几何基础 检测题
中考复习测试题--几何基础与三角形
中考复习测试题——基础与三角形姓名_____________学号_____ 一、选择题:1.下列长度的三条线段,能组成三角形的是( )A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,112.如图,△ABC≌△DEC,B,C,D在同一直线上,且CE=3 cm,CD=6 cm,则BD的长为( ) A.9 cm B.6 cm C.3 cm D.不确定3.已知三角形的两边长分别为3和6,第三边长是方程x2-6x+8=0的解,则该三角形的周长为( ) A.11 B.13 C.11或13 D.124.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是( )A.15° B.30° C.45° D.60°5.如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是( )A.12 B.13 C.14 D.15二、填空题:6.如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=__________.7.一个多边形的内角和比它的外角和的2倍少180°,这个多边形的边数是 .8.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为__ _度.9.一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为____________.10.如图,在△ABC中,∠B=30°,AC=2,cos C=35.则AB边的长为.三、解答题:11.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过点E作EF∥BC 交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.12. 如图,∠AOB=60°,OC平分∠AOB,C为角平分线上一点,过点C作CD⊥OC,垂足为点C,交OB于点D,CE∥OA交OB于点E.(1)判断△CED的形状,并说明理由; (2)若OC=3,求CD的长.13.如图,已知在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.14.如图,一艘货轮向正北方向航行,在点A处测得灯塔M在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B处,测得灯塔M在北偏西45°,问该货轮到达灯塔正东方向D处时,货轮与灯塔M的距离是多少?(精确到0.1海里,3≈1.732)15.如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD·CD;(2)若CD=6,AD=8,求MN的长.。
立体几何基础题题库(360道附详细答案)
C 项:如图
4. 如图所示,在正方体 ABCD-A1B1C1D1 的侧面 AB1 内有一动点 P 到直线 AB 与直线 B1C1 的距离 相等,则动点 P 所在曲线的形状为
A
B
O P
A1
B1
A P
A1
B
A
P
B1
A1
B
A
B
O
O
P
B1
A1
B1
C
D
C
A
B
P
D1
C1
A1
B1
D' A'
C' B'
P
D
C
解析: B1C1 平面 AB1 B1C1 PB, ,如图: A
面边长为 3 ,E 是 SA 的中点,则异面直线 BE 与 SC
所成角的大小为
()
A.90°
B.60°
C.45°
D.30°
B 解析:平移 SC 到 S B ,运用余弦定理可算得 BE SE SB 2.
9. 对于平面 M 与平面 N, 有下列条件: ①M、N 都垂直于平面 Q; ②M、N 都平行于平面 Q; ③ M 内不共线的三点到 N 的距离相等; ④ l, M 内的两条直线, 且 l // M, m // N; ⑤ l, m 是异面直线,且 l // M, m // M; l // N, m // N, 则可判定平面 M 与平面 N 平行的条件的个数是
②若 a //, ,则a
③ a , ,则a //
④ 若a b, a ,b ,则
其中正确的命题的个数是
()
A.0 个
B.1 个
C.2 个
D.3 个
B 解析:注意①中 b 可能在α上;③中 a 可能在α上;④中 b//α,或 b 均有 ,
2024年数学五年级下册几何基础练习题(含答案)
2024年数学五年级下册几何基础练习题(含答案)试题部分:一、选择题(每题2分,共20分)1. 下列哪个图形是一个正方形?A. 长方形B. 正方形C. 圆形D. 三角形2. 一个正方形的边长是5厘米,那么它的面积是多少平方厘米?A. 20B. 25C. 30D. 403. 一个长方形的长是8厘米,宽是4厘米,那么它的周长是多少厘米?A. 16B. 20C. 24D. 284. 一个三角形的两条边长分别是6厘米和8厘米,那么它的第三条边长可能是多少厘米?A. 2B. 4C. 10D. 125. 下列哪个图形是一个圆?A. 正方形B. 长方形C. 圆形D. 三角形6. 一个圆的半径是4厘米,那么它的面积是多少平方厘米?A. 16πB. 20πC. 24πD. 28π7. 一个等腰三角形的底边长是8厘米,腰长是5厘米,那么它的周长是多少厘米?A. 18B. 20C. 22D. 248. 下列哪个图形是一个长方形?A. 正方形B. 长方形C. 圆形D. 三角形9. 一个正方形的对角线长是10厘米,那么它的边长是多少厘米?A. 5B. 10C. 15D. 2010. 一个等边三角形的边长是6厘米,那么它的周长是多少厘米?A. 12B. 18C. 24D. 30二、判断题(每题2分,共10分)1. 正方形的四个角都是直角。
()2. 一个长方形的对角线相等。
()3. 一个圆的直径是半径的两倍。
()4. 一个等腰三角形的底边和腰长相等。
()5. 一个三角形的内角和是180度。
()三、计算题(每题2分,共40分)1. 一个长方形的长是12厘米,宽是8厘米,求它的面积。
2. 一个正方形的边长是7厘米,求它的周长。
3. 一个圆的半径是5厘米,求它的直径。
4. 一个三角形的两条边长分别是10厘米和15厘米,求它的第三条边长。
5. 一个长方形的长是15厘米,宽是10厘米,求它的周长。
6. 一个正方形的边长是6厘米,求它的面积。
2024年数学七年级上册解析几何基础练习题(含答案)
2024年数学七年级上册解析几何基础练习题(含答案)试题部分一、选择题:1. 在平面直角坐标系中,点A(2, 3)关于x轴的对称点的坐标是()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)2. 下列选项中,点P(3, 5)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知点A(4, 0)和点B在x轴上,且AB=6,则点B的坐标可能是()A. (1, 0)B. (2, 0)C. (10, 0)D. (8, 0)4. 在平面直角坐标系中,点P(a, b)关于原点对称的点的坐标是()A. (a, b)B. (a, b)C. (a, b)D. (a, b)5. 已知点A(2, 3)和点B(2, 3),则线段AB的长度是()A. 4B. 5C. 6D. 86. 下列各点中,到原点距离相等的是()A. A(3, 4)和B(3, 4)B. A(3, 4)和B(3, 4)C. A(3, 4)和B(4, 3)D. A(3, 4)和B(4, 3)7. 在平面直角坐标系中,点P(3, 4)关于y轴的对称点的坐标是()A. (3, 4)B. (3, 4)C. (3, 4)D. (3, 4)8. 已知点A(3, 2)和点B(3, 2),则线段AB的长度是()A. 6B. 8C. 9D. 109. 在平面直角坐标系中,点P(0, 5)关于原点对称的点的坐标是()A. (0, 5)B. (0, 5)C. (5, 0)D. (5, 0)10. 下列各点中,到原点距离最短的是()A. A(3, 4)B. B(5, 5)C. C(6, 8)D. D(7, 24)二、判断题:1. 在平面直角坐标系中,第一象限内的点横纵坐标都是正数。
()2. 点(3, 0)和点(3, 0)关于原点对称。
()3. 在平面直角坐标系中,到原点距离相等的点一定在同一个圆上。
()4. 点(0, 4)关于x轴的对称点是(0, 4)。
几何基础训练题
几何基础训练题一、选择题(每题3分,共30分)1. 一个三角形的内角和是多少度?A. 90度B. 180度C. 360度D. 720度答案:B。
解析:三角形内角和定理表明三角形的内角和为180度。
2. 以下哪种图形不是四边形?A. 正方形B. 三角形C. 长方形D. 平行四边形答案:B。
解析:三角形有三条边,不属于四边形,四边形是有四条边的封闭图形。
3. 直角三角形的一个锐角是30度,另一个锐角是多少度?A. 30度B. 45度C. 60度D. 90度答案:C。
解析:直角三角形两锐角和为90度,一个锐角是30度,另一个就是90 - 30 = 60度。
4. 圆的直径是半径的几倍?A. 1倍B. 2倍C. 3倍D. 4倍答案:B。
解析:根据圆的定义,直径等于半径的2倍。
5. 等腰三角形的两条边叫做?A. 长腰和短腰B. 上腰和下腰C. 腰D. 斜边答案:C。
解析:等腰三角形相等的两条边叫做腰。
6. 正方体有几个面?A. 4个B. 5个C. 6个D. 8个答案:C。
解析:正方体是一种特殊的六面体,有六个面。
7. 梯形的一组对边是什么关系?A. 平行B. 垂直C. 相等D. 既不平行也不垂直答案:A。
解析:梯形是只有一组对边平行的四边形。
8. 一个多边形的外角和是多少度?A. 180度B. 360度C. 540度D. 720度答案:B。
解析:多边形的外角和恒为360度。
9. 等边三角形的每个内角是多少度?A. 30度B. 45度C. 60度D. 90度答案:C。
解析:因为等边三角形三个角相等,三角形内角和180度,所以每个内角是180÷3 = 60度。
10. 长方形的面积公式是?A. 长+宽B. 长×宽C. (长+宽)×2D. 长÷宽答案:B。
解析:长方形面积等于长乘以宽。
二、填空题(每题3分,共30分)1. 三角形按角分类可分为锐角三角形、直角三角形和(钝角三角形)。
寒假作业11 第1章立体几何初步检测题基础篇-2020-2021学年北师大版高一数学(必修2)
参考答案
1.B
【分析】
根据棱柱的特点一一分析即可得解.
【详解】
对于A,棱柱的上下底面可以是三角形或者是梯形,故A不正确;
对于B,面最少的就是三棱柱,共有五个面,B正确;
对于C,长方体是棱柱,但是上下、左右、前后都是互相平行的,C不正确;
对于D,斜棱柱的侧面可以不是矩形,D错误.
2.C
【分析】
由已知条件将四个点的位置定下来,可得选项.
【详解】
因为空间四点A,B,C,D不共面,所以这四个点的位置如三棱锥的顶点和底面三角形的顶点,所以只有C选项正确,
若A,B,C,D四点中有三点共线,则空间四点A,B,C,D共面,与题设矛盾,故A错误;
若直线 与 相交,则空间四点A,B,C,D共面,故B不正确;
对于选项C:由平行公理知:平行于同一条直线的两条直线互相平行;故选项C正确;
选项D是直线与平面垂直的性质定理,不是公理.
故选:D.
5.D
【分析】
由圆柱、圆锥、圆台的三视图确定几何体形状.
【详解】
由三视图知原组合体上面是一个圆锥,下面是一个圆柱,只有D相符.
故选:D.
6.A
【分析】
由题意可知正四棱锥底面正方形边长为 ,高为 ,利用椎体体积公式即可求解.
对于②,若 ,则由面面平行的性质定理可得 ,故正确;
对于③,若 ,则由线面垂直的判定定理可得 ,故正确;
对于④,当 时,l可能在 内,可能与 平行,可能相交,所以不一定有 ,故错误,
故选:B
【点睛】
此题考查线线、线面、面面关系的判断,属于基础题
11.C
【分析】
连接 、 ,证明出 ,可得出异面直线 与直线 所成的角为 ,分析 的形状,进而可得出结果.
初二平面几何基础练习题
初二平面几何基础练习题1. 问题描述:在平面上给定一个等边三角形ABC,边长为10cm。
求三角形ABC的高和面积。
解答:设三角形ABC的高为h,由于ABC是等边三角形,所以三角形ABC也是等腰三角形。
连接AB的中点M与C,可得到三角形AMC。
由于AM与CM分别垂直于BC和AB,所以AM和CM就是三角形ABC的高。
根据勾股定理,三角形AMC的斜边AC等于三角形ABC的边长,即AC = 10cm。
由于三角形AMC是直角三角形,所以AM和CM相等,记为AM = CM = h。
根据勾股定理,有AC² = AM² + CM²,即10² = h²+ h² = 2h²。
解方程2h² = 100,可以得到h = √50 ≈ 7.07 cm。
三角形ABC的面积S可以通过底乘高的公式计算,即S = 0.5 × 10× h = 0.5 × 10 × 7.07 ≈ 35.35 cm²。
所以,三角形ABC的高为7.07 cm,面积为35.35 cm²。
2. 问题描述:在平面上给定一个矩形ABCD,已知AB = 12cm,BC = 8cm。
求矩形ABCD的对角线长度和周长。
解答:设矩形ABCD的对角线长度为d。
根据勾股定理,可以得到d² = AB² + BC² = 12² + 8² = 144 + 64 = 208。
解方程d² = 208,可以得到d = √208 ≈ 14.42 cm。
矩形ABCD的周长可以通过将四条边的长度相加得到,即周长 =AB + BC + CD + DA = 12 + 8 + 12 + 8 = 40 cm。
所以,矩形ABCD的对角线长度约为14.42 cm,周长为40 cm。
3. 问题描述:在平面上给定一个圆O,半径为6cm。
几何图形初步基础测试题附答案
【答案】D
【解析】
【分析】
要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.
【详解】
解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
∵圆柱底面的周长为4dm,圆柱高为2dm,
A.12B.15C.18D.2
【答案】C
【解析】
【分析】
依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为6×3=18.
【详解】
由折叠可得,∠ACD=∠ACE=90°,
∴∠BAC=90°,
又∵∠B=60°,
∴∠ACB=30°,
D、图中∠α+∠β=180°,互为补角,故本选项错误.
故选:A.
【点睛】
此题考查余角和补角,熟记概念与性质是解题的关键.
16.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为( )
A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱
C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱
∴BC=2AB=6,
∴AD=6,
由折叠可得,∠E=∠D=∠B=60°,
∴∠DAE=60°,
∴△ADE是等边三角形,
∴△ADE的周长为6×3=18,
故选:C.
【点睛】
此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
A.1B.2C.3D.4
【答案】C
初中数学几何图形初步基础测试题附答案
初中数学几何图形初步基础测试题附答案一、选择题1.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.2.如图,AB∥CD,EF平分∠GED,∠1=50°,则∠2=()A.50°B.60°C.65°D.70°【答案】C【解析】【分析】由平行线性质和角平分线定理即可求.【详解】∵AB∥CD∴∠GEC=∠1=50°∵EF平分∠GED∴∠2=∠GEF= 12∠GED=12(180°-∠GEC)=65°故答案为C.【点睛】本题考查的知识点是平行线性质和角平分线定理,解题关键是熟记角平分线定理.3.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.【答案】D【解析】解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选D.首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.4.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A.B.C.D.【答案】D【解析】分析:三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.详解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D选项中,展开图能折叠成一个三棱柱,符合题意;故选:D.点睛:本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.5.下列图形中,是正方体表面展开图的是()A.B.C.D.【答案】C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选C.【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.6.如图,已知圆柱底面的周长为4 dm,圆柱的高为2 dm,在圆柱的侧面上,过点A和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值为()A.5B.2 dm C.25D.42【答案】D【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC 的长度.∵圆柱底面的周长为4dm ,圆柱高为2dm ,∴AB=2dm ,BC=BC′=2dm ,∴AC 2=22+22=4+4=8,∴AC=22dm ,∴这圈金属丝的周长最小为2AC=42dm .故选D .【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.7.如图,已知直线AB 和CD 相交于G 点,CG EG ⊥,GF 平分AGE ∠,34CGF ∠=︒,则BGD ∠大小为( )A .22︒B .34︒C .56︒D .90︒【答案】A【解析】【分析】 先根据垂直的定义求出∠EGF 的度数,然后根据GF 平分∠ABE 可得出∠AGF 的度数,再由∠AGC=∠AGF-∠CGF 求出∠AGC 的度数,最后根据对顶角相等可得出∠BGD 的度数.【详解】解:∵CG ⊥EG ,∴∠EGF=90°-∠CGF=90°-34°=56°,又GF 平分∠AGE ,∴∠AGF=∠EGF=56°,∴∠AGC=∠AGF-∠CGF=56°-34°=22°,∴∠BGD=∠AGC=22°.故选:A .【点睛】本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题8.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC 上一点,则DE+BE的最小值为()A.2B.31C.3D.23【答案】C【解析】【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离3故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED =50°,那么∠BAF=()A.10°B.50°C.45°D.40°【答案】A【解析】【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键. 11.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条【答案】C【解析】解:图中线段有:线段AB、线段AC、线段BC,共三条.故选C.12.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14 B.15 C.16 D.17【答案】B【解析】【分析】在侧面展开图中,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C 即可.【详解】解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=12×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C=22=15cm,129故选:B.【点睛】本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.13.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友【答案】A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.用一副三角板(两块)画角,能画出的角的度数是()A.145C B.95C C.115C D.105C【答案】D【解析】【分析】一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.【详解】选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为:45°+30°=75°,45°+60°=105°,45°+90°=135°,故选:D.【点睛】此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.15.若∠AOB =60°,∠AOC =40°,则∠BOC等于()A.100°B.20°C.20°或100°D.40°【答案】C【解析】【分析】画出符合题意的两个图形,根据图形即可得出答案.【详解】解: 如图1,当∠AOC在∠AOB的外部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB+∠AOC=60°+40°=100°如图2,当∠AOC在∠AOB的内部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB-∠AOC=60°-40°=20°即∠BOC的度数是100°或20°故选:C【点睛】本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.16.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱【答案】D【解析】【分析】根据常见的几何体的展开图进行判断,即可得出结果.【详解】根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选D.【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解题的关键.17.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.18.如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则()x y+的值为()A.-2 B.-3 C.2 D.1【答案】C【解析】【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数互为相反数,列出方程求出x、y的值,从而得到x+y的值.【详解】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“-3”与面“y”相对.因为相对面上的两个数互为相反数,所以1+0 30xy=⎧⎨-+=⎩解得:-13 xy=⎧⎨=⎩则x+y=2故选:C【点睛】本题考查了正方体的平面展开图,注意从相对面入手,分析及解答问题.19.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.20.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.。
立体几何基础训练题3(20101208)
A 立体几何基础训练题3一、选择题1.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。
⑵两条直线没有公共点,则这两条直线平行。
⑶两条直线都和第三条直线垂直,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
其中正确的个数为( )A .0B .1C .2D .32.下面列举的图形一定是平面图形的是( )A .有一个角是直角的四边形B .有两个角是直角的四边形C .有三个角是直角的四边形D .有四个角是直角的四边形3.垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能4.如右图所示,正三棱锥V ABC -(顶点在底面的射影是底面正三角形的中心)中,,,D E F 分别是 ,,VC VA AC 的中点,P 为VB 上任意一点,则直线DE 与PF 所成的角的大小是( ) A .030 B . 090 C . 060 D .随P 点的变化而变化。
5.互不重合的三个平面最多可以把空间分成( )个部分A .4B .5C .7D .8 6.下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有_____________。
7.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A.16π B.20π C.24π D.32π8.下列说法不正确的....是( ) A .空间中,一组对边平行且相等的四边形是一定是平行四边形;B .同一平面的两条垂线一定共面;C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D .过一条直线有且只有一个平面与已知平面垂直.9.下列说法不正确的....是( ) A .空间中,一组对边平行且相等的四边形是一定是平行四边形;B .同一平面的两条垂线一定共面;C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D .过一条直线有且只有一个平面与已知平面垂直.二.解答题:10.已知,,,E F G H 为空间四边形ABCD 的边,,,AB BC CD DA 上的点, 且//EH FG .求证://EH BD .HGF E DBA C11. 如图:S 是平行四边形ABCD 平面外一点,,M N 分别是,SA BD 上的点,且SM AM =NDBN , 求证://MN 面SBC12.如图所示,已知正四棱锥S —ABCD 侧棱长为2,面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为多少度呢?13. 已知正三棱柱ABC —A1B1C1中,A 1B ⊥CB 1,则A 1B 与AC 1所成的角为多少度呢?附加题:已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,,F 为棱BB 1的中点,M 为线段AC 1的中点. (1)求证:直线MF //平面ABCD ;(2)求证:平面AFC 1⊥平面ACC 1A 1;A BA11。
人教版数学七年级上册第第四章 几何图形初步 基础检测题含答案
人教版数学七年级上册第第四章基础检测题含答案4.1几何图形一、选择题(每小题3分,共30分)1.如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.B.C.D.2.如图所示的几何体从正面(箭头方向)看到的平面图形是()3.下列说法正确的是()①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形.A.①②B.①③C.②③D.①②③4.如图是一个正方体纸盒侧面展开图,折成正方体后相对的面上的两个数互为相反数,则A、B、C表示的数为()A.0,﹣5,B.,0,﹣5C.,﹣5,0D.5,,05.如下图,下列图形全部属于柱体的是()6.骰子是一种特别的数字立方体(见右图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()A.B.C.D.7.如图所示的几何体,从上面看得到的平面图形是()8.下列图形中为三棱柱的表面展开图的是()A.B.C.D.9.图(1)是一个正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是( )A.家B.乡C.是D.伊4 的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余10.如图,将3下的部分(小正方形之间至少要有一条边相连)恰好能...折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是()A.7B.6C.5D.4二、填空题(每小题3分,共30分)11.写出一个主视图、左视图、俯视图都相同的几何体:.12.一个矩形绕着它的一边旋转一周,所得到的立体图形是.13.一个棱锥的棱数是12,则这个棱锥的面数是.14.一个几何体的从三个方向看到的平面图形,如图所示,则这个几何体的名称是____________.第14题图第15题图第16题图15.如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为8,则x+y =.16.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是.17.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?(填序号).18.一个立体图形的三视图如图所示,请你根据图中给出的数据求出这个立体图形的表面积为.第18题图第19题图第20题图19.如图,从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如所示的零件,则这个零件的表面积为20.如图,用小木块搭一个几何体,它的从正面看和从上面看如图所示.问:最少需要__________个小正方体木块.三、解答题(共40分)21.(9分)如图所示由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.从正面看从左面看从上面看22.(6分)下面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数.23.(12分)如图,一个多面体的展开图中,每个面内的大写字母表示该面,被剪开的棱边所注的小写字母可表示该棱.(1)说出这个多面体的名称 ;(2)写出所有相对的面 _ ;(3)若把这个展开图折叠起来成立体时,被剪开的棱b 与 重合,f 与 重合.24.(13分)将一个正方体表面全部涂上颜色把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体,我们把仅有i 个面涂色的小正方体的个数记为i x ,例如:通过观察我们可以发现仅有3个面涂色的小正方体个数83=x ,仅有2个面涂色的小正方体个数122=x ,仅有1个面涂色的小正方体个数61=x ,6个面均不涂色的小正方体个数10=x ;(1)如果把正方体的棱四等分,同样沿等分线把正方体切开,得到64个小正方体,那么=3x ________,=2x _______,=1x _______,=0x _________;(2)如果把正方体的棱n 等分(n 大于3),然后沿等分线把正方体切开,得到3n 个小正方体,且满足184232=-x x ,请求出n 的值.参考答案1.C2.B3.C∴不能说它是一个长方形,∵有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱∴它是棱柱.教科书的表面是一个长方形.故选C.4.A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点求出A、B、C的值,然后代入进行计算即可求解.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴A与0是相对面,B与5是相对面,C与﹣是相对面,∵折成正方体后相对的面上的两个数互为相反数,∴A=0,B=﹣5,C=.故选:A.5.C【解析】A选项中含有三棱锥,就是锥体;B选项中含有圆锥,就是锥体;D选项中含有圆台,就是台体.6.A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A.4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;B.1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C.3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;D.1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选A.7.B.【解析】根据所看位置,找出此几何体的三视图即可.解:从上面看得到的平面图形是两个同心圆,故选:B.8.B【解析】利用棱柱及其表面展开图的特点解题.解:A、C、D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故不能围成三棱柱;B、中间三个长方形能围成三棱柱的侧面,左、右两个三角形围成三棱柱的上、下两底面,故能围成三棱柱,是三棱柱的表面展开图.故选B.9.C.【解析】由图1可得,“伊”和“乡”相对;“春”和“我”相对;“是”和“家”相对;由图2可得,小正方体从图2的位置依次翻到第4格时,“家”在下面,则这时小正方体朝上面的字是“是”.10.C.【解析】根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是5.故选C.11.球或正方体.【解析】试题分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:球的三视图都为圆;正方体的三视图为正方形;所以应填球或正方体.12.圆柱体【解析】本题是一个矩形绕着它的一边旋转一周,根据面动成体的原理即可解.解:以矩形的一边所在直线为旋转轴,形成的旋转体叫做圆柱体.故答案为圆柱体.13.7.【解析】因为一个棱锥的棱数是12,可得多面体为六棱锥,所以多面体的面数为714.三棱柱.【解析】根据图中三视图的形状,符合条件的只有三棱柱,因此这个几何体的名称是三棱柱.15.10.【解析】∵“4”与“y”是对面,“x”与“2”是对面,∴x=6,y=4.∴x+y=10.【解析】从3个图形看,和1相邻的有2,4,5,6,那么和1相对的就是3.则和2相邻的有1,3,4,5,那么和2相对的就是6.则和5相对的就是4.再将数字1和5对面的数字相加即可.解:根据三个图形的数字,可推断出来,1对面是3;2对面是6;5对面是4.∴3+4=7.则数字1和5对面的数字的和是7.故答案为:7.17.②.【解析】本题中圆柱的俯视图是圆,可以堵住圆形空洞,它的正视图和左视图是长方形,可以堵住方形空洞,据此选择即可.解:圆柱的俯视图是圆,可以堵住圆形空洞,它的正视图和左视图是长方形,可以堵住方形空洞,故圆柱是最佳选项,故答案为②.18.8π.【解析】从三视图可以看正视图以及俯视图为矩形,而左视图为圆形,可以得出该立体图形为圆柱,再由三视图可以圆柱的半径,长和高求出体积.解:∵正视图和俯视图是矩形,左视图为圆形,∴可得这个立体图形是圆柱,∴这个立体图形的侧面积是2π×3=6π,底面积是:21ππ⋅=,∴这个立体图形的表面积为6π+2π=8π;故答案为:8π.【解析】挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.20.10【解析】根据俯视图可以判定就至少需要7个,再根据主视图上面还需要3个,则最少需要10个.21.见解析【解析】分别画出三视图即可解:如图:22.(1)正方体;(2)P与X,Q与Y,R与Z;(3)i;g【解析】根据正方体的展开图我们就可以得到答案,自己也可以动手叠一下试试看.解:(1)这个多面体是正方体.(2)相对的面有三对:P与X,Q与Y,R与Z.(3)将会重合的棱有b与i,f与g23.见解析【解析】如图,A-A’、B-B’、C-C’是相对面,填入互为相反数的两个数即可.解:如图所示:(答案不唯一,符合即可)4.2直线、射线、线段一.选择题1.下列说法正确的是()A.射线P A和射线AP是同一条射线B.射线OA的长度是3cmC.直线ab,cd相交于点PD.两点确定一条直线2.如图,C为AB的中点,D是BC的中点,则下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.CD=BC D.AD=BC+CD 3.平面上有A、B、C三点,经过任意两点画一条直线,可以画出直线的数量为()A.1条B.3条C.1条或3条D.无数条4.如图,线段CD在线段AB上,且CD=3,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.315.已知点A、B、C、D在同一条直线上,线段AB=8,C是AB的中点,DB=1.5.则线段CD的长为()A.2.5B.3.5C.2.5或5.5D.3.5或5.56.点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB的中点的是()A.AM=BM B.AB=2AM C.AM+BM=AB D.BM=AB7.如图,线段AB=18cm,点M为线段AB的中点,点C将线段MB分成MC:CB=1:2,则线段AC的长度为()A.6cm B.12cm C.9cm D.15cm8.如图,已知线段AB=8,点C是线段AB是一动点,点D是线段AC的中点,点E是线段BD的中点,在点C从点A向点B运动的过程中,当点C刚好为线段DE的中点时,线段AC的长为()A.3.2B.4C.4.2D.9.如图,D、E顺次为线段AB上的两点,AB=19,BE﹣DE=7,C为AD的中点,则AE ﹣AC的值为()A.5B.6C.7D.810.如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=CB﹣EB;③CE=CD+DB﹣AC;④CE=AE+CB﹣AB.其中,正确的是()A.①②B.①②③C.①②④D.①②③④二.填空题11.数学来源于生活而又高于生活,比如当我们在植树的时候,要想整齐地栽一行树,只需要确定两端树坑的位置即可.用数学知识可以解释为.12.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD=.13.如图,点C在线段AB上,且AC=AB,点D在线段BC上,AD=5,BD=3,则线段CD的长度为.14.如图,点C、D在线段AB上,AC=6cm,CD=4cm,AB=12cm,则图中所有线段的和是cm.15.如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF 的中点,且MN=8cm,则EF长为.三.解答题16.如图,已知点A、B、C.D,根据下列语句画图.(不写作图过程)作射线AB、直线AC,连接AD并延长线段AD.17.如图,A,B,C三棵树在同一直线上,若小明正好站在线段的AC中点Q处,BC=2BQ.(1)填空:AQ==AC,AQ﹣BC=.(2)若BQ=3米,求AC的长.18.如图,线段AB上顺次有三个点C,D,E,把线段AB分为了2:3:4:5四部分,且AB=28.(1)求线段AE的长;(2)若M,N分别是DE,EB的中点,求线段MN的长度.参考答案一.选择题1.解:A、射线P A和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线ab,cd,直线的写法不对,故本选项错误;D、两点确定一条直线是正确的.故选:D.2.解:∵C是AB的中点,D是BC的中点,∴AC=BC=AB,CD=BD=BC,∵CD=BC﹣BD∴CD=AC﹣BD,故A正确;∵CD=BC﹣DB,∴CD=AB﹣DB,故B正确;∴AD=AC+CD=BC+CD,故D正确;∵CD=BD=BC;故C错误;故选:C.3.解:①如果三点共线,过其中两点画直线,共可以画1条;②如果任意三点不共线,过其中两点画直线,共可以画3条.故选:C.4.解:所有线段之和=AC+AD+AB+CD+CB+BD,∵CD=3,∴所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD)=12+3(AB﹣CD)=12+3(AB﹣3)=3AB+3=3(AB+1),∵AB是正整数,∴所有线段之和是3的倍数,故选:C.5.解:∵AB=8,C是AB的中点,∴AC=BC=4,∵DB=1.5.当点D在点B左侧时,CD=BC﹣BD=4﹣1.5=2.5,当点D在点B右侧时,CD=BC+BD=4+1.5=5.5,则线段CD的长为2.5或5.5.故选:C.6.解:A、由AM=BM可以判定点M是线段AB中点,所以此结论正确,故这个选项不符合题意;B、由AB=2AM可以判定点M是线段AB中点,所以此结论正确,故这个选项不符合题意;C、由AM+BM=AB不可以判定点M是线段AB中点,所以此结论不正确,故这个选项符合题意;D、由BM=AB可以判定点M是线段AB中点,所以此结论不正确,故这个选项不符合题意;故选:C.7.解:∵线段AB=18cm,点M为线段AB的中点,∴AM=BM=AB=9,∵点C将线段MB分成MC:CB=1:2,设MC=x,CB=2x,∴BM=MC+CB=3x,∴3x=9,解得x=3,∴AC=AM+MC=9+3=12.则线段AC的长度为12.故选:B.8.解:∵点D是线段AC的中点,∴AD=CD,∵点E是线段BD的中点,∴BE=DE,∵点C为线段DE的中点,∴CD=CE,∴AD=CD=CE,∵AB=AD+DC+CE+BE=3AD+BE=3AD+DE=3AD+2CD=5AD,∴AD=1.6,∴AC=2AD=3.2,故选:A.9.解:∵AB=19,设AE=m,∴BE=AB﹣AE=19﹣m,∵BE﹣DE=7,∴19﹣m﹣DE=7,∴DE=12﹣m,∴AD=AB﹣BE﹣DE=19﹣(19﹣m)﹣(12﹣m)=19﹣19+m﹣12+m=2m﹣12,∵C为AD中点,∴AC=AD=×(2m﹣12)=m﹣6.∴AE﹣AC=6,故选:B.10.解:由图可知:①CE=CD+DE,正确;②CE=CB﹣EB,正确;③CE=CD+DB﹣EB,错误;④CE=AE+CB﹣AB,正确;故选:C.二.填空题11.解:两端两个树坑的位置,可看做两个点,根据两点确定一条直线,即可确定一行树所在的位置.故答案为:两点确定一条直线.12.解:∵DA=6,DB=3,∴AB=DB+DA=3+6=9,∵C为线段AB的中点,∴BC=AB=×9=4.5,∴CD=BC﹣DB=4.5﹣3=1.5.故答案为:1.5.13.解:∵AD=5,BD=3,∴AB=AD+BD=8,∵AC=AB=,∴CD=AD﹣AC=5﹣=,故答案为:.14.解:由线段的和差,得AC+DB=AB﹣CD=12﹣4=8(cm).图中所有线段的和AC+AD+AB+CD+CB+DB=AC+(AC+CD)+AB+CD+(CD+DB)+DB =2(AC+DB)+3CD+AB=2×8+3×4+12=40(cm).答:图中所有线段的和是40cm,故答案为:40.15.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故答案为:12cm.三.解答题16.解:作射线AB、直线AC,连接AD并延长线段AD,如图所示:17.解:(1)∵O是线段AC的中点,∴AQ=CQ=AC,AQ﹣BC=CQ﹣BC=QB,故答案为;(2)∵BQ=3米,BC=2BQ,∴BC=2BQ=6米,∴CQ=BC+BQ=6+3=9(米),∵Q是AC中点,∴AQ=QC=9(米),∴AC=AQ+QC=9+9=18(米),∴AC的长是18米.18.解:(1)设AC=2x,则CD、DE、EB分别为3x、4x、5x,由题意得,2x+3x+4x+5x=28,解得,x=2,则AC、CD、DE、EB分别为4、6、8、10,则AE=AC+CD+DE=4+6+8=18;(2)如图:∵M是DE的中点,∴ME=DE=4,∵N是EB的中点∴EN=EB=5,∴MN=ME+EN=4+5=9.4.3角一.选择题1.25°的补角是()A.155°B.145°C.55°D.65°2.已知∠A=30°45',∠B=30.45°,则∠A()∠B.A.两点之间直线最短B.一个有理数,不是正数就是负数C.平角是一条直线D.整数和分数统称为有理数4.下列语句中:正确的个数有()①画直线AB=3cm;②连接点A与点B的线段,叫做A、B两点之间的距离;③两条射线组成的图形叫角;④任何一个有理数都可以用数轴上的一个点来表示.A.0B.1C.2D.35.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′6.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°7.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3为()A.120°B.60°C.30°D.150°8.如图所示的是正方形网格,则∠AOB___∠COD()A.>B.<C.=D.≥9.如图,OA是北偏东30°方向的一条射线,若射线OB与OA垂直,则射线OB表示的方向是()A.东偏北30°B.东偏北60°C.北偏西30°D.北偏西60°10.如图,甲、乙两人同时从A地出发,甲沿北偏东50°方向步行前进,乙沿图示方向步行前进.当甲到达B地,乙到达C地时,甲与乙前进方向的夹角∠BAC为100°,则此时乙位于A地的()A.南偏东30°B.南偏东50°C.北偏西30°D.北偏西50°二.填空题11.计算:18°13′×5=.12.若此时时钟表上的时间是8:20分,则时针与分针的夹角为度.13.若两个角互补,且度数之比为3:2,求较大角度数为.14.若∠AOB=45°,∠BOC=75°,OD平分∠AOB,OE平分∠BOC,则∠DOE的度数为.15.将一副三角板按如图方式摆放在一起,且∠1比∠2大20°,则∠1的度数等于.三.解答题16.已知:如图,∠AOB=30°,∠COB=20°,OC平分∠AOD,求∠BOD的度数.17.如图,已知∠MON=150°,∠AOB=90°,OC平分∠MOB,(1)若∠AOC=35°,则∠BOC=°,∠NOB=°;(2)若∠NOB=10°,则∠BOC=°,∠AOC=°;(3)若∠AOC=α,∠NOB=β,请直接写出α与β之间的数量关系.18.已知O为直线AB上一点,射线OD,OC,OE位于直线AB上方,OD在OE的左侧,∠AOC=120°,∠DOE=50°,设∠BOE=n.(1)若射线OE在∠BOC的内部(如图1),①若n=43°,求∠COD的度数;②当∠AOD=3∠COE时,求∠COD的度数.(2)若射线OE恰为图中某一个角(小于180°)的角平分线,试求n的值.19.如图,已知∠AOB内部有三条射线,OE平分∠AOD,OC平分∠BOD.(1)若∠AOB=90°,求∠EOC的度数;(2)若∠AOB=α,求∠EOC的度数;(3)如果将题中“平分”的条件改为∠EOA=∠AOD,∠DOC=∠DOB且∠DOE:∠DOC=4:3,∠AOB=90°,求∠EOC的度数.参考答案与试题解析一.选择题1.【解答】解:25°的补角是:180°﹣25°=155°.故选:A.2.【解答】解:30.45°=30°+0.45×60′=30°27′,∵30°45′>30°27′,∴30°45'>30.45°,∴∠A>∠B,故选:A.3.【解答】解:A、两点之间线段最短,原说法错误,故本选项不符合题意;B、一个有理数,不是正数就是负数或零,原说法错误,故本选项不符合题意;C、平角的两边在一条直线上,原说法错误,故本选项不符合题意;D、整数和分数统称为有理数,原说法正确,故本选项符合题意;故选:D.4.【解答】解:①因为直线不可以度量,所以画直线AB=3cm是错误的;②连接点A与点B的线段的长度,叫做A、B两点之间的距离,原说法错误;③有公共端点是两条射线组成的图形叫做角,原说法错误;④任何一个有理数都可以用数轴上的一个点来表示,原说法正确;正确的有1个,故选:B.5.【解答】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.6.【解答】解:射线OA表示的方向是南偏东65°,故选:C.7.【解答】解:∵∠1和∠2互为余角,∠1=60°,∴∠2=90°﹣∠1=90°﹣60°=30°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣30°=150°.故选:D.8.【解答】解:∵∠AOC=∠BOD=90°,∴∠AOB+∠BOC=90°,∠COD+∠BOC=90°,∴∠AOB=∠COD.故选:C.9.【解答】解:由题意得,∠AOC=30°,∵射线OB与射线OA垂直,∴∠BOC=60°,∴OB的方向角是北偏西60°.故选:D.10.【解答】解:如图所示:由题意可得:∠1=50°,∠BAC=100°,则∠2=180°﹣100°﹣50°=30°,故乙位于A地的南偏东30°.故选:A.二.填空题(共5小题)11.【解答】解:原式=90°+65′=91°5′.故答案是:91°5′.12.【解答】解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上8点20分,时针与分针的夹角可以看成30°×4+0.5°×20=130°.故答案为:130.13.【解答】解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.14.【解答】解:如图1,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=22.5°+37.5°=60°;如图2,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=37.5°﹣22.5°=15°,故答案为:60°或15°.15.【解答】解:设∠2为x,则∠1=x+20°;根据题意得:x+x+20°=90°,解得:x=35°,则∠1=35°+20°=55°;故答案为:55°.三.解答题(共4小题)16.【解答】解:∵∠AOB=30°,∠COB=20°,∴∠AOC=∠AOB+∠BOC=30°+20°=50°,∵OC平分∠AOD,∴∠AOC=∠COD=50°,∴∠BOD=∠BOC+COD=20°+50°=70°.17.【解答】解:(1)∠BOC=∠AOB﹣∠AOC=90°﹣35°=55°;∵OC平分∠MOB,∴∠MOB=2∠BOC=110°,∴∠NOB=∠MON﹣∠MOB=150°﹣110°=40°.故答案为:55,40;(2)∠MOB=∠MON﹣∠NOB=150°﹣10°=140°,∵OC平分∠MOB,∴∠BOC=;∴∠AOC=90°﹣∠BOC=20°.故答案为70,20;(3)∵∠AOC=α,∠NOB=β,∴∠BOC=90°﹣α,∵OC平分∠MOB,∴∠MOB=2∠BOC=180°﹣2α,∵∠MOB+∠NOB=150°,∴180°﹣2α+β=150°,即β=2α﹣30°.18.【解答】解:(1)①∠BOC=180°﹣∠AOC=60°,由n=43°,可得∠COE=∠BOC﹣∠BOE=17°,∴∠COD=∠DOE﹣∠COE=50°﹣17°=33°;②∵∠AOD=3∠COE,∠AOD+∠COD=120°,∠DOE=50°,∴3∠COE+50°﹣∠COE=120°,解得∠COE=35°,∴∠COD=∠DOE﹣∠COE=50°﹣35°=15°;(2)当OE平分∠BOC时,如图所示:∵∠AOC=120°,∴∠BOC=180°﹣∠AOC=60°,∴∠BOE==30°.即n=30°;当OE平分∠AOC时,如图所示:∠BOE=2∠BOC=120°,即n=120°;当OE平分∠BOD时,如图所示:∠BOE=∠DOE=50°,即n=50°;当OE平分∠COD时,∠BOE=∠EOC+∠BOC=50°+60°=110°,即n=110°;OE平分∠AOD是不成立.所以n=30°、50°、110°或120°.19.【解答】解:(1)∵OE平分∠AOD,OC平分∠BOD,∴∠EOD=∠AOD,∠DOC=∠DOB,∴∠EOC=(∠AOD+∠DOB)=45°;(2)由(1)可知:∠EOC=(∠AOD+∠DOB)=α;(3)∵∠DOE:∠DOC=4:3,∴设∠DOE=4x,∠DOC=3x,∵∠EOA=∠AOD,∴∠DOE=∠AOD,∴∠AOD=5x,∵∠DOC=∠DOB,∴∠DOB=4x4.4课题学习制作长方形形状一.选择题1.给出一个正方形,请你动手画一画,将它剖分为n个小正方形.那么,通过实验与思考,你认为下列自然数n不可以取到的是()A.5B.6C.7D.82.有一块两条直角边长分别为3m和4m的直角三角形绿地,现在要扩充成等腰三角形,且扩充部分是直角边长为4m的直角三角形,则扩充后的等腰三角形绿地的周长不可能是()A.16m B.m C.(10+)m D.(10+)m 3.某地有三家工厂,分别位于矩形ABCD的顶点A、B及边CD的中点P处,已知AB=16km,BC=12km,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且与A,B等距离的一点O处建造一个污水处理厂,并铺设排污管道AO,BO,OP.记管道总长为S km.下列说法正确的是()A.S的最小值是8B.S的最小值应该大于28C.S的最小值是26D.S的最小值应该小于264.某乡镇的4个村庄A、B、C、D恰好位于正方形的4个顶点上,为了解决农民出行难问题,镇政府决定修建连接各村庄的道路系统,使得每两个村庄都有直达的公路,设计人员给出了如下四个设计方案(实线表示连接的道路)在上述四个方案中最短的道路系统是方案()A.一B.二C.三D.四5.有甲、乙、丙三个村庄分别位于等边△ABC的顶点,在城中村改造时,为保护环境,改善居民的生活条件,政府决定铺设能够连结这三个村庄的天然气管道.设计人员给出了如图四个设计方案(点D为BC边的中点,点O为△ABC的中心,实线表示天然气管道),其中天然气管道总长最短的是()A.方案1B.方案2C.方案3D.方案46.如图,直线m表示一条河,点M、N表示两个村庄,计划在m上的某处修建一个水泵向两个村庄供水.在下面四种铺设管道的方案中,所需管道最短的方案是(图中实线表示铺设的管道)()A.B.C.D.7.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()A.S3<S1<S2B.S1<S2<S3C.S2<S1<S3D.S1=S2=S38.四座城市A,B,C,D分别位于一个边长为100km的大正方形的四个顶点,由于各城市之间的商业往来日益频繁,于是政府决定修建公路网连接它们,根据实际,公路总长设计得越短越好,公开招标的信息发布后,一个又一个方案被提交上来,经过初审后,拟从下面四个方案中选定一个再进一步论证,其中符合要求的方案是()A.B.C.D.9.如图:有一块三角形状的土地平均分给四户人家,现有四种不同的分法,(如图中,D、E、F分别是BC、AC、AB的中点,G、H分别是BF、AF的中点),其中正确的分法有()A.1种B.2种C.3种D.4种10.王老师用28米长的木条给花圃做围栏,他想把花圃设计成以下四种造型,不能用28米的长木条围成的设计有()种.A.1B.2C.3D.4二.填空题11.如图,笔直的公路旁有A、B两车站,相距15km,C、D为同旁的两个村庄,DA⊥AB 于A,CB⊥AB于B,AD=10cm,CB=5cm,要在这段公路AB旁建一个公路管理站E,使C、D两村到公路管理站的距离相等,那么公路管理站E应建在距A站km处.12.面积为1个平方单位的正三角形,称为单位正三角形.下面图中的每一个小三角形都是单位正三角形,三角形的顶点称为格点.在图1,2,3中分别画出一个平行四边形、梯形和对边都不平行的凸四边形,要求这三个图形的顶点在格点、面积都为12个平方单位..13.如图,有两个正方形的花坛,准备把每个花坛都分成形状相同的四块,种不同的花草.下面左边的两个图案是设计示例,请你在右边的两个正方形中再设计两个不同的图案..14.有一块方角形钢板如图所示,请你用一条直线将其分为面积相等的两部分(不写作法,保留作图痕迹,在图中直接画出).15.如图,平原上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H点的位置,使它与四个村庄的距离之和最小.三.解答题16.如图为正方形网格,每个小正方形的边长均为1,各个小正方形的顶点叫做格点,请在下面的网格中按要求分别画图,使得每个图形的顶点均在格点上.(1)在图中画一个以AB为一边的菱形ABCD,且菱形ABCD的面积等于20.(2)在图中画一个以EF为对角线的正方形EGFH,并直接写出正方形EGFH的面积.17.通过文明城市的评选,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图所示,A,B,C为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.18.图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段AB 的端点均在格点上,在图②、图③中仿照图①,只用无刻度的直尺,各画出一条线段CD,将线段AB分为2:3两部分.要求:所画线段CD的位置不同,点C、D均在格点上19.小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.参考答案与试题解析一.选择题1.【解答】解:对任一正方形,容易分为大于等于4的偶数个小正方形(大小不等),比如2N,(N≥2).具体分法为:设原正方形边长为1,按在水平和垂直方向划两条线,这可分出边长为和两个正方形及长宽分别为和的两个小长方形,而每个小长方形又可分为(N ﹣1)个边长为的小正方形,因此总的正方形数为2+2×(N﹣1)=2N.而对于奇数(N≥7),显然原正方形先可一分为四,而其中之一的小正方形又可分为大于等于4的偶数个小正方形(前一结论),计为2N,因此可分为3+2N=2(N+1)+1个奇数个小正方形,其中(N≥2),故N=4或N≥6的所有自然数.故选:A.2.【解答】解:如图所示:(1)图1:当BC=CD=3m时;由于AC⊥BD,则AB=AD=5m;此时等腰三角形绿地的周长=5+5+3+3=16(m);(2)图2:当AC=CD=4m时;∵AC⊥CB,∴AB=BD=5m,此时等腰三角形绿地的周长=5+5+4+4=18(m);。
2024年数学七年级下册几何基础练习题(含答案)
2024年数学七年级下册几何基础练习题(含答案)试题部分一、选择题(每题2分,共20分)1. 在一个等边三角形中,每个角的度数是()。
A. 60°B. 90°C. 120°D. 180°2. 下列哪个图形是一个四边形?()A. 圆B. 三角形C. 正方形D. 直线3. 一个三角形的两个角分别是30°和60°,那么第三个角的度数是()。
A. 30°B. 60°C. 90°D. 120°4. 下列哪个图形是一个平行四边形?()A. 矩形C. 正方形D. 菱形5. 一个等腰三角形的底边长度是10厘米,腰长是12厘米,那么这个三角形的周长是()厘米。
A. 22B. 24C. 26D. 286. 下列哪个图形是一个圆形?()A. 正方形B. 长方形C. 椭圆D. 三角形7. 一个三角形的两个边长分别是5厘米和8厘米,那么这个三角形的周长最小可能是()厘米。
A. 10B. 12C. 13D. 148. 下列哪个图形是一个梯形?()A. 正方形B. 矩形C. 平行四边形9. 一个等腰三角形的底边长度是8厘米,腰长是10厘米,那么这个三角形的周长是()厘米。
A. 18B. 20C. 22D. 2410. 下列哪个图形是一个正方形?()A. 长方形B. 梯形C. 菱形D. 圆二、判断题(每题2分,共10分)1. 一个等边三角形的每个角都是60°。
()2. 一个四边形的内角和是360°。
()3. 一个等腰三角形的两个腰长相等。
()4. 一个正方形的四个角都是90°。
()5. 一个三角形的两个边长分别是5厘米和8厘米,那么这个三角形的周长最小可能是13厘米。
()以上是一个练习题的示例,你可以根据实际情况进行调整和扩展。
希望对你有所帮助!一、选择题(每题2分,共20分)1. 在一个等边三角形中,每个角的度数是()。
(完整版)导数的几何意义(基础练习题)
导数的几何意义(1)1.设f(x)=1x,则limx→af x-f ax-a等于( )A.-1aB.2aC.-1a2D.1a22.在曲线y=x2上切线倾斜角为π4的点是( )A.(0,0) B.(2,4)C.(14,116) D.(12,14)3.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a=( )A.1 B.1 2C.-12D.-14.若曲线y=h(x)在点P(a,h(a))处切线方程为2x+y+1=0,则( )A.h′(a)<0 B.h′(a)>0C.h′(a)=0 D.h′(a)的符号不定5.一木块沿某一斜面自由下滑,测得下滑的水平距离s与时间t之间的函数关系为s=18t2,则当t=2时,此木块在水平方向的瞬时速度为( )A. 2B. 1C.12D.146.函数f (x )=-2x 2+3在点(0,3)处的导数是________.7.如图是函数f (x )及f (x )在点P 处切线的图像,则f (2)+f ′(2)=________.8.设曲线y =x 2在点P 处的切线斜率为3,则点P 的坐标为________.9.已知曲线y =2x 2上的点(1,2),求过该点且与过该点的切线垂直的直线方程.10.求双曲线y =1x 在点(12,2)处的切线的斜率,并写出切线方程.导数的几何意义(2)1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在2.函数在处的切线斜率为( ) A .0 B 。
1 C 。
2 D 。
33.曲线y =12x 2-2在点⎝ ⎛⎭⎪⎫1,-32处切线的倾斜角为( )A .1B.π4 C.54πD .-π44.在曲线y =x 2上切线的倾斜角为π4的点是( ) A .(0,0) B .(2,4) C.⎝ ⎛⎭⎪⎫14,116D.⎝ ⎛⎭⎪⎫12,14 5.设f (x )为可导函数,且满足lim x →0 f (1)-f (1-2x )2x=-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( ) A .2 B .-1 C .1D .-26.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x轴斜交7.函数在点处的导数的几何意义是__________________________________________________;曲线在点P处的切线方程为是_____________________________________________.8.已知函数f(x)=x2+3,则f(x)在(2,f(2))处的切线方程为_________________________9.求过点P(-1,2)且与曲线y=3x2-4x+2在点M(1,1)处的切线平行的直线方程10.若曲线f(x)=ax3+3x2+2在x=-1处的切线斜率为4,求a的值。
(压轴题)高中数学必修二第一章《立体几何初步》检测题(包含答案解析)(2)
3.设 , 为两条不同的直线, , 为两个不同的平面,给出下列命题:
①若 , ,则 ;
②若 , ,则 ;
③若 , , ,则 ;
④若 , ,则 与 所成的角和 与 所成的角相等.
其中正确命题的序号是 )
A.①②B.①④C.②③D.②④
4.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面 是铅垂面,下宽 ,上宽 ,深 ,平面BDEC是水平面,末端宽 ,无深,长 (直线 到 的距离),则该羡除的体积为()
D. , 与 所成的角,转化为 的大小, 的最小角是 与平面 所成的角,即 ,此时 ,所以 的最小角大于 ,故D正确.
故选:C
【点睛】
关键点点睛:本题考查利用几何的综合应用,包含线线,线面角,垂直关系,首先会作图,关键选项是C和D,C选项的关键是 平面 ,点 是等边三角形的中心,D选项的关键是知道先与平面中线所成角中,其中线面角是其中的最小角.
C. , ,则 D. , ,则
12.在正方体 中, 和 分别为 ,和 的中点.,那么直线 与 所成角的余弦值是()
A. B. C. D.
二、填空题
13.如图,在矩形 中, , ,点E为 的中点,F为线段 (端点除外)上一动点.现将 沿 折起,使得平面 平面 .设直线 与平面 所成角为 , 的取值范围为__________.
【详解】
依题意, ,而 ,
解得 ,记 的中心为О, 的中心为О1,则 ,
取 的中点 ,因为 , ,由勾股定理得 ,同理可得 ,
所以正三棱柱的外接球的球心为即 , 为外接球的半径,
2024年数学八年级上册几何基础练习题(含答案)
2024年数学八年级上册几何基础练习题(含答案)试题部分一、选择题1. 在一个等腰三角形中,如果底边长为10cm,腰长为13cm,那么这个三角形的周长是多少?A. 26cmB. 36cmC. 46cmD. 56cm2. 一个直角三角形的两个锐角分别是30度和60度,如果斜边长为20cm,那么直角边长是多少?A. 10cmB. 10√3 cmC. 20cmD. 20√3 cm3. 一个圆的半径为5cm,那么它的直径是多少?A. 2.5cmB. 5cmC. 10cmD. 20cm4. 一个正方形的对角线长为10cm,那么它的边长是多少?B. 10cmC. 10√2 cmD. 20cm5. 一个等边三角形的边长为6cm,那么它的高是多少?A. 3cmB. 3√3 cmC. 6cmD. 6√3 cm6. 一个长方形的长是宽的两倍,如果长方形的周长是30cm,那么长和宽分别是多少?A. 长为15cm,宽为7.5cmB. 长为10cm,宽为5cmC. 长为20cm,宽为10cmD. 长为12cm,宽为6cm7. 一个圆的周长是31.4cm,那么它的半径是多少?A. 5cmB. 10cmC. 15cmD. 20cm8. 一个正方形的面积是36cm²,那么它的边长是多少?A. 6cmB. 9cmC. 12cm9. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是多少?A. 16cmB. 20cmC. 24cmD. 28cm10. 一个直角三角形的两个锐角分别是45度和45度,如果斜边长为10cm,那么直角边长是多少?A. 5cmB. 5√2 cmC. 10cmD. 10√2 cm二、判断题1. 一个圆的半径是直径的一半。
()2. 一个等腰三角形的底边和腰的长度相等。
()3. 一个直角三角形的两个锐角之和是90度。
()4. 一个正方形的对角线长等于边长的两倍。
()5. 一个等边三角形的高等于边长的根号3倍。
单招立体几何基础大题
单招立体几何基础大题
单招考试中,立体几何是一个重要的考点,下面是几个可能的立体几何基础大题:
1. 已知一个长方体的长、宽、高分别为20cm、10cm、5cm,从长方体的
一个顶点出发的三条棱的长度分别为多少?
2. 已知一个四面体的一条棱长为2,其他三条棱长均为1,求这个四面体的体积。
3. 已知一个圆锥的底面半径为3cm,母线长为6cm,求这个圆锥的表面积。
4. 已知一个圆柱的底面半径为2cm,高为3cm,求这个圆柱的体积。
5. 已知一个正方体的一个顶点到其相对的顶点的距离为a,求这个正方体的表面积。
以上题目仅供参考,具体的题目形式和难度可能会有所不同。
考生应该根据具体考情和自己的实际情况进行备考。
2024年数学九年级下册几何基础练习题(含答案)
2024年数学九年级下册几何基础练习题(含答案)试题部分一、选择题(每题2分,共20分)1. 在三角形ABC中,角A、角B、角C的对边分别为a、b、c。
如果a=5,b=8,c=10,那么这个三角形是()。
A. 锐角三角形B. 直角三角形C. 钝角三角形2. 一个圆的半径为6厘米,那么它的周长是()。
A. 12π厘米B. 24π厘米C. 36π厘米3. 在直角坐标系中,点P的坐标为(2,3),那么点P关于y轴的对称点的坐标是()。
A. (2,3)B. (2,3)C. (2,3)4. 一个正方形的边长为4厘米,那么它的面积是()。
A. 16平方厘米B. 8平方厘米C. 4平方厘米5. 在等腰三角形ABC中,AB=AC=5厘米,BC=8厘米,那么角B的度数是()。
A. 30°B. 60°C. 90°6. 一个圆的直径为10厘米,那么它的半径是()。
A. 5厘米B. 10厘米C. 15厘米7. 在直角坐标系中,点Q的坐标为(3,4),那么点Q关于原点的对称点的坐标是()。
A. (3,4)B. (3,4)C. (3,4)8. 一个长方形的长为8厘米,宽为5厘米,那么它的周长是()。
A. 26厘米B. 13厘米C. 10厘米9. 在等边三角形ABC中,AB=BC=AC=6厘米,那么角A的度数是()。
A. 60°B. 90°C. 120°10. 一个圆的半径为7厘米,那么它的面积是()。
A. 49π平方厘米B. 14π平方厘米C. 98π平方厘米二、判断题(每题2分,共10分)1. 在三角形中,任意两边之和大于第三边。
()2. 一个圆的周长是直径的π倍。
()3. 在直角坐标系中,点(0,0)位于x轴上。
()4. 一个正方形的对角线相等。
()5. 在等腰三角形中,底角相等。
()三、计算题(每题2分,共40分)1. 一个圆的半径增加了2厘米,那么它的面积增加了多少?2. 一个正方形的边长增加了3厘米,那么它的面积增加了多少?3. 在直角坐标系中,点P的坐标为(3,4),点Q的坐标为(3,4),那么线段PQ的长度是多少?4. 一个长方形的长为10厘米,宽为5厘米,那么它的对角线长度是多少?5. 在等腰三角形ABC中,AB=AC=8厘米,BC=12厘米,那么角B的度数是多少?6. 一个圆的半径减少了4厘米,那么它的周长减少了多少?7. 一个正方形的边长减少了2厘米,那么它的周长减少了多少?8. 在直角坐标系中,点M的坐标为(5,0),点N的坐标为(0,5),那么线段MN的长度是多少?9. 一个长方形的长为15厘米,宽为10厘米,那么它的面积是多少?10. 在等边三角形ABC中,AB=BC=AC=10厘米,那么角A的度数是多少?11. 一个圆的半径增加了3厘米,那么它的面积增加了多少?12. 一个正方形的边长增加了5厘米,那么它的面积增加了多少?13. 在直角坐标系中,点P的坐标为(4,3),点Q的坐标为(4,3),那么线段PQ的长度是多少?14. 一个长方形的长为12厘米,宽为8厘米,那么它的对角线长度是多少?15. 在等腰三角形ABC中,AB=AC=10厘米,BC=14厘米,那么角B 的度数是多少?16. 一个圆的半径减少了5厘米,那么它的周长减少了多少?17. 一个正方形的边长减少了3厘米,那么它的周长减少了多少?18. 在直角坐标系中,点M的坐标为(6,0),点N的坐标为(0,6),那么线段MN的长度是多少?19. 一个长方形的长为18厘米,宽为12厘米,那么它的面积是多少?20. 在等边三角形ABC中,AB=BC=AC=12厘米,那么角A的度数是多少?四、应用题(每题2分,共20分)1. 一个圆形花坛的直径为10米,现在要在花坛周围铺设一条宽为1米的环形小路,求小路的面积。
人教版空间几何基础题
一、选择题1.下列关于平面的说法中,正确的是:A.平面是无限延展的,没有边界B.平面是有限大小的,有明确的边界C.平面只存在于二维空间中D.平面是由线段组成的(正确答案:A)2.在空间几何中,两条直线平行的充分条件是:A.两条直线共面且不重合B.两条直线异面且不垂直C.两条直线分别位于两个平行的平面内(正确答案:C)D.两条直线都与第三条直线垂直3.下列关于空间几何中点的位置关系的说法,错误的是:A.点可以在直线上B.点可以在平面上C.点可以同时位于两个不重合的平面上(正确答案:C)D.点可以与直线和平面都不重合4.在空间几何中,如果一条直线与一个平面垂直,那么这条直线与平面内的:A.所有直线都垂直(正确答案:A)B.所有直线都不垂直C.只有一条直线垂直D.只有两条直线垂直5.下列关于空间几何中平面的说法,正确的是:A.三个点可以确定一个平面B.两条直线可以确定一个平面C.不共线的四点可以确定四个平面D.不共线的三点可以确定一个平面(正确答案:D)6.在空间几何中,如果两个平面垂直,那么它们之间的交线是:A.一条直线(正确答案:A)B.一条射线C.一个点D.不存在交线7.下列关于空间几何中线面关系的说法,正确的是:A.如果一条直线与一个平面内的两条直线都垂直,那么这条直线与这个平面垂直B.如果一条直线与一个平面内的无数条直线都垂直,那么这条直线与这个平面垂直C.如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线与这个平面垂直(正确答案:C)D.如果一条直线与一个平面内的两条平行直线都垂直,那么这条直线与这个平面垂直8.在空间几何中,如果一个平面内的两条相交直线分别与另一个平面平行,那么这两个平面的位置关系是:A.平行(正确答案:A)B.相交C.重合D.无法确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何基础过关测试题
班级:姓名:得分:
测试时间:80分钟满分:100分
一、选择题(每小题2分,共20分)
1. 下列条件中,能判定△ABC≌△DEF的是()
A. AB=DE,BC=EF,∠A=∠D
B. ∠A=∠D, ∠C=∠F, AC=EF
C. ∠B=∠E, ∠A=∠D, AC=EF
D. AB=DE,BC=EF,两个三角形的周长相等
2. 等腰三角形的一边长等于5,一边长等于10,则它的周长是()
A. 20
B. 25
C. 20或25
D. 不确定
3. 如图1,AE=CF,AB=CD,DE⊥AC,BF⊥AC,且垂足分别为E、F.则判定△ABF≌△CDE
的依据是()
A. SSS
B. SAS
C. ASA
D. HL
图1 图2 图3
4. 如图2所示,△ABC≌△CDA,AB=4,BC=5,CA=6.则AD的长为()
A. 6
B. 5
C. 4
D. 不能确定
5. 如图3,AB=CD,AE⊥BD于E,CF⊥BD于F,AE=CF,则图中全等三角形有()
A. 1对
B. 2对
C. 3对
D. 4对
6. 有一个等腰三角形的周长为25cm,一边长为11cm,那么腰长为()
A. 11cm
B. 7cm
C. 14cm
D. 7cm或11cm
7. 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()
A. 60°
B. 120°
C. 60°或150°
D. 60°或120°
8. 如图4,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,那
么∠ABC的大小是()
A. 40°
B. 45°
C. 50°
D. 60°
9. 如图5,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:○1AC=AF,○2∠FAB=∠EAB,
○3EF=BC,○4∠EAB=∠FAC,其中正确结论的个数是() A. 1个 B. 2个 C. 3个 D. 4个
图4 图5
10.已知平面上的两点A,B,下列说法不正确的是()
A. 点A,B关于线段AB的垂直平分线对称
B. 线段AB可以看作是以直线AB为轴的轴对称图形
C. 线段AB是轴对称图形,有且只有一条对称轴
D. 线段AB是轴对称图形,有两条对称轴
二、填空题(每小题2分,共20分)
11.如图6,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出= 或
∥,就可证明△ABC≌△DEF.
12.如图7,AB=CD ,AD=CB, ∠2=40°, ∠3=80°,则∠B= .
图6 图7 图8
13.如图8,已知∠B=∠C=50°, ∠A=60°,则∠AEC= ;若AE=AD,AB=7,
则AC= .
14.如图9,BA⊥AC,BA∥CD,AB=CE,AC=CD,则△ABC≌,理由是 .
15.如图10,BD是△ABC的角平分线,∠C=90°,AC=CB,DE⊥AB于E,若AB=5cm,
则△ADE的周长为 .
图9 图10 图11
16.如图11,△ABC中,AB=AC,∠C=65°,MN为AB的垂直平分线,则∠1= ,∠2= .
17.已知在△ABC中,AB=AC,且2∠B=∠BAC,则∠B= .
18.若等腰三角形有一个角是60°,其中一条边的长为a,则其周长是 .
19.如图12所示,在△ABC中,已知∠B和∠C的角平分线相交于点F,过点F作
DE∥BC交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为 . 20.如图13,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF= .
图12 图13
三、解答题(每小题10分,共60分)
21.如图14,CE⊥AB,DF⊥AB,垂足分别为E、F,AC=DB且 AC∥DB,那么CE=DF吗?说说你的理由.
图14
22.如图15,D、E是AB、AC上的点,且AD=AE,DB=EC,证明:∠B=∠C.
图15
23.如图16,在△ABC中,∠ACB=90°,DE是AB的垂直平分线,∠CAE:∠EAB=4:1,
求∠B的度数?
图16
24.已知:如图17,△ABC中,BD=CD,∠ABD=∠ACD.求证:AD是∠BAC的角平分线.
图17
25.如图18,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,EF⊥AB于F,且AB=DE.
(1)求证:△BCD是等腰三角形;
(2)若BD=8cm,求AC的长.
图18
26.如图19,在等边△ABC中,点D、E分别在边BC,AB上,且BD=AE,AD与CE相交于点F.
(1)求证:AD=CE;
(2)求∠DFC的度数.
图19。