决策支持系统发展综述

合集下载

信息系统分析与决策(第一章:知识点1-16)

信息系统分析与决策(第一章:知识点1-16)

一、决策支持系统的定义



S.S.Mittra对DSS的定义:决策支持系统是从数据库 中找出必要的数据,并利用数学模型的功能,为用户 产生所需要的信息。 决策支持系统具有如下功能:
为了作出决策,用户可以试探几种“如果,将如何”(What If...)的方案。 DSS必须具备一个数据库管理系统,一组以优化和非优化模型为形 式的数学工具和一个能为用户开发DSS资源的联机交互系统。 结构是由控制模块将数据存取模块,数据变换模块(检索数据,产 生报表和图形),模型建立模块(选择数学模型或采用模拟技术)三 个模块连接起来实现决策问题的回答。

以数据仓库为基础,结合联机分析处理和数据挖掘形成了基
于数据仓库的决策支持系统。
第一章决策支持系统综述 知识点8 决策问题的结构化分类
一、决策问题的结构化分类

决策问题按结构化程度分类,即对决策问题的内在规 律能否用明确的程序化语言(数学的、逻辑的、形式 的、定量的、推理的)给以清晰的说明或者描述。
一、决策支持系统的定义



P.G.W.Keen对DSS的定义:决策支持系统是“决策 ”(D),“支持”(S),“系统”(S),三者汇集成的一 体。 即通过不断发展的计算机建立系统的技术(System), 逐渐扩展支持能力(Support),达到更好的辅助决策 (Decision)。 传统的支持能力是指提供的工具能适用当前的决策过 程,而理想的支持能力是主动的给出被选方案甚至于 决策被选方案。


二、几种常用智能技术(2)

机器学习是模拟人的学习方法,通过学习获取知识的 智能技术。
机器学习包括归纳学习、类比学习、解释学习等多种 类型。 机器学习和决策支持系统结合形成的智能决策支持系 统,主要是增加学习功能,获取辅助决策知识。

决策支持系统文献综述

决策支持系统文献综述

决策支持系统应用研究综述李某某XXXX大学经济管理学院武汉湖北430074摘要:本文从国内外应用现状、相关技术、热门领域等方面对决策支持系统展开论述,较为详尽的总结了决策支持系统的主要开发技术及其特点,对决策支持系统的两大热门领域:智能决策支持系统(IDSS)和综合集成系统进行了简要的概括,最后讨论了决策支持系统的未来发展趋势。

关键词:决策;决策支持系统;应用研究综述;1 引言决策支持系(DSS,Decision Supportsystem)是以管理科学、运筹学、控制论和行为科学为基础,以计算机技术、人工智能技术和信息技术为手段,智能化地支持决策活动的计算机系统[1]。

它通过人机对话进行分析、比较和判断,识别问题,建立或修改模型,帮助决策者明确决策目标,为决策者提供各种方案并对其进行评价和优选,为正确决策提供有益帮助。

这一概念于20世纪70年代初,由美国Michael S.Scott Morton在《管理决策系统》[2]一文首次提出,20世纪80年代中期引入我国。

目前已经呈现出多元化的发展态势。

DSS系统模型是以数据仓库(DW)为基础,联机分析处理(OLAP)与数据挖掘(DM)为工具的智能系统[3]。

DW,DM,OLAP就是以DSS为驱动发展起来的信息处理技术,DW用于数据的存储和组织.0LAP集中于数据的分析,DM则致力于知识的发现,三者自然结台。

使分析结果更全面、有效和深刻。

自DSS开发以来,与它的理论研究相比,实际应用工作开展得更早,它广泛用于企业管理、系统开发、经济分析与规划、战略研究、资源管理、投资规划[4]等方面,支持各类决策问题的决策支持系统大量出现并已投入使用。

2 国内外应用现状目前,DSS己成为系统工程与计算机应用领域中的重要研究课题。

通过国内外相关专家、学者的不断探索和研究,DSS在国内外学术界的理论研究和国民经济的实际应用中得到了迅猛发展,在军事应用领域也有广阔的发展前景,世界各国都在竞相开发军事应用中的DSS[5]。

多人决策支持系统类型综述——DDSS

多人决策支持系统类型综述——DDSS

多人决策支持系统类型综述——DDSS【摘要】本文首先简述了传统的决策支持系统,总结了现有的多人决策支持系统的概念和类型。

在此基础上重点总结了分布式决策支持系统(DDSS)的国内外研究现状,提出了分布式决策支持系统的体系结构模型:通过将Mobile Agent技术引入,然后分别从系统模型、体系结构、系统组织等方面进行了深入的研究。

【关键词】多人决策支持系统DDSS Mobile Agent技术一、多人决策支持系统决策支持系统(Decision Supporting System,简称DSS)自二十世纪七十年代提出以来将管理信息系统和模型辅助决策结合起来,使得数值计算和数据处理融为一体,在企业发展、市场经营以及军事指挥等重大决策问题上发挥了显著作用[1]。

传统DSS辅助决策的对象为个体决策者,且模型库中的模型以数学模型为主,决策的结果表现为定量分析。

因此传统DSS所求解的决策问题通常比较简单、单一。

并且因为基于传统DBMS的DSS只能提供辅助决策过程中的数据级支持,而现实决策所需的数据却往往是分布、异构的。

因此,经过30多年的发展,决策支持系统已经从最初的支持个人决策扩展到群体和组织这类多人决策,并且出现了组织决策支持系统(ODSS)、群体决策支持系统(GDSS)、分布式决策支持系统(DDSS)和定性群决策支持系统(QGDSS)、智能群体决策支持系统(IGDSS)以及基于CBR与MAS的群体决策支持系统(MGDSS)等。

本文主要研究分布式决策支持系统(DDSS)的研究现状和发展前景。

二、DDSS国内外研究现状1、DDSS概念及其关键技术随着计算机技术、网络以及分布式数据库技术的发展,DSS技术出现了分布式决策支持系统,即DDSS。

DDSS是研究分布于多个物理位置上的决策体如何并发计算、协调一致地求解问题[2]。

这些分布在不同物理位置上的决策体构成计算机网络,网络的每个结点至少含有一个决策支持系统或有若干辅助决策的功能。

决策支持系统总结

决策支持系统总结

1、数据仓库:数据仓库是面向主题的、集成的、稳定的、不同时间的数据集合,用于支持经营管理中决策的制定过程。

2、联机分析处理OLAP是一种软件技术,它使分析人员能够迅速、一致、交互地从各个方面观察信息,已达到深入理解数据的目的。

这些信息是从原始数据转换过来的,按照用户的理解,它反映了企业真实的方方面面。

3、数据挖掘数据挖掘是从存放在数据库、数据仓库或其他信息库中的大量数据中挖掘有趣知识的过程。

4、智能决策支持系统智能决策支持系统是人工智能和DSS相结合,应用专家系统技术,使DSS能够更充分地应用人类的知识,如关于决策问题的描述性知识,决策过程中的过程性知识,求解问题的推理性知识,通过逻辑推理来帮助解决复杂的决策问题的辅助决策系统。

5、群体决策支持系统决策支持系统是一个将软件、硬件设备、组织件和群体成员融合为一体的人机交互系统,它为具有共同责任,但知识、经验不同的群体成员求解结构化和非结构化问题提供支持其目标是消除群体的通信障碍,提供结构化决策分析技术,改善群体决策过程,知道群体讨论的容、时间和模式,以提高决策的效率和质量。

6、基于网络的决策支持系统以计算机网络通信技术为信息交互基础的决策支持系统称为基于网络的决策支持系统。

二、简答:1、MIS特征:(1)MIS的主要功能是事务处理(2)MIS包含多个数据处理系统(3)MIS是为结构化决策服务的(4)MIS具有系统的一切特征(5)MIS是实际管理系统的一部分(6)MIS是以数据库系统为基础建立起来的2、MIS的功能:(1)事务处理(2)数据库的更新和维护(3)产生各类报表(4)查询处理(5)用户与系统的交互作用3、简述决策支持系统DSS实质上是在管理信息系统和运筹学的基础上发展起来的。

它把众多的模型有效地组织和存储起来,增加了模型库和模型库管理系统,通过人机交互功能,建立模型库和数据库的有机结合。

DSS是可以任意表达其容的,也就是说,对于不同的人它具有不同的含义,所以目前还没有同意可接受的DSS定义。

决策系统的发展与前景

决策系统的发展与前景
借助自然语言处理技术,使决策系统能够理解和 处理人类语言,实现更自然的人机交互。
多源数据融合应用拓展
多模态数据融合
整合来自不同模态的数据,如文本、图像、音频和视频等,为决策 提供更全面的信息。
大数据技术应用
运用大数据技术,对海量数据进行实时分析和处理,发现数据间的 关联和趋势,为决策提供支持。
数据挖掘与知识发现
02 决策系统关键技术
数据采集与处理技术
01
02
03
数据采集
通过传感器、网络爬虫、 API接口等方式,从各种 数据源中收集数据。
数据清洗
对数据进行去重、去噪、 填充缺失值等处理,以保 证数据质量。
数据转换
将数据转换为适合后续分 析和挖掘的格式,如数据 归一化、离散化等。
数据分析与挖掘技术
描述性统计
不同参与方在决策过程中可能存在利益冲突,导致协同决策难以 实现。
信息不对称
各参与方掌握的信息可能不对称,影响协同决策的效果。
信任缺失
缺乏信任可能导致参与方不愿意共享信息和资源,从而阻碍协同 决策的进行。
新兴技术带来的机遇与挑战
01
人工智能技术
人工智能技术的发展为决策系统提供了更强大的数据处理和分析能力,
护提出了更高的要求。
05 决策系统未来展望
智能化水平提升
1 2
机器学习算法优化
通过改进现有算法和开发新算法,提高决策系统 的学习和推理能力,使其能够更准确地识别和解 决问题。
深度学习技术应用
利用深度学习技术,对大量数据进行高效处理和 分析,提取有用特征,为决策提供更准确的依据。
3
自然语言处理技术
遗传算法
模拟自然选择和遗传机制,寻找问题的最优 解。

决策支持系统发展现状与趋势分析

决策支持系统发展现状与趋势分析

决策支持系统发展现状与趋势分析1引言决策是人类社会发展中人们在为实现某一目的而决定策略或办法时,时时存在的一种社会现象。

任何行动都是相关决策的一种结果。

正是这种需求的普遍性,决策支持系统应运而生。

决策支持系统(Decision Support System—DSS)的概念于20世纪70年代初由美国Michael S.Scott Morton在《管理决策系统》一文首次提出,20世纪80年代中期引入我国。

20多年来,DSS已在理论研究、系统开发和实际应用诸方面取得了令人瞩目的进步,并呈现出积极的多元化的发展态势。

随着人工智能技术、网络技术、通信技术和信息处理技术的发展和多学科的交叉结合发展,决策支持系统呈现多元化结构发展态势。

决策支持系统,简称DSS(Decision Support System),是以特定形式辅助决策的一种科学工具。

它通过人机对话等方式为决策者提供了一个将知识性、主动性、创造性和信息处理能力相结合、定性与定量相结合的工作环境,协助决策者分析问题、探索决策方法,进行评价、预测和选优。

DSS是信息系统研究的最新发展阶段,据美国一家调研机构的调查表明,20世纪末3/4的美国公司中将有20%的员工使用决策技术,1/3的公司中将有60%的员工使用决策工具,86%的人认为企业对决策技术的投资将会增加。

[1]近几年来,从关于决策支持系统基本定义和决策支持系统基本结构出发,演化产生了一系列新的概念、观点和结构。

为此,本文从对决策支持系统的发展现状加以概括论述,同时总结了决策支持系统发展的趋势和前景。

本文在第一部分简要回顾决策支持系统发展历史的的基础上,系统归纳了决策支持系统的主要类型,第二部分分析总结了决策支持系统未来的发展方向和阻碍决策支持系统发展的关键技术问题。

技术问题。

二、决策支持系统的发展史和主要类型1、决策支持系统的兴起于发展决策支持系统的大致经历了这样几个发展过程:20世纪60年代后期,面向模型的决策支持系统诞生,标志着决策系统的这门学科的开端,20世纪70年代,决策支持系统的理论得到了长足的发展,80年代的前期和中期,实现了金融规划系统以及群体决策支持系统;20世纪80年代中期,通过将决策支持系统和知识系统相结合,提出了发展智能决策支持系统的设想;此后,开始出现主管信息系统,联机分析处理等。

智能决策支持系统的发展与现状

智能决策支持系统的发展与现状

智能决策支持系统的发展与现状关XX摘要: 论述了智能决策支持系统(IDSS) 的定义、发展概况、现状, 分析了DSS 的一个例子进行介招与分析,提出自已的观点。

关键词: 智能决策支持系统; 现状; 前程On Development and Application of the Intelligent Decision Support SystemSeason Guan(South China Agriculture of University,College of Science;Class One of 05maths) Abstract: Study the definition,development, application, and take an example to tell and analyse the Intelligent Decision Support SystemAlso gives my viewpoint about that.Key words: Intelligent Decision Support System; Actuality; Development0引言智能决策支持系统是将人工智能技术引入决策支持系统而形成的一种新型信息系统。

它是以信息技术为手段,应用管理科学、计算机科学及有关学科的理论和方法,针对半结构化和非结构化的决策问题,通过提供背景材料、协助明确问题、修改完善模型、列举可能方案、进行分析比较等方式,为管理者做出正确决策提供帮助的智能型人机交互式信息系统。

在席卷全球的信息革命浪潮中,智能决策支持系统作为管理领域信息系统的一个重要方面已经成为计算机管理应用研究的热点和主要的发展方向‘实践表明,只有当决策支持系统具有较丰富的知识和较强的知识处理能力时,才能向决策者提供更为有效的决策支持。

研制、建设和利用智能决策支持系统对于增强知识开发和利用的能力,改善决策的智能化水平,提高系统的应用效果具有重要的理论意义和实际价值[4]。

最新整理决策支持系统发展综述.ppt

最新整理决策支持系统发展综述.ppt
通信驱动DSS强调通信、共享决策支持。简单的公告板或 者线程电子邮件就是最基本的功能。组件比较FAQ (常见 问题解答)定义诸如“构建共享交互式环境的软、硬件”, 目的是支撑和扩大群体的行为。组件是一个更广泛 的概 念——协作计算的子集。通信驱动DSS能够使两个或者更 多的人互相通讯,共享信息,以及协调他们的行为。 群 体决策支持系统或称GDSS是一种混合型的DSS,允许多个 用户使用不同的软件工具在工作组内协调工作。群体 支 持工具的例子有:音频会议,公告板和网络会议,文件共 享,电子邮件,计算机支持的面对面会议软件,以及 交 互电视。
DSS的产生与发展
• 70年代,Scott Morton在《管理决策系统》 (1971)一书中首次提出DSS。
• Peter G. W. Keen等人编写了一套丛书,阐明 DSS的主要观点,初步构造出DSS的基本框架。
• 1978至1988年,DSS得到迅速发展,许多实用 系统被开发出来,投入实际应用,产生明显效 益。
内容提要
一、 引言 二、 科学决策 三、 决策支持系统 四、 协同决策支持 五、 结束语
科学需求
今年2月16日联合国气候变化框架公约之下 的《京都议定书》开始生效,进入正式执 行阶段,同时开始了第二承诺期(2012年 以后)气候变化公约的新一轮谈判。尽管 目前我国不承担减排义务,但是在京都议 定书的执行和新一轮谈判中,我国将不可 避免的进入国际政治经济和外交博弈之中。
DSS的产生与发展
电子数据处理——EDP(Electronic Data Processing)
管理信息系统——MIS(Management Information Systems)
决策支持系统——DSS(Decision Support Systems)

决策支持系统研究现状及发展趋势

决策支持系统研究现状及发展趋势
趋 势
关 t 调 : 策 支持 系统 ; 科 学 ; 据 仓 库 ; 据 开 采 决 软 数 数
中 田分 类号 :9 16 O 3 .
文麓标识码 : A
文●■号 :0 2 222 0 )2 0 4 — 4 10 —25 (O 20 — 0 1 0
Ne Tr n s a d S a u fDe iin S p o t S se w e d n t t s o cs u p r y tm o
尹春 华 , 培 亮 顾
( 津 大 学 管 理 学 院 , 津 3O 7 ) 天 天 O 0 2
■一 :S D S是 - 前信 息 系 统研 究 的 最 新 发 展 阶段 . S 3 ' D S的各 类 研 完 成 果 为 各 级 各 类 决 策提 供 了科 学的 方 法和 依 据 , 此 D S成 为 软 科 学 中的 一 十 重要 分 支 : 简要 评 速 了近 2 因 S O年 来 D S S 研 完的 理 论 成 果 与 应 甩现 状 . 分析 了 D s研 究 存 在 的 问题 和 车 足 . 点 介 绍 了 D s研 竞 发 展 s 重 s
i n
t ai i h r te神 p sn
sine stele ahe c t n p l a o ltSo S ed e l 【 c lvmet ad api  ̄n s U D S ha y h 】 t c a f
维普资讯
第l 5卷第 2期
20 02 4月 年
P LC 决 O I Y —MA N借R 鉴 E E KI 策 G EFER NC
.5 N . 1 o 2

.2002
决 策 支 持 系 统 研 究 现 状 及 发 展 趋 势
2 er I a ̄ye h h t v n f D S 0 y as t n zste sot migo S Atatiit d cd teI W t n so D S c ls t nr u e h l r d f S o e e

关于决策支持系统效果的工作总结

关于决策支持系统效果的工作总结

关于决策支持系统效果的工作总结决策支持系统(Decision Support System,简称DSS)是一种基于信息技术的管理工具,旨在为决策者提供准确、及时的决策支持和分析。

本文将对决策支持系统的效果进行工作总结。

1. 决策支持系统的概述与应用决策支持系统是应用于管理和决策层次的信息系统,通过收集、整理和分析数据,向管理者提供决策所需的信息,并帮助他们评估各种可能的决策方案。

该系统广泛应用于企业管理、金融分析、市场调查等领域,以帮助管理者制定有效的决策。

2. 决策支持系统的优势决策支持系统的有效性主要体现在以下几个方面:2.1 精确的数据分析与预测能力:决策支持系统能够基于大量的数据进行深度分析,提供准确的预测和趋势分析,帮助管理者做出科学合理的决策。

2.2 快速的数据存取和处理:通过决策支持系统,用户可以方便地获取和处理数据,在较短的时间内获得需要的信息,提高工作效率。

2.3 多种决策模型应用:决策支持系统提供多种决策模型供用户选择,用户可以根据具体情况采用不同模型进行分析和决策,提高决策准确性。

2.4 信息共享与交互:决策支持系统允许多用户同时操作,共享相同的信息资源,并能够进行信息交互和协同工作,提高决策的一致性和效率。

3. 决策支持系统的局限性决策支持系统也存在一些局限性:3.1 数据质量问题:决策支持系统的准确性和有效性取决于数据的质量,如果数据质量不高,系统的决策结果也会受到影响。

3.2 人为因素的影响:决策支持系统虽然能够提供决策支持,但最终的决策还是由人来做出,人的主观因素和经验也会对决策结果产生影响。

3.3 技术更新的挑战:随着技术的不断进步,决策支持系统需要不断更新和迭代,以适应新的业务需求和技术变革。

4. 决策支持系统的实践案例在实际应用中,决策支持系统取得了一些显著的成效:4.1 企业管理:许多企业利用决策支持系统进行销售预测、资源配置、供应链管理等工作,提高了管理决策的准确性和效率。

决策支持系统发展综述

决策支持系统发展综述

精心整理决策支持系统发展综述空军工程大学导弹学院雷英杰计算机是当代发展最为迅速的科学技术之一,其应用几乎已深入到人类活动和生活的一切领域,大大提高了社会生产力,引起了经济结构、社会结构和生活方式的深刻变化和变革。

计算机科学技术具有极大的综合性质,与众多科学技术相交叉而支持智能(能向决策者提供更为有效的决策支持。

考虑到IDSS 是在传统DSS 基础上发展起来的,所以这里先介绍有关决策、决策科学和决策支持技术的基本概念。

一、DSS 的产生与发展1.1 DSS 的产生背景电子数据处理EDP (ElectronicDataProcessing ):提高了工作效率,把人们从繁琐的事务处理中解脱出来。

缺点:仅局限于具体信息处理,不共享,不考虑整体或部门情况。

管理信息系统MIS(ManagementInformationSystems):整体分析,系统设计,信息共享,部门协调。

缺点:难于适应多变的内、外部管理环境,对管理人员的决策帮助十分有限。

1.270DSS的1988至现在,DSS技术持续发展,目前已基本成熟。

新一代DSS研究仍然十分活跃。

1.3DSS的理论基础(1)信息论信息是现代科学技术中普遍使用的一个重要概念。

信息论是运用信息的观点,把系统看作是借助于信息的获取、传送、加工处理、输出而实现其有目的性行为的研究方法。

(2)计算机技术计算机软件技术、硬件技术、网络技术、图形处理技术、知识处理技术等。

(3)管理科学与运筹学管理科学MS(ManagementScience):面向管理者,研究决策问题,如决策目标、(4(5(6DSS与AI运行,为用户提供智能的交互式接口。

人工智能技术作为计算机应用研究的前沿,近十年取得了惊人的进展,呈现了光明的前景。

专家系统、智能机器人和模式识别是人工智能中最活跃、最富有成果的三个研究领域。

其中专家系统ES(ExpertSystems)研究,取得了许多实用化的成果。

当今世界上已经有上千个专家系统,应用于医疗、诊断、探矿、军事、调度、质谱分析、计算机配置、辅助教育等各种领域,并已开始涉足财务分析、计划管理、工程评估、法律咨询等管理决策领域。

临床决策支持系统综述报告

临床决策支持系统综述报告
二、医学知识库
临床决策支持系统内核的推理程序可以根据知识库的知识和经验生成建议以支持决策。由此可见,医学知识库是临床决策支持系统中的另一个重要元素。临床决策支持系统应建有完善、全面、快速的医学知识库。该知识库应包含词库、术语字典、模型结构、知识仓库四个部分。知识模型结构是将这些术语相关的内容组成一种网状的结构,方便存储和调用。知识仓库就是所有这些知识信息的容器,以功能强大的数据库为架构平台,以辅助智能的文字处理与检索系统。医学知识一般有两个来源,医学文献(指记录已归档的知识)和某一领域的专家(指专家的临床经验)。对于任何一种医学知识,系统先通过知识采集引擎把知识采集进来,然后通过解释引擎利用知识模型在知识库中查找相应的解决方案,逐步缩小目标范围,最后由知识库系统判定归于何种类别的医学知识,并存储于知识库中相应的位置。整个过程如下图所示。
临床决策支持系统综述报告
见。而批评式的系统事先根据相关信息生成一个决策建议,如果医生的决策与之不符,则给出系统的决策建议,适用于医生愿意自己决策而只是需要系统对自己的决策进行再次确认的情况,前面提到的事件监视器系统即属于批评式的。
6)决策支持程度
与直接能给出决策建议的系统不同,也有一些系统不直接给出建议而是只提供给决策者必要的相关信息,最终由决策的医生做出最后的决策。因此,从决策支持程度上可以分为直接和间接两类。前面提到的决策支持系统大部分是属于直接给出决策建议的系统。间接的决策支持系统主要包括与临床信息系统相融合的多种再线式知识库,例如UpToDate,FirstConsult等。一键通技术(InfoButton)可以方便地将各种知识库通过再线的方式方便地提供给医生,间接地为临床决策服务。间接式的系统还包括多种系统产生的数据分析图表等。
现状评述:
下面从几个方面详细介绍临床决分是医学知识、病人数据和针对具体病例的建议。病人数据通过临床决策支持系统的医学知识进行解释,从而为临床医生提供准确的决策支持。在医院中,临床决策支持所需的病人数据是通过电子病历系统完成数据采集,再通过一个数据泵进行抽取和整理。为了使决策支持的结论更加准确,系统尽可能提供病人数据的完全整合,包括病人的基本信息、病历信息、病程信息、医嘱信息、检验信息、影像信息、护理信息,以及其他所需要的各类信息。

决策支持系统发展现状

决策支持系统发展现状

决策支持系统发展现状决策支持系统(Decision Support System,简称DSS)是指一种利用计算机和信息技术来辅助决策过程的系统。

它通过收集、分析和展示相关数据和信息,提供决策者进行多种决策分析的支持。

随着信息技术的不断发展,决策支持系统也在不断进步和完善。

目前,决策支持系统主要包括以下几个方面的发展现状:1. 数据分析能力的提升:决策支持系统可以根据用户的需求,从不同的数据源中提取、整合和分析数据,帮助用户获取准确、及时的数据信息。

同时,随着大数据技术的兴起,决策支持系统还可以处理和分析大规模、高维度的数据,提供更全面的决策支持。

2. 模型建立和优化:决策支持系统不仅提供数据分析的功能,还可以建立和优化各种决策模型。

例如,可以通过模拟和优化算法,预测不同决策方案的结果,并帮助决策者进行决策评估和选择。

同时,还可以根据不同的业务需求和决策场景,定制开发各种专业化的决策模型。

3. 可视化和交互性的改进:为了方便用户理解和使用,现代的决策支持系统注重可视化和交互性的改进。

通过图表、报表、地图等形式,将复杂的数据和分析结果以直观、易懂的方式展示给用户。

同时,还提供用户友好的交互界面,支持用户对数据和模型的灵活操作和调整。

4. 云计算和移动化的应用:随着云计算和移动互联网的快速发展,决策支持系统也开始向云端和移动端拓展。

用户可以通过云平台和移动设备随时随地访问和使用决策支持系统,实现远程决策和协同决策。

同时,云计算和移动化的应用还可以降低系统部署和维护的成本,提高系统的可扩展性和灵活性。

5. 人工智能的融合:人工智能技术的快速发展为决策支持系统带来了新的可能。

通过人工智能技术,可以实现对大规模数据的自动分析和挖掘,提供更精准和智能化的决策支持。

例如,可以通过机器学习算法,建立预测模型并实时更新,以帮助决策者进行风险评估和预警。

总之,决策支持系统在数据分析能力、模型建立和优化、可视化和交互性、云计算和移动化应用以及人工智能的融合等方面都取得了显著的发展。

决策支持系统及其发展

决策支持系统及其发展

优势
提供即时可用的数据和 反馈,提升决策质量和 组织绩效。
DSS的分类及应用
1 分类
DSS根据其主要功能和领域可以分为战略DSS、管理DSS和操作DSS。
2 应用
DSS广泛应用于各个行业和领域,如金融、医疗、教育、政府和企业管理。
3 示例
DSS应用包括风险评估和控制、业务优化、资源分配和计划等。
DSS的关键要素与模块
DSS的信息安全与数据保护
信息安全
• 数据加密和身份验证 • 访问控制和权限管理 • 网络安全和风险评估
数据保护
• 备份和灾难恢复 • 数据备份和恢复计划 • 数据隐私和合规性
3
数据处理
使用合适的算法和技术对数据进行分析、挖掘和建模,以获得有用的信息。
DSS的数据分析与建模
数据分析方法 数据建模技术
描述统计分析 决策树 聚类分析
预测和趋势分析 回归分析 人工神经网络
DSS的数据可视化和报表
数据可视化
使用图表、图形和地图等可视 化工具,将数据转化为易于理 解和分析的形式。
数据
• 收集和整理数据 • 数据存储和管理 • 数据清洗和预处理
分析
• 统计分析和数据挖掘 • 模型开发和评估 • 可视化和报表
决策
• 决策规则和策略 • 决策支持工具和技术 • 决策评估和追踪
DSS的数据存储和处理
1
数据收集
从内部和外部来源收集数据,如数据库、传感器和云存储。
2
数据整理
对数据进行清理、筛选、转换和集成,确保数据的准确性和一致性。
报表生成
生成定期和即时的报表,记录 和展示决策结果和绩效。
仪表盘
展示关键指标和数据的仪表盘, 帮助决策者实时监控业务状况。

人工智能在决策支持系统中的发展现状与未来趋势分析

人工智能在决策支持系统中的发展现状与未来趋势分析

人工智能在决策支持系统中的发展现状与未来趋势分析随着科技的进步和人类需求的不断增长,人工智能(Artificial Intelligence,简称AI)正在逐渐渗透到我们生活的方方面面。

其中,决策支持系统(Decision Support Systems,简称DSS)是一个广泛应用人工智能技术的领域。

本文将对人工智能在决策支持系统中的发展现状与未来趋势进行分析。

首先,我们来了解目前人工智能在决策支持系统中的发展现状。

随着大数据和云计算技术的普及,决策数据的规模和种类不断增加,给人们做出决策带来了挑战。

传统决策支持系统只能提供基本的数据处理和分析能力,无法满足人们对决策问题多样性和复杂性的需求。

而人工智能技术的应用,特别是深度学习和自然语言处理等技术的发展,为决策支持系统带来了崭新的解决方案。

其次,人工智能技术在决策支持系统中的应用是多样的。

首先,基于规则的专家系统能够根据事先设定的规则和逻辑来进行决策分析,能够帮助人们快速判断和解决问题。

其次,机器学习技术可以通过分析海量的决策数据来挖掘隐藏在数据背后的规律和模式,从而为决策提供理论依据。

再者,自然语言处理技术使得决策支持系统能够理解人类的语义信息,进一步提高了系统的智能化程度。

此外,智能推荐系统、智能优化算法等人工智能技术也在决策支持系统中得到了广泛应用。

然而,尽管人工智能在决策支持系统中展现出了巨大的潜力,但仍然面临一些挑战。

首先,如何建立可靠且高效的决策模型仍然是一个难题。

虽然机器学习技术可以通过训练大量数据来构建模型,但决策问题的多样性和复杂性使得模型的建立变得困难。

其次,决策支持系统中的数据安全问题也日益引人关注。

人工智能算法需要大量的数据支持,但数据的收集和存储往往需要面临隐私和安全等问题。

此外,人工智能决策支持系统的可解释性也是一个亟待解决的问题,用户需要理解算法的决策逻辑和依据。

未来,人工智能在决策支持系统中的发展有着广阔的前景和潜力。

决策支持系统发展综述

决策支持系统发展综述

决策支持系统发展综述计算机是当代发展最为迅速的科学技术之一,其应用几乎已深入到人类活动和生活的一切领域,大大提高了社会生产力,引起了经济结构、社会结构和生活方式的深刻变化和变革。

计算机科学技术具有极大的综合性质,与众多科学技术相交叉而反过来又渗入更多的科学技术,促进它们的发展。

计算机科学与其他学科相交叉产生了许多新学科,推动着科学技术向更广阔的领域发展。

DSS的产生背景三.决策支持系统(DecisionSupportSystems---DSS)是70年代末期兴起的一种新的管理系统。

它是计算机技术、人工智能技术与管理决策技术相结合的一种决策技术,“它涉及到计算机软件和硬件、信息论、人工智能、信息经济学、管理科学、行为科学等学科”,旨在支持半结构化决策问题的决策工作,帮助决策者提高决策能力与水平,最终实现提高决策的质量和效果的目的。

一、DSS的产生与发展DSS的发展70年代,Scott Morton在《管理决策系统》(1971)一书中首次提出DSS。

Peter G. W. Keen等人编写了一套丛书,阐明DSS的主要观点,初步构造出DSS的基本框架。

1978至1988年,DSS得到迅速发展,许多实用系统被开发出来,投入实际应用,产生明显效益。

1988至现在,DSS技术持续发展,目前已基本成熟。

新一代DSS研究仍然十分活跃。

DSS 的理论基础(1)信息论信息是现代科学技术中普遍使用的一个重要概念。

信息论是运用信息的观点,把系统看作是借助于信息的获取、传送、加工处理、输出而实现其有目的性行为的研究方法。

(2)计算机技术计算机软件技术、硬件技术、网络技术、图形处理技术、知识处理技术等。

(3)管理科学与运筹学管理科学MS(Management Science):面向管理者,研究决策问题,如决策目标、决策效能等。

运筹学OR(Operations Research):提供一系列优化、仿真、决策等模型。

(4)信息经济学在信息时代,研究信息的产生、获得、传递、加工处理、输出等方面的价值问题。

决策支持系统论文

决策支持系统论文

浅析决策支持系统的发展过程和应用状况摘要:论述了决策支持系统(DSS)的发展过程,介绍决策支持系统的应用现状,分析了决策支持系统的发展动力。

关键词:决策支持系统发展过程应用现状动力分析一、决策支持系统定义决策支持系统是辅助决策者通过数据、模型和知识,以人机交互方式进行半结构化或非结构化决策的计算机应用系统。

它是管理信息系统(MIS)向更高一级发展而产生的先进信息管理系统。

它为决策者提供分析问题、建立模型、模拟决策过程和方案的环境,调用各种信息资源和分析工具,帮助决策者提高决策水平和质量。

二、支持系统的发展过程自从20世纪70年代决策支持系统概念被提出以来,决策支持系统已经得到很大的发展。

在1980年初,提出了决策支持系统3部件结构(对话部件、数据部件、模型部件),明确了决策支持系统的基本组成,极大地推动了决策支持系统的发展。

至20世纪80年代末90年代初,决策支持系统开始与专家系统(Expert System, ES)相结合,形成智能决策支持系统 (Intelligent Decision Support System, IDSS)。

智能决策支持系统充分发挥了专家系统以知识推理形式解决定性分析问题的特点,又发挥了决策支持系统以模型计算为核心的解决定量分析问题的特点,充分做到了定性分析和定量分析的有机结合,使得解决问题的能力和范围得到了一个大的拓展。

智能决策支持系统是决策支持系统发展的一个新阶段。

当20世纪90年代中期出现了数据仓库(DataWarehouse, DW)、联机分析处理(On-Line AnalysisProcessing, OLAP)和数据挖掘(Data Mining, DM)新技术后,DW+OLAP+DM逐渐形成新决策支持系统的概念。

为此,将智能决策支持系统称为传统决策支持系统。

新决策支持系统的特点是,从数据中获取辅助决策信息和知识,完全不同于传统决策支持系统用模型和知识辅助决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

决策支持系统发展综述空军工程大学导弹学院雷英杰计算机是当代发展最为迅速的科学技术之一,其应用几乎已深入到人类活动和生活的一切领域,大大提高了社会生产力,引起了经济结构、社会结构和生活方式的深刻变化和变革。

计算机科学技术具有极大的综合性质,与众多科学技术相交叉而反过来又渗入更多的科学技术,促进它们的发展。

计算机科学与其他学科相交叉产生了许多新学科,推动着科学技术向更广阔的领域发展。

智能决策支持系统(Intelligent Decision Support Systems,简称IDSS)是决策支持系统(Decision Support Systems,简称DSS)与人工智能(Artificial Intelligence,简称AI)相结合的产物,它将人工智能中的知识表示与处理的思想引入到DSS,其独特的研究方法和广泛的发展前途使之一出现就成为决策支持技术研究的热点。

智能决策支持系统是以信息技术为手段,应用管理科学、计算机科学及有关学科的理论和方法,针对半结构化和非结构化的决策问题,通过提供背景材料、协助明确问题、修改完善模型、列举可能方案、进行分析比较等方式,为管理者做出正确决策提供帮助的智能型人机交互信息系统。

实践表明,只有当决策支持系统具有较丰富的知识和较强的知识处理能力时,才能向决策者提供更为有效的决策支持。

考虑到IDSS是在传统DSS基础上发展起来的,所以这里先介绍有关决策、决策科学和决策支持技术的基本概念。

一、DSS的产生与发展1.1DSS的产生背景电子数据处理EDP(Electronic Data Processing):提高了工作效率,把人们从繁琐的事务处理中解脱出来。

缺点:仅局限于具体信息处理,不共享,不考虑整体或部门情况。

管理信息系统MIS(Management Information Systems):整体分析,系统设计,信息共享,部门协调。

缺点:难于适应多变的内、外部管理环境,对管理人员的决策帮助十分有限。

决策支持系统DSS(Decision Support Systems):70年代中期Keen和Scott Morton在《管理决策系统》(1971)一书中提出。

目标:对管理者做决策提供技术支持。

背景:运筹学模型发展已经比较完善,多目标决策分析突破了单一效用理论的框架,计算机软、硬件及网络技术的迅猛发展,人工智能特别是知识处理技术的发展,数据库技术、图形显示技术、各类工具软件的发展与完善,构成了DSS形成与发展的技术基础。

1.2DSS的发展70年代,Scott Morton在《管理决策系统》(1971)一书中首次提出DSS。

Peter G. W. Keen等人编写了一套丛书,阐明DSS的主要观点,初步构造出DSS的基本框架。

1978至1988年,DSS得到迅速发展,许多实用系统被开发出来,投入实际应用,产生明显效益。

1988至现在,DSS技术持续发展,目前已基本成熟。

新一代DSS研究仍然十分活跃。

1.3DSS的理论基础(1)信息论信息是现代科学技术中普遍使用的一个重要概念。

信息论是运用信息的观点,把系统看作是借助于信息的获取、传送、加工处理、输出而实现其有目的性行为的研究方法。

(2)计算机技术计算机软件技术、硬件技术、网络技术、图形处理技术、知识处理技术等。

(3)管理科学与运筹学管理科学MS(Management Science):面向管理者,研究决策问题,如决策目标、决策效能等。

运筹学OR(Operations Research):提供一系列优化、仿真、决策等模型。

(4)信息经济学在信息时代,研究信息的产生、获得、传递、加工处理、输出等方面的价值问题。

从经济学的角度,研究信息产生和获得的成本是多少?利润是多少?即研究信息价值问题。

(5)行为科学研究决策者的决策风格、在决策过程中的决策行为等,指导DSS的设计和开发。

涉及到决策者的心理学。

(6)人工智能将人工智能技术用于管理决策是一项开拓性工作。

当前研究的IDSS就是DSS与AI技术相结合的产物,它用领域专家的知识来选择和组合模型,完成问题的推理和运行,为用户提供智能的交互式接口。

人工智能技术作为计算机应用研究的前沿,近十年取得了惊人的进展,呈现了光明的前景。

专家系统、智能机器人和模式识别是人工智能中最活跃、最富有成果的三个研究领域。

其中专家系统ES(Expert Systems)研究,取得了许多实用化的成果。

当今世界上已经有上千个专家系统,应用于医疗、诊断、探矿、军事、调度、质谱分析、计算机配置、辅助教育等各种领域,并已开始涉足财务分析、计划管理、工程评估、法律咨询等管理决策领域。

DSS和ES:处于不同的学科范畴,有着不同的解决问题的方法。

DSS主要运用数据和模型,ES主要运用知识和推理。

在管理科学领域,一个是方兴未艾,一个是后起之秀,各有特色。

但是它们的互相结合和互相渗透,将会把计算机用于决策支持技术推向一个新的高度。

决策的正确性关系到经营效果和事业成败,决策理论、决策方法和决策工具的科学化和现代化是正确性的重要保证。

人工智能将为DSS提供有效的理论和方法。

例如,知识的表示和建模,推理、演绎和问题求解及各种搜索技术,再加上功能很强的人工智能语言,都为DSS的发展走向更加实用的阶段提供强有力的理论和方法的支持。

1.4DSS与相关技术的关系(1)决策与预测的关系决策:创造未来,基于预测,实现将来一个目标。

预测:预言未来,基于分析、研究、仿真、实验。

例如:灾害预测与防灾决策、日常预测与决策、经营预测与决策、宏观预测与决策、贯序预测与决策、为重大决策作预备性研究等。

(2)DSS与MS/OR的关系MS:处理结构化问题,运用分析的观点。

OR:处理结构化问题,研究对象主要集中在数学规划、决策论、对策论等理论和方法上。

DSS:处理战略、规划等半结构化和非结构化一类的决策问题。

(3)DSS与MIS的关系MIS:收集、传递、存储、加工处理各种信息,监测运营数据,利用历史数据预测未来,用指定的数学方法分析数据,提供全面数据和分析报告。

面向管理人员,提供低层次的决策支持。

DSS:面向决策者,提供适当的决策支持,是MIS的高级阶段。

(4)DSS与ES的关系IDSS = DSS + ESES:利用知识和推理机,处理半结构化和非结构化问题。

DSS:使用数据和模型,处理结构化问题,与ES结合后,可处理半结构化和非结构化问题。

二、DSS的基本概念2.1决策过程决策过程:如图1所示。

图1 决策过程决策科学主要研究:确定目标、设计方案、评价方案三个基本阶段。

这三个基本阶段又分别称为理解、设计、选择活动。

2.2决策问题的类型决策问题的类型(按结构化程度分为):结构化、半结构化、非结构化三种。

结构化程度:对某一过程的环境和规律,能否用明确的语言(数学的或逻辑学的,形式的或非形式的,定量的或推理的)给予清晰的描述。

结构化问题:能够描述清楚的问题。

三个阶段都能使用确定的算法或决策规则。

非结构化问题:不能够描述清楚,而只能凭直觉或经验作出判断的问题。

三个阶段都不能使用确定的算法或决策规则。

半结构化问题:介于两者之间的问题。

一个或二个阶段能使用确定的算法或决策规则。

2.3决策问题的性质和层次决策问题的层次:办事员(作业调度)、部门负责人(运筹管理)、顶层负责人(战略规划)。

按照决策问题的层次和类型,决策问题可分为9类,如表1所示。

表1 决策问题的类型2.4 决策风格按获取数据的方式分:感知型(S)、直觉型(N)。

感知型——喜欢与特定问题有关的硬数据。

直觉型——喜欢描写可能性的整体信息。

按处理数据的方式分:思考型(T)、感觉型(F)。

思考型——喜欢用逻辑或其他规范化的手段去推理。

感觉型——喜欢用个人的术语来考虑问题。

组合起来,共有四种类型的决策风格:系统型(ST)、思辩型(NT)、司法型(SF)、直观推断型(NF)。

系统型(ST):喜欢运用量化信息,喜欢运用成本效益分析和评价的研究作为辅助决策的工具。

思辩型(NT):善于思索未来的可能性,喜欢运用带有灵敏度分析的决策树作为决策的帮助。

司法型(SF):注意力集中于当前的环境,喜欢运用决策小组进行决策。

直观推断型(NF):十分重视现实的可能性,喜欢运用双向调整的方法来达到决策的目的。

三、DSS的构造与系统结构DSS的构造研究主要解决DSS的组成问题,即组成DSS的部件。

现在,经典提法是:DSS = 四库系统 + 对话系统(人机界面)四库系统:数据库系统、模型库系统、方法库系统、知识库系统。

当前,也有人讲5库系统(+文本库)、6库系统(+图形库)、7库系统(+语音库)、8库系统(工具库)等。

DSS的系统结构主要研究DSS各主要部件的连接关系。

3.1人机界面技术主要研究内容集中在:●可视化图形界面技术●基于多媒体技术的界面技术●自然语言界面技术3.2数据库系统数据库系统包括数据库及其管理系统,其基本技术与一般数据库及其管理系统基本相同。

但有自己的特点。

共同点:●数据的独立性●最小冗余度●最大的共享性●统一管理与控制●适当的反映时间●整体性(完整性)●可修改性和可扩充性●安全和保密●简明性DSS数据库系统的特点:●面向决策支持过程组织和管理数据●面向模型、面向模型生成来使用数据●数据描述方式要面向不同的决策者3.3模型库系统模型——是以某种形式对一个系统的本质属性的描述,揭示系统的功能、行为及其变化规律。

模型库系统——以库的形式对模型进行组织和管理,包括模型库及模型库管理系统。

模型库(Model Base)提供模型的存储和表示模式,模型库管理系统提供模型的提取、访问、更新和合成等操作。

人们认识客观世界一般有三种方法:●逻辑推理法●实验法●模型法模型法是我们认识客观世界的最得力、最方便、最有效的方法。

注意,并非所有模型都是数学模型,并非所有模型都是定量的。

例如,门捷列夫元素周期表。

3.3.1 模型群解决软科学所涉及的问题时,可利用的模型已达100多个,根据他们的功能和用途可分为若干模型群。

(1)预测模型群●定性模型:特尔斐法、主观概率预测法、交叉影响巨阵法等●定量模型:回归预测、平滑预测、马尔柯夫链预测等➢回归预测:一元回归、多元线性回归、非线性回归等;➢平滑预测:平均预测法、指数预测法等(2)系统结构模型群主要用来分析社会经济系统以及其他系统的结构,反映系统各要素之间的主要联系和关联作用,从宏观上和结构上来揭示系统的运行规律。

系统结构模型、层次分析模型、投入产出模型、系统动力学模型等。

(3)数量经济模型群:计量经济模型、经济控制论模型等。

(4)优化模型群:线性规划、非线性规划、动态规划、目标规划和最优控制等(5)不确定模型群:模糊数学模型、灰色模型、随机模型等(6)决策模型群:单目标风险性决策、多目标决策,以及一些不确定性决策方法等(7)系统综合模型群:即大系统理论。

相关文档
最新文档