求解超静定结构的一种方法

合集下载

高等工程力学1 超静定结构内力计算

高等工程力学1 超静定结构内力计算

M i 、Qi、N i ——任取的基本体系在单位力作用下的内力图,而单位力是加在 要求位移的截面上的;
—RK—基本体系支座k在单位力作用下的反力;
cK——k支座的实际位移。 公式(1-7)的前三项表示基本体系在荷载和多余未知力的作用下的位移,后
三项表示基本体系在温度变化和支座移动情况下引起的位移。
1 超静定结构内力计算
⑵ 有结点线位移的情况 计算这类结构时;原利用公式(1-11)考虑各结点的弯矩平衡外,还需考虑 相应杆端剪力的平衡。取适当的截面截出结构的一部分,通常是截断各柱的柱顶 端。取出横梁。考虑剪力平衡,建立剪力平衡方程,即
Qx 0
(1-12)
补充了剪力平衡方程后,方程式的数目仍然与未知数的数目相等,方程式总是 可以求解的。
1 超静定结构内力计算
§1.1.1力法的基本原理(续4)
由力法方程解出未知力X1、X2、…Xn后,超静定结构的内力可根据叠加原理 用下式计算:
M M1X1 M2X2 MnXn MP Q Q1 X 1 Q2 X 2 Qn X n QP N N1X1 N2 X 2 Nn X n NP
§1.2.4利用典型方程求解结构的位移和内力(续1)
同理附加链杆处的反力也为零,即
R2 R21 R22 R2P 0
或写成
r11Z1 r12Z2 R1P 0 r21Z1 r22Z2 R2P 0
对于有n个基本未知数的结构,位移法典型方程式为:
r11Z1 r12 Z2 r1n Zn R1P 0 r21Z1 r22 Z2 r2n Zn R2P 0
§1.2.1等截面直杆的转角位移方程式(续1)
AB杆产生位移后,杆端的总弯矩为
M AB
M
/ AB
M

结构力学上第8章 位移法

结构力学上第8章 位移法

(非独立角位移) l FQBA
M AB M BA
F 3i A 3i M AB l 0
3、一端固 FQAB
A
B1
B
l
F M AB i A i B M AB F M BA i A i B M BA
(非独立线位移)
q B EI C L
Z1
q B
EI C
Z2 4i
Z1=1
EI A 原结构
L
=
Z2=1
EI A qL2 8 基本体系
=
3i
M1图×Z1 2i
+
6EI L2 6EI M2图×Z2 L2
+
qL2 8 MP图
在M1、M2、MP三个 图中的附加刚臂和链杆 中一定有约束反力产生, 而三个图中的反力加起 来应等于零。
M
q
应用以上三组转角位移方程,即可求出三种基本的单跨超 静定梁的杆端弯矩表达式,汇总如下:
F 1)两端固定梁 M AB 4i A 2i B 6i M AB
M BA
l F 2i A 4i B 6i M BA l
2)一端固定另一端铰支梁
F M AB 3i A 3i M AB l M BA 0 3)一端固定另一端定向支承梁 F M AB i A i B M AB
3
2
1
结点转角的数目:7个
独立结点线位移的数目:3个
D
E
A
B
C
C
D
刚架结构,有两个刚结点D、E, 故有两个角位移,结点线位移由铰 结体系来判断,W=3×4-2×6=0, 铰结体系几何不变,无结点线位移。
A
B

第八章超静定结构解法

第八章超静定结构解法

第八章超静定结构解法
超静定结构是指结构中的节点数超过了杆件数,即结构中的自由度超过了平衡条件的数量。

对于超静定结构的解法,需要进行位移计算和支反力计算。

位移计算可以通过以下步骤进行:
1.建立结构的刚度方程。

根据杆件的刚度和支座的自由度约束,可以建立结构的刚度矩阵。

刚度矩阵是一个n×n的矩阵,其中n是结构的自由度数量。

2.确定约束条件。

根据结构的支座约束,可以确定支座位移为零的约束条件。

3.应用边界条件。

将约束条件应用到刚度方程中,可以得到一个未知位移的方程组。

4.解未知位移。

通过解这个方程组,可以得到结构的未知位移值。

支反力计算可以通过以下步骤进行:
1.利用位移计算中得到的未知位移值,计算杆件的应力。

应力可以通过应变和材料的本构关系得到。

2.根据杆件的几何特征和应力,计算杆件的应力。

应力可以根据杆件的截面积和应力得到。

3.根据杆件的几何特征和应力,计算杆件的内力。

内力可以根据截面受力平衡的条件得到。

4.根据内力和支座约束,计算支座的反力。

反力可以通过力的平衡条件得到。

总的来说,超静定结构的解法需要进行位移计算和支反力计算。

在位移计算中,需要建立结构的刚度方程,并将约束条件以及边界条件应用到方程中,来解未知位移。

在支反力计算中,需要利用位移计算中得到的未知位移值,计算杆件的应力和内力,并根据杆件的几何特征和应力来计算支座的反力。

超静定结构两类解法

超静定结构两类解法

第六章位移法超静定结构两类解法:力法:思路及步骤,适用于所有静定结构计算。

结合位移法例题中需要用到的例子。

有时太繁,例。

别的角度:内力和位移之间的关系随外因的确定而确定。

→位移法,E,超静定梁和刚架。

于是,开始有人讨论:有没有别的方法来求解或换一个角度来分析…,what?我们知道,当结构所受外因(外荷载、支座位移、温度变化等)一定⇒内力一定⇒变形一定⇒位移一定,也就是结构的内力和位移之间有确定的关系(这也可以从位移的公式反映出来)。

力法:内力⇒位移,以多余力为基本未知量…,能否反过来,也就是先求位移⇒内力,即以结构的某些位移为基本未知量,先想办法求出这些位移,再求出内力。

这就出现了位移法。

目前通用的位移法有两种:英国的、俄罗斯的,两者的实质是相同的。

以结构的某些结点位移作为基本未知量,由静力平衡条件先求出他们,再据以求出结构的内力和其它位移。

这种方法可以用于求解一些超静定梁和刚架,十分方便。

例:上面的例子,用位移法求解,只有结点转角一个未知量。

下面,我们通过一个简单的例子来说明位移法的解题思路和步骤:一个两跨连续梁,一次超静定,等截面EI=常数,右跨作用有均布荷载q,(当然可以用力法求解),在荷载q作用下,结构会发生变形,无N,无轴向变形,B点无竖向位移,只有转角ϕB。

且B点是一个刚结点传递M;变形时各杆端不能发生相对转动和移动,刚结点所连接的杆件之间角度受力以后不变。

也就是AB、BC杆在结点B处的转角是相同的。

原结构的受力和变形情况和b是等价的。

B当作固定端又产生转角ϕB。

a(原结构)AB:BC:b如果把转角ϕB 当作支座位移这一外因看,则原结构的计算就可以变成两个单跨超静定梁来计算。

显然,只要知道ϕB ,两个单跨静定梁的计算可以用力法求解出全部反力和内力,现在的未知量是ϕB (位移法的基本未知量)。

关键:如何求ϕB ?求出ϕB 后又如何求梁的内力?又如何把a ⇒b 来计算? 我们采用了这样的方法:假定在刚结点B 附加一刚臂(▼),限制B 点转角,B ⇒固定端(无线位移,无转动)(略轴向变形)原结构就变成了AB 、BC 两个单跨超静定梁的组合体:AB : ,BC :但现在和原结构的变形不符,ϕB ,所以为保持和原结构等效,人为使B 结点发生与实际情况相同的转角ϕB (以Z 1表示,统一)。

力法、位移法求解超静定结构讲解

力法、位移法求解超静定结构讲解

力法、位移法求解超静定结构讲解
超静定结构是指在结构中存在多余的支座或者杆件,使得结构的自由度小于零,即结构无法通过静力学方法求解。

在这种情况下,我们需要采用力法或者位移法来求解结构的内力和位移。

力法是指通过假设结构内力的大小和方向,来求解结构的内力和位移的方法。

在力法中,我们需要假设结构内力的大小和方向,然后通过平衡方程和变形方程来求解结构的内力和位移。

力法的优点是计算简单,适用于简单的结构,但是对于复杂的结构,力法的假设可能会导致误差较大。

位移法是指通过假设结构的位移,来求解结构的内力和位移的方法。

在位移法中,我们需要假设结构的位移,然后通过平衡方程和变形方程来求解结构的内力和位移。

位移法的优点是适用于复杂的结构,可以准确地求解结构的内力和位移,但是计算较为繁琐。

在实际工程中,我们通常采用力法和位移法相结合的方法来求解超静定结构。

首先,我们可以通过力法来确定结构的内力大小和方向,然后再通过位移法来求解结构的位移。

这种方法可以充分利用力法和位移法的优点,减小误差,提高计算精度。

超静定结构的求解需要采用力法和位移法相结合的方法,通过假设结构的内力和位移,来求解结构的内力和位移。

在实际工程中,我们需要根据具体情况选择合适的方法,以保证计算精度和效率。

结构力学 力法计算超静定结构

结构力学 力法计算超静定结构
项目三 超静定结构的内力计算
子项目一 力法计算超静定结构
情景一 超静定结构的基本特征
学习能力目标
1. 能够解释力法的基本概念。 2. 能够确定超静定的次数,得到静定的基本结构。 3. 了解超静定结构的特点。
项目表述
试分析如图 3 – 1 所示超静定结构,确定它的超静定次数。
情景一 超静定结构的基本特征 学习进程
情景一 超静定结构的基本特征 知识链接
② 去掉一个固定铰支座(图 3 – 6a)或拆去一个单铰相当于去掉两个约束(图 3 – 6b),可用两个多余未知力代替。
情景一 超静定结构的基本特征 知识链接
③ 去掉一个固定支座(图 3 – 7b)或切断一刚性杆(图 3 – 7c),相当于去掉 三链接
③ 超静定结构的内力和各杆的刚度比有关,而静定结构则不然。在计算超静定 结构时,除了用静力平衡条件外,还要用到结构的变形条件建立补充方程。而 结构的变形条件与各杆的刚度有关,在各杆的刚度比值发生变化时,结构各部 分的变形也相应变化,从而影响各杆的内力重新分布。利用在超静定结构中, 刚度大的部分将产生较大的内力,刚度较小的部分内力也较小的特点,可以通 过改变杆件刚度的方法来达到调整内力数值的目的。 ④ 在局部荷载作用下,超静定结构与静定结构相比,具有内力分布范围大,内 力分布较均匀,峰值小,且变形小、刚度大的特点。如图 3 – 9a 所示是三跨连 续梁在荷载 F 作用下的弯矩图和变形曲线,由于梁的连续性,两边跨也产生内 力和变形,最大弯矩在跨中为 0.175Fl。图 3 – 9b 所示是多跨静定梁在荷载 F 作用下的弯矩图和变形曲线,由于铰的作用,两边跨不产生内力和变形,最大 弯矩在跨中为 0.25Fl,约为前者的 1.4 倍。
情景一 超静定结构的基本特征 知识链接

分析超静定结构的基本方法

分析超静定结构的基本方法

分析超静定结构的基本方法【摘要】本文介绍了解决超静定结构(statically indeterminate structure)问题的两种基本方法——力法(force method)和位移法(displacement method ),并分析这两种基本方法的区别与联系。

【关键词】超静定结构;力法;位移法;对比0.引言在工程实际中,大多数结构是超静定结构。

超静定结构是指具有多余约束的结构,即广义力的总数超过了所能列出的独立平衡方程的总数。

超静定结构受力复杂,在弹性理论计算方法下,仅由平衡条件不能确定超静定结构全部反力和内力,必须考虑变形条件,故其受力情况与截面刚度(即材料的物理性质与截面的几何性质)有关。

而通过塑性分析方法,实际情况中考虑到塑性铰分布情况及出现的先后顺序,分析及计算结构构件的强度极限十分困难。

因此解决实际中的超静定结构构件问题尤为重要。

在求解超静定问题时需要综合考虑三个方面的条件:平衡条件(力的平衡),几何条件(位移的协调),物理条件(力与位移的物理关系)。

在具体求解时,有两种不同的方法即力法(又称柔度法)和位移法(又称刚度法)。

力学方法论中常用三法:分和法、对比法和过渡法。

1.力法——转化搭桥,过渡法力法的最主要策略是过渡策略。

要求解超静定问题,就是把静定问题求解方法向超静定问题过渡。

力法的基本未知量是指广义力超过独立平衡方程能解出力的个数。

即X,X,X在实际过程中,只需解决这些多余未知量,超静定问题就迎刃而解!我们通常从基本体系入手,将超静定问题转换成静定问题。

一个超静定结构模型简图,将多余约束去掉,代之以对应的多余未知力X,X,X......即得到超静定结构对应的静定结构。

对力法的基本体系,可以列出独立的平衡方程,同时,需要补充由变形协调条件。

变形协调条件是根据去掉多余约束处结构变形与实际情况相同列出。

得出的附加方程如下:2.位移法——拆了再搭,分和法用位移法求解超静定结构第一步是把刚架离散成杆件(单元),进行单元分析。

9-简单超静定结构的解法解析

9-简单超静定结构的解法解析

例 两端固定的圆截面杆 AB ,在截面 C 处受一扭转
力偶矩 Me 作用如图。已知杆的扭转刚度为GIp,试
求杆两端的支反力偶矩。
I
Me
II
解: 一次超静定 设想固定端B为
A
C
a
B
b
多余约束,解除后
l
加上相应的多余未
MA A
I
Me
C
II
MB
B
x
知力偶矩MB,得基 本静定系。
平衡方程:设固定端A的支反力偶为MA ,方向同MB
,
补充方程变为
wBFB
FBl3 3EI
ql 4 FBl 3 0 8EI 3EI
解得
FB
3 ql 8
可从右向左作出剪力图和弯矩图
8 ql
81ql
FS 图
18l
8 ql2
1218ql2
M图
也可以取支座 A 处阻止梁端面转动的约束作为 “多余”约束,解除后可得相当系统
q
MA A
B
l
根据原超静定梁端面 A 的转角应等于零的变形 相容条件,可由变形协调条件建立补充方程来求 解。
A A'
l1 l3 cosa
l3
(3)胡克定理
l1
FN1l EA
l3
FN3l cosa
E3 A3
(4)补充方程变为
FN1
FN3
EA E3 A3
cos2 a
联立平衡方程、补充方程,求解得
FN1
FN 2
2 c osa
F
E3 A3 EAcos2
a
F
FN3 1 2
EA
cos3 a
E3 A3

第六章 位移法

第六章  位移法

r11 Z1
EI
B
2EI iBC iCE 4
r EI 21 C
EI iBA iCD 4
E
M 0
2EI
A 0.5EI
D
M

1
r11 3EI
r12
r Z2 2EI 22
E
B
EI C
EI
1.5EI
r12 r21 EI r22 4.5EI
A
D 0.5EI M 2图
R R 30
Z1
R11

7EI l
Z1
实现位移状态可分两步完成:
1)在可动结点上附加约束,限制其位移,在荷载作 用下,附加约束上产生附加约束力; 2)在附加约束上施加外力,使结构发生与原结构一 致的结点位移。
分析:
1)叠加两步作用效应,约束结构与原结构的荷载特 征及位移特征完全一致,则其内力状态也完全相等;
2)结点位移计算方法:对比两结构可发现,附加约 束上的附加内力应等于0,按此可列出基本方程。
原结构上原本没有附加刚臂,故基本结构附加刚臂 上的约束力矩应为零。即
R1F
ql2 8
7EI R11 l Z1
R11 R1F 0 R11 r11Z1
r11Z1 R1F 0 (a)
Z1

ql 3 56 EI
式(a)称为位移法方程。式
r 中由:项。11它称们为的系方数向;规R1定F称与为Z1自方
A 0.5EI
D
M1图
R R 30
10k1NF·m
26.67 26.67 20kN/m
2F
40kN E
B
C
25
r12 B EI

力法求解超静定结构的步骤:

力法求解超静定结构的步骤:

第八章力法本章主要内容1)超静定结构的超静定次数2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分))3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架)4)力法的对称性利用问题,对称结构的有关概念四点结论5)超静定结构的位移计算和最后内力图的校核6)§8-1超静定结构概述一、静力解答特征:静定结构:由平衡条件求出支反力及内力;超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。

二、几何组成特征:(结合例题说明)静定结构:无多余联系的几何不变体超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。

即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。

多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。

多余求知力:多余联系中产生的力称为三、超静定结构的类型(五种)超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构四、超静定结构的解法综合考虑三个方面的条件:1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程;2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。

即结构的变形必须符合支承约束条件(边界条件)和各部分之间的变形连续条件。

3、物理条件:即变形或位移与内力之间的物理关系。

精确方法:力法(柔度法):以多余未知力为基本未知量位移法(刚度法):以位移为基本未知量。

力法与位移法的联合应用:力法与位移法的混合使用:混合法近似方法:力矩分配法、矩阵位移法、分层总和法、D值法、反弯点法等本章主要讲力法。

五、力法的解题思路(结合例子)把不会算的超静定结构通过会算的基本结构来计算。

1超静定结构的解法

1超静定结构的解法

1超静定结构的解法超静定结构是指结构的支座反力数目多于静力平衡方程的数目,即结构的自由度多余零,不能通过直接求解静力平衡方程得到结构的内力、位移等参数。

因此,需要使用超静定结构的解法来求解结构的响应。

超静定结构的解法主要有两种:力法和位移法。

在这里,我将分别介绍这两种方法的基本原理。

1.力法力法是指通过引入虚功原理,利用未知内力的线性平衡方程组与已知荷载、位移或位移力系数之间的关系,构建方程并求解未知内力的方法。

使用力法解决超静定结构的基本步骤如下:(1)确定支座反力。

根据结构的约束条件,计算支座反力数目;(2)选择剪力或弯矩作为未知内力。

在超静定结构中,选择剪力或弯矩作为未知内力比较常见;(3)建立线性平衡方程组。

将剪力或弯矩作为未知量,根据结构的几何条件和约束条件,建立线性平衡方程组;(4)引入荷载、位移或位移力系数。

根据结构的受力情况,将已知荷载、位移或位移力系数引入线性平衡方程组;(5)求解未知内力。

通过求解线性平衡方程组,得到未知内力。

2.位移法位移法是指通过引入位移的概念,利用位移与剪力/弯矩之间的关系,将超静定结构的内力求解问题转化为线性代数方程组的求解问题。

使用位移法解决超静定结构的基本步骤如下:(1)确定支座反力。

根据结构的约束条件,计算支座反力数目;(2)选择支座位移为未知量。

在超静定结构中,支座位移比较容易确定;(3)建立位移-力关系方程。

根据结构的几何条件和材料性质,建立位移-力关系方程,将剪力或弯矩表示为位移的函数;(4)引入荷载或位移。

根据结构的受力条件,将已知荷载或位移引入位移-力关系方程;(5)求解未知位移。

通过求解位移-力关系方程,得到未知位移;(6)求解未知内力。

将未知位移代入位移-力关系方程,求解出未知内力。

需要注意的是,在力法和位移法中,由于超静定结构的自由度数目大于零,未知内力或未知位移存在无穷多个解。

因此,需要加入合理的边界条件,如位移边界条件、力边界条件等,来确定唯一的解。

结构力学位移法

结构力学位移法

二、基本未知量的确定 1.无侧移结构基本未知量:所有刚结点的转角
2.有侧移结构
例1. B
C 例2. B
C
A
A
只有一个刚结点B,由于忽 略轴向变形,B结点只有
只有一个刚结点B, 由于忽略轴向变形及C 结点的约束形式,B结 点有一个转角和水平位 移
例3.
有两个刚结点B、C,由于忽略轴向
变形,B、C点的竖向位移为零,B、C
(a)
(b) (c)
2)求图(2)中 φA2和φB2 3)叠加得到
变换式上式可得杆端内力的刚度方程(转角位移方程):
由平衡条件得杆端剪力:见图(d)
(d)
1.两端固定单元,在A端发生一个顺时针的转角 。
MAB A
由力法求得
B MBA
2i
4i
M
2.两端固定单元,在B端发生一个顺时针的转角 。
MAB A
,得:
BC杆
4. 解方程,得:
5. 把结点位移回代,得杆端弯矩
6. 画弯矩图
ql2 14
B ql2 C 8
A
ql2
28 M图
例2.
1、基本未知量θB、θC
40 43.5 2406k.N9/m
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
24.5 14.7
AA 4i=I 1 1
BB 3.4
51I62.5 CC
1
94.118I DD
二、形常数和载常数
形常数:由单位杆端位移引起的单跨超静定梁的杆端力 载常数:由荷载引起的固端力
1.由杆端位移求杆端内力(形常数)
MAB
Δ
根据力法可求解:
QAB φA
MAB
φB MBA

结构力学二知识点

结构力学二知识点

结构力学二知识点
结构力学二的知识点包括以下几种:
1.超静定结构:超静定结构是指静定结构在小变形下仍然保持稳定的结构。

超静定结构的特点是结构的整体相对于其中某一部分是超静定的。

2.力法:力法是求解超静定结构位移的一种方法。

力法的基本原理是采用力
矩分配法,将超静定结构转化为静定结构,从而求解位移。

3.位移法:位移法是求解超静定结构位移的另一种方法。

位移法的基本原理
是采用等截面直杆的杆端力方程,根据位移函数求解结构的位移。

4.渐近法:渐近法是求解超静定结构位移的一种近似方法。

渐近法的基本思
想是采用折线法,将位移函数折成直线,从而求解结构的位移。

05-3结构力学 第五章 超静定结构的内力和位移计算(5.2节 位移法)ok

05-3结构力学 第五章 超静定结构的内力和位移计算(5.2节 位移法)ok

如: 1 2
3
1 2
1
3
这样即可使12、13杆 成为单跨超静定梁
2、附加链杆支座约束:为使杆件两端相对线位移被约束而在结点上附加的约 束阻止结点移动的装置。
如:1
3
用“
” 表示
2 1 3
结构变形时,显然13杆可沿水平方向移动, 同时刚结点1也可能发生转角,要使各杆独立成为 单跨超静定梁。 需在1结点上附加刚臂约束 同时还需加附加链杆支座以阻止13杆的水平线 位移。
r11Z 1+ r12Z 2+ · · · · + r1nZ n+R1P=0
位移法 – 刚度法
ri j=rj i
反力互等定理
位移法典型方程,简称为位移法方程 – 结构的刚度方程
主系数,rii>0 r12 ...... r1n Z1 R1P r11 r Z R r ...... r 2P 22 2n 2 21 ri j=rj i 反力互等定理 0 ...... ...... ...... ...... rn 2 ...... rnn Z n RnP rij=rji,Rip,>0,=0,<0 rn1
F M AB ql 2 / 12 F M BA ql 2 / 12
F A l/2 l/2 B
Fl/8 A
Fl/8
F M AB Fl / 8
B
F M BA Fl / 8
q
ql2/8 B A B
F M AB ql 2 / 8
A
F A l/2 l/2 B
3Fl/16 A B
EI=
Z1 Z2
EI=

《结构力学》第5章:力法

《结构力学》第5章:力法

03
对边界条件敏感
力法对边界条件的处理较为敏感, 边界条件的微小变化可能导致计 算结果的显著不同。
适用范围讨论
适用于线弹性结构
01
力法适用于线弹性结构,即结构在荷载作用下发生的
变形与荷载成正比,且卸载后能够完全恢复。
适用于静定和超静定结构
02 力法既适用于静定结构,也适用于超静定结构,但超
静定结构需要引入多余未知力和变形协调条件。
在传动系统的力学分析中,采用力法计算各部件的受力情况,
确保传动系统的正常运转。
案例分析与启示
力法应用广泛性
力法计算精确性
通过以上案例可以看出,力法在桥梁、建 筑和机械工程等领域具有广泛的应用价值 。
力法作为一种精确的计算方法,在解决超 静定问题方面具有显著优势。
力法在工程实践中的局限性
对未来研究的启示
《结构力学》第 力法典型方程及应用 • 力法计算过程与实例分析 • 力法优缺点及适用范围 • 力法在工程实践中应用 • 力法学习建议与拓展资源
01 力法基本概念与原理
力法定义及作用
力法是一种求解超静定结构的方法, 通过引入多余未知力,将超静定问题 转化为静定问题进行求解。
桁架结构应用
桁架结构由杆件组成,通过力法可以求解桁架结构中的多余未知力,进而分析 桁架的稳定性和承载能力。
组合结构应用
组合结构由不同材料或不同形式的构件组成,通过力法可以分析组合结构的内 力和变形,为结构设计提供优化建议。
复杂结构简化与力法应用
复杂结构简化
对于复杂结构,可以通过合理简化为静定结构或简单超静定结构,进而应用力法求解。
适用于简单和规则结构
03
对于简单和规则结构,力法能够较为方便地求解出结

力法求解超静定结构的步骤

力法求解超静定结构的步骤

力法求解超静定结构的步骤:
1、先判定其超静定次数,(含多余联系数),去掉原结构的所有多余联系,用相应的多余力代替,得一静定的基本结构(形式可能很多,尽量简单);
2、根据基本结构在原荷载及所有多余力共同作用下,在每一个去掉的多余联系处位移和原结构相应位置的已知位移相同,建立力法典型方程;
3、求方程所有系数和自由项,(静定结构的位移计算)积分法或图乘法,写出基本结构X i∑=在单位力及原荷载分别单独作用下的内力表达式或作出内力图;
4、解方程,求出所有多余力;
5、作最后内力图(静定结构的计算问题)梁、刚架:M N P 组合结构:
6、校核,两方面:平衡条件(截取结构中+ X i N i ∑=M P →Q→N 桁架:N +M i M=0 )∑Y=0 ∑ X=0 ∑刚结点、杆件或某一部分,应满足;变形协调条件(多余约束处位移是否与已知位移相等)
注:选取基本结构的原则:
(1)基本结构为静定结构;
(2)选取的基本结构应使力法方程中系数和自由项的计算尽可能方便,并尽量使较多的副系数和自由项为0
(3)较易绘M 图及MP 图。

结构力学

结构力学

第五章 超静定结构计算——位移法一、判断题:1、判断下列结构用位移法计算时基本未知量的数目。

(1) (2) (3)(4) (5) (6)EIEIEIEI2EI EIEIEIEA EA ab EI=EI=EI=244422、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。

3、位移法未知量的数目与结构的超静定次数有关。

4、位移法的基本结构可以是静定的,也可以是超静定的。

5、位移法典型方程的物理意义反映了原结构的位移协调条件。

6、图示结构,当支座B 发生沉降∆时,支座B 处梁截面的转角大小为12./∆l ,方向为顺时针方向,设EI =常数。

7、图示梁之 EI =常数,当两端发生图示角位移时引起梁中点C 之竖直位移为(/)38l θ(向下)。

/2/22l l θθC8、图示梁之EI =常数,固定端A 发生顺时针方向之角位移θ,由此引起铰支端B 之转角(以顺时针方向为正)是-θ/2 。

9、用位移法可求得图示梁B 端的竖向位移为ql E I 324/。

ql二、计算题:10、用位移法计算图示结构并作M 图,各杆线刚度均为i ,各杆长均为 l 。

11、用位移法计算图示结构并作M 图,各杆长均为 l ,线刚度均为i 。

12、用位移法计算图示结构并作M 图,横梁刚度EA →∞,两柱线刚度 i 相同。

q 213、用位移法计算图示结构并作M 图。

E I =常数。

ll /2l /2第四章 超静定结构计算——力法一、判断题:1、判断下列结构的超静定次数。

(1)、 (2)、(a )(b)(3)、 (4)、(5)、 (6)、(7)、(a)(b)2、力法典型方程的实质是超静定结构的平衡条件。

3、超静定结构在荷载作用下的反力和内力,只与各杆件刚度的相对数值有关。

4、在温度变化、支座移动因素作用下,静定与超静定结构都有内力。

5、图a 结构,取图b 为力法基本结构,则其力法方程为δ111X c =。

(a)(b)X1第二章 静定结构内力计算一、判断题:1、静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。

柔度法名词解释

柔度法名词解释

柔度法名词解释柔度法(flexibility method)是2003年公布的土木工程名词。

又称力法。

以多余约束力为未知量求解超静定结构内力的基本方法,又称柔度法(flexibility method)。

由英国麦克斯韦(J.C.Maxwell)于1864年提出。

用力法求解超静定结构时,首先要解除结构的多余约束并代以未知的多余约束力,将得到的静定结构作为力法的基本系。

根据基本系上解除约束处受各种影响产生的位移和原结构相应处位移一致的条件(位移协调条件),列出力法的典型方程,解出多余约束力,进而可以应用平衡条件求得任一截面内力。

图(a)所示3次超静定平面刚架,具有3个多余约束力。

基本系可以选择不同的几种方案。

图(b)的基本系是在原结构的横梁上做一切口,相应的多余约束力是X1、X2和X3,将基本系切口处的位移条件和原结构相比较,则各种影响产生切口两侧的相对竖向位移、相对横向位移和相对转角都等于零,即或写成矩阵形式式中,[δ]为柔度矩阵,它的元素δij为柔度系数,表示基本系上由于单位力X j=1作用所产生的X i方向上的位移,根据位移互等定理,有δij=δji,即[δ]为对称矩阵;{Δ}为位移列阵,它的元素Δip表示基本系上由于荷载作用产生的X i方向上的位移; {X}为多余未知力列阵。

从能量原理的角度考虑,若用多余约束力表示结构的余能,即(X1,X2,…,X n),则由最小余能原理同样可以得到上述力法典型方程。

力法计算超静定刚架图(a)刚架结构;(b)力法基本系力法适用于计算超静定桁架、超静定拱、超静定刚架以及组合结构等。

土木工程《结构力学》概念解释:柔度法:在解题方面来说就是先求出柔度系数,用柔度系数解出圆频率,进而算出所求内容,一般是在求连续梁或简支梁时使用刚度法:相对应的就是用刚度系数k求解的方法,一般是求刚架时用这种方法刚度矩阵:这没啥说的,书上写的很明白,就那个矩阵,用时能写出来就行了等效结点荷载:是用矩阵位移法的方法,等效出杆件荷载的一组力,方便用这种方法计算动力系数:最大动位移和最大静位移的比值,在计算外部荷载引起的震动位移时,需要乘上这个系数自振频率,自振周期:和物理上频率周期是一个性质的单位定向向量:就是一组标记向量,现在各节点进行标注,刚结点(0 0 0 )铰接点(0 0 1)这个认真看课本,然后与单位等效荷载相乘得到整体等效结点荷载,与单位刚度矩阵相乘得到整体刚度矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 建立力法方程
d11 ×X 1 + D1P = 0
4. 求位移 (1)作 MP 图 M 图
l
MP
X =1 1
ql2 /2 l
MP M1
X =1 1
(2)用图乘法求位移 用图乘法求位移 wy 1 1 2 3 d = c = EI l× l÷ × l = l /3 11 EI EI è 2 3
P l
P EI EI l X1=1 Pl l
P X1
解:
d11 ×X 1 + D1P = 0
d11 = l3 / 3 EI
D P = - Pl / 2EI 1
3
P
X =3 / 2 -) P ( 1
MP
Pl
l
M1
M = M × X + MP 1 1
3 Pl 2
M
力法基本思路小结
解除多余约束,转化为静定结构。多余约 束代以多余未知力——基本未知力。 —— 分析基本结构在单位基本未知力和外界因 素作用下的位移,建立位移协调条件——力 —— 法方程。 从力法方程解得基本未知力,由叠加原理 获得结构内力。超静定结构分析通过转化为 静定结构获得了解决。
待解的未知问题
基本体系
D 1
D1 = 0
变形条件
X1
力法基本 未知量
D = D11 + D1P = 0 1
d 11 ×X 1 + D1P = 0
在变形条件成立条件下,基本体系 的内力和位移与原结构相同. .
例1: 试绘梁的弯矩图
解: 1. 确定超静定次数
一次超静定. 2. 选取基本结构 如下图所示. .
第六章 力 法 法
(ForceMethod) (ForceMethod) 求解超静定结构的一种方法 求解超静定结构的一种方法
6.1超静定结构及超静定次数
大跨度空间结构中 大量采用杆件系统
杆件结构中大量 采用超静定结构
问题
如何 进行 超静 定结 构的 受力 分析
“鸟巢”国家体育场
一、超静定结构的静力特征和几何特征
三、超静定结构的计算方法
1.力法以多余约束力作为基本未知量。 2.位移法以结点位移作为基本未知量. 3.混合法以结点位移和多余约束力作为 基本未知量. 4.力矩分配法近似计算方法. 5.矩阵位移法结构矩阵分析法之一.
5.2力法的基本概念与力法典型方程
一、 力法等方法的基本思想: 1.找出未知问题不能求解的原因 2.将其化成会求解的问题 3.找出改造后的问题与原问题的差别 4.消除差别后,改造后的问题的解即为原问题的解.
X1 =3 /8 -) ql (
3
6. 绘弯矩图 绘弯矩图 采用叠加法 即
M = M × X + MP 1 1 ql 3 M =M1 × ÷ + MP è 8
ql2 /2 l
MP M1
X =1 1
ql2 /8
M
试选取另一基本结构求解:
q
A EI B
x1
q
l 原结构 基本结构
q 2
EI
x1 1
X1 X1
X2 X2
X3 X3
X1
X2
X3
X 1
X2
X 1
X3
X2
去掉一个固定端支 座或切断一根弯曲 杆相当于去掉三个 约束. 将刚结点变成铰结 点或将固定端支座 变成固定铰支座相 当于去掉一个约束. 几何可变体系不能 作为基本体系
X3
X3 X3
X2 X 1 X2 X 1
X3
X 1 X2
一个无铰封闭框有 三个多余约束.
x = 1
D 1p
d 11
1 = - ql2 8
力法步骤:
1.确定超静定次数; 2.选取基本体系; 3.建立力法方程; 4.求位移; 5.解力法方程; 6.叠加法作弯矩图.
练习 P EI l EI l
作弯矩图.
P EI
EI l l
P X1
解:
d11 ×X 1 + D1P = 0
d11 = 4 3 / 3 l EI
ql2 /2
MP
l
M1
X =1 1
DP =
wy c
1 1 1 2 3 1 4 = ql l× ql ÷ × l = EI EI è 3 2 4 8 EI
5. 解方程 解方程
d11 ×X 1 + D1P = 0
即 即 得
l 1 4 ÷ × X1 + ql ÷ = 0 3 ÷ EI è 8 è EI
q
l 原结构 x1=1 ql/8 1 Ml图
2
基本结构 ql/8
2
ql/8 MP图 5ql/8 3ql/8 Q图
2
M图
解:力法方程 式中:
d11x +D 1p = 0 1
1 1× l 2 × 1 l d11 = ( ) ( )= EI 2 3 3EI
1 2 ql2 1 ql3 D1P = ( × l× ) ( × l)= EI 3 8 2 24EI
几何特征:有多余约束的几何不变体系。 静力特征:仅由静力平衡方程不能求出 所有内力和反力.
超静定问题的求解要同时考虑 结构的“变形、本构、平衡”.
二、超静定结构的性质
1.内力与材料的物理性质、截面的几何形状和尺寸有关。 2.温度变化、支座移动一般会产生内力。
与静定结构相比, 超静定结构的优点为: 1.内力分布均匀 2.抵抗破坏的能力强
X2
X 1
X 3
二、力法的基本体系与基本未知量 超静定次数: 多余约束个数.
若一个结构有N个多余约束,则称其为N次超静定结构. 几次超静定结构?
X2
X1 X1
比较法:与相近的静定结构 相比, 比静定结构 X2 多几个约束即为几 次超静定结构.
力法基本体系不惟一.
去掉几个约束后成为静 定结构,则为几次超静定 去掉一个链杆或切断 一个链杆相当于去掉 一个约束
l X1=1
M1
P
MP
D P = - Pl / 2EI 1
Pl
3
X =3 / 8 -) P ( 1
3 Pl 8 5 Pl 8
M = M × X + MP 1 1
M
力法步骤:
1.确定超静定次数; 2.选取基本体系; 3.建立力法方程; 4.求位移; 5.解力法方程; 6.叠加法作弯矩图.
练习 EI EI l
相关文档
最新文档