 MHz Derate linearly from +35 dBm @ 40MHz to +30 dBm @10 MHz40 to 6000 MHz+35 dBm DC voltage @ RF Ports16VPermanent damage may occur if any of these limits are exceeded. Operating in the rangebetween operating power limits and absolute maximum ratings for extended periods of time may result in reduced life and reliability.Switch in COM to 7 state50Ω50Ω50Ω50Ω50Ω50Ω50Ω50Ω50ΩControl & Power Control & Power USBThe USB-1SP8T-63H is designed to connect up to 35 modules in series (Daisy chain) using dynamic addressing, meaning there is no need to specifically set the address of the modules, the addresses will be set automatically as part of establishing the communications with the PC. The module connected to the PC USB port will be assigned address 0 (Master), the first module connected to it will get address 1(slave) and subsequent modules incrementing up to address 34 (slave).Connections between modules will be made using the serial in/out ports with the module connected to the PC as a master and all others as slave modules. All control will be through the master module (address zero) which is the only one communicating with the PC. Serial control out port of each module should be connected to the serial control in port of the next module. Power will be supplied from the PC via the master module up to a maximum of 500mA.If connecting USB-1SP8T-63H units in series, additional power supply will generally be needed every six to nine modules. If mixing modules of different types ensure the max current through any unit does not exceed 500mA. All power supplies should be connected to the module via the module’s USB port, connecting an additional power supply will automatically cut off power draw from the serial control in port for that module.The Serial master/slave bus allows connecting modules of different types to the same daisy chain as long as all support Mini-Circuits Dynamic addressing setup. To add a new module to the set up simply connect the module to the setup and refresh the address listing, no need to reset any of the existing modules or assign addresses manually.Connecting slave units should be done only with control cables provided by Mini-CircuitsinchmmOutline Dimensions ( )A B C D E F G H J K LWT. GRAMS 6.50 2.000.4750.2170.690.640 6.300 1.0000.100.500.106400165.150.812.07 5.5117.5316.26160.0225.40 2.5412.70 2.69CHECK PRINT File 98-QM2470B16-10-251+2.03.04.05.06.07.00100020003000400050006000I n s e r t i o n L o s s (d B )Insertion Loss over Temp.2.03.04.05.06.07.00100020003000400050006000I n s e r t i o n L o s s (d B )Frequency (MHz)Insertion Loss of all outputs in switchFrequency (MHz)Frequency (MHz)1.01.21.41.61.82.00100020003000400050006000V S W R (:1)VSWR Active Port over Temp.Frequency (MHz)1.01.21.41.61.82.00100020003000400050006000V S W R (:1)VSWR Common Port over Temp.Frequency (MHz)1.01.21.41.61.82.00100020003000400050006000V S W R (:1)Frequency (MHz)VSWR Internal Term. over Temp.Frequency (MHz) 1.01.21.41.61.82.00 100020003000400050006000V S W R (:1)VSWR of all active ports in switchFrequency (MHz)4060801001201400100020003000400050006000I s o l a t i o n (d B )Isolation J1 to J2 with J1 active4060801001201400100020003000400050006000I s o l a t i o n (d B )Isolation COM to J2 with J1 activeFrequency (MHz)Frequency (MHz)4060801001201400100020003000400050006000I s o l a t i o n (d B )Isolation COM to J7 with J5 active.4060801001201400100020003000400050006000I s o l a t i o n (d B )Isolation J4 to J5 with J4 activeFrequency (MHz)Frequency (MHz)4060801001201400100020003000400050006000I s o l a t i o n (d B )Isolation COM to J7 with J8 active.4060801001201400100020003000400050006000I s o l a t i o n (d B )Isolation J7 to J8 with J8 activeFrequency (MHz)Frequency (MHz)• Mini-Circuits’ full software and support package including user guide, Windows GUI, DLL files, programming manual and examples can be downloaded free of charge fromhttps:///softwaredownload/solidstate.html• Please contact ****************************** for supportGraphical User Interface (GUI) for Windows Key Features:• Set each switch manually• Set timed sequence of switching states• Configure switch address and upgrade Firmware• Controlling up to 35 modules in ‘daisy chain’ configurationApplication Programming Interface (API)Windows Support:• API DLL files exposing the full switch functionality See programming manual at https:///softwaredownload/Prog_Manual-Solid_State_Switch.pdf for details • ActiveX COM DLL file for creation of 32-bit programs • .Net library DLL file for creation of 32 / 64-bit programs• Supported by most common programming environments (refer to application note AN-49-001 for summary of tested environments)Linux Support:• Full switch control in a Linux environment is achieved by way of USB interrupt commands. See programming manual at https:///softwaredownload/Prog_Manual-H_Series_Switches.pdf for detailsAdditional NotesA. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit’s applicable established test performance criteria and measurement instructions.C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, “Standard Terms”); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits’ website at /MCLStore/terms.jspModelDescriptionUSB-1SP8T-63HUSB RF SP8T SwitchOptional AccessoriesDescriptionMUSB-CBL-3+ (Spare) 2.6 ft (0.8 m) USB Cable: USB type A(Male) to USB type Mini-B(Male)MUSB-CBL-7+ 6.6 ft (2.0 m) USB Cable: USB type A(Male) to USB type Mini-B(Male)CBL-1.5FT-MMD+ 1.5 ft cable assembly for serial control Daisy Chain with snap fit connectors USB-AC/DC-5+AC/DC +5V power adaptor with USB connector 9,10Included Accessories Part No.DescriptionMUSB-CBL-3+2.6 ft (0.8 m) USB Cable: USB type A(Male) to USB type Mini-B(Male)9 The USB-AC/DC-5 may be used to provide additional power if needing to connect a number of switches in series exceeding 500mA total current draw.10 Includes power plugs for US, UK, EU, IL, AU & China. Plugs for other countries are also available, if you need a power plug for a country not listed pleasecontact******************************。

AT32F415系列微控制器数据手册说明书

AT32F415系列微控制器数据手册说明书

基于ARM® 32位的Cortex®-M4微控制器,配有64 K字节到256 K字节闪存、sLib、11个定时器、1个ADC、2个比较器、12个通信接口(1个CAN和1个OTGFS)功能⏹内核:ARM® 32位的Cortex®-M4 CPU−最高150 MHz工作频率,带存储器保护单元(MPU)−内建单周期乘法和硬件除法−具有DSP指令集⏹存储器− 64 K字节到256 K字节的闪存存储器− 18 K字节的启动程序代码区作启动加载程序(Bootloader)用− sLib:将指定之主存储区设为执行代码安全库区,此区代码仅能调用无法读取− 32 K字节的SRAM⏹电源控制(PWC)− 2.6V至3.6V供电−上电复位(POR)、低电压复位(LVR)、电源电压监测器(PVM)−低功耗模式:睡眠、深睡眠、和待机− V BAT为LEXT、ERTC和20个32位的电池供电寄存器(BPR)供电⏹时钟和复位管理(CRM)− 4至25 MHz晶体振荡器(HEXT)−内置经出厂调校的48 MHz高速时钟(HICK),25 °C达1 %精度,-40 °C至+105 °C达2 %精度− PLL可灵活配置31到500倍频和1到15分频系数− 32 kHz晶振(LEXT)−低速内部时钟(LICK)⏹模拟模块− 1个12位2 MSPS A/D转换器,多达16个外部输入通道−温度传感器(V TS)和内部参考电压(V INTRV)− 2个比较器(CMP)⏹DMA− 2個7通道DMA控制器共14通道⏹多达55个快速GPIO端口−所有GPIO口可以映像到16个外部中断(EXINT)−几乎所有GPIO口可容忍5 V输入信号⏹多达11个定时器(TMR)− 1个16位7通道高级定时器,包括3对互补通道PWM输出,带死区控制和紧急停止功能−多达5个16位定时器和2个32位定时器,每个定时器最多达4个用于输入捕获/输出比较/PWM或脉冲计数的通道和增量编码器输入− 2个看门狗定时器(一般型WDT和窗口型WWDT)−系统滴答定时器:24位递减计数器⏹ERTC:增强型RTC,具有自动唤醒、闹钟、亚秒级精度、及硬件日历,带校准功能⏹多达12个通信接口− 2个I2C接口,支持SMBus/PMBus− 5个USART接口;支持主同步SPI和调制解调器控制;具有ISO7816接口、LIN和IrDA− 2个SPI接口(36 M位/秒),均可复用为半双工I2S接口− CAN接口(2.0B主动),内置256字节的专用缓存− OTGFS全速控制器含片上PHY,内置1280字节的专用缓存− SDIO接口⏹CRC计算单元⏹96位的芯片唯一代码(UID)⏹调试模式−串行线调试(SWD)和JTAG接口⏹温度范围:-40至+105 °C封装Array− LQFP64 10 x 10 mm− LQFP64 7 x 7 mm− LQFP48 7 x 7 mm− QFN48 6 x 6 mm− QFN32 4 x 4 mm目录1规格说明 (11)2功能简介 (13)2.1ARM®Cortex®-M4 (13)2.2存储器 (14)2.2.1闪存存储器(Flash) (14)2.2.2存储器保护单元(MPU) (14)2.2.3内置随机存取存储器(SRAM) (14)2.3中断 (14)2.3.1嵌套的向量式中断控制器(NVIC) (14)2.3.2外部中断(EXINT) (14)2.4电源控制(PWC) (14)2.4.1供电方案 (14)2.4.2复位和电源电压监测器(POR / LVR / PVM) (15)2.4.3电压调节器(LDO) (15)2.4.4低功耗模式 (15)2.5启动模式 (15)2.6时钟 (16)2.7通用输入输出口(GPIO) (16)2.8重映射功能 (16)2.9直接存储器访问控制器(DMA) (16)2.10定时器(TMR) (17)2.10.1高级定时器(TMR1) (17)2.10.2通用定时器(TMR2~5和TMR9~11) (17)2.10.3系统滴答定时器(SysTick) (18)2.11看门狗(WDT) (18)2.12窗口型看门狗(WWDT) (18)2.13增强型实时时钟(ERTC)和电池供电寄存器(BPR) (18)2.14通信接口 (19)2.14.1串行外设接口(SPI) (19)2.14.2内部集成音频接口(I2S) (19)2.14.3通用同步/异步收发器(USART) (19)2.14.4内部集成电路总线(I2C) (19)2.14.5安全数字输入/输出接口(SDIO) (19)2.14.6控制器区域网络(CAN) (20)2.14.7通用串行总线On-The-Go全速(OTGFS) (20)2.15循环冗余校验(CRC)计算单元 (20)2.16模拟/数字转换器(ADC) (20)2.16.1温度传感器(V TS) (20)2.16.2内部参考电压(V INTRV) (21)2.17比较器(CMP) (21)2.18调试:串行线(SWD)/ JTAG调试接口 (21)3引脚定义 (22)4存储器映像 (28)5电气特性 (29)5.1测试条件 (29)5.1.1最小和最大数值 (29)5.1.2典型数值 (29)5.1.3典型曲线 (29)5.1.4供电方案 (29)5.2绝对最大值 (30)5.2.1额定值 (30)5.2.2电气敏感性 (31)5.3规格 (32)5.3.1通用工作条件 (32)5.3.2上电和掉电时的工作条件 (32)5.3.3内嵌复位和电源控制模块特性 (32)5.3.4存储器特性 (34)5.3.5供电电流特性 (34)5.3.6外部时钟源特性 (42)5.3.7内部时钟源特性 (46)5.3.8PLL特性 (47)5.3.9低功耗模式唤醒时间 (47)5.3.10EMC特性 (47)5.3.11GPIO端口特性 (48)5.3.12NRST引脚特性 (50)5.3.13TMR定时器特性 (50)5.3.14SPI接口特性 (51)5.3.15I2S接口特性 (53)5.3.16I2C接口特性 (54)5.3.17SDIO接口特性 (55)5.3.18OTGFS接口特性 (56)5.3.1912位ADC特性 (57)5.3.20内部参照电压(V INTRV)特性 (59)5.3.21温度传感器(V TS)特性 (60)5.3.22比较器(CMP)特性 (61)6封装特性 (62)6.1LQFP64 – 10 x 10 mm封装数据 (62)6.2LQFP64 – 7 x 7 mm封装数据 (64)6.3LQFP48 – 7 x 7 mm封装数据 (66)6.4QFN48 – 6 x 6 mm封装数据 (68)6.5QFN32 – 4 x 4 mm封装数据 (70)6.6封装丝印 (71)6.7热特性 (72)7型号说明 (73)8版本历史 (74)表目录表1. 选型列表 (2)表2. AT32F415系列器件功能和配置 (12)表3. 启动加载程序(Bootloader)的管脚配置 (16)表4. 定时器功能比较 (17)表5. AT32F415系列引脚定义 (25)表6. 电压特性 (30)表7. 电流特性 (30)表8. 温度特性 (30)表9. ESD值 (31)表10. Latch-up值 (31)表11. 通用工作条件 (32)表12. 上电和掉电时的工作条件 (32)表13. 内嵌复位和电源管理模块特性 (32)表14. 可编程电压检测器特性 (33)表15. 内部闪存存储器特性 (34)表16. 内部闪存存储器寿命和数据保存期限 (34)表17. 运行模式下的典型电流消耗 (35)表18. 睡眠模式下的典型电流消耗 (36)表19. 运行模式下的最大电流消耗 (37)表20. 睡眠模式下的最大电流消耗 (37)表21. 深睡眠和待机模式下的典型和最大电流消耗 (38)表22. V BAT的典型和最大电流消耗(LEXT和ERTC开启) (40)表23. 内置外设的电流消耗 (41)表24. HEXT 4 ~ 25 MHz晶振特性 (42)表25. 高速外部用户时钟特性 (43)表26. LEXT 32.768 kHz晶振特性 (44)表27. 低速外部用户时钟特性 (45)表28. HICK振荡器特性 (46)表29. LICK振荡器特性 (46)表30. PLL特性 (47)表31. 低功耗模式的唤醒时间 (47)表32. EMS特性 (47)表33. GPIO静态特性 (48)表34. 输出电压特性 (49)表35. 输入交流特性 (49)表36. NRST引脚特性 (50)表37. TMR定时器特性 (50)表38. SPI特性 (51)表39. I2S特性 (53)表40. SD/MMC接口特性 (55)表41. OTGFS启动时间 (56)表42. OTGFS直流特性 (56)表43. OTGFS电气特性 (56)表44. ADC特性 (57)表45. f ADC = 14MHz时的最大R AIN (58)表46. f ADC = 28MHz时的最大R AIN (58)表47. ADC精度 (58)表48. 内置参照电压特性 (59)表49. 温度传感器特性 (60)表50. 比较器特性 (61)表51. LQFP64 – 10 x 10 mm 64引脚薄型正方扁平封装机械数据 (63)表52. LQFP64 – 7 x 7 mm 64引脚薄型正方扁平封装机械数据 (65)表53. LQFP48 – 7 x 7 mm 48引脚薄型正方扁平封装机械数据 (67)表54. QFN48 – 6 x 6 mm 48引脚正方扁平无引线封装机械数据 (69)表55. QFN32 – 4 x 4 mm 32引脚正方扁平无引线封装机械数据 (71)表56. 封装的热特性 (72)表57. AT32F415系列型号说明 (73)表58. 文档版本历史 (74)图目录图1. AT32F415系列功能框图 (13)图2. AT32F415系列LQFP64引脚分布 (22)图3. AT32F415系列LQFP48引脚分布 (23)图4. AT32F415系列QFN48引脚分布 (23)图5. AT32F415系列QFN32引脚分布 (24)图6. 存储器图 (28)图7. 供电方案 (29)图8. 上电复位和掉电复位波形图 (33)图9. LDO在运行模式时,深睡眠模式下的典型电流消耗在不同的V DD时与温度的对比 (38)图10. LDO在低功耗模式时,深睡眠模式下的典型电流消耗在不同的V DD时与温度的对比 (39)图11. 待机模式下的典型电流消耗在不同的V DD时与温度的对比 (39)图12.V BAT的典型电流消耗(LEXT和RTC开启)在不同的V BAT电压时与温度的对比 (40)图13. 使用8 MHz晶体的典型应用 (42)图14. 外部高速时钟源的交流时序图 (43)图15. 使用32.768 kHz晶体的典型应用 (44)图16. 外部低速时钟源的交流时序图 (45)图17. HICK时钟精度与温度的对比 (46)图18. 建议的NRST引脚保护 (50)图19. SPI时序图– 从模式和CPHA = 0 (52)图20. SPI时序图– 从模式和CPHA = 1 (52)图21. SPI时序图–主模式 (52)图22. I2S从模式时序图(Philips协议) (53)图23. I2S主模式时序图(Philips协议) (54)图24. SDIO高速模式 (55)图25. SD默认模式 (55)图26. OTGFS时序:数据信号上升和下降时间定义 (56)图27. ADC精度特性 (59)图28. 使用ADC典型的连接图 (59)图29. V TS对温度理想曲线图 (60)图30. 比较器迟滞图 (61)图31. LQFP64 – 10 x 10 mm 64引脚薄型正方扁平封装图 (62)图32. LQFP64 – 7 x 7 mm 64引脚薄型正方扁平封装图 (64)图33. LQFP48 – 7 x 7 mm 48引脚薄型正方扁平封装图 (66)图34. QFN48 – 6 x 6 mm 48引脚正方扁平无引线封装图 (68)图35. QFN32 – 4 x 4 mm 32引脚正方扁平无引线封装图 (70)图36. 丝印示意图 (71)1 规格说明AT32F415系列微控制器基于高性能的ARM®Cortex®-M4 32位的RISC内核,最高工作频率达到150MHz,Cortex®-M4内核具有一组DSP指令和提高应用安全性的一个存储器保护单元(MPU)。

KTG8152

KTG8152

Figure.1. Typical CC/CV CurveCSVDD FB GND VCBASE5%恒压调节在 通用AC输入 高精度恒流调节处 通用AC输入 初级侧感应和调节,而无需 TL431和光耦 可编程的CV和CC调节 内置的初级绕组电感 赔偿金 可编程电缆压降补偿 驱动BJT开关 超低启动电流(典型值1uA的) VDD过电压保护 内置反馈环路开路保护 内置短路保护 内置前沿消隐(LEB) 逐周期电流限制 VDD欠压锁定与迟滞 (UVLO)特点概述ktg8152是一款高性能离线PSR控制器,低功率AC / DC充电器和适配器应用。

它工作在初级侧传感和调节。

因此,光耦和TL431可能被淘汰。

专有的恒定电压( CV)和恒流电流(CC)控制在tegrated所示的如下图所示。

在恒流控制当中,电流和输出功率设置可以从外部调整由检测电阻RS在CS引脚。

在恒压控制, PFM操作用来实现高性能和高效率。

此外,良好的负载调节是通过内置的电缆压降补偿来实现。

该芯片的功耗非常低的工作电流(典型300uA ) ,它可以实现小于30mW的待机功耗,以满足严格的待机功耗标准。

ktg8152提供了全面的保护范围内的自动恢复功能,包括逐周期电流限制ING , VDD过压保护,反馈环路开路保护,短路保护电路,内置前沿消隐,欠压锁定(UVLO ) , VDD等。

ktg8152是采用SOT23 - 6封装。

典型应用应用 低功率AC / DC离线开关电源的 手机充电器 数码相机充电器 小型电源适配器 辅助电源为PC,电视等。

 线性稳压器/碾压混凝土更换High Precision CC/CV Primary-Side ControllerKTG8152ktg8152MP SOT23-6, Pb-free, T&RGENERAL INFORMATIONPin ConfigurationThe pin map is shown as below for SOT23-6.GND CS BASE VDDVCFBOrdering Information Part NumberDescriptionPackage Dissipation Rating Package R θJA (℃/W) SOT23-6 200 .Absolute Maximum Ratings Parameter Value VDD Voltage -0.3 to 30V VC Voltage -0.3 to 7V BASE Voltage -0.3 to 7V CS Input Voltage -0.3 to 7V FB Input Voltage -0.3 to 7V Min/Max OperatingJunction Temperature T J -40 to 150 o CMin/Max StorageTemperature T stg -55 to 150 o CLead Temperature(Soldering, 10secs) 260 o CNote: Stresses beyond those listed under “absolute maximumratings” may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.KTG8152Marking InformationTERMINAL ASSIGNMENTSPin Num Pin NameI/O Description 1 GND P Ground2 CS I Current sense input.3 BASEOBase drive with current limit for power BJT.4 FB I The voltage feedback from auxiliary winding. Connected to resistor divider from auxiliary winding reflecting output voltage.5 VC I Low pass filter capacitor for cable compensation 6VDDP Power SupplyBLOCK DIAGRAMEAHigh Precision CC/CV Primary-Side ControllerKTG8152ELECTRICAL CHARACTERISTICS(TA = 25℃, VDD=15V, if not otherwise noted)Symbol Parameter Test Conditions Min Typ Max Unit Supply Voltage (VDD) SectionI start-up Start up current VDD=11V 1 3 uA I static Static current VDD=15V 300 400uA UVLO(OFF) VDD under voltage lockout exit 11.5 12.5 13.5V UVLO(ON) VDD under voltage lockout enter 6.0 6.8 7.6 V VDD_OVP VDD over voltage protection 25 27 29 VMax. Operating Voltage 25VCurrent Sense Input SectionTLEB LEB time 0.5 uS Vth_ocp Over current threshold 485 500 515mVTd_oc OCP propagation delay From ocp comparator tobase drive100 nsFB Input SectionVref_fb Reference voltage for feedbackthreshold1.982.00 2.02VTpause_min 2.0 uS Tpause_max Maximum pause 8 10 12 mSIcomp_cable Maximum cable compensationcurrent42 45 48 uABASE Drive SectionIs_max Base sourcing maximum current 20 30 40 mAIs_preoff Base sourcing current afterpre-off0.5 1 1.5 mARdson_l Base drive low side on resistor 1 ohmCHARACTERIZATION PLOTSIn ktg8152, the CC point and maximum output To support ktg8152 proprietary CC/CV control, operation mode, ktg8152 will regulate the ktg8152 is designed to produce good CC/CV The Operating current of ktg8152 is as low as Startup current of ktg8152 is designed to be ktg8152 is a cost effective PSR controllerOPERATION DESCRIPTIONoptimized for off-line low power AC/DC applications including battery chargers. It operates in primary side sensing and regulation, thus opto-coupler and TL431 are not required. Proprietary built-in CV and CC control can achieve high precision CC/CV control meeting most charger application requirements.z Startup Current and Start up Control very low so that VDD could be charged up above UVLO threshold and starts up quickly. A large value startup resistor can therefore be used to minimize the power loss in application.z Operating Current300uA. Good efficiency and very low standby power(less than 30mW) is achieved with the low operating current.z CC/CV Operationcontrol characteristic as shown in the Figure. 1.In charger applications, a discharged battery charging starts in the CC portion of the curve until it is nearly full charged and smoothly switches to operate in CV portion of the curve. The CC portion provides output current limiting. In CV operation, the output voltage is regulated through the primary side control. In CC output current constant regardless of the output voltage drop.z Principle of Operationsystem needs to be designed in DCM mode for flyback system (Refer to Typical Application Diagram on page1).In the DCM flyback converter, the output voltage can be sensed via the auxiliary winding. During MOSFET turn-on time, the load current is supplied from the output filter capacitor, Co. The current in the primary winding ramps up. When MOSFET turns off, the energy stored in the primary winding is transfered to the secondary side such that the current in the secondary winding isP SPS I N N I ⋅=(1) The auxiliary voltage reflects the output voltageas shown in Figure.2 and it is given by )(V V N N V O SAUXAUX Δ+⋅=(2) Where ΔV indicates the drop voltage of the output Diode.Figure.2. Auxiliary voltage waveformVia a resistor divider connected between the auxiliary winding and FB (pin 4), the auxiliary voltage is sampled at the middle of the de-magnetization and it is hold until the next sampling. The sampled voltage is compared with Vref (2.0V) and the error is amplified. The error amplifier output reflects the load condition and controls the switching off time to regulate the output voltage, thus constant output voltage can be achieved.When the sampled voltage is below Vref and the error amplifier output reaches its minimum, the switching frequency is controlled by the sampled voltage to regulate the output current, thus the constant output current can be achieved.z Adjustable CC point and Output Power power can be externally adjusted by external current sense resistor Rs at CS pin as illustrated in typical application diagram. The larger Rs, the smaller CC point is, and the smaller output power becomes, and vice versa as shown in Figure.3.The switching frequency of ktg8152 is output. The output ofKTG8152is shut down when KTG8152. The switch current is detectedby a In KTG8152,cable drop compensation isFigure.3. Adjustable output power by changing Rsz Operation switching frequencyadaptively controlled according to the load conditions and the operation modes.For flyback operating in DCM, The maximum output power is given by 221pSW P MAX I F L Po =(3) Where Lp indicate the inductance of primary winding and Ip is the peak current of primary winding.Refer to the equation 3, the change of the primary winding inductance results in the change of the maximum output power and the constant output current in CC mode. To compensate the change from variations of primary winding inductance, the switching frequency is locked by an internal loop such that the switching frequency isDemagSW T F 21=(4)Since T Demag is inversely proportional to the inductance, as a result, the product Lp and fswis constant, thus the maximum output power and constant current in CC mode will not change as primary winding inductance changes. Up to ±10% variation of the primarywinding inductance can be compensated.z Programmable Cable drop Compensationimplemented to achieve good load regulation.An offset voltage is generated at FB pin by aninternal current flowing into the resister divider.The current is proportional to the switching offtime, as a result, it is inversely proportional tothe output load current, thus the drop due to thecable loss can be compensated. As the loadcurrent decreases from full-load to no-load, theoffset voltage at FB will increase. It can also beprogrammed by adjusting the resistance of the divider to compensate the drop for various cable lines used.The percentage of maximum compesation is%100210)2//1(_6×××=Δ−R R cable Icomp Vout V V Δ is load compensation voltage and Vout is output voltage;For example: R1∥R2=3Kohm, the percentage of maximum compensation is%75.6%1002103000456=×××=Δ−VoutVN AUXzCurrent Sensing and Leading EdgeBlankingCycle-by-Cycle current limiting is offered in sense resistor into the CS pin. An internal leading edge blanking circuit chops off the sensed voltage spike at initial power BJT on state so that the external RC filtering on sense input is no longer needed.z Base Drive The drive is a push pull stage with supply voltageVDD. It provides the driving current for the externalpower bipolar transistor. The output signal is current limit to Is_max (typical 30mA). z Protection ControlGood power supply system reliability is achieved with its rich protection features including Cycle-by-Cycle current limiting (OCP), VDD over voltage protection, feedback loop open protection, short circuit protection and Under Voltage Lockout on VDD (UVLO). VDD is supplied by transformer auxiliary winding VDD drops below UVLO (ON) and the power converter enters power on start-up sequence thereafter.High Precision CC/CV Primary-Side Controller KTG8152PACKAGE MECHANICAL DATADimensions In Millimeters Dimensions In Inches Symbol Min Max MinMax A 1.000 1.450 0.039 0.057 A1 0.000 0.150 0.000 0.006 A2 0.900 1.300 0.035 0.051 b 0.300 0.500 0.012 0.020 c 0.080 0.220 0.003 0.009D 2.800 3.020 0.110 0.119E 1.500 1.726 0.059 0.068 E1 2.6003.0000.1020.118e 0.950 (BSC)0.037 (BSC)e1 1.800 2.000 0.071 0.079 L0.3000.6000.0120.024 θ 0º 8º 0º 8ºHigh Precision CC/CV Primary-Side Controller KTG8152。

D-Link DIR-815 用户手册说明书

D-Link DIR-815 用户手册说明书
无线设置................................................................. 32 手动无线设置......................................................... 33
802.11n/b/g (2.4GHz) .......................................... 33 802.11n/a (5GHz) ................................................ 34 IPv6......................................................................... 40 工具......................................................................... 52 管理员................................................................. 52 动态 DNS............................................................. 57 系统检测............................................................. 58 计划..................................................................... 59 状态......................................................................... 60 设备信息............................................................. 60 日志..................................................................... 61 统计..................................................................... 62 Internet会话......................................................... 63 无线..................................................................... 64 IPv6..................................................................... 65 支持......................................................................... 66

惠普520(GN815AA)

惠普520(GN815AA)

结构特征
结构类型全内置 重量约2.3Kg 规格 334×247×30mm 惠普 520(GN815AA)电能规格 电池类型 4芯(32 WHr)锂电池 工作时间 2小时 电源适配器 65W AC适配器 Nhomakorabea其它
操作系统 Windows Vista Home Basic 附带软件 Media Player 10,惠普备份与恢复管理器,Sonic Digital Media Plus,Intervideo WinDVD,Symantec Internet Security5 保修时间、方式 Warranty 1-1-0 工作温度及湿度工作温度0℃-35℃,工作湿度20%-80% 存储温度及湿度储存温度-20℃-60℃,储存湿度10%-90% 其它性能 TPM嵌入式安全芯片
存储显示
硬盘类型 SATA硬盘 硬盘参数 5400转 硬盘容量 120G 光驱类型内置,DVD-RW 光驱描述支持双层刻录 惠普 520(GN815AA)显示屏 屏幕尺寸 14寸 显示屏类型 WXGA 显示屏描述宽屏,16:10比例,分辨率:1280×800 惠普 520(GN815AA)音频视频 显示芯片集成Intel GMA950芯片
惠普520(GN815AA)
一款计算机
01 基本参数
03 结构特征
目录
02 存储显示 04 其它
惠普520(GN815AA)是一款计算机,上市时间是2007年9月。
基本参数
型号 520(GN815AA) 上市时间 2007年,9月 处理器 Intel Core Duo(Yonah) T2300E(1.66G) 处理器类型酷睿双核(Yonah) 处理器最高主频 1660MHz 二级缓存 2048KB L2 主板芯片组 Intel 945GM+ICH7M 系统总线 667MHz 移动平台迅驰3平台 产品定位低价,轻便,商务 存储设备

NUF8600MNTXG;中文规格书,Datasheet资料

NUF8600MNTXG;中文规格书,Datasheet资料

NUF8600MN8-Channel EMI Filter with Integrated ESD ProtectionThe NUF8600MN is a eight −channel (C −R −C) Pi −style EMI filter array with integrated ESD protection. Its typical component values of R = 50 W and C = 17 pF deliver a cutoff frequency of 115 MHz and stop band attenuation greater than −25 dB from 800 MHz to 2.2 GHz.This performance makes the part ideal for parallel interfaces with data rates up to 77 Mbps in applications where wireless interference must be minimized. The specified attenuation range is very effective in minimizing interference from 2G/3G, GPS, Bluetooth ® and WLAN signals.The NUF8600MN is available in the low −profile 18−lead 1.6 mm x 4.0 mm DFN16 surface mount package.Features/Benefits•±18 kV ESD Protection on each channel (IEC61000−4−2 Level 4,Contact Discharge)•R/C Values of 50 W and 17 pF deliver Exceptional S21 Performance Characteristics of 115 MHz f 3dB and −25 dB Stop Band Attenuation from 800 MHz to 2.2 GHz•Integrated EMI/ESD System Solution in UDFN Package Offers Exceptional Cost, System Reliability and Space Savings •This is a Pb −Free DeviceApplications•EMI Filtering for LCD and Camera Data Lines•EMI Filtering and Protection for I/O Ports and KeypadsFigure 1. Electrical SchematicSee Table 1 for pin descriptionnFigure 2. Insertion Loss Characteristic(S21 Measurement)−40−35−30−25−20−15−10−50 1.E+071.E+08 1.E+091.E+10FREQUENCY (Hz)S 21 (dB )1.E+06−45−50DFNCASE 506ACDevice Package Shipping †ORDERING INFORMATIONNUF8600MNTXGDFN16(Pb −Free)4000 / Tape & ReelMARKING DIAGRAM†For information on tape and reel specifications,including part orientation and tape sizes, please refer to our T ape and Reel Packaging Specifications Brochure, BRD8011/D.845= Specific Device Code A = Assembly Location Y = YearW = Work WeekG= Pb −Free Package 1845AYW G(Bottom View)Figure 3. Pin DiagramTable 1. FUNCTIONAL PIN DESCRIPTIONFilter Device Pins DescriptionFilter 1 1 & 16Filter + ESD Channel 1Filter 2 2 & 15Filter + ESD Channel 2Filter 3 3 & 14Filter + ESD Channel 3Filter 4 4 & 13Filter + ESD Channel 4Filter 5 5 & 12Filter + ESD Channel 5Filter 6 6 & 11Filter + ESD Channel 6Filter 77 & 10Filter + ESD Channel 7Filter 88 & 9Filter + ESD Channel 8Ground Pad GND GroundMAXIMUM RATINGSParameter Symbol Value Unit ESD Discharge IEC61000−4−2Contact Discharge V PP18kV Operating Temperature Range T OP−40 to 85°C Storage Temperature Range T STG−55 to 150°C Maximum Lead Temperature for Soldering Purposes (1.8 in from case for 10 seconds)T L260°C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.ELECTRICAL CHARACTERISTICS (T J = 25°C unless otherwise noted)Parameter Symbol Test Conditions Min Typ Max Unit Maximum Reverse Working Voltage V RWM 5.0V Breakdown Voltage V BR I R = 1.0 mA 6.07.08.0V Leakage Current I R V RWM = 3.3 V100nA Resistance R A I R = 20 mA425058W Diode Capacitance C d V R = 2.5 V, f = 1.0 MHz1720pF Line Capacitance C L V R = 2.5 V, f = 1.0 MHz3440pF115MHz3 dB Cut−Off Frequency (Note 1)f3dB Above this frequency,appreciable attenuation occurs190MHz6 dB Cut−Off Frequency (Note 1)f6dB Above this frequency,appreciable attenuation occurs1.50 W source and 50 W load termination.TYPICAL PERFORMANCE CURVES (T A = 25°C unless otherwise specified)4648505254565860−40−2002040608000.51.01.52.001.02.03.04.05.0Figure 4. Insertion Loss Characteristic(S21 Measurement)REVERSE VOLTAGE (V)N O R M A L I Z E D C A P A C I T A N C ETEMPERATURE (°C)R E S I S T A N C E (W )−40−35−30−25−20−15−10−50 1.E+071.E+08 1.E+091.E+10FREQUENCY (Hz)S 21 (d B )Figure 5. Analog Crosstalk Curve(S41 Measurement)−70−60−50−40−30−20−1001.E+061.E+071.E+08 1.E+091.E+10FREQUENCY (Hz)S 41 (d B )Figure 6. Typical Capacitance vs. Reverse Biased Voltage(Normalized Capacitance Cd at 2.5 V)Figure 7. Typical Resistance over Temperature98.098.599.099.5100.0100.5101.0101.5102.0−40−2020406080TEMPERATURE (°C)N O R M A L I Z E D C A P A C I T A N C E (%)Figure 8. Normalized Capacitance over Temperature(Normalized @ 255C, V R = 2.5 V, f = 1 MHz)100−601.E+06−45−50Theory of OperationThe NUF8600MN combines ESD protection and EMI filtering conveniently into a small package for today’s size constrained applications. The capacitance inherent to a typical protection diode is utilized to provide the capacitance value necessary to create the desired frequency response based upon the series resistance in the filter. By combining this functionality into one device, a large number of discrete components are integrated into one small package saving valuable board space and reducing BOM count and cost in the application.Application ExampleThe accepted practice for specifying bandwidth in a filter is to use the 3 dB cutoff frequency. Utilizing points such as the 6 dB or 9 dB cutoff frequencies results in signal degradation in an application. This can be illustrated in an application example. A typical application would include EMI filtering of data lines in a camera or display interface.In such an example it is important to first understand the signal and its spectral content. By understanding these things, an appropriate filter can be selected for the desired application. A typical data signal is pattern of 1’s and 0’s transmitted over a line in a form similar to a square wave.The maximum frequency of such a signal would be the pattern 1-0-1-0 such that for a signal with a data rate of 100 Mbps, the maximum frequency component would be 50 MHz. The next item to consider is the spectral content of the signal, which can be understood with the Fourier seriesapproximation of a square wave, shown below in Equations 1 and 2 in the Fourier series approximation.From this it can be seen that a square wave consists of odd order harmonics and to fully construct a square wave n must go to infinity. However, to retain an acceptable portion of the waveform, the first two terms are generally sufficient. These two terms contain about 85% of the signal amplitude and allow a reasonable square wave to be reconstructed.Therefore, to reasonably pass a square wave of frequency x the minimum filter bandwidth necessary is 3x . All ON Semiconductor EMI filters are rated according to this principle. Attempting to violate this principle will result in significant rounding of the waveform and cause problems in transmitting the correct data. For example, take the filter with the response shown in Figure 9 and apply three different data waveforms. To calculate these three different frequencies, the 3 dB, 6 dB, and 9 dB bandwidths will be used.Equation 1:x(t)+12)2p aS n +1ƪ12n *1sin((2n *1)w 0t)ƫ(eq. 1)Equation 2 (simplified form of Equation 1):x(t)+12)2pƪsin(w 0t)1)sin(3w 0t)3)sin(5w 0t)5)AAA ƫ(eq. 2)M a g n i t u d e (d B )Frequency (Hz)100k 1M 100M1G 10G10M Figure 9. Filter BandwidthFrom the above paragraphs it is shown that the maximumsupported frequency of a waveform that can be passed through the filter can be found by dividing the bandwidth by a factor of three (to obtain the corresponding data ratemultiply the result by two). The following table gives the bandwidth values and the corresponding maximum supported frequencies and the third harmonic frequencies.Table 2. Frequency ChartBandwidth Maximum SupportedFrequencyThird Harmonic Frequency3 dB –100 MHz 33.33 MHz (f 1)100 MHz 6 dB –200 MHz 66.67 MHz (f 2)200 MHz 9 dB –300 MHz100 MHz (f 3)300 MHzConsidering that 85% of the amplitude of the square is in the first two terms of the Fourier series approximation most of the signal content is at the fundamental (maximum supported) frequency and the third harmonic frequency. If a signal with a frequency of 33.33 MHz is input to this filter,the first two terms are sufficiently passed such that the signal is only mildly affected, as is shown in Figure 10a. If a signalwith a frequency of 66.67 MHz is input to this same filter,the third harmonic term is significantly attenuated. This serves to round the signal edges and skew the waveform, as is shown in Figure 10b. In the case that a 100 MHz signal isinput to this filter, the third harmonic term is attenuated evenfurther and results in even more rounding of the signal edges as is shown in Figure 10c. The result is the degradation of the data being transmitted making the digital data (1’s and 0’s)more difficult to discern. This does not include effects of other components such as interconnect and other path losses which could further serve to degrade the signal integrity.While some filter products may specify the 6 dB or 9 dB bandwidths, actually using these to calculate supported frequencies (and corresponding data rates) results in significant signal degradation. To ensure the best signal integrity possible, it is best to use the 3 dB bandwidth to calculate the achievable data rate.Figure 10. Input and Output Waveforms of FilterInput WaveformOutput WaveformInput WaveformOutput WaveformInput WaveformOutput Waveforma) Frequency = f 1b) Frequency = f 2c) Frequency = f 3PACKAGE DIMENSIONSDFN16CASE 506AC−01ISSUE Bǒmm inches ǓSCALE 16:1*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering andMounting Techniques Reference Manual, SOLDERRM/D.ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.Bluetooth is a registered trademark of Bluetooth SIG.PUBLICATION ORDERING INFORMATION分销商库存信息: ONSEMINUF8600MNTXG。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

NUF8152, SZNUF81528-Channel EMI Filter with Integrated ESD ProtectionThe NUF8152MU is a eight −channel (C −L −R −C) Pi −style EMI filter array with integrated ESD protection. Its typical component values of R = 28 W , C = 17 pF and L = 1.0 nH deliver a cutoff frequency of 125 MHz and stop band attenuation greater than −25 dB from 800 MHz to 3.0 GHz.This performance makes the part ideal for parallel interfaces with data rates up to 83 Mbps in applications where wireless interference must be minimized. The specified attenuation range is very effective in minimizing interference from 2G/3G, GPS, Bluetooth ® and WLAN signals.The NUF8152MU is available in the low −profile 16−lead 1.2 mm x 3.5 mm x 0.5 mm UDFN16 surface mount package.Features/Benefits•±13 kV ESD Protection on each channel (IEC61000−4−2 Level 4,Contact Discharge)•R/C Values of 28 W and 17 pF and L = 1.0 nH Deliver Exceptional S21 Performance Characteristics of 125 MHz f 3dB and −25 dB Stop Band Attenuation from 800 MHz to 3.0 GHz•Integrated EMI/ESD System Solution in UDFN Package Offers Exceptional Cost, System Reliability and Space Savings •AEC −Q101 Qualified and PPAP Capable − SZNUF8152•SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements •These are Pb −Free DevicesApplications•EMI Filtering for LCD and Camera Data Lines•EMI Filtering and Protection for I/O Ports and KeypadsFigure 1. Electrical SchematicSee Table 1 for pin descriptionnS 21 (d B )FREQUENCY (Hz)-50-45-40-35-30-25-20-15-10-501.0E + 610.0E + 6100.0E + 6 1.0E + 910.0E + 9Figure 2. Typical Insertion Loss Characteristics(S21 Measurement)Device Package Shipping †ORDERING INFORMATIONNUF8152MUT2G UDFN16(Pb −Free)3000 / Tape &Reel MARKING DIAGRAM†For information on tape and reel specifications,including part orientation and tape sizes, please refer to our T ape and Reel Packaging Specifications Brochure, BRD8011/D.UDFN16CASE 517AF1815 M G 815= Specific Device Code M = Month Code G = Pb −Free PackageSZNUF8152MUT2GUDFN16(Pb −Free)3000 / Tape &ReelTable 1. FUNCTIONAL PIN DESCRIPTIONFilter Device Pins DescriptionFilter 1 1 & 16Filter + ESD Channel 1Filter 2 2 & 15Filter + ESD Channel 2Filter 3 3 & 14Filter + ESD Channel 3Filter 4 4 & 13Filter + ESD Channel 4Filter 5 5 & 12Filter + ESD Channel 5Filter 6 6 & 11Filter + ESD Channel 6Filter 77 & 10Filter + ESD Channel 7Filter 88 & 9Filter + ESD Channel 8Ground Pad GND GroundMAXIMUM RATINGSParameter Symbol Value Unit ESD Discharge IEC61000−4−2Contact Discharge V PP13kV Operating Temperature Range T OP−40 to 85°C Storage Temperature Range T STG−55 to 150°C Maximum Lead Temperature for Soldering Purposes (1.8 in from case for 10 seconds)T L260°C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.ELECTRICAL CHARACTERISTICS (T J = 25°C unless otherwise noted)Parameter Symbol Test Conditions Min Typ Max Unit Maximum Reverse Working Voltage V RWM 5.0V Breakdown Voltage V BR I R = 1.0 mA 6.07.08.0V Leakage Current I R V RWM = 3.3 V100nA Inductance L 1.0 3.0nH Resistance R A2836W Diode Capacitance C d V R = 2.5 V, f = 1.0 MHz17pF Line Capacitance C L V R = 2.5 V, f = 1.0 MHz34pF125MHz3 dB Cut−Off Frequency (Note 1)f3dB Above this frequency,appreciable attenuation occurs210MHz6 dB Cut−Off Frequency f6dB Above this frequency,appreciable attenuation occurs1.50 W source and 50 W load termination.TYPICAL PERFORMANCE CURVES (T A = 25°C unless otherwise specified)S 21 (d B )FREQUENCY (Hz)-50-45-40-35-30-25-20-15-10-501.0E + 610.0E + 6100.0E + 6 1.0E + 910.0E + 9Figure 1. Typical Insertion Loss Characteristics(S21 Measurement)S 41 (d B )FREQUENCY (Hz)-70-60-50-40-20-1001.0E + 61.0E + 71.0E +8 1.0E + 91.0E + 10Figure 2. Analog Crosstalk Curve(S41 Measurement)-30R E S I S T A N C E (O H M S )26272829303132-40-2020406080100TEMPERATURE (_C)Figure 3. Typical Resistance Over TemperatureN O R M A L I Z E D C A P A C IT A N C E00.51.512345REVERSE BIASED VOLTAGE (V)Figure 4. Typical Line Capacitance vs. Reverse Bias Voltage (Normalized to Capacitance @ 2.5 V)12Theory of OperationThe NUF8152MU combines ESD protection and EMI filtering conveniently into a small package for today’s size constrained applications. The capacitance inherent to a typical protection diode is utilized to provide the capacitance value necessary to create the desired frequency response based upon the series resistance in the filter. By combining this functionality into one device, a large number of discrete components are integrated into one small package saving valuable board space and reducing BOM count and cost in the application.Application ExampleThe accepted practice for specifying bandwidth in a filter is to use the 3 dB cutoff frequency. Utilizing points such as the 6 dB or 9 dB cutoff frequencies results in signal degradation in an application. This can be illustrated in an application example. A typical application would include EMI filtering of data lines in a camera or display interface.In such an example it is important to first understand the signal and its spectral content. By understanding these things, an appropriate filter can be selected for the desired application. A typical data signal is pattern of 1’s and 0’s transmitted over a line in a form similar to a square wave.The maximum frequency of such a signal would be the pattern 1-0-1-0 such that for a signal with a data rate of 100 Mbps, the maximum frequency component would be 50 MHz. The next item to consider is the spectral content of the signal, which can be understood with the Fourier seriesapproximation of a square wave, shown below in Equations 1 and 2 in the Fourier series approximation.From this it can be seen that a square wave consists of odd order harmonics and to fully construct a square wave n must go to infinity. However, to retain an acceptable portion of the waveform, the first two terms are generally sufficient. These two terms contain about 85% of the signal amplitude and allow a reasonable square wave to be reconstructed.Therefore, to reasonably pass a square wave of frequency x the minimum filter bandwidth necessary is 3x . All ON Semiconductor EMI filters are rated according to this principle. Attempting to violate this principle will result in significant rounding of the waveform and cause problems in transmitting the correct data. For example, take the filter with the response shown in Figure 5 and apply three different data waveforms. To calculate these three different frequencies, the 3 dB, 6 dB, and 9 dB bandwidths will be used.Equation 1:x(t)+12)2p aS n +1ƪ12n *1sin((2n *1)w 0t)ƫ(eq. 1)Equation 2 (simplified form of Equation 1):x(t)+12)2pƪsin(w 0t)1)sin(3w 0t)3)sin(5w 0t)5)AAA ƫ(eq. 2)M a g n i t u d e (d B )Frequency (Hz)100k 1M 100M1G 10G10M Figure 5. Filter BandwidthFrom the above paragraphs it is shown that the maximumsupported frequency of a waveform that can be passed through the filter can be found by dividing the bandwidth by a factor of three (to obtain the corresponding data ratemultiply the result by two). The following table gives the bandwidth values and the corresponding maximum supported frequencies and the third harmonic frequencies.Table 2. Frequency ChartBandwidth Maximum SupportedFrequencyThird Harmonic Frequency3 dB –100 MHz 33.33 MHz (f 1)100 MHz 6 dB –200 MHz 66.67 MHz (f 2)200 MHz 9 dB –300 MHz100 MHz (f 3)300 MHzConsidering that 85% of the amplitude of the square is in the first two terms of the Fourier series approximation most of the signal content is at the fundamental (maximum supported) frequency and the third harmonic frequency. If a signal with a frequency of 33.33 MHz is input to this filter,the first two terms are sufficiently passed such that the signal is only mildly affected, as is shown in Figure 6a. If a signalwith a frequency of 66.67 MHz is input to this same filter,the third harmonic term is significantly attenuated. This serves to round the signal edges and skew the waveform, as is shown in Figure 6b. In the case that a 100 MHz signal isinput to this filter, the third harmonic term is attenuated evenfurther and results in even more rounding of the signal edges as is shown in Figure 6c. The result is the degradation of the data being transmitted making the digital data (1’s and 0’s)more difficult to discern. This does not include effects of other components such as interconnect and other path losses which could further serve to degrade the signal integrity.While some filter products may specify the 6 dB or 9 dB bandwidths, actually using these to calculate supported frequencies (and corresponding data rates) results in significant signal degradation. To ensure the best signal integrity possible, it is best to use the 3 dB bandwidth to calculate the achievable data rate.Figure 6. Input and Output Waveforms of FilterInput WaveformOutput WaveformInput WaveformOutput WaveformInput WaveformOutput Waveforma) Frequency = f 1b) Frequency = f 2c) Frequency = f 3PACKAGE DIMENSIONSUDFN16, 3.5x1.2, 0.4P CASE 517AF −01ISSUE BNOTES:1.DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.2.CONTROLLING DIMENSION: MILLIMETERS.3.DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 mm FROM TERMINAL.4.COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.L16XDIM MIN NOM MAX MILLIMETERS A 0.450.500.55A10.000.030.05A30.127 REF b 0.150.200.25D 3.50 BSC D2 2.70 2.80 2.90E 1.20 BSC E20.200.300.40e 0.40 BSC K 0.20−−−−−−L0.200.250.3015X0.30*For additional information on our Pb −Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.PUBLICATION ORDERING INFORMATIONBluetooth is a registered trademark of Bluetooth SIG.分销商库存信息:ONSEMINUF8152MUT2G SZNUF8152MUT2G。

相关文档
最新文档