《分式的乘除法》教学设计-02

合集下载

《分式的乘除法》优质课比赛教案

《分式的乘除法》优质课比赛教案

《分式的乘除法》优质课比赛教案教案名称:分式的乘除法教学目标:1. 学会分式的乘法运算。

2. 学会分式的除法运算。

3. 能够应用分式的乘除法解决实际问题。

教学时长:2课时教学内容:第一课时:1. 复习分式的加减法,引入分式的乘法概念。

2. 讲解分式的乘法运算规则。

3. 练习分式的乘法计算。

4. 引入分式的除法概念。

5. 讲解分式的除法运算规则。

6. 练习分式的除法计算。

第二课时:1. 复习分式的乘法和除法规则。

2. 引入应用题,通过实际问题来练习分式的乘除法运算。

3. 学生上台演示解题过程。

4. 教师总结、点评和拓展,提出一些相关实际问题供学生练习。

教学准备:1. 教师准备白板、黑板、彩色粉笔等。

2. 学生准备笔记本、铅笔等。

教学步骤:第一课时:1. 引入:复习分式的加减法知识,向学生介绍分式的乘法概念。

2. 讲解:讲解分式的乘法运算规则,包括分子相乘、分母相乘。

3. 练习:给学生一些分式乘法计算的练习题,让学生在纸上计算并写出答案。

4. 引入:向学生介绍分式的除法概念。

5. 讲解:讲解分式的除法运算规则,包括将除法转化为乘法,分子相乘、分母相乘。

6. 练习:给学生一些分式除法计算的练习题,让学生在纸上计算并写出答案。

第二课时:1. 复习:复习分式的乘法和除法规则。

2. 引入:通过实际问题引入应用题,让学生能够将分式乘除法运用到实际情境中去解决问题。

3. 练习:学生上台展示解题过程,并与其他同学共同分析和讨论解题方法。

4. 总结:教师总结学生上台演示的解题方法,点评其中的优缺点,并提出相关拓展问题。

5. 拓展:提出一些相关的实际问题,供学生进一步练习分式的乘除法。

教学评价:1. 教师观察学生的学习情况,在课堂上提问学生,评价他们对分式乘除法的理解和运用能力。

2. 教师检查学生课后作业,评价他们对分式乘除法的掌握程度。

3. 学生之间互相讨论、合作解题,评价他们的合作能力和解题思路。

教学延伸:1. 学生可以在课后继续练习分式的乘除法运算,拓宽应用范围,提高运算速度和准确性。

分式的乘除_教案(教学设计)

分式的乘除_教案(教学设计)

分式的乘除【教学目标】1.让学生通过实践总结分式的乘除法,并能较熟练地进行式的乘除法运算。

2.使学生理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算。

3.引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力。

【教学重难点】1.重点:分式的乘除法、乘方运算。

2.难点:分式的乘除法、混合运算,以及分式乘法,除法、乘方运算中符号的确定。

【教学过程】一、复习提问:(1)什么叫做分式的约分?约分的根据是什么?(2)下列各式是否正确?为什么?二、探索分式的乘除法的法则1.回忆: 计算:10965⨯; 4365÷。

2.例1计算:(1)x b ay by x a 2222⋅; (2)222222xb yz a z b xy a ÷。

由学生先试着做,教师巡视。

3.概括:分式的乘除法用式子表示即是:4. 例2计算:493222--⋅+-x x x x 。

分析:①本题是几个分式在进行什么运算?②每个分式的分子和分母都是什么代数式?③在分式的分子、分母中的多项式是否可以分解因式,怎样分解?④怎样应用分式乘法法则得到积的分式? 解:原式=)2)(2()3)(3(32-+-+⋅+-x x x x x x =23+-x x 。

5.练习: 计算:2()x y xy x xy --÷ 三、探索分式的乘方的法则1.思考我们都学过了有理数的乘方,那么分式的乘方该是怎样运算的呢?先做下面的乘法:(1)=∙∙=⎪⎭⎫ ⎝⎛b a b a b a b a 3=∙∙∙∙b b b a a a 33b a ; (2)=∙∙∙=⎪⎭⎫ ⎝⎛b a b a b a b a n n n b a 。

2.仔细观察这两题的结果,你能发现什么规律?与同伴交流一下,然后完成下面的填空: (mn )(k ) =___________(k 是正整数)。

3.22212(1)441x x x x x x x-+÷+⨯++-4.练习:(1)判断下列各式正确与否:(2)计算下列各题:【作业布置】1.怎样进行分式的乘除法?2.怎样进行分式的乘方?。

华师大版数学八年级下册《分式的乘除法》教学设计

华师大版数学八年级下册《分式的乘除法》教学设计

华师大版数学八年级下册《分式的乘除法》教学设计一. 教材分析《分式的乘除法》是华师大版数学八年级下册的一章内容。

这一章主要介绍分式的乘除运算规则,通过实例让学生理解并掌握分式乘除法的运算方法。

教材中包含了丰富的例题和练习题,有助于学生巩固所学知识。

二. 学情分析学生在学习本章内容前,已经掌握了分式的基本概念和性质,能够进行简单的分式运算。

但部分学生在面对复杂的分式乘除问题时,可能会感到困惑和不解。

因此,在教学过程中,需要关注学生的学习困惑,通过实例和练习,让学生更好地理解和掌握分式乘除法。

三. 教学目标1.让学生理解分式乘除法的运算规则;2.培养学生运用分式乘除法解决实际问题的能力;3.提高学生的数学思维能力和运算能力。

四. 教学重难点1.分式乘除法的运算规则;2.如何运用分式乘除法解决实际问题。

五. 教学方法1.讲授法:讲解分式乘除法的运算规则,引导学生思考和探讨;2.案例分析法:通过具体的实例,让学生理解和掌握分式乘除法;3.练习法:布置不同难度的练习题,让学生巩固所学知识;4.小组讨论法:分组讨论,培养学生的合作能力和沟通能力。

六. 教学准备1.教学PPT:制作详细的PPT,展示分式乘除法的运算规则和实例;2.练习题:准备不同难度的练习题,用于课堂练习和巩固;3.教学素材:收集一些实际问题,用于引导学生运用分式乘除法解决。

七. 教学过程1.导入(5分钟)利用PPT展示分式乘除法的运算规则,引导学生思考和回顾已学的分式知识。

2.呈现(15分钟)通过PPT呈现具体的实例,讲解分式乘除法的运算步骤和方法,让学生理解和掌握。

3.操练(15分钟)让学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)选取一些不同难度的练习题,让学生分组讨论和解答,巩固所学知识。

5.拓展(10分钟)利用教学素材,展示一些实际问题,引导学生运用分式乘除法解决,培养学生的应用能力。

6.小结(5分钟)总结本节课所学内容,强调分式乘除法的运算规则和应用方法。

3.3《分式的乘法与除法》教学案2

3.3《分式的乘法与除法》教学案2

3.3 分式的乘法与除法 教学案【教学目标】1.通过与分数乘除法法则的类比经,探索分式的乘除法运算法则。

2.运用分式的乘除运算法则,进行分式的简单运算。

【教学重点】运用分式的乘除法运算法则,进行简单分式的乘除运算。

【学习过程】第一部分 预习设计【预习目标】1.通过与分数乘除法法则的类比经,探索分式的乘除法运算法则。

2.运用分式的乘除运算法则,进行分式的简单运算。

学习任务一:自学教材78交流与发现,类比分数乘除法的运算法则,探索分式乘除法的运算法则。

1、类比分数的乘除法则计算:⑴b a ·d c = ⑵b a ÷d c= 2、由以上算式我们可得到分式的乘法和除法的运算法则分别是:乘法法则:除法法则:学习任务二:自学教材第79-80页内容,会进行简单分式的乘除运算。

1、分析例1和例2,仿照例题做下面的题目,理解分式乘除法的解法。

(1)235bc a -·223ab c - (2)222235b a c b a -÷ (3)242x x -+÷24x x - 思考:1)在运算过程中应进行 ,把结果化为 ;2)在进行分式的乘除运算时,如果分子与分母是多项式,应当先进行2、注意:分式的分子或分母中带有负号时要注意商的符号!预习检测:计算:1)m n ·n m2)4x ÷3x3)2a b -÷22a b4)1a a -·1b a - 5)24a x -÷22a x - 6)422643xy yx ÷- 7)abc bc a 853)2(22⋅ 8)()x y xy 3232÷- 预习质疑:第二部分课中实施 一、问题收集二、问题处理,精讲点拨1、讲解学生预习中的共性问题2、典型例题解析课本79页例2和80页例3三、反思拓展:四、计算:(1)2214m m m -+-·241m m --(2)x xx x x x x x x -+∙-÷+++-33944962222五、强化训练课本练习1、2、3题六、系统总结:。

《分式的乘除》教案

《分式的乘除》教案

《分式的乘除》教案分式的乘除教案一、教学目标1. 理解分式的定义和基本概念。

2. 掌握分式的乘法和除法运算规则。

3. 能够解决与分式有关的实际问题。

二、教学重点1. 分式的乘法和除法运算规则。

2. 实际问题的解决。

三、教学难点实际问题的解决。

四、教学准备1. 教师准备:课本、黑板、粉笔。

2. 学生准备:课本、笔记。

五、教学过程1. 概念解释和引入(老师在黑板上写下分式的定义)分式是由分子和分母组成的数,通常用a/b的形式表示,其中a为分子,b为分母,b不等于0。

2. 分式的乘法运算规则(老师在黑板上写下分式的乘法运算规则)分式的乘法运算规则:两个分式相乘时,分子与分子相乘,分母与分母相乘。

例如: 2/3 × 4/5 = (2 × 4)/(3 × 5)= 8/153. 分式的除法运算规则(老师在黑板上写下分式的除法运算规则)分式的除法运算规则:两个分式相除时,分子与分子相乘,分母与分母相乘,然后将被除数的倒数变为乘数。

例如: 2/3 ÷ 4/5 = (2/3)×(5/4)= (2 × 5)/(3 × 4)= 10/12 = 5/64. 例题讲解和练习(老师在黑板上列出一些练习题,学生们进行解答,并逐一讲解)例题1:计算 3/5 × 7/8解答: 3/5 × 7/8 = (3 × 7)/(5 × 8)= 21/40例题2:计算 4/9 ÷ 2/3解答: 4/9 ÷ 2/3 = (4/9)×(3/2)= (4 × 3)/(9 × 2)= 12/18 =2/3例题3:计算 5/6 × 2/5 ÷ 3/4解答: 5/6 × 2/5 ÷ 3/4 = (5/6)×(2/5)÷(3/4)= (5 × 2)/(6 ×5)÷(3/4)= 10/30 ÷(3/4)= 10/30 ×(4/3)= (10 × 4)/(30 × 3)= 40/90 = 4/95. 实际问题解决(老师给出一些与分式有关的实际问题,并帮助学生思考和解决)例题4:小明做了1/3个小时的作业,他又做了2/5个小时的作业,他总共做了多长时间的作业?解答:首先计算出1/3 + 2/5 = (1 × 5 + 2 × 3)/(3 × 5)= (5 + 6)/15 = 11/15,所以小明总共做了11/15个小时的作业。

5.2.分式的乘除法(教案)

5.2.分式的乘除法(教案)
在讲授过程中,我特别强调了分式乘除法则,并且用了一些具体的案例来说明。但是,从学生们的反馈来看,可能还需要更多不同类型的例题来帮助他们更好地理解和消化这些规则。
小组讨论的环节,我发现学生们在交流中能够互补不足,互相学习。但是,也有个别小组在讨论时偏离了主题,这提醒我在今后的教学中,需要更加明确讨论的目标和范围,确保讨论的有效性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式乘除法的基本概念。分式乘除法是指对两个或多个分式进行乘法或除法运算的方法。它在数学运算中非常重要,可以帮助我们解决生活中的许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算两个物体的速度比,我们可以通过分式乘除法来得到答案。这个案例展示了分式乘除法在实际中的应用,以及它如何帮助我们解决问题。
5.2.分式的乘除法(教案)
一、教学内容
本节课选自教材第五章第二节“分式的乘除法”。主要内容包括:
1.掌握分式乘法的法则,能够正确进行分式的乘法运算。
-分式乘法法则:a/b × c/d = ac/bd(b、d不为0)
2.掌握分式除法的法则,能够正确进行分式的除法运算。
-分式除法法则:a/b ÷ c/d = a/b × d/c(b、c、d不为0)
3.重点难点解析:在讲授过程中,我会特别强调分式乘法法则和分式除法法则这两个重点。对于难点部分,比如分式乘除混合运算的顺序和符号处理,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式乘除法相关的实际问题,如计算购物打折后的价格。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用代数式的分式乘除法来计算几何图形的面积比。

鲁教版数学八年级上册2.2《分式的乘除法》教学设计1

鲁教版数学八年级上册2.2《分式的乘除法》教学设计1

鲁教版数学八年级上册2.2《分式的乘除法》教学设计1一. 教材分析《分式的乘除法》是鲁教版数学八年级上册第2章第2节的内容。

本节内容是在学生已经掌握了分式的概念、分式的加减法的基础上进行学习的。

本节内容的主要内容有:分式的乘法、分式的除法以及分式的乘除法的混合运算。

本节内容对于学生来说是比较抽象和难以理解的,因此需要教师通过实例和讲解,帮助学生理解和掌握。

二. 学情分析学生在学习本节内容之前,已经掌握了分式的概念和分式的加减法。

但是,学生对于分式的乘除法可能还没有直观的理解,需要通过实例和讲解来进行引导和启发。

同时,学生可能对于分式的乘除法的运算规则还不够熟悉,需要通过练习来进行巩固和提高。

三. 教学目标1.知识与技能:使学生理解和掌握分式的乘法、分式的除法以及分式的乘除法的混合运算的运算规则。

2.过程与方法:通过实例和讲解,培养学生解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和细心。

四. 教学重难点1.重点:分式的乘法、分式的除法以及分式的乘除法的混合运算的运算规则。

2.难点:对于分式的乘除法的运算规则的理解和应用。

五. 教学方法采用讲解法、实例法、练习法、互动法等教学方法,通过分式的乘除法的具体例子,引导学生理解分式的乘除法的运算规则,并通过练习来进行巩固和提高。

六. 教学准备1.教师准备:分式的乘除法的教案、PPT、实例等教学材料。

2.学生准备:笔记本、笔、计算器等学习用品。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入分式的乘除法的学习。

例如,计算分式 (3/4) * (2/5) 的值。

让学生尝试解决,然后进行讲解。

2.呈现(10分钟)通过PPT或黑板,呈现分式的乘法、分式的除法以及分式的乘除法的混合运算的运算规则。

结合实例进行讲解,让学生理解运算规则。

3.操练(10分钟)让学生进行分式的乘除法的计算练习。

教师可以提供一些练习题,让学生独立完成,然后进行讲解和解析。

分式的乘除法教案

分式的乘除法教案

分式的乘除法教案一、教学目标1. 知识与技能:(1)理解分式乘除法的概念和运算规则;(2)能够正确进行分式的乘除运算;(3)掌握分式乘除法在实际问题中的应用。

2. 过程与方法:(1)通过实例演示和练习,培养学生运用分式乘除法解决实际问题的能力;(2)引导学生运用转化思想,将分式乘除法问题转化为整式乘除法问题进行求解。

3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和自信心;(2)培养学生勇于探索、合作交流的良好学习习惯。

二、教学重点与难点1. 教学重点:(1)分式乘除法的概念和运算规则;(2)分式乘除法在实际问题中的应用。

2. 教学难点:(1)分式乘除法运算的灵活运用;(2)将分式乘除法问题转化为整式乘除法问题进行求解。

三、教学准备1. 教学工具:黑板、粉笔、多媒体教学设备;2. 教学素材:分式乘除法的例题和练习题。

四、教学过程1. 导入新课:(1)复习相关知识点,如分式的基本概念、分式的加减法;(2)提问:分式乘除法与整式乘除法有何区别?2. 知识讲解:(1)讲解分式乘法法则;(2)讲解分式除法法则;(3)举例说明分式乘除法在实际问题中的应用。

3. 课堂练习:(1)让学生独立完成分式乘除法的练习题;(2)引导学生运用转化思想,将分式乘除法问题转化为整式乘除法问题进行求解。

(1)回顾本节课所学内容,让学生梳理知识体系;(2)强调分式乘除法在实际问题中的应用。

五、课后作业1. 请学生完成课后练习题,巩固分式乘除法的运算规则;2. 选取一些实际问题,让学生运用分式乘除法进行求解;3. 鼓励学生进行自主学习,探索分式乘除法的更多应用。

六、教学拓展1. 对比分式乘除法与整式乘除法的差异,分析各自的优缺点;2. 探讨分式乘除法在实际生活中的应用,如概率、统计等领域;3. 介绍分式乘除法的相关数学史,让学生了解其发展过程。

七、课堂小结1. 回顾本节课所学内容,让学生梳理知识体系;2. 强调分式乘除法在实际问题中的应用,激发学生学习兴趣;3. 提醒学生注意分式乘除法中的易错点,如约分、通分等。

数学八年级下册《分式的乘除法》省优质课一等奖教案

数学八年级下册《分式的乘除法》省优质课一等奖教案

《分式的乘除法》教学设计
一、内容分析
1. 教材的地位及作用
本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除
法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一
方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.
2. 学情分析
(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从
经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.
(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,
促进知识的正迁移.
(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力
较强,通过类比学习加快知识的学习.
3. 教学目标
(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.
(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、
第 1 页共11 页。

《分式的乘除法》教案

《分式的乘除法》教案

《分式的乘除法》教学设计曹燕一、教学目标:1.学生类比分数的乘除法运算法则归纳分式的乘除法运算法则。

2.学生运用所学的分式的乘除法运算法则准确计算。

3.学生在掌握分式的乘除法运算法则的基础上,能解决简单的实际问题.二、教学重难点:重点:分式的乘除法运算法则.难点:准确熟练地进行分式的乘除法的混合运算.三、教学过程:(一)情境导入1、提出问题,引入课题(是何)问题1:一个长方体容器的容积为V ,地面的长为a ,宽为b ;当容器内的水的高度占容器的m /n 时,求水面的高是多少,(引出分式乘法的学习需要).答案:nm ab v ⋅. 问题2:大拖拉机m 天可耕地a 公顷,小拖拉机n 天可耕地b 公顷,求大拖拉机的工作效率是小拖拉机的工作效率的几倍,(引出分式除法的学习需要).答案:⎪⎭⎫⎝⎛÷n b m a .2、类比联想,探究新知(如何)3、师生活动:首先让学生计算式子 (1) (2)解后反思:(1)式是什么运算?依据是什么?(是何,为何)(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导) (学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则. 引出“类比”是数学学习中常用的一种重要方法.提出问题,让学生大胆去猜想.多媒体显示小学学过的分数运算法则.(二)归纳新知 观察下列运算5432⨯5432÷24243535⨯⨯=⨯ 435245325432⨯⨯=⨯=÷ 1、引导学生运用“数式相通”的类比思想,归纳分式乘除法法则.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(让学生全面参与、独立思考,由自己总结出分式的乘除法法则,培养学生的归纳能力.) 2、乘除法法则运用多媒体示题,理解和巩固分式乘除法法则.强调分式的运算结果要化成最简分式. 例1 计算:注意:按照法则进行分式乘除运算,如果运算结果不是最简分式,一定要进行约分,使运算结果化成最简分式.例2 计算注意:(1)分式的分子,分母都是多项式的分式,除法先转化为乘法,然后把多项式进行因式分解,最后约分,化为最简分式.(2)如果除式是整式,则把它的分母看做”1”.(三)巩固练习完成随堂练习.重点看学生能否正确运用分式乘除法法则,能否利用分式的基本性质约分化简分式.(四) 分式的乘除法的混合运算注意:乘法混合运算可以统一为乘法运算.1.判断正误(为何)2.特别注意,分母不为零(为何)(五) 简单实际应用根据情境列式,运用法则解决简单实际问题即可。

2022年 教学教材《分式的乘除2》参考优秀教案

2022年 教学教材《分式的乘除2》参考优秀教案
课题
分式的乘除〔2〕
教学模式
讨论交流
教学
目标〔认知技能
情感〕Байду номын сангаас
1.熟练掌握分式的约分、通分、乘除法运算法那么;
2.掌握分式的加减乘除运算,养成良好的运算习惯,并能明确每一步的算理.
教学重难点
分式的加、减、乘、除混合运算.
分式的加、减、乘、除混合运算




分式的乘除〔2〕
教学
环节
学生自学共研的内容方法
〔按环节设计自学、讨论、训练、探索、创新等内容〕
教师施教提要
〔启发、精讲、活动等〕
再次
优化






问题的引入
怎样计算:a÷b·?
小明:a÷b·=a÷1=a.
小丽:a÷b·=a··=.
谁的算法正确?请说明理由.




探索规律,揭示新知
活动一
问题1:怎样进行分式的乘、除混合运算?
分式的乘、除混合运算,要按从左到右的顺序进行.
活动二
问题2:分数的混合运算顺序是什么?怎样进行分式的加、减、乘、除混合运算?
与分数混合运算类似,分式的加、减、乘、除混合运算是:先乘除,后加减,如果有括号,先进行括号内的运算.
尝试反应,领悟新知
例3求值:
·÷,其中a=10、b=5、c=-4.
解:
当a=10、b=5、c=-4时,
原式=
例4计算:
1-÷.
解:
随堂
练习
课堂练习
1.化简÷·,其结果为〔〕
A.1 B.C.D.
2.化简,其结果为〔〕
A.a+1 B.a-1

《分式的乘除法》教学设计(湖北省县级优课)

《分式的乘除法》教学设计(湖北省县级优课)

15.2.1 分式的乘除(二)教学内容一、教学目标:1.能运用分式的乘除法法则进行分式乘除的混合运算.2.探索并掌握分式的乘方法则,并能运用它进行运算.二、重点、难点1.熟练地进行分式乘除法的混合运算. 关键是点拨运算符号问题、变号法则.2.熟练地进行分式乘、除、乘方的混合运算.三、 教 学 方法: 分组讨论 合作探究四、教学流程(一)、温故知新计算(1)注意:在分式乘法中,分子、分母含有多项式,先考虑将多项式进行因式分解,再约分计算分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母(2)注意:将除法运算转化为乘法运算,再对分子,分母的多项式进行因式分解,最后约分,化成最简分式。

除法转化乘法时,把除式中的分子分母位置颠倒,而被除式不变(二)、合作探究,达成目标.探究点一 分式乘除混合运算活动一:计算2x 5x -3÷325x 2-9·x 5x +3. [分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.解:原式512510222-+⋅-+-x x x x x x 222281616121x x x x x x -+-÷--+3539253522+•-•-=x x x x x 353)35)(35(352+•-+•-=x x x x x x练习 计算:探究点二 分式的乘方的法则及应用活动二:1.思考:⎝ ⎛⎭⎪⎫a b 2= ⎝ ⎛⎭⎪⎫a b 3= ⎝ ⎛⎭⎪⎫a b 10= 小组讨论:(1)从乘方的意义去理解,⎝ ⎛⎭⎪⎫a b 2、⎝ ⎛⎭⎪⎫a b 3、⎝ ⎛⎭⎪⎫a b 10的意义是什么? (2)请根据乘方的意义和分式乘法法则计算:⎝ ⎛⎭⎪⎫a b 2=________=________ ⎝ ⎛⎭⎪⎫a b 3=________=________ ⎝ ⎛⎭⎪⎫a b 10=________=________ 展示点评:一般地,当n 是正整数时,⎝ ⎛⎭⎪⎫a b n =________=________=________,即⎝ ⎛⎭⎪⎫a b n =________. 这就是说,分式的乘方要把________、________分别乘方.反思小结:分式乘方法则的推导,就是转化成乘方意义和分式乘法的问题. 小组讨论:归纳分式乘方法则推导的思路.活动三:计算:(1)⎝ ⎛⎭⎪⎫-2a 2b 3c 2 解:原式=4a 4b 29c 2 )35)(35(3)35)(35(2+--+=x x x x x x 223x =。

《分式的乘除》教学设计-02 (2)

《分式的乘除》教学设计-02 (2)

《分式的乘除》教学设计教学目标:熟练地进行分式乘除法的混合运算。

教学重点:熟练地进行分式乘除法的混合运算。

教学难点:熟练地进行分式乘除法的混合运算。

突破方法:紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的。

课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则。

教学过程:一、课堂引入计算 (1))(x y y x x y -⋅÷ (2) )21()3(43xy x y x -⋅-÷ 二、讲授新课:分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的。

(补充)例。

计算 (1))4(3)98(23232b x b a xy y x ab -÷-⋅ =x b b a xy y x ab 34)98(23232-⋅-⋅ (先把除法统一成乘法运算) =x b b a xy y x ab 349823232⋅⋅ (判断运算的符号) =32916ax b (约分到最简分式)(2)x x x x x x x --+⋅+÷+--3)2)(3()3(444622 =x x x x x x x --+⋅+⋅+--3)2)(3(31444622 (先把除法统一成乘法运算) =x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22 (分子、分母中是多项式的先分解因式) =)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x (调整位置,确定好分子、分母的公因式) =22--x (约去公因式,化成最简分式)三、课堂小结:本节课我们一起学习了分式乘除法的混合运算。

分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式。

最新分式的乘除法(二)教案

最新分式的乘除法(二)教案

分式的乘除法(二)
一、教学过程
(一)复习提问
1.什么叫分式的约分?约分的依据是什么?
2.约分的结果是什么?
3.约分:
(二)新课
2.由学生类比分数的乘除法法则得出分式的乘除法法则.
(1)乘法法则:
文字叙述:(请学生试着进行表达,以训练学生的数学语言表达能力).
分式乘以分式,用分子的积做积的分子,分母的积做积的分母.
(2)除法法则:
文字叙述:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.3.法则的运用.
例1 计算:
小结:可先确定结果的符号,再进行约分,使运算结果化成最简分式.
小结:
(1)确定符号;(2)分解因式;(3)约分;(4)计算.计算的最后结果为最简分式或整式.小结:注意运算顺序.
(三)课堂练习
教材P.72中1、2;P.74中4.
(四)课堂小结
1.分式的乘除法法则.
2.分式的乘除运算实质上都可归结为分式的分子、分母分解因式后的约分化简.3.要严格按照运算顺序进行运算,防止不应有的失误.
二、作业
教材:P.74.5、6.
补充:已知x=4075,y=795,求下式的值:
当x=4075,y=795时,板书设计。

【教案】 分式的乘除(2)

【教案】 分式的乘除(2)

分式的乘除【教学目标】1.理解分式乘除法的法则.2.会进行分式乘除运算.3.渗透类比转化的数学思想方法.【教学重难点】重点:会用分式乘除的法则进行运算.难点:灵活运用分式乘除的法则进行运算.【教学过程】一、课堂引入1.出示135页本节的引入的问题1求容积的高·,问题2求大拖拉机的工作效率是小拖拉机的工作效率的(÷)倍.[引入]从上面的问题可知,有时需要进行分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.·=,÷=.1.[观察]从上面的算式可以看到分式的乘除法法则.2.[思考]类比分数的乘除法法则,你能说出分式的乘除法法则?类似分数的乘除法法则得到分式的乘除法法则的结论.二、例题讲解例1:(1)-·;(2)÷(-).【分析】这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,再计算结果.例2:(1)·;(2)·(3).【分析】这道例题分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开的.例3:(见课本).【分析】这道应用题有两问,第一问是:哪一种小麦的单位面积产量高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是、,还要判断出以上两个分式的值,哪一个值更大.根据问题的实际意义可知a>1,因此(1)22-21<a2-2+1,即(1)2<a2-1,可得出“丰收2号”单位面积产量高.三、随堂练习计算(1)·;(2)-8÷;(3)·.四、小结谈谈你的收获.五、布置作业。

【教学设计】 分式的乘除(2)

【教学设计】 分式的乘除(2)

分式的乘除教学目标(一)知识与技能目标使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.(二)过程与方法目标经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性(三)情感与价值目标教学过程中渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练.教学重点和难点重点是掌握分式的乘除运算难点是分子、分母为多项式的分式乘除法运算.教学方法 小组合作交流教学过程1、情境导入问题1 一个长方体容器的容积为V,底面的长为a 宽为b,当容器内的水占容积的m n时,水高多少? 长方体容器的高为V ab ,水高为V m ab n•. 问题2 大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地 b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍? 大拖拉机的工作效率是a m公顷/天, 小拖拉机的工作效率是b n公顷/天, 大拖拉机的工作效率是小拖拉机的工作效率的(a b m n÷ )倍. 观察下列运算:,43524532543297259275,53425432⨯⨯=⨯=÷⨯⨯=⨯⨯⨯=⨯, .279529759275⨯⨯=⨯=÷ 猜一猜??=÷=⨯cd a b c d b a 与同伴交流。

2、解读探究 经观察、类比不难发现,ac bd c d a b =⨯.adbc d c a b c d a b =⨯=÷ 由学生自己归纳总结出分式乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

用符号语言表达:a c ac b d bd⨯= 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

用符号语言表达:a c a d ad b d b c bc÷=⨯= 例1计算(1)3432x x y y •;(2) 3225242a b a b cd c-÷注意:分式运算的结果通常要化成最简分式或整式例2计算22211(1)444a a a a a --÷-+-;2211(2)497mm m •--. 小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分②当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.做一做:通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好。

《分式的乘除》教学设计 (2)

《分式的乘除》教学设计 (2)

《分式的乘除》教学设计【教学内容分析】本节课的教学内容是分式的乘除, 本节课是在学生学习了分式约分的基础上学习的,因为分式的乘除实质最终可归结为分式的约分,所以本节的教学内容是上一节知识的延续,可充分让学生体会分式基本性质的用处之广,因式分解的作用之大。

【教学目标】1.能根据分数的乘除法则叙述分式的乘除法则,并会用字母表示。

2、能进行分式的乘法、除法运算或简单的乘除混合运算。

3、能进行分式与整式的乘除运算。

【教学重点】分式的乘法【教学难点】当分子、分母是多项式时的分式乘除法及课本中的例2【教学过程】(一)创设情景,引入新课你知道吗?同一物体在月球上受到的重力只有在地球上的16 . 请问:(1)A 物体在地球上的重力为53 牛顿,那么它在月球上的重力是多少? (2)B 物体在月球上的重力为53牛顿,那么它在地球上的重力是多少? (让学生思考后回答。

)列式可得:(1)53 ×16 =518 (2)53 ÷16 =53×6=10 解后反思:(1)式是什么运算?依据是什么?(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导)设计说明:创设情景,目的激发学生的学习兴趣,让他们体验数学的实用价值;解后反思意在复习旧知识,为学习新知识做好铺垫,并提高学生思维的严密性。

试一试,并说出依据。

b a ·dc _________。

b a ÷d c=_________ (学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,(板书)分式的乘除的法则是:分式乘分式,用分子的积做积的分子,分母的积做积的分母。

分式除以分式,把除式的分子,分母颠倒位置后,与被除式相乘。

即 a b ·c d =ac bd ; a b ÷c d =a b ·d c =ad bc设计说明:在学生已有知识的基础上,通过类比让学生经历知识迁移的过程,加深学生对法则的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《分式的乘除法》教学设计
教学目标:
1. 认知目标
使学生能说出分式约分的意义和最简分式的概念。

2. 能力目标
(1) 使学生明确约分的根据,会熟练地进行约分。

(2) 通过对分数的约分过渡到分式的约分运算过程的分析,使学生进一步理解“特殊—一般—
特殊”的认识规律。

教材重点,难点分析:
本节课重点是分式约分的主要步骤,分析综合、归纳推理的训练;关键是确定分式的分子与分母的公因式,提示矛盾排除差错。

难点是分子、分母为多项式的分式乘除法运算。

复习提问:
1.叙述分式的基本性质
2.叙述分式的符号法则,并用字母表示分式的符号法则。

3.填空: (1)b ab b a ) (22= (2)) (a b a a -=-- (3)) ()(2a b b a a b -=-- (4)2
22)() ()()(a b b a a b -=-- 新课
1.分式的约分
分式的约分与分数的约分相类似,两者对比讲,归纳出分式约分的定义根据分式的基本性质,把一个分式的分子与分母的所有公因式约去,叫做分式的约分。

(1)分子与分母都是单项式的分式3
2
86b ab ,根据分式约分的定义,先确定公因式,再把分子与分母的所有公因式约去,确定公因式的思考过程:①找出分子与分母都含有的因式b ,这因式的最低次幂是2b ,②求出分子与分母的余数6与8的最大公约数是2。

所以分子与分母的公因式是2
2b ,将分式
的分子与分母的公因式的分子与分母的公因式2
2b 约去得: b a b b b a b ab 43243862222=⋅⋅= (2)分子与分母都是多项式的分式222322xy y x y x x --,先对分子、分母进行因式分解,确定公因式:①对分子、分母进行因式分解)2(2223y x x y x x -=-,)(222y x xy xy y x -=-;②分子与分母都
有公因式x 与(x-2y ),相同因式的最低次幂是x 与(x-2y );③分子、分母的系数都是1,所以分子与分母的公因式是x (x-2y ),把x (x-2y )约去 y
x y x xy y x x xy x y x x =--=--)2()2(2222223 通过上述对两个引例的约分分析综合过程,引导学生抽象根据分式约分的主要步骤是:
把分式的分子与分母分解因式,然后约去分子分母的公因式。

2.最简分式
一个分式的分子与分母没有公因式,叫做最简分式。

分式的约分,就是约去分子与分母所有的公因式(包括约去分子与分母系数的所有的公约数)。

使所得结果成为最简分式或整式。

例1 约分:
(1)
观察思考:①有没有公因式?②公因式是什么?
小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分。

②分子或分母的系数是负数时,一般先把负号提到分式本身的前边。

(2)
解:
小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分。

②注意对分子、分母符号的处理。

(3)
解:原式
(4)
; 解:原式
(5)
; 解:原式
例2 化简求值:
其中a=2,b=3
分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算提供了便利条件。

解:原式
当a=2,b=3时;
例3.已知:x-y=4xy ,则
典型错误: (1)
0=++b a b a (2)b a x b x a =++ (3)b a b a b a +=++2
2 (4)b a a b b a -=--2
)( 课堂小结
1.约分的依据是分式的基本性质。

2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母的系数约去它们的最大公约数。

3.若分式的分子、分母中有多项式,则要先分解因式,再约分。

相关文档
最新文档