二次函数顶点式及一般式的对称轴及顶点坐标课件
合集下载
二次函数顶点式及一般式的对称轴及顶点坐标
二次函数 y=ax2+bx+c(a≠0)
新美加教育:刘德凤 .
二次函数源于生活
.
二次函数源于生活
.
二次函数源于生活
.
二次函数源于生活
.
二次函数源于生活
.
二次函数源于生活
.
二次函数源于生活
.
二次函数源于生活
.
打开你的记忆
函数
一次函数 反比例函数 二次函数
一次函数 :Y=KX+b (K≠0) 特别的,当b=0时,是正比例函数。 反比例函数:Y=K/X (K≠0)
D.(0,3)
5. 抛物线
A. x=-2 C. x=-4
的对称轴方程是( B)
B.x=2 D. x=4
6. 若将二次函数y=x2-2x+3配方为y=(x-h)2+k 的形式,则y= (x-1)2+2
.
·二次函数顶点式的对称轴和顶点坐 标。
·用配方法(九年级上册一元二次方 程时已经学过配方)推导出一般 式的对称轴及顶点的坐标。
.
, ;
, .
让 我
有只 质有
们 的量
热 爱 数
进的 步变
学 吧
化
!
才
会
有只 新有 的不 发断 现的
思 考
数 学 因 思 维 而 耐 人
数 学 因 规 律 而 不 再
才寻枯
会 燥 .
味
17
c 3. 抛物线y=2(x+3)2 的顶点在( )
A. 第一象限
B. 第二象限
C. x轴上
D. y轴上
.
13
一般式如何转化成顶点式呢?
由顶点式:y=a(x-h)2+k (a≠0)可知:对称轴x=h, 顶点坐标(坐标最关键,
新美加教育:刘德凤 .
二次函数源于生活
.
二次函数源于生活
.
二次函数源于生活
.
二次函数源于生活
.
二次函数源于生活
.
二次函数源于生活
.
二次函数源于生活
.
二次函数源于生活
.
打开你的记忆
函数
一次函数 反比例函数 二次函数
一次函数 :Y=KX+b (K≠0) 特别的,当b=0时,是正比例函数。 反比例函数:Y=K/X (K≠0)
D.(0,3)
5. 抛物线
A. x=-2 C. x=-4
的对称轴方程是( B)
B.x=2 D. x=4
6. 若将二次函数y=x2-2x+3配方为y=(x-h)2+k 的形式,则y= (x-1)2+2
.
·二次函数顶点式的对称轴和顶点坐 标。
·用配方法(九年级上册一元二次方 程时已经学过配方)推导出一般 式的对称轴及顶点的坐标。
.
, ;
, .
让 我
有只 质有
们 的量
热 爱 数
进的 步变
学 吧
化
!
才
会
有只 新有 的不 发断 现的
思 考
数 学 因 思 维 而 耐 人
数 学 因 规 律 而 不 再
才寻枯
会 燥 .
味
17
c 3. 抛物线y=2(x+3)2 的顶点在( )
A. 第一象限
B. 第二象限
C. x轴上
D. y轴上
.
13
一般式如何转化成顶点式呢?
由顶点式:y=a(x-h)2+k (a≠0)可知:对称轴x=h, 顶点坐标(坐标最关键,
《二次函数y=ax2+bx+c的图像和性质》二次函数PPT精品课件
和一次项同时提取公因数a,再进行配方会更简便.
3. 将二次函数y=-
1
4
x2+x+4写成y=a(x-h)2+k的形
式,并写出其开口方向、顶点坐标和对称轴.
解:y=-
x2+x+4=-
(x2-4x+4-4)+4=-
(x
-2)2+5,
∴此抛物线的开口向下,顶点坐标是(2,5),对称轴为直
线x=2.
2-_______.
=(x+_______)
4
15
2. 配方:y=2x2-4x+1
=2(x2-2x)+1
=2(x2-2x+______________-______________)+1
1
1
2-______________.
=2(x-______________)
1
1
课堂导练
【例1】利用配方法把抛物线y=x2-6x-3化为y=a(x-h)2
形式,并写出其开口方向、顶点坐标和对称轴.
解:y=x2-8x+16-16=(x-4)2-16,
∴该抛物线开口向上,顶点坐标为(4,-16),对称轴
为直线x=4.
【例2】用配方法把二次函数y=x2-x+2化成顶点式.
解:y=x2-x+2=x2-x+
即y= −
2
+
-
+2= −
新知探究
课堂小结
这节课你收获了什么? 还有什么疑惑?
新知探究
新知探究
新知探究
2
+
,
.
思路点拨:利用一次项系数的一半的平方来凑完全平方式
3. 将二次函数y=-
1
4
x2+x+4写成y=a(x-h)2+k的形
式,并写出其开口方向、顶点坐标和对称轴.
解:y=-
x2+x+4=-
(x2-4x+4-4)+4=-
(x
-2)2+5,
∴此抛物线的开口向下,顶点坐标是(2,5),对称轴为直
线x=2.
2-_______.
=(x+_______)
4
15
2. 配方:y=2x2-4x+1
=2(x2-2x)+1
=2(x2-2x+______________-______________)+1
1
1
2-______________.
=2(x-______________)
1
1
课堂导练
【例1】利用配方法把抛物线y=x2-6x-3化为y=a(x-h)2
形式,并写出其开口方向、顶点坐标和对称轴.
解:y=x2-8x+16-16=(x-4)2-16,
∴该抛物线开口向上,顶点坐标为(4,-16),对称轴
为直线x=4.
【例2】用配方法把二次函数y=x2-x+2化成顶点式.
解:y=x2-x+2=x2-x+
即y= −
2
+
-
+2= −
新知探究
课堂小结
这节课你收获了什么? 还有什么疑惑?
新知探究
新知探究
新知探究
2
+
,
.
思路点拨:利用一次项系数的一半的平方来凑完全平方式
二次函数顶点式及一般式的对称轴及顶点坐标完整精选ppt
整理
15
·二次函数顶点式的对称轴和顶点坐
标。
·用配方法(九年级上册一元二次方 程时已经学过配方)推导出一般 式的对称轴及顶点 才 只 我步 会 有
们
量
热 爱
有的
数 质变
学 的化
吧
!
才只 会有 有不 新断 的的 发思 现考
整理
数枯 数
学燥 学
因 思
因
维规
而律
耐 人
而
寻不
再 味
17
一次函数 :Y=KX+b (K≠0) 特别的,当b=0时,是正比例函数。 反比例函数:Y=K/X (K≠0)
那么二次函数的解析整理 式是怎样的呢? 10
二次函数解析式
1、一般式:y=ax2+bx+c (a≠0) 二次三项式
y
2、交点式:y=a(x-x1) (x-x2) (a≠0)
3、顶点式: y=a(x-h)2+k (a≠0)
y
o
x
·(h,k)
2、a ﹤ 0时, a(x-h)2 ≤ 0,即 - ∞ ~0 故当X=h时,a(x-h)2有最大值0,
y
· (h,k)
即当X=h时,y=a(x-h)2+k (a≠0)有最大值K
即顶点坐标(h,k)
o
x
对称轴:x=h
顶点坐标:(h,k)整理
12
练一练
1.抛物线y=2(x-4)2 +8的顶点在第(一)象限
y=ax2+bx+c (a≠0)
顶点坐标最关键,
ax2b x c a a
一般式配方它就 现!横标即为对
配 方
ax2bax2ba22ba2ac
2.3 二次函数表达式的三种形式 课件(共21张PPT)
3.已知抛物线与x轴有两个交点(或已知抛物线与x
轴(交其点中的x1横, 坐x2标是)抛,物选线交与点x式轴:交y 点 (的x 横x坐1)(标x )x2 )
但不论何种形式,最后都化为一般形x1 式。
2.抛物线y=ax²+bx+c的顶点为(2,4),且过(1,2)点, 求抛物线的解析式.
3.二次函数y=ax²+bx+c的图象过点A(-2,5),且当 x=2时,y=-3,求这个二次函数的解析式,并 判断点B(0,3)是否在这个函数的图象上.
4.抛物线y=ax²+bx+c经过(0,0),(12,0)两点,其 顶点的纵坐标是3,求这个抛物线的解x1 析式.(要 求用多种方法)
• 求二次函数表达式的方法有很多,今 天主要学习用待定系数法来求二次函 数的表达式(解析式)
• 2015已知二次函数的图象与y轴的交点为C, 与x轴正半轴的交点为A.且.tan ACO 1
4
• (1)求二次函数的解析式;
课后练习
1.抛物线y=ax²+bx+c过(-3,0),(1,0)两点,与y 轴的交点为(0,4)过(-3,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式
• 3.交点式:y a(x x1)(x x2 ) (a 0)
一般式 y ax2 bx c(a )
例题1 (1) 已知二次函数图象经过点A(-1,0), B(4,5),C(0,-3),求该二次函
数的表达式.
(2) (2015牡丹江)抛物线y=x²+bx+c经过 点A(1,-4),B(3,0).求此抛物线的解析式.
二、顶点式 y a(x h)2 k
例题1 (1)(2013绥化)若二次函数图像的顶点坐 标为(-2,3),且过点(-3,5),求此二次 函数的解析式。
轴(交其点中的x1横, 坐x2标是)抛,物选线交与点x式轴:交y 点 (的x 横x坐1)(标x )x2 )
但不论何种形式,最后都化为一般形x1 式。
2.抛物线y=ax²+bx+c的顶点为(2,4),且过(1,2)点, 求抛物线的解析式.
3.二次函数y=ax²+bx+c的图象过点A(-2,5),且当 x=2时,y=-3,求这个二次函数的解析式,并 判断点B(0,3)是否在这个函数的图象上.
4.抛物线y=ax²+bx+c经过(0,0),(12,0)两点,其 顶点的纵坐标是3,求这个抛物线的解x1 析式.(要 求用多种方法)
• 求二次函数表达式的方法有很多,今 天主要学习用待定系数法来求二次函 数的表达式(解析式)
• 2015已知二次函数的图象与y轴的交点为C, 与x轴正半轴的交点为A.且.tan ACO 1
4
• (1)求二次函数的解析式;
课后练习
1.抛物线y=ax²+bx+c过(-3,0),(1,0)两点,与y 轴的交点为(0,4)过(-3,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式
• 3.交点式:y a(x x1)(x x2 ) (a 0)
一般式 y ax2 bx c(a )
例题1 (1) 已知二次函数图象经过点A(-1,0), B(4,5),C(0,-3),求该二次函
数的表达式.
(2) (2015牡丹江)抛物线y=x²+bx+c经过 点A(1,-4),B(3,0).求此抛物线的解析式.
二、顶点式 y a(x h)2 k
例题1 (1)(2013绥化)若二次函数图像的顶点坐 标为(-2,3),且过点(-3,5),求此二次 函数的解析式。
二次函数顶点式及一般式的对称轴及顶点坐标课件
2
如何选择使用哪种形式的二次函数
根据需要确定是否需要确定顶点位置来选择使用顶点式或一般式表示二次函数。
3
顶点式与一般式的对称轴及顶点坐标总结
通过对称轴与顶点坐标的求解,可以准确定轴是二次函数图像的对 称轴线,它通过顶点,并且 与x轴垂直。对称轴的方程为 x=-b/2a。
如何求出函数的顶点坐 标
顶点坐标是二次函数图像的 最高或最低点,通过顶点的x 值和代入函数的x值得到顶点 的y值。
小结
1
二次函数顶点式与一般式的区别
顶点式通过顶点坐标确定二次函数图像的顶点位置,而一般式可以表示二次函数 的一般形式。
二次函数顶点式及一般式 的对称轴及顶点坐标课件
本课件将介绍二次函数顶点式及一般式的对称轴及顶点坐标。通过本课件, 你将了解二次函数的顶点式与一般式的区别,以及如何选择使用哪种形式的 二次函数。
二次函数顶点式
什么是二次函数顶点式
二次函数顶点式是表示二次函数 顶点位置的一种形式。它形如 y=a(x-h)²+k,其中(h,k)为顶点坐 标。
如何将一般式转化为顶点式 什么时候使用顶点式
要将一般式y=ax²+bx+c转化为顶 点式,可以使用平方完成方法, 将其写成标准形式后提取顶点坐 标。
顶点式适用于确定二次函数的顶 点位置,计算顶点坐标以及进行 函数图像的平移。
二次函数一般式
什么是二次函数一般式
二次函数一般式是表示二次 函数的一种常见形式。它形 如y=ax²+bx+c,其中a、b和 c是常数。
二次函数的图像和性质(共48张PPT)
C、对于直线 y=ax+b 来说,由图象可以判断,a>0,b>0;而对于抛物线 y=ax2﹣bx 来说,图象开口向上,对称轴 x= >0,应在 y 轴的右侧,故符合 题意; D、对于直线 y=ax+b 来说,由图象可以判断,a>0,b>0;而对于抛物线 y=ax2﹣bx 来说,图象开口向下,a<0,故不合题意,图形错误; 故选:C.
即当 x<-2ba时, 当 x<-2ba时,y 随 x y 随 x 的增大而减
的增大而增大;在对 小;在对称轴的右
称轴的右侧,即当 x 侧,即当 x>-2ba >-2ba时,y 随 x 的 时,y 随 x 的增大
增大而减小,简记为 而增大,简记为
“左增右减” “左减右增”
15
最值
抛物线有最 抛物线有最
1、二次函数的图像和性质
函数
二次函数 y=ax2+bx+c
(a,b,c 为常数,a≠0)
a<0
a>0
图象
13
开口 对称轴、顶点
抛物线开口向 抛物线开口向
上,并向上无限 下,并向下无限
延伸
延伸
对称轴是x=-
b 2a
,顶点坐标是
-2ba,4ac4-a b2
14
增减性
在对称轴的左侧, 在对称轴的左侧,即
低点,当 高点,当
x=-2ba时, x=-2ba时,
y 有最小值, y 有最大值,
y = 最小值
y = 最大值
4ac-b2 4a
4ac-b2 4a
16
2、二次函数y=ax2+bx+c的图象特征
与系数a,b,c的关系
项目 字母
字母的符号
图象的特征
a>0 a
a<0
即当 x<-2ba时, 当 x<-2ba时,y 随 x y 随 x 的增大而减
的增大而增大;在对 小;在对称轴的右
称轴的右侧,即当 x 侧,即当 x>-2ba >-2ba时,y 随 x 的 时,y 随 x 的增大
增大而减小,简记为 而增大,简记为
“左增右减” “左减右增”
15
最值
抛物线有最 抛物线有最
1、二次函数的图像和性质
函数
二次函数 y=ax2+bx+c
(a,b,c 为常数,a≠0)
a<0
a>0
图象
13
开口 对称轴、顶点
抛物线开口向 抛物线开口向
上,并向上无限 下,并向下无限
延伸
延伸
对称轴是x=-
b 2a
,顶点坐标是
-2ba,4ac4-a b2
14
增减性
在对称轴的左侧, 在对称轴的左侧,即
低点,当 高点,当
x=-2ba时, x=-2ba时,
y 有最小值, y 有最大值,
y = 最小值
y = 最大值
4ac-b2 4a
4ac-b2 4a
16
2、二次函数y=ax2+bx+c的图象特征
与系数a,b,c的关系
项目 字母
字母的符号
图象的特征
a>0 a
a<0
二次函数的一般式化为顶点式(课堂PPT)
y
···
· ·0
x
··
·
·
如何画出
y
1x2 2
6x21的图象呢?
我们知道,像y=a(x-h)2+k这样的函数, 容易确定相应抛物线的顶点为(h,k), 二次函 数 y1x2 6x21也能化成这样的形式吗
2
?
y=ax2+bx+c
b
=a(x2+ x)+c
a
= a[x2+
Hale Waihona Puke b ax+
(
b 2a
) 2 ]-
y3x212x7,那么如何将抛物线 y 3 x 2的图 像移动,得到的 y3x212x7 图像呢?
二次函数 y=2(x+3)2+5 y = -3x(x-1)2 -2 y = 4(x-3)2 +7 y = -5(2-x)2 - 6
开口方 对称轴 顶点坐标 向
向上 直线x=–3 (-3,5)
向下 直线x=1 (1,-2)
向上 直线x=3 (3,7 ) 向下 直线x=2 (2,-6)
你能说出二次函数y=-2x 2-8x-7图 像的特征吗?
如何画出 y-2x28x-7 的图象呢?
我们知道,像y=a(x+h)2+k这样的函数, 容易确定相应抛物线的顶点为(-h,k), 二次 函数y-2x28x-7 也能化成这样的形式 吗?
(
b 2a
)2
a
+c
=a(x+ b )2+ 4 a c b 2
2a
4a
2020/7/10
14
求下列二次函数图像的开口、顶点、对称轴
①y=2x2-5x+3②y=- 1 x2+4x-9 ③y=(x-3)(x+2)
二次函数(共26张PPT)
零点
零点
零点是函数与x轴的交点,对应于抛物线与x轴的交 点。
美丽的桥梁
这张照片是一张桥梁夕阳美景的照片,代表着美丽 与自然的结合。
判别式
二次函数的判别式Δ=b²-4ac表示抛物线与x轴的交点个数。如果Δ>0,则有两个 交点;如果Δ=0,则有一个交点;如果Δ<0,则没有交点。
基本形式
1 标准式
f(x)=ax²
二次函数
二次函数在数学中是一个重要的概念,涉及到图像、最值、应用等方面。本 次26张PPT涵盖了二次函数的各个方面,希望能帮助大家更好地理解这个概念。
定义
二次函数是形如f(x)=ax²+bx+c的函数,其中a、b、c为常数,且a≠0。二次函数的图像是一个开口朝上或朝下的 抛物线。
图像
二次函数图像
2 顶点式
f(x)=a(x-h)²+k
3 一般式
f(x)=ax²+bx+c
标准形式
定义
标准式是二次函数的一种形式, 其中二次项系数a=1,常数项 c=0。
公式
f(x)=x²
图像
开口朝上或下,左右对称
图像美学
蔚蓝海岸线和彩色天空构成完美背景,并营造出温 馨优美的氛围。
对称轴
二次函数的对称轴是过抛物线顶点的一条直线。对称轴可以是水平或垂直线。
顶点
顶点坐标
顶点坐标为(-b/2a, f(-b/2a))
寻找顶点
找到对称轴,然后代入函数公式求得顶点坐标
ห้องสมุดไป่ตู้
美丽的山景
这幅精美的照片展现了一个山丘和群山的自然美景,使我们感叹自然之美。
演示版二次函数顶点式及一般式的对称轴及顶点坐标课件.ppt
o
x
·(h,k)
2、a ﹤ 0时, a(x-h)2 ≤ 0,即 - ∞ ~0 故当X=h时,a(x-h)2有最大值0,
y
· (h,k)
即当X=h时,y=a(x-h)2+k (a≠0)有最大值K
即顶点坐标(h,k)
o
x
对称轴:x=h
顶点坐标:(h,k).精品课件.
12
1.抛物线y=2(x-4)2 +8的顶点在第(一 )象限
才寻枯
会 .精品课件.
味
燥17
2a 4a
2a
4a .精品课件.
14
4. 函数y=x2-2x+3的图象的顶点坐标是( C )
A .(1,-4)
B.(-1,2)
C. (1,2)
D.(0,3)
5. 抛物线
A. x=-2 C. x=-4
的对称轴方程是( B)
B.x=2 D. x=4
6. 若将二次函数y=x2-2x+3配方为y=(x-h)2+k 的形式,则y= (x-1)2+2
2. 抛物线y=2(x+3)2 -1的顶点在( B)
A. 第二象限
B. 第三象限
C. x轴上
D. y轴上
c 3. 抛物线y=2(x+3)2 的顶点在( )
A. 第一象限
B. 第二象限
C. x轴上
D. y轴上
.精品课件.
13
一般式如何转化成顶点式呢?
由顶点式:y=a(x-h)2+k (a≠0)可知:对称轴x=h, 顶点坐标(h,k).
二次函数 y=ax2+bx+c(a≠0)
.精品课件.
1
用公式求二次函数的顶点与对称轴ppt课件
2
行配方,写出它的顶点坐标与对称轴。
.
你做对了吗?
结果:
y1x2 4x3 1 x4 2 5
2
2
所以,抛物线 y1x2 4x3 的顶点坐 2
标是(4,-5),与对称轴是 直线x=4 。
.
启发 把 y1x2 4x3 通过配方法化成
2
的顶点式,容易吗?难在哪里?
有没有简单 的办法?
.
活动三:温故知新
得到的。
分析17 第6
.
-5
6 4 2
-2 -4 -6
5
10
.
2a 2a a
a写x成b完2全a平b方2的a•形c式
2a 2a a
a乘x法2ba分2配a•律4ba22 c
过看 程以
下
ax2ba2a•4ba22 c
过看 程以
下
ax2ba2a•4ba22 c
ax
b
2
b2
c
2a 4a
a化x简b整2理cb2
2a
4a
a交x换b项2的c•位4a置b2
2a 4a 4a
坐标和对称轴。 2
3、抛物线 yx2m1x1的对称
4
轴是x=2,则求m的值。
.
4、某篮球运动员某次投篮,篮球的运 动员路线是抛物线 y 2x 1 x2 的
2 图像(如图),则篮球经过最高点M的
高度是 2 M,其中y是垂直高度,
x是水平距离。
y
x
.
二次函数y=ax2+bx+c的图像有何特征?
(1)二次函数y=ax2+bx+c的图像是一
回忆 对于比较复杂的一元二次方程,如
1x2 4x30我们用什么方法去求它的根?
行配方,写出它的顶点坐标与对称轴。
.
你做对了吗?
结果:
y1x2 4x3 1 x4 2 5
2
2
所以,抛物线 y1x2 4x3 的顶点坐 2
标是(4,-5),与对称轴是 直线x=4 。
.
启发 把 y1x2 4x3 通过配方法化成
2
的顶点式,容易吗?难在哪里?
有没有简单 的办法?
.
活动三:温故知新
得到的。
分析17 第6
.
-5
6 4 2
-2 -4 -6
5
10
.
2a 2a a
a写x成b完2全a平b方2的a•形c式
2a 2a a
a乘x法2ba分2配a•律4ba22 c
过看 程以
下
ax2ba2a•4ba22 c
过看 程以
下
ax2ba2a•4ba22 c
ax
b
2
b2
c
2a 4a
a化x简b整2理cb2
2a
4a
a交x换b项2的c•位4a置b2
2a 4a 4a
坐标和对称轴。 2
3、抛物线 yx2m1x1的对称
4
轴是x=2,则求m的值。
.
4、某篮球运动员某次投篮,篮球的运 动员路线是抛物线 y 2x 1 x2 的
2 图像(如图),则篮球经过最高点M的
高度是 2 M,其中y是垂直高度,
x是水平距离。
y
x
.
二次函数y=ax2+bx+c的图像有何特征?
(1)二次函数y=ax2+bx+c的图像是一
回忆 对于比较复杂的一元二次方程,如
1x2 4x30我们用什么方法去求它的根?
人教版九年级数学上册《二次函数顶点式的图像和性质》PPT
前几节课我们学习了哪几种类型的二次函数?
y ax2、
y ax2 k、 y a(x h)2
研究了它们的图象和性质
说出下列抛物线的开口方向、对称轴、顶点
抛物线 y 1 x2
2 y 1 x2 1
2 y 1 (x 2)2
2
开口方向 对称轴 顶点
向下 y轴 0, 0
向下 y轴 0, 1
A.y x 2 2 B.y x 2 2 6
C.y x2 6 D.y x2
5、已知点A 2, y1 、B 3, y2 在抛物线y x 12 1上,
则 y1
y2 (填“ ”、“ ”、“ ”)
若点A 3, y1 、B 2, y2 在抛物线y x 12 1上,
1抛物线y a(x h)2 k与y ax2
形状 相同, 位置 不同,
2抛物线y ax2经过 向上(或向下),
向左(或向右),平移,可以得到
抛物线y a(x h)2 k. 平移的方向、距离由h、k决定
1.抛物线y 5( x 2)2 6的开口方向、对称轴、 顶点,下列选项正确的是( )
向下直线x 2 2, 0
y 1 (x 2)2 1 向下直线x 2 2, 1 2
不画图象,类比说出抛物线的开口方向、对称轴、顶点
抛物线
开口方向 对称轴
顶点
y 1 (x 2)2 2
1
向下直线x 2
2, 1
y
1 ( x 2)2 2
1
向上直线x 2 2,1
2
抛物线
开口方向 对称轴 顶点
平移方法1:
y 1 x2 向下平移 y 1 x2 1 向右平移y 1 (x 2)2 1
2 1个单位
2
2个单位 2
y ax2、
y ax2 k、 y a(x h)2
研究了它们的图象和性质
说出下列抛物线的开口方向、对称轴、顶点
抛物线 y 1 x2
2 y 1 x2 1
2 y 1 (x 2)2
2
开口方向 对称轴 顶点
向下 y轴 0, 0
向下 y轴 0, 1
A.y x 2 2 B.y x 2 2 6
C.y x2 6 D.y x2
5、已知点A 2, y1 、B 3, y2 在抛物线y x 12 1上,
则 y1
y2 (填“ ”、“ ”、“ ”)
若点A 3, y1 、B 2, y2 在抛物线y x 12 1上,
1抛物线y a(x h)2 k与y ax2
形状 相同, 位置 不同,
2抛物线y ax2经过 向上(或向下),
向左(或向右),平移,可以得到
抛物线y a(x h)2 k. 平移的方向、距离由h、k决定
1.抛物线y 5( x 2)2 6的开口方向、对称轴、 顶点,下列选项正确的是( )
向下直线x 2 2, 0
y 1 (x 2)2 1 向下直线x 2 2, 1 2
不画图象,类比说出抛物线的开口方向、对称轴、顶点
抛物线
开口方向 对称轴
顶点
y 1 (x 2)2 2
1
向下直线x 2
2, 1
y
1 ( x 2)2 2
1
向上直线x 2 2,1
2
抛物线
开口方向 对称轴 顶点
平移方法1:
y 1 x2 向下平移 y 1 x2 1 向右平移y 1 (x 2)2 1
2 1个单位
2
2个单位 2
二次函数的解析式课件
弹性力学问题
在弹性力学中,二次函数 可以用于描述物体的应力 和应变关系,以及弹性体 的变形和稳定性等问题。
04
二次函数解析式的性质
二次函数的开口方向与a的关系
总结词:a的正负决定二次函数的开口方 向 a>0时,开口向上;a<0时,开口向下。
a的符号决定了二次函数的开口方向,这 是判断二次函数增减性的关键。
几何问题
二次函数与几何图形密切相关,可以 用于研究平面几何、立体几何中的一 些问题,例如抛物线、椭圆、双曲线 的性质和图像。
在物理问题中的应用
01
02
03
运动学问题
二次函数可以用于描述物 体在重力作用下的运动规 律,例如自由落体运动、 抛体运动等。
波动问题
在波动现象中,例如声波 、光波等,二次函数可以 用于描述波的传播规律和 性质。
参数的取值还影响抛物线 的顶点位置:顶点的x坐标 为-b/2a,y坐标为(4acb^2)/4a。
03
二次函数解析式的应用
在生活中的实际应用
金融领域
二次函数可以用于描述股 票价格、债券收益率等金 融数据的变动规律,帮助 投资者进行风险评估和预
测。
建筑领域
在建筑设计中,二次函数 可以用于计算结构物的受 力分析、稳定性等,以确 保建筑的安全性和稳定性
最小值为c-b^2/4a,此时二次函数开 口向上;最大值为c-b^2/4a,此时二 次函数开口向下。
二次函数的最小值或最大值在对称轴 上取得,即x=-b/2a处。
05
二次函数解析式的求解方法
配方法求解二次函数解析式
总结词
通过配方将二次函数转化为顶点式,便于分析函数的开口方向、对称轴和顶点坐标。
详细描述
《函数》第04讲 二次函数课件
王新敞
奎屯 新疆
七、二次函数与方程、不等式的关系
判别式 △=b2-4ac 二次函数 y=ax2+bx+c (a>0)的图象 一元二次方程 ax2+bx+c=0 (a>0) 的根 △>0 y
x1 o x2
△=0 y x
△<0 y
o x1=x2
x
o
x
有两相异实根 x1, x2 (x1<x2)
有两相等实根 b x1=x2= - 2 a b {x | x≠- 2a }
o
y o
2 4
x
x
2 4
(3) 若 a > 4 时,f ( x ) 在[ 2,4 ]上为减函数 ∴ f ( x ) min = f ( 4 ) = 18 -8a
y
2 4
故f ( x )min
a2 6 4a 2 a2 2 a 4 18 8a a 4
王新敞
综上所述, a=1- 2 或 a=5+ 10.
一、二次函数的解析式
1.一般式: y=ax2+bx+c(a≠0); 2.顶点式: y=a(x -m)2+n(其中(m, n)为抛物线的顶点坐标); 3.两根式: y=a(x -x1)(x -x2)(其中x1, x2为抛物线与 x 轴两交点 的横坐标);
二、二次函数的图象
有关知识: 图象形状; 对称轴; 顶点坐标; 与 x 轴交点坐标; 截 x 轴线段长.
-----------“活动范围” 定义域(区间)
引例. 已知a,b,c∈R,函数f(x)=ax2+bx+c, 若f(0)= f(4)> f(1), 则 A. a>0, 4a+b=0 C. a>0, 2a+b=0 B. a<0, 4a+b=0 D. a<0, 2a+b=0
奎屯 新疆
七、二次函数与方程、不等式的关系
判别式 △=b2-4ac 二次函数 y=ax2+bx+c (a>0)的图象 一元二次方程 ax2+bx+c=0 (a>0) 的根 △>0 y
x1 o x2
△=0 y x
△<0 y
o x1=x2
x
o
x
有两相异实根 x1, x2 (x1<x2)
有两相等实根 b x1=x2= - 2 a b {x | x≠- 2a }
o
y o
2 4
x
x
2 4
(3) 若 a > 4 时,f ( x ) 在[ 2,4 ]上为减函数 ∴ f ( x ) min = f ( 4 ) = 18 -8a
y
2 4
故f ( x )min
a2 6 4a 2 a2 2 a 4 18 8a a 4
王新敞
综上所述, a=1- 2 或 a=5+ 10.
一、二次函数的解析式
1.一般式: y=ax2+bx+c(a≠0); 2.顶点式: y=a(x -m)2+n(其中(m, n)为抛物线的顶点坐标); 3.两根式: y=a(x -x1)(x -x2)(其中x1, x2为抛物线与 x 轴两交点 的横坐标);
二、二次函数的图象
有关知识: 图象形状; 对称轴; 顶点坐标; 与 x 轴交点坐标; 截 x 轴线段长.
-----------“活动范围” 定义域(区间)
引例. 已知a,b,c∈R,函数f(x)=ax2+bx+c, 若f(0)= f(4)> f(1), 则 A. a>0, 4a+b=0 C. a>0, 2a+b=0 B. a<0, 4a+b=0 D. a<0, 2a+b=0
二次函数顶点式ppt课件
x
y 1 x2 3 3
–2(0,-3) –3 –4精选ppt课件 –5
y 1 x2
3
6
3.左右 平移
如何由
y
1 3
x2
y
的图1象(得x到2y)2的图13(象x。2)、2
y
3
5
x= - 2 4 x= 2
3
2
(-2,0) 1
y 1 x –252–4–3–2–1–O1
3
–2
1
(2,0) 23
a的绝对值越大,开口越小
直线x=h
(h,0)
顶点是最低点
顶点是最高点
在对称轴左精选侧pp递t课件减
在对称轴左侧递增 4
在对称轴右侧递增 在对称轴右侧递减
复习回顾: 1.填表
抛物线 开口方向 对称轴 顶点坐标
y0.5x2
y0.5x21
y0.5x21
y 2x2
y2(x1)2 y2(x1)2
向下
x=0
…
-5.5 -3 -1.5
再描点、连线
-1 0 1 2 …
-1 -1.5 -3 -5.5 … 直线x=-1
(1)抛物线 y1(x1)2 1
2
的开口方向、对称轴、顶点? 抛物线 y1(x1)2 1 的开口向下, 2
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x -2 -3 -4 -5
与y = ax2形状相同精选,ppt课位件 置不同。
16
如何平移:
y 3 (x 1)2 4
y3(x1)2 2 4
y3(x3)2 3 4
y3(x5)2 2 4
精选ppt课件
17
例4.要修建一个圆形喷水池,在池中心竖直 安装一根水管.在水管的顶端安装一个喷水 头,使喷出的抛物线形水柱在与池中心的水 平距离为1m处达到最高,高度为3m,水柱落 地处离池中心3m,水管应多长?
二次函数课件
x=x1 或x=x2是二次不等式 的解集的端点值
第十三页,编辑于星期五:九点 三十五分。
3.二次函数在闭区间上的最值
在闭区间的端点或二次函 数的顶点处取得
y -1 0 1 x
y -1 0 1 x
y
-1 0 1
x
第十四页,编辑于星期五:九点 三十五分。
(1)抛物线与x轴的交点情况
二次函数y=ax2+bx+c 的图象和x轴交点
x1,x2 有且仅 有一个 在(k1 ,k2)
充要条件
第三十二页,编辑于星期五:九点 三十五分。
3.一元二次方程根的分布.
(1)方程ax2+bx+c=0(a≠0)两根:
一正一负 ac<0;
两正根
Δ>0
x1+x2=- b >0 x1·x2= c a>0;
a
两负根
Δ>0
b
x1+x2=-c a <0
x1·x2= a >0;
一零根 C=0
第三十三页,编辑于星期五:九点 三十五分。
设f ( x) ax2 + bx + c(a 0) 一元二次方程ax2 + bx + c 0(a 0) 的两根为x1, x2 ( x1 x2 )
( 1 ) 方 程 两 根 都 小 于 k (k 为 常 数 )
(5)正数的负分数指数幂:
m
an
1
m
an
1 n am
( a > 0 , m , n N 且 n > 1 )
(6) 0的正分数指数幂等于 0 ;
0的负分数指数幂 没有意义
第十页,编辑于星期五:九点 三十五分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰能®
(亚胺培南/西司他丁钠盐)
·二次函数顶点式的对称轴和顶点坐 标。
·用配方法(九年级上册一元二次方 程时已经学过配方)推导出一般 式的对称轴及顶点的坐标。
泰能®
(亚胺培南/西司他丁钠盐)
, ;
, .
让 我
有只 质有
们 的量
热 爱 数
进的 步变
学 吧
化
!
才
会
有只 新有 的不 发断 现的
思 考 才 会
二次函数 y=ax2+bx+c(a≠0)
泰能®
(亚胺培南/西司他丁钠盐)
二次函数源于生活
泰能®
(亚胺培南/西司他丁钠盐)
二次函数源于生活
泰能®
(亚胺培南/西司他丁钠盐)
ห้องสมุดไป่ตู้
二次函数源于生活
泰能®
(亚胺培南/西司他丁钠盐)
二次函数源于生活
泰能®
(亚胺培南/西司他丁钠盐)
二次函数源于生活
泰能®
(亚胺培南/西司他丁钠盐)
2. 抛物线y=2(x+3)2 -1的顶点在( B)
A. 第二象限
B. 第三象限
C. x轴上
D. y轴上
c 3. 抛物线y=2(x+3)2 的顶点在( )
A. 第一象限
B. 第二象限
C. x轴上
D. y轴上
泰能13®
(亚胺培南/西司他丁钠盐)
一般式如何转化成顶点式呢?
由顶点式:y=a(x-h)2+k (a≠0)可知:对称轴x=h, 顶点坐标(h,k).
2、一般式如何转化成顶点式呢? 泰能®
(亚胺培南/西司他丁钠盐)
顶点式: y=a(x-h)2+k (a≠0)
观察:a(x-h)2 的取值
1、a﹥0时, a(x-h)2 ≥ 0, 即 0 ~ + ∞ 故当X=h时,a(x-h)2有最小值0, 即当X=h时,y=a(x-h)2+k (a≠0)有最小值K 即顶点坐标(h,k)
那么二次函数的解析式是怎样的呢? 泰能10®
(亚胺培南/西司他丁钠盐)
二次函数解析式
1、一般式:y=ax2+bx+c (a≠0) 二次三项式
y
2、交点式:y=a(x-x1) (x-x2) (a≠0)
3、顶点式: y=a(x-h)2+k (a≠0)
· (X1,0) o
·x
(X2,0)
1、顶点式的对称轴和顶点坐标是什么?
y=ax2+bx+c (a≠0)
顶点坐标最关键,
a x2 b x c a a
一般式配方它就 现!横标即为对
配 方
a
x2
b a
x
b 2a
2
b 2a
2
c a
称轴,纵标函数 最值见!
a x
b 2 2a
4ac b2
4a 2
对称轴:
x=-
b 2a
a x
b
2
4ac
b2
.
2a 4a
数数 学学 因因 思规 维律 而而 耐不 人再 寻枯 味 燥泰能17®
(亚胺培南/西司他丁钠盐)
二次函数源于生活
泰能®
(亚胺培南/西司他丁钠盐)
二次函数源于生活
泰能®
(亚胺培南/西司他丁钠盐)
二次函数源于生活
泰能®
(亚胺培南/西司他丁钠盐)
打开你的记忆
一次函数 反比例函数 次函数
一次函数 :Y=KX+b (K≠0) 特别的,当b=0时,是正比例函数。 反比例函数:Y=K/X (K≠0)
顶点坐标:(- b ,4ac - b2 )
2a
泰4a能14®
(亚胺培南/西司他丁钠盐)
4. 函数y=x2-2x+3的图象的顶点坐标是( C )
A .(1,-4)
B.(-1,2)
C. (1,2)
D.(0,3)
5. 抛物线
A. x=-2 C. x=-4
的对称轴方程是( B)
B.x=2 D. x=4
6. 若将二次函数y=x2-2x+3配方为y=(x-h)2+k 的形式,则y= (x-1)2+2
y
o
x
·(h,k)
2、a ﹤ 0时, a(x-h)2 ≤ 0,即 - ∞ ~0 故当X=h时,a(x-h)2有最大值0,
y
· (h,k)
即当X=h时,y=a(x-h)2+k (a≠0)有最大值K
即顶点坐标(h,k)
o
x
对称轴:x=h
顶点坐标:(h,k)
泰能®
(亚胺培南/西司他丁钠盐)
1.抛物线y=2(x-4)2 +8的顶点在第(一 )象限
(亚胺培南/西司他丁钠盐)
·二次函数顶点式的对称轴和顶点坐 标。
·用配方法(九年级上册一元二次方 程时已经学过配方)推导出一般 式的对称轴及顶点的坐标。
泰能®
(亚胺培南/西司他丁钠盐)
, ;
, .
让 我
有只 质有
们 的量
热 爱 数
进的 步变
学 吧
化
!
才
会
有只 新有 的不 发断 现的
思 考 才 会
二次函数 y=ax2+bx+c(a≠0)
泰能®
(亚胺培南/西司他丁钠盐)
二次函数源于生活
泰能®
(亚胺培南/西司他丁钠盐)
二次函数源于生活
泰能®
(亚胺培南/西司他丁钠盐)
ห้องสมุดไป่ตู้
二次函数源于生活
泰能®
(亚胺培南/西司他丁钠盐)
二次函数源于生活
泰能®
(亚胺培南/西司他丁钠盐)
二次函数源于生活
泰能®
(亚胺培南/西司他丁钠盐)
2. 抛物线y=2(x+3)2 -1的顶点在( B)
A. 第二象限
B. 第三象限
C. x轴上
D. y轴上
c 3. 抛物线y=2(x+3)2 的顶点在( )
A. 第一象限
B. 第二象限
C. x轴上
D. y轴上
泰能13®
(亚胺培南/西司他丁钠盐)
一般式如何转化成顶点式呢?
由顶点式:y=a(x-h)2+k (a≠0)可知:对称轴x=h, 顶点坐标(h,k).
2、一般式如何转化成顶点式呢? 泰能®
(亚胺培南/西司他丁钠盐)
顶点式: y=a(x-h)2+k (a≠0)
观察:a(x-h)2 的取值
1、a﹥0时, a(x-h)2 ≥ 0, 即 0 ~ + ∞ 故当X=h时,a(x-h)2有最小值0, 即当X=h时,y=a(x-h)2+k (a≠0)有最小值K 即顶点坐标(h,k)
那么二次函数的解析式是怎样的呢? 泰能10®
(亚胺培南/西司他丁钠盐)
二次函数解析式
1、一般式:y=ax2+bx+c (a≠0) 二次三项式
y
2、交点式:y=a(x-x1) (x-x2) (a≠0)
3、顶点式: y=a(x-h)2+k (a≠0)
· (X1,0) o
·x
(X2,0)
1、顶点式的对称轴和顶点坐标是什么?
y=ax2+bx+c (a≠0)
顶点坐标最关键,
a x2 b x c a a
一般式配方它就 现!横标即为对
配 方
a
x2
b a
x
b 2a
2
b 2a
2
c a
称轴,纵标函数 最值见!
a x
b 2 2a
4ac b2
4a 2
对称轴:
x=-
b 2a
a x
b
2
4ac
b2
.
2a 4a
数数 学学 因因 思规 维律 而而 耐不 人再 寻枯 味 燥泰能17®
(亚胺培南/西司他丁钠盐)
二次函数源于生活
泰能®
(亚胺培南/西司他丁钠盐)
二次函数源于生活
泰能®
(亚胺培南/西司他丁钠盐)
二次函数源于生活
泰能®
(亚胺培南/西司他丁钠盐)
打开你的记忆
一次函数 反比例函数 次函数
一次函数 :Y=KX+b (K≠0) 特别的,当b=0时,是正比例函数。 反比例函数:Y=K/X (K≠0)
顶点坐标:(- b ,4ac - b2 )
2a
泰4a能14®
(亚胺培南/西司他丁钠盐)
4. 函数y=x2-2x+3的图象的顶点坐标是( C )
A .(1,-4)
B.(-1,2)
C. (1,2)
D.(0,3)
5. 抛物线
A. x=-2 C. x=-4
的对称轴方程是( B)
B.x=2 D. x=4
6. 若将二次函数y=x2-2x+3配方为y=(x-h)2+k 的形式,则y= (x-1)2+2
y
o
x
·(h,k)
2、a ﹤ 0时, a(x-h)2 ≤ 0,即 - ∞ ~0 故当X=h时,a(x-h)2有最大值0,
y
· (h,k)
即当X=h时,y=a(x-h)2+k (a≠0)有最大值K
即顶点坐标(h,k)
o
x
对称轴:x=h
顶点坐标:(h,k)
泰能®
(亚胺培南/西司他丁钠盐)
1.抛物线y=2(x-4)2 +8的顶点在第(一 )象限