(全国通用)2017高考数学一轮复习 第六章 不等式 第一节 不等关系与不等式习题 理
(浙江通用)版高考数学一轮复习第六章不等式6.1不等关系与不等式【含答案】
【步步高】(浙江通用)2017版高考数学一轮复习 第六章 不等式 6.1不等关系与不等式1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a > b a -b =0⇔a = ba -b <0⇔a < b(a ,b ∈R );(2)作商法⎩⎪⎨⎪⎧ab>1⇔a > b ab =1⇔a = ba b <1⇔a < b(a ∈R ,b >0).2.不等式的基本性质【知识拓展】 不等式的一些常用性质 (1)倒数的性质 ①a >b ,ab >0⇒1a <1b.②a <0<b ⇒1a <1b.③a >b >0,0<c <d ⇒a c >b d. ④0<a <x <b 或a <x <b <0⇒1b <1x <1a.(2)有关分数的性质 若a >b >0,m >0,则 ①b a <b +m a +m ;b a >b -ma -m(b -m >0). ②a b >a +mb +m ;a b <a -mb -m(b -m >0). 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)a >b ⇔ac 2>bc 2.( × ) (2)1a >1b⇔a <b (ab ≠0).( × )(3)a >b ,c >d ⇒ac >bd .( × ) (4)若1a <1b<0,则|a |>|b |.( × )(5)若a 3>b 3且ab <0,则1a >1b.( √ )1.设a <b <0,则下列不等式中不成立的是( ) A.1a >1bB.1a -b >1aC .|a |>-bD.-a >-b答案 B解析 由题设得a <a -b <0,所以有1a -b <1a成立, 即1a -b >1a不成立. 2.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .1122log log 0b a <<C .2b <2a<2 D .a 2<ab <1答案 C解析 取a =12,b =13验证可得.3.下列选项一定正确的是( ) A .若a >b ,则ac >bc B .若a >b ,则a >b C .若a 2>b 2,则a >b D .若1a <1b,则a >b答案 B解析 A 选项中,若c =0,显然不成立;B 选项中,若a >b ,平方即可知a >b ,故正确;C 选项中,若a <0,b <0,则a <b ,故错误;D 项中,若a <0,b >0,则a <b ,故错误.故选B. 4.已知0<a <1b ,且M =11+a +11+b ,N =a 1+a +b1+b ,则M ,N 的大小关系是( )A .M >NB .M <NC .M =ND .不能确定答案 A解析 ∵0<a <1b,∴1+a >0,1+b >0,1-ab >0,∴M -N =1-a 1+a +1-b1+b =2-2ab+a +b>0.5.(教材改编)若0<a <b ,且a +b =1,则将a ,b ,12,2ab ,a 2+b 2从小到大排列为________.答案 a <2ab <12<a 2+b 2<b解析 ∵0<a <b 且a +b =1, ∴a <12<b <1,∴2b >1且2a <1,∴a <2b ·a =2a (1-a )=-2a 2+2a=-2⎝ ⎛⎭⎪⎫a -122+12<12.即a <2ab <12,又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12,a 2+b 2-b =(1-b )2+b 2-b =(2b -1)(b -1),又2b -1>0,b -1<0,∴a 2+b 2-b <0, ∴a 2+b 2<b ,综上,a <2ab <12<a 2+b 2<b .题型一 比较两个数(式)的大小例1 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( ) A .c ≥b >a B .a >c ≥b C .c >b >aD .a >c >b(2)若a =ln 33,b =ln 44,c =ln 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案 (1)A (2)B解析 (1)∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1, ∴b -a =a 2-a +1=(a -12)2+34>0,∴b >a ,∴c ≥b >a .(2)方法一 易知a ,b ,c 都是正数,b a =3ln 44ln 3=log 8164<1, 所以a >b ;b c =5ln 44ln 5=log 6251 024>1, 所以b >c .即c <b <a .方法二 对于函数y =f (x )=ln x x ,y ′=1-ln xx2, 易知当x >e 时,函数f (x )单调递减. 因为e<3<4<5,所以f (3)>f (4)>f (5), 即c <b <a .思维升华 比较大小的常用方法 (1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系.(1)已知x ∈R ,m =(x +1)(x 2+x 2+1),n =(x +12)·(x 2+x +1),则m ,n 的大小关系为( ) A .m ≥n B .m >n C .m ≤nD .m <n(2)若a =1816,b =1618,则a 与b 的大小关系为______________________________________ __________________________________. 答案 (1)B (2)a <b解析 (1)m =(x +1)(x 2+x2+1)=(x +1)(x 2+x -x2+1)=(x +1)(x 2+x +1)-x2(x +1),n =(x +12)(x 2+x +1)=(x +1-12)(x 2+x +1)=(x +1)(x 2+x +1)-12(x 2+x +1),∴m -n =(x +1)(x 2+x 2+1)-(x +12)(x 2+x +1)=12(x 2+x +1)-12x (x +1) =12>0. 则有x ∈R 时,m >n 恒成立.故选B.(2)a b =18161618=(1816)161162 =(98)16(12)16=(982)16, ∵982∈(0,1),∴(982)16<1, ∵1816>0,1618>0, ∴1816<1618.即a <b . 题型二 不等式的性质例2 已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是( ) A .ab >ac B .c (b -a )<0 C .cb 2<ab 2D .ac (a -c )>0答案 A解析 由c <b <a 且ac <0知c <0且a >0. 由b >c 得ab >ac 一定成立.思维升华 解决此类问题常用两种方法:一是直接使用不等式的性质逐个验证;二是利用特殊值法排除错误答案.利用不等式的性质判断不等式是否成立时要特别注意前提条件.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc<0;③a -c >b -d ;④a (d-c )>b (d -c )中成立的个数是( ) A .1 B .2 C .3 D .4 答案 C解析 方法一 ∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误. ∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ), ∴ac +bd <0,∴a d +b c =ac +bdcd<0,故②正确.∵c<d,∴-c>-d,∵a>b,∴a+(-c)>b+(-d),a-c>b-d,故③正确.∵a>b,d-c>0,∴a(d-c)>b(d-c),故④正确,故选C.方法二取特殊值.题型三不等式性质的应用例3 已知a>b>0,给出下列四个不等式:①a2>b2;②2a>2b-1;③a-b>a-b;④a3+b3>2a2b.其中一定成立的不等式为( )A.①②③ B.①②④C.①③④ D.②③④答案 A解析方法一由a>b>0可得a2>b2,①成立;由a>b>0可得a>b-1,而函数f(x)=2x在R上是增函数,∴f(a)>f(b-1),即2a>2b-1,②成立;∵a>b>0,∴a>b,∴(a-b)2-(a-b)2=2ab-2b=2b(a-b)>0,∴a-b>a-b,③成立;若a=3,b=2,则a3+b3=35,2a2b=36,a3+b3<2a2b,④不成立.故选A.方法二令a=3,b=2,可以得到①a2>b2,②2a>2b-1,③a-b>a-b均成立,而④a3+b3>2a2b不成立,故选A. 思维升华(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.(2)在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数、指数函数的性质等.(1)若a<b<0,则下列不等式一定成立的是( )A.1a-b>1bB.a2<abC.|b ||a |<|b |+1|a |+1D .a n >b n(2)设a >b >1,c <0,给出下列三个结论: ①c a >c b;②a c <b c;③log b (a -c )>log a (b -c ). 其中所有的正确结论的序号是( ) A .① B .①② C .②③ D .①②③答案 (1)C (2)D解析 (1)(特值法)取a =-2,b =-1,逐个检验,可知A ,B ,D 项均不正确; C 项,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |, ∵a <b <0,∴|b |<|a |成立,故选C. (2)由不等式性质及a >b >1知1a <1b,又c <0,所以c a >cb,①正确; 构造函数y =x c,∵c <0,∴y =x c在(0,+∞)上是减函数, 又a >b >1,∴a c <b c,知②正确; ∵a >b >1,c <0,∴a -c >b -c >1,∴log b (a -c )>log a (a -c )>log a (b -c ),知③正确.6.不等式变形中扩大变量范围致误典例 设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________. 易错分析 解题中多次使用同向不等式的可加性,先求出a ,b 的范围,再求f (-2)=4a -2b 的范围,导致变量范围扩大.解析 方法一 设f (-2)=mf (-1)+nf (1) (m 、n 为待定系数),则4a -2b =m (a -b )+n (a +b ),即4a -2b =(m +n )a +(n -m )b ,于是得⎩⎪⎨⎪⎧m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1.∴f (-2)=3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,即5≤f (-2)≤10.方法二 由⎩⎪⎨⎪⎧f-=a -b ,f=a +b ,得⎩⎪⎨⎪⎧a =12[f -+f,b =12[f-f -∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.方法三 由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分,当f (-2)=4a -2b 过点A (32,12)时,取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时,取得最大值4×3-2×1=10,∴5≤f (-2)≤10. 答案 [5,10]温馨提醒 (1)此类问题的一般解法:先建立待求整体与已知范围的整体的关系,最后通过“一次性”使用不等式的运算求得整体范围.(2)求范围问题如果多次利用不等式有可能扩大变量取值范围.[方法与技巧]1.用同向不等式求差的范围.⎩⎪⎨⎪⎧a <x <b ,c <y <d ⇒⎩⎪⎨⎪⎧a <x <b ,-d <-y <-c ⇒a -d <x -y <b -c .这种方法在三角函数中求角的范围时经常用到. 2.倒数关系在不等式中的作用.⎩⎪⎨⎪⎧ab >0,a >b ⇒1a <1b ;⎩⎪⎨⎪⎧ab >0,a <b⇒1a >1b.3.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一.比差法的主要步骤:作差—变形—判断正负.在所给不等式完全是积、商、幂的形式时,可考虑比商. 4.求某些代数式的范围可考虑采用整体代入的方法. [失误与防范]1.a >b ⇒ac >bc 或a <b ⇒ac <bc ,当c ≤0时不成立. 2.a >b ⇒1a <1b或a <b ⇒1a >1b,当ab ≤0时不成立.3.a >b ⇒a n>b n对于正数a 、b 才成立. 4.ab>1⇔a >b ,对于正数a 、b 才成立.5.注意不等式性质中“⇒”与“⇔”的区别,如:a >b ,b >c ⇒a >c ,其中a >c 不能推出⎩⎪⎨⎪⎧a >b ,b >c .6.比商法比较大小时,要注意两式的符号.A 组 专项基础训练 (时间:35分钟)1.已知a >b ,c >d ,且c ,d 不为0,那么下列不等式成立的是( ) A .ad >bc B .ac >bd C .a -c >b -d D .a +c >b +d答案 D解析 由不等式的同向可加性得a +c >b +d .2.已知a ,b ,c ∈R ,则“a >b ”是“ac 2>bc 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 由ac 2>bc 2可得a >b ,因为c 2>0, 而由a >b 不一定能得到ac 2>bc 2.因为c 2可能为0.3.设a >2,A =a +1+a ,B =a +2+a -2,则A ,B 的大小关系是( ) A .A >B B .A <BC .A ≥BD .A ≤B答案 A解析 A 2=2a +1+2a 2+a ,B 2=2a +a 2-4,显然A 2>B 2,故选A.4.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( )A .a 2<b 2B .ab 2<a 2bC.1ab 2<1a 2b D.b a <a b答案 C解析 当a <0时,a 2<b 2不一定成立,故A 错.因为ab 2-a 2b =ab (b -a ),b -a >0,ab 符号不确定,所以ab 2与a 2b 的大小不能确定,故B 错.因为1ab 2-1a 2b =a -ba 2b 2<0,所以1ab 2<1a 2b ,故C 正确.D 项中b a 与a b 的大小不能确定.5.设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是( )A .(0,5π6)B .(-π6,5π6)C .(0,π)D .(-π6,π)答案 D解析 由题设得0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,∴-π6<2α-β3<π.6.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是() A .M <N B .M >NC .M =ND .不确定答案 B解析 M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1),又∵a 1∈(0,1),a 2∈(0,1),∴a 1-1<0,a 2-1<0,∴(a 1-1)(a 2-1)>0,即M -N >0.∴M >N .7.设a >b >c >0,x =a 2+b +c 2,y =b 2+c +a 2,z =c 2+a +b 2,则x ,y ,z 的大小关系是__________.(用“>”连接)答案 z >y >x解析 方法一 y 2-x 2=2c (a -b )>0,∴y >x .同理,z >y ,∴z >y >x .方法二 令a =3,b =2,c =1,则x =18,y =20,z =26,故z >y >x .8.已知a ,b ,c ,d 均为实数,有下列命题①若ab >0,bc -ad >0,则c a -d b >0;②若ab >0,c a -d b >0,则bc -ad >0;③若bc -ad >0,c a -d b >0,则ab >0.其中正确的命题是________.答案 ①②③解析 ∵ab >0,bc -ad >0,∴c a -d b =bc -ad ab >0,∴①正确;∵ab >0,又c a -d b >0,即bc -ad ab >0,∴bc -ad >0,∴②正确;∵bc -ad >0,又c a -d b >0,即bc -ad ab >0,∴ab >0,∴③正确.故①②③都正确.9.设x <y <0,试比较(x 2+y 2)(x -y )与(x 2-y 2)(x +y )的大小.解 (x 2+y 2)(x -y )-(x 2-y 2)(x +y )=(x -y )[(x 2+y 2)-(x +y )2]=-2xy (x -y ).∵x <y <0,∴xy >0,x -y <0,∴-2xy (x -y )>0,∴(x 2+y 2)(x -y )>(x 2-y 2)(x +y ).10.甲乙两人同时从宿舍到教室,甲一半路程步行,一半路程跑步;乙一半时间步行,一半时间跑步;如果两人步行、跑步速度均相同,则谁先到教室?解 设路程为s ,跑步速度为v 1,步行速度为v 2, t 甲=s 2v 1+s 2v 2=s v 1+v 22v 1v 2, s =t 乙2·v 1+t 乙2·v 2⇒t 乙=2s v 1+v 2, ∴t 甲t 乙=v 1+v 224v 1v 2≥v 1v 224v 1v 2=1.∴t 甲≥t 乙,当且仅当v 1=v 2时“=”成立.由实际情况知v 1>v 2,∴t 甲>t 乙.∴乙先到教室.B 组 专项能力提升(时间:20分钟)11.已知a ,b ,c ∈R ,那么下列命题中正确的是( )A .若a >b ,则ac 2>bc 2B .若a c >b c ,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b答案 C解析 当c =0时,可知A 不正确;当c <0时,可知B 不正确;对于C ,由a 3>b 3且ab <0知a >0且b <0,所以1a >1b成立,C 正确; 当a <0且b <0时,可知D 不正确.12.下面四个条件中,使a >b 成立的充分而不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3答案 A解析 由a >b +1,得a >b +1>b ,即a >b ,而由a >b 不能得出a >b +1,因此,使a >b 成立的充分而不必要的条件是a >b +1.13.已知0<a <b <1,则( )A.1b >1a B .(12)a <(12)b C .(lg a )2<(lg b )2D.1lg a >1lg b 答案 D解析 因为0<a <b <1,所以1b -1a =a -b ab<0. 可得1b <1a ,(12)a >(12)b ,(lg a )2>(lg b )2, lg a <lg b <0.由lg a <lg b <0得1lg a >1lg b, 因此只有D 项正确.14.若不等式(-2)n a -3n -1-(-2)n<0对任意正整数n 恒成立,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫1,43 B.⎝ ⎛⎭⎪⎫12,43 C.⎝ ⎛⎭⎪⎫1,74 D.⎝ ⎛⎭⎪⎫12,74 答案 D解析 当n 为奇数时,2n (1-a )<3n -1,1-a <13×⎝ ⎛⎭⎪⎫32n 恒成立,只需1-a <13×⎝ ⎛⎭⎪⎫321,∴a >12.当n 为偶数时,2n (a -1)<3n -1,a -1<13×⎝ ⎛⎭⎪⎫32n 恒成立,只需a -1<13×⎝ ⎛⎭⎪⎫322,∴a <74. 综上,12<a <74,故选D. 15.某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买一张全票,其余人可享受7.5折优惠.”乙车队说:“你们属团体票,按原价的8折优惠.”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠.解 设该单位职工有n 人(n ∈N *),全票价为x 元/人,坐甲车需花y 1元,坐乙车需花y 2元,则y 1=x +34x ·(n -1) =14x +34nx , y 2=45nx .所以y 1-y 2=14x +34nx -45nx=14x -120nx=14x (1-n 5).当n =5时,y 1=y 2;当n >5时,y 1<y 2;当n <5时,y 1>y 2.因此当单位去的人数为5人时,两车队收费同等优惠; 当单位去的人数多于5人时,甲车队收费更优惠; 当单位去的人数少于5人时,乙车队收费更优惠.。
高考一轮数学第六章 第一节 不等关系与不等式
能得出a>b+1.因此,使a>b成立的充分不必要条件是 a>b+1. [答案] A
返回
[巧练模拟]———————(课堂突破保分题,分分必保!)
2.(2012· 潍坊模拟)设a,b∈R,若b-|a|>0,则下列不 等式中正确的是 A.a-b>0 C.a2-b2>0 B.a+b>0 D.a3+b3<0 ( )
等式的基本方法.要注意强化化归意识,同时注意
函数性质在大小比较中的作用. 返回
返回
[精析考题] [例1] 系为 x y A. > x+a y+b x y C. < x+a y+b B. x y ≥ x+a y+b (2012· 珠海模拟)已知b>a>0,x>y>0,则: x y 与 的大小关 x+a y+b ( )
序号都填上). 解析:①若c=0则命题不成立.②正确.③中由2c>0知
成立. 答案:②③
返回
1.不等式性质使用时注意的问题:
在使用不等式时,一定要搞清它们成立的前提条
件.不可强化或弱化成立的条件.如“同向不等式” 才可相加、“同向且两边同正的不等式”才可相乘; 可乘性中的“c的符号”等都需要注意. 2.作差法是比较两数(式)大小的常用方法,也是证明不
次运用不等式的性质时有可能扩大了变量的取值范围,要
特别注意.错因在于运用同向不等式相加这一性质时,不 是等价变形,导致f(-2)的取值范围扩大.另外,本题也可 用线性规划求解,题中a、b不是相互独立的,而是相互制 约的,故不可分割开来.先建立待求范围的整体与已知范
围的整体的等量关系,最后通过“一次性”不等式关系的运
x3 所以 y4的最大值是27.
答案:A
数学总复习检测:第六章第一节不等关系与不等式
第一节不等关系与不等式【最新考纲】1。
了解现实世界和日常生活中的不等关系.2.了解不等式(组)的实际背景.1.实数的大小顺序与运算性质的关系(1)a〉b⇔a-b>0;(2)a=b⇔a-b=0;(3)a<b⇔a-b<0.2.不等式的性质(1)对称性:a>b⇔b<a;(双向性)(2)传递性:a>b,b>c⇒a〉c;(单向性)(3)可加性:a>b⇔a+c>b+c;(双向性)a>b,c〉d⇒a+c〉b+d;(单向性)(4)可乘性:a〉b,c〉0⇒ac>bc;a〉b,c<0⇒ac〈bc;a〉b〉0,c>d>0⇒ac〉bd;(单向性)(5)乘方法则:a〉b〉0⇒a n>b n(n∈N,n≥2);(单向性)(6)开方法则:a>b>0⇒错误!〉错误!(n∈N,n≥2);(单向性)(7)倒数性质:设ab>0,则a<b⇔错误!〉错误!。
(双向性)1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)两个实数a,b之间,有且只有a>b,a=b,a〈b三种关系中的一种.( )(2)ac2〉bc2⇔a〉b.()(3)a〉b⇔a3〉b3。
()(4)若ab>0,则a〉b⇔错误!〈错误!。
( )答案:(1)√(2)×(3)√(4)√2.(2016·东莞一模)设a,b∈R,若a+|b|〈0,则下列不等式中正确的是()A.a-b>0 B.a3+b3〉0C.a2-b2〈0 D.a+b〈0解析:当b≥0时,a+b〈0,当b<0时,a-b<0,∴a〈b〈0,∴a+b<0.答案:D3.设a,b,c∈R,且a〉b,则( )A.ac>bc B.错误!〈错误!C.a2〉b2D.a3〉b3解析:当c〈0时,ac>bc不成立,故A不正确,当a=1,b=-3时,B、C均不正确,因y=x3是增函数,D正确.答案:D4.如图所示,以x+y为边长的正方形的面积与阴影部分的面积的大小关系描述正确的是()A.(x+y)2〉2xy B.(x+y)2≥4xyC.(x+y)2>4xy D.(x+y)2≥2xy解析:直观得出(x+y)2>4xy,但x=y时,(x+y)2=4xy。
不等关系与不等式(一轮)
1.(2014年银川质检)已知a,b,c∈R,则“a>b”是“ac2>bc2”的( A.充分而不必要条件 C.充要条件 解析:a>b 答案:B B.必要而不充分条件 D.既不充分也不必要条件
第六章
不等式、推理与证明
6.1 不等关系与不等 式
知识脉络
6.1不等关系与不等式
考纲 1.了解现实世界和日常生活中的不等关系 考情 2.了解不等式(组)的实际背景 3.掌握不等式的性质及应用
13年(4考):天津T4 北京T2 浙江T7浙江T10 三年 12年(5考):浙江T10 天津T4 湖南T7湖北T9 江苏T14 考题 11年(3考):陕西T3 浙江T6 福建T21
性质 同向可加性
同向同正
性质内容
a b a+c>b+d ____________ c d a b 0 ac>bd __________ c d 0
特别提醒 ⇒ ⇒
可乘性 可乘方性
可开方性
a>b>0⇒_____ an>bn (n∈N,n≥2)
n a>b>0⇒________ anb
又∵1≤f(-1)≤2,2≤f(1)≤4, ∴5≤3f(-1)+f(1)≤10,故 5≤f(-2)≤10.
【方法 2】
1≤a-b≤2 由 2≤a+b≤4
确定的平面区域如图阴影部分,
3 3 , 2 2
当 =5, 2 2 当 f(-2)=4a-2b 过点 B(3,1)时,取得最大值 4×3-2×1=10,
数学(文)一轮复习:第六章 不等式 第讲不等关系与不等式
知识点考纲下载不等关系与不等式了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.二元一次不等式(组)与简单的线性规划问题1。
会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.基本不等式错误!≤错误! (a≥0,b≥0)1。
了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.第1讲不等关系与不等式,)1.实数大小顺序与运算性质之间的关系a-b〉0⇔a〉b;a-b=0⇔a=b;a-b〈0⇔a<b.2.不等式的基本性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)可加性:a>b⇒a+c>b+c;a>b,c>d⇒a+c>b+d;(4)可乘性:a>b,c>0⇒ac>bc,a>b>0,c>d>0⇒ac>bd;(5)可乘方:a>b>0⇒a n>b n(n∈N,n≥2);(6)可开方:a>b>0⇒na>错误!(n∈N,n≥2).1.辨明两个易误点(1)在应用传递性时,注意等号是否传递下去,如a≤b,b〈c⇒a〈c;(2)在乘法法则中,要特别注意“乘数c的符号”,例如当c≠0时,有a〉b⇒ac2〉bc2;若无c≠0这个条件,a>b⇒ac2〉bc2就是错误结论(当c=0时,取“=”).2.不等式中的倒数性质(1)a〉b,ab>0⇒错误!<错误!;(2)a〈0<b⇒错误!〈错误!;(3)a〉b〉0,0<c〈d⇒错误!>错误!;(4)0〈a〈x〈b或a<x〈b<0⇒错误!〈错误!<错误!。
3.不等式恒成立的条件(1)不等式ax2+bx+c〉0对任意实数x恒成立⇔错误!或错误!(2)不等式ax2+bx+c〈0对任意实数x恒成立⇔错误!或错误!1。
错误!若a<b〈0,则下列不等式不成立的是( )A.错误!〉错误!B.错误!〉错误!C.|a|>|b| D.a2>b2A 由a<b<0,可用特殊值法,取a=-2,b=-1,则错误!〉错误!不成立.2.错误!设A=(x-3)2,B=(x-2)(x-4),则A与B的大小为( )A.A≥B B.A〉BC.A≤B D.A〈BB A-B=(x2-6x+9)-(x2-6x+8)=1〉0,所以A〉B.故选B.3.错误!若a〉b,则下列不等式一定成立的是( )A.ac2>bc2B.错误!<错误!C.ac2≥bc2D.错误!≤错误!C 当c=0时,A、B错误;当a〉0,b<0时,D错误,故选C.4.错误!下列四个结论,正确的是()①a〉b,c〈d⇒a-c>b-d;②a>b〉0,c<d〈0⇒ac>bd;③a〉b〉0⇒错误!>错误!;④a〉b>0⇒错误!>错误!.A.①②B.②③C.①④D.①③D 对于①,因为a〉b,c<d,所以-c>-d,所以a-c>b-d。
高考数学大一轮复习-第六章 不等式与推理证明 第1课时 不等关系与不等式课件 北师大版
(2)a2a+bb2≤-2⇔a2a+bb2+2=a+abb2≤0⇔ab<0⇔ab<>00 或ab><00 ,故选A. 答案 (1)C (2)A
在判断一个关于不等式的命题真假时,先把要判断的命题和 不等式性质联系起来考虑,找到与命题相近的性质,并应用性质 判断命题真假,当然判断的同时还要用到其他知识,比如对数函 数,指数函数的性质等.
是( )
A.a2+1>b2+1
B.ba<1
C.lg(a-b)>0
D.13a<13b
(2)已知a1,a2∈(0,1),记M=a1a2,N=a1+a2-1,则M与N 的大小关系是( )
A.M<N
B.M>N
C.M=N
D.不确定
(3)已知a>b>0,比较aabb与abba的大小.
审题视点 (1)运用特殊值验证即可.(2)可用作差法求解.(3)
(1)“作差比较法”的依据是“a-b>0⇔a>b,a-b<0⇔a <b,a-b=0⇔a=b”,其过程可分三步:①作差;②变形;③ 判断差的符号.其中关键一步是变形.
(2)“作商比较法”的依据是“
a b
>1,b>0⇒a>b”,是把两
数的大小比较转化为两数的商与1进行比较,在数式结构含有幂
或根式、绝对值时,可采用此方法.
1.实数x的绝对值不大于2,用不等式表示为( )
A.|x|>2
B.|x|≥2
C.|x|<2
D.|x|≤2
解析:“不大于”指“≤”,所以|x|≤2. 答案:D
2.某汽车公司由于发展的需要需购进一批汽车,计划使用 不超过1 000万元的资金购买单价分别为40万元、90万元的A型汽 车和B型汽车.根据需要,A型汽车至少买5辆,B型汽车至少买6 辆,写出满足上述所有不等关系的不等式.
高三数学复习第六章 不等式、推理与证明
演 练 知 能 检 测
第一节
不等关系与不等式
[归纳· 知识整合]
回 扣 主 干 知 识
突 破 热 点 题 型
1.比较两个实数大小的法则 设a,b∈R,则 a-b>0 (1)a>b⇔ ; a-b=0 (2)a=b⇔ ; a-b<0 (3)a<b⇔ . 2.不等式的基本性质 性质 对称性 传递性 可加性 性质内容 a>b⇔_____ b<a a>b,b>c⇒______ a>c 注意 ⇔ ⇒ ⇔
[例3] 个结论: (1)(2012· 湖南高考)设a>b>1,c<0,给出下列三
提 升 学 科 素 养
突 破 热 点 题 型
c c ①a>b;②ac<bc;③logb(a-c)>loga(b-c).
其中所有的正确结论的序号是 ( )
演 练 知 能 检 测
A.①
B.①②
C.②③
D.①②③
数学(6省专版)
=(x-1)2+1>0, ∴3x2-x+1>2x2+x-1.
演 练 知 能 检 测
数学(6省专版)
第一节
不等关系与不等式
回 扣 主 干 知 识
aa-b aabb a-b b-a a-b 1 a-b (2)abba=a b =a b =b . aa-b a ∵当a>b,即a-b>0,b>1时,b >1,
第一节
不等关系与不等式
c d (2)已知三个不等式:ab>0,bc-ad>0, a - b >0(其中a,
回 扣 主 干 知 识
b,c,d均为实数),用其中两个不等式作为条件,余下的一个 不等式作为结论组成一个命题,可组成的正确命题的个数是 ( )
高考数学第一轮复习:《不等关系与不等式》
高考数学第一轮复习:《不等关系与不等式》最新考纲1.了解现实世界和日常生活中的不等关系.2.了解不等式(组)的实际背景.3.掌握不等式的性质及应用.【教材导读】1.若a>b,c>d,则a-c>b-d是否成立?提示:不成立,同向不等式不能相减,如3>2,4>1,但3-4<2-1. 2.若a>b>0,则ac>bc是否成立?提示:不成立.当c=0时,ac=bc,当c<0时,ac<bc.3.若a>b,则a n>b n,na>nb是否成立?提示:不一定.当a>b>0,n∈N,n≥2时才成立.1.实数的大小顺序与运算性质之间的关系设a,b∈R,则(1)a>b⇔a-b>0;(2)a=b⇔a-b=0;(3)a<b⇔a-b<0.2.不等式的基本性质性质性质内容注意对称性a>b⇔b<a ⇔传递性a>b,b>c⇒a>c ⇒可加性a>b⇔a+c>b+c ⇔可乘性⎭⎪⎬⎪⎫a>bc>0⇒ac>bcc的符号⎭⎪⎬⎪⎫a>bc<0⇒ac<bc同向可加性⎭⎪⎬⎪⎫a >b c >d ⇒a +c >b +d ⇒同向同正可乘性⎭⎪⎬⎪⎫a >b >0c >d >0⇒ac >bd ⇒可乘方性a >b >0⇒a n >b n (n ∈N ,n ≥2)a ,b 同为正数可开方性a >b >0⇒n a >nb (n ∈N ,n ≥2)(1)倒数性质 ①a >b ,ab >0⇒1a <1b . ②a <0<b ⇒1a <1b . (2)有关分数的性质 若a >b >0,m >0,则 ①真分数的性质b a <b +m a +m ;b a >b -ma -m (b -m >0). ②假分数的性质a b >a +m b +m ;a b <a -mb -m (b -m >0).1.设a +b <0,且b >0,则( ) (A)b 2>a 2>ab (B)b 2<a 2<-ab (C)a 2<-ab <b 2 (D)a 2>-ab >b 2答案:D2.若b <a <0,则下列结论不正确...的是( ) (A)a 2<b 2 (B)ab <b 2 (C)b a +ab >2 (D)|a |-|b |=|a -b | 答案:D3.设a=2,b=7-3,c=6-2,则a,b,c的大小关系是() (A)a>b>c(B)a>c>b(C)b>a>c(D)b>c>aB解析:b=7-3=47+3,c=6-2=46+2.因为7+3>6+2,所以47+3<46+2,所以b<c.因为2(6+2)=23+2>4,所以46+2< 2.即c<a.综上可得b<c<a.故选B.4.若P=a+2+a+5,Q=a+3+a+4(a≥0),则P,Q的大小关系为() (A)P>Q(B)P=Q(C)P<Q(D)由a的取值确定C解析:因为a≥0,P>0,Q>0,所以Q2-P2=2a+7+2a2+7a+12-(2a+7+2a2+7a+10)=2(a2+7a+12-a2+7a+10)>0.所以P<Q.5.已知a>b,ab≠0,则下列不等式中:①1a<1b;②a3>b3;③a2+b2>2ab,恒成立的不等式的个数是________.解析:①取a=2,b=-1,则1a<1b不成立;②函数y=x3在R上单调递增,a>b,所以a3>b3成立;③因为a>b,ab≠0,所以a2+b2-2ab=(a-b)2>0,所以a2+b2>2ab成立.综上可得:恒成立的不等式有两个.答案:2考点一 用不等式(组)表示不等关系(1)某种杂志原以每本2.5元的价格销售,可以售出8万本.根据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,用不等式表示销售的总收入仍不低于20万元为________.(2)已知4枝郁金香和5枝丁香的价格最多22元,而6枝郁金香和3枝丁香的价格不小于24元,则满足上述所有不等关系的不等式组为________.答案:(1)(8-x -2.50.1×0.2)x ≥20 (2)⎩⎨⎧4x +5y ≤226x +3y ≥24,x ≥0y ≥0【反思归纳】 用不等式(组)表示不等关系 (1)分析题中有哪些未知量.(2)选择其中起关键作用的未知量,设为x 或x ,y 再用x 或x ,y 来表示其他未知量. (3)根据题目中的不等关系列出不等式(组). 提醒:在列不等式(组)时要注意变量自身的范围.【即时训练】 已知甲、乙两种食物的维生素A ,B 含量如表:甲 乙 维生素A(单位/kg) 600 700 维生素B(单位/kg)800400设用甲、乙两种食物各有56 000单位维生素A 和62 000单位维生素B ,则x ,y 应满足的所有不等关系为________.解析:x ,y 所满足的关系为⎩⎪⎨⎪⎧x +y ≤100,600x +700y ≥56 000,800x +400y ≥62 000,x ≥0,y ≥0,即⎩⎪⎨⎪⎧x +y ≤100,6x +7y ≥560,2x +y ≥155,x ≥0,y ≥0.答案:⎩⎨⎧x +y ≤1006x +7y ≥5602x +y ≥155x ≥0,y ≥0考点二 不等式的性质若a >b >0,且ab =1,则下列不等式成立的是( ) (A)a +1b <b2a <log 2(a +b ) (B)b 2a <log 2(a +b )<a +1b (C)a +1b <log 2(a +b )<b 2a (D)log 2(a +b )<a +1b <b2a【命题意图】本题考查不等式的应用,同时考查对数的运算.B 解析:根据题意,令a =2,b =12进行验证,易知a +1b =4,b 2a =18,log 2(a +b )=log 252>1,因此a +1b >log 2(a +b )>b2a .【反思归纳】 判断多个不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质,常见的反例构成方式可从以下几个方面思考:①不等式两边都乘以一个代数式时,所乘的代数式是正数、负数或0;②不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变;③不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变.【即时训练】 (1)已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) (A)a 2<b 2 (B)ab 2<a 2b(C)1ab2<1ba2(D)ba<ab(2)若a,b∈R则1a3>1b3成立的一个充分不必要条件是()(A)ab>0 (B)b>a(C)a<b<0 (D)a>b>0答案:(1)C(2)C考点三比较大小(1)比较x6+1与x4+x2的大小,其中x∈R;(2)比较a a b b与a b b a(a,b为不相等的正数)的大小.解析:(1)(x6+1)-(x4+x2)=x6-x4-x2+1=x4(x2-1)-(x2-1)=(x2-1)(x4-1)=(x2-1)(x2-1)(x2+1)=(x2-1)2(x2+1).当x=±1时,x6+1=x4+x2;当x≠±1时,x6+1>x4+x2.(2)a a b ba b b a=a a-b b b-a=⎝⎛⎭⎪⎫aba-b,当a>b>0时,ab >1,a-b>0,∴⎝⎛⎭⎪⎫aba-b>1;当0<a<b时,ab <1,a-b<0,∴⎝⎛⎭⎪⎫aba-b>1.综上所述,总有a a b b>a b b a.【反思归纳】比较大小常用的方法(1)作差法一般步骤是①作差;②变形;③判号;④定论.其中变形是关键,常采用因式分解、配方等方法把差变成积或者完全平方的形式.当两个式子都含有开方运算时,可以先乘方再作差.(2)作商法一般步骤是:①作商;②变形;③判断商与1的大小;④结论.作商比较大小时,要注意分母的符号避免得出错误结论.(3)特值法对于选择题可以用特值法比较大小.【即时训练】(1)(2017崇明县一模)若a<0,b<0,则p=b2a+a2b与q=a+b的大小关系为()(A)p<q(B)p≤q(C)p>q(D)p≥q(2)若a=1816,b=1618,则a与b的大小关系为________.解析:(1)p-q=b2a+a2b-a-b=b2-a2a+a2-b2b=(b2-a2)·1a-1b=(b2-a2)(b-a)ab=(b-a)2(a+b)ab,因为a<0,b<0,所以a+b<0,ab>0,若a=b,则p-q=0,此时p=q,若a≠b,则p-q<0,此时p<q,综上p≤q.故选B.(2)ab=18161618=1816161162=98161216=98216,因为982∈(0,1),所以98216<1,因为1816>0,1618>0,所以1816<1618.即a<b.答案:(1)B(2)a<b不等式变形中扩大变量范围致误设f(x)=ax2+bx,若1≤f(-1)≤2,2≤f(1)≤4,则f(-2)的取值范围是________.解析:法一设f(-2)=mf(-1)+nf(1)(m,n为待定系数),则4a-2b=m(a-b)+n(a+b),即4a-2b=(m+n)a+(n-m)b,于是得⎩⎨⎧ m +n =4,n -m =-2,解得⎩⎨⎧m =3,n =1.所以f (-2)=3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,即5≤f (-2)≤10. 法二 由⎩⎨⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎪⎨⎪⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)].所以f (-2)=4a -2b =3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10. 法三 由⎩⎨⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分,当f (-2)=4a -2b 过点A 32,12时,取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, 所以5≤f (-2)≤10. 答案:[5,10]易错提醒:(1)解决此类问题的一般解法是,先建立待求整体与已知范围的整体关系,最后通过“一次性”使用不等式的运算求得整体范围;(2)此类求范围问题如果多次利用不等式的可加性,有可能扩大变量的取值范围而致误.课时作业基础对点练(时间:30分钟)1.设a ,b ∈R ,则“a >1且b >1”是“ab >1”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件A 解析:a >1且b >1⇒ab >1;但ab >1,则a >1且b >1不一定成立,如a =-2,b =-2时,ab =4>1.故选A.2.如果a >b ,则下列各式正确的是( ) (A)a ·lg x >b ·lg x (x >0) (B)ax 2>bx 2 (C)a 2>b 2(D)a ·2x >b ·2xD 解析:两边相乘的数lg x 不一定恒为正,选项A 错误;不等式两边都乘以x 2,它可能为0,选项B 错误;若a =-1,b =-2,不等式a 2>b 2不成立,选项C 错误.选项D 正确.3.已知1a <1b <0,给出下面四个不等式:①|a |>|b |;②a <b ;③a +b <ab ;④a 3>b 3.其中不正确的不等式的个数是( )(A)0 (B)1 (C)2 (D)3C 解析:由1a <1b <0可得b <a <0,从而|a |<|b |,①不正确;a >b ,②不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确.故不正确的不等式的个数为2.故选C.4.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) (A)M <N (B)M >N (C)M =N (D)不确定答案:B5.设a <b <0,则下列不等式中不成立的是( ) (A)1a >1b (B)1a -b >1a (C)|a |>-b (D)-a >-b答案:B6.若1a <1b <0,给出下列不等式:①1a +b<1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>lnb 2.其中正确的不等式是( ) (A)①④ (B)②③ (C)①③ (D)②④答案:C7.设a >b >1,c <0,给出下列三个结论:①c a >cb ;②ac <b c ;③log b (a -c )>log a (b -c ).其中所有的正确结论的序号是( )(A)① (B)①② (C)②③ (D)①②③答案:D8.某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p %,第二次提价q %;方案乙:每次都提价p +q2%.若p >q >0.则提价多的方案是________.解析:设原价为a ,方案甲提价后为a (1+p %)(1+q %),方案乙提价后为a ⎝ ⎛⎭⎪⎫1+p +q 2%2,∵⎝ ⎛⎭⎪⎫1+p +q 2%2=⎝⎛⎭⎪⎫1+p %+1+q %22≥((1+p %)(1+q %))2=(1+p %)(1+q %),又∵p >q >0,∴等号不成立,则提价多的为方案乙.答案:乙9.已知f (n )=n 2+1-n ,g (n )=n -n 2-1,φ(n )=12n (n ∈N +,n >2),则f (n ),g (n ),φ(n )的大小关系是________.解析:f (n )=n 2+1-n =1n 2+1+n<12n =φ(n ),g (n )=n -n 2-1=1n +n 2-1>12n =φ(n ),∴f (n )<φ(n )<g (n ).答案:f (n )<φ(n )<g (n )10.已知-1<a +b <3,且2<a -b <4,则2a +3b 的取值范围为____________. 解析:设2a +3b =x (a +b )+y (a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎪⎨⎪⎧ x =52,y =-12,因为-52<52(a +b )<152,-2<-12(a -b )<-1,所以-92<52(a +b )-12(a -b )<132,即-92<2a +3b <132.答案:-92,132能力提升练(时间:15分钟)11.有外表一样、重量不同的四个小球,它们的重量分别是a ,b ,c ,d ,已知a +b =c +d ,a +d >b +c ,a +c <b ,则这四个小球由重到轻的排列顺序是( )(A)d >b >a >c(B)b >c >d >a (C)d >b >c >a (D)c >a >d >bA 解析:∵a +b =c +d ,a +d >b +c ,∴2a >2c ,即a >c .因此b <d .∵a +c <b ,∴a <b ,综上可得,c <a <b <d .12.若不等式(-1)n a <2+(-1)n +1n 对于任意正整数n 都成立,则实数a 的取值范围是( )(A)⎣⎢⎡⎭⎪⎫-2,32 (B)⎣⎢⎡⎭⎪⎫-2,32 (C)⎣⎢⎡⎭⎪⎫-3,32 (D)⎝ ⎛⎭⎪⎫-3,32 A 解析:当n 取奇数时,-a <2+1n ,因为n ≥1,故2<2+1n ≤3,所以-a ≤2,所以a ≥-2;当n 取偶数时,a <2-1n ,因为n ≥2,所以32≤2-1n <2,所以a <32,综上,实数a 的取值范围是⎣⎢⎡⎭⎪⎫-2,32,故选A.13.若a ,b ,c ,d 均为正实数,且a >b ,那么四个数b a ,a b ,b +c a +c ,a +d b +d由小到大的顺序是________.解析:∵a >b >0,∴a b >1,a +d b +d >1,b a <1,b +c a +c <1,则a b -a +d b +d =d (a -b )b (b +d )>0, 即a b >a +c b +c ,b a -b +c a +c =c (b -a )a (a +d )<0,即b a <b +c a +c ,所以由小到大的顺序是b a <b +c a +c <a +d b +d <a b答案:b a <b +c a +c <a +d b +d <a b14.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒),平均车长l (单位:米)的值有关,其公式为F =76000v v 2+18v +20l. ①如果不限定车型,l =6.05,则最大车流量为______辆/时;②如果限定车型,l =5,则最大车流量比①中的最大车流量增加______辆/时.解析:①当l =6.05时,F =76000v v 2+18v +121=76000v +121v +18≤760002v ·121v+18=7600022+18=1900. 当且仅当v =11米/秒时等号成立,此时车流量最大为1900辆/时.②当l =5时,F =76000v v 2+18v +100=76000v +100v +18≤760002v ·100v +18=7600020+18=2000. 当且仅当v =10米/秒时,车流量最大为2000辆/时比①中最大车流量增加100辆/时.15.建筑学规定,民用住宅的窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比不应小于10%,并且这个比值越大,住宅的采光条件越好,同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.解:设原来的窗户面积与地板面积分别为a 、b ,且a b ≥10%,窗户面积和地板面积同时增加的面积为c ,则现有的窗户面积与地板面积分别为a +c ,b +c .于是原来窗户面积与地板面积之比为a b ,面积均增加c 以后,窗户面积与地板面积之比为a +c b +c,因此要确定采光条件的好坏,就转化成比较a b 与a +c b +c的大小,采用作差比较法. a +c b +c -a b =c (b -a )(b +c )b. 因为a >0,b >0,c >0,又由题设条件可知a <b ,故有a b <a +c b +c 成立,即a +c b +c >a b≥10%. 所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.。
高考数学一轮复习第六章不等式推理与证明6.1不等式的性质及一元二次不等式课件理
合A,再求解.
(2)利用指数函数的性质,将原不等式化为关于x的一元
二次不等式求解即可.
【规范解答】(1)选C.A={x|1<x<3}, B={x|2<x<4}, 故A∩B={x|2<x<3}.
(2)因为4=22且y=2x在R上单调递增,所以 <4可化
为x2-x<2,解得-1<x<2.所以 <4的解集是 a(x 1 ) a
B.2个
C.433个,
D.4个
【解析】选C.运用倒数性质,
由a>b,ab>0可得 {x|2x
4}.
②④正确.又正数大于3 负数,①正确,③错误.
2.如果a,b,c满足c<b<a,且ac<0,那么下列选项中不一
定成立的是 ( )
A.ab>ac
B.c(b-a)>0
C.cb2<ab2
D.ac(a-c)<0
A.n>m>p
B.m>p>n
C.m>n>p
D.p>m>n
【解题导引】(1)根据已知条件可判断出x和z的符号, 然后由不等式的性质便可求解. (2)根据不等式性质和函数单调性求解.
【规范解答】(1)选C.因为x>y>z,x+y+z=0,所以x>0,
z<0.所以由 1 可得xy>xz. (2)选B.因为ax >1,所以a2+1-2a=(a-1)2>0,即a2+1>2a,
第六章 不等式、推理与证明 第一节
不等式的性质及一元二次不等式
ab
1
a
高考数学一轮复习 第6章 不等式 第1讲 不等关系与不等式的性质及一元二次不等式讲义 理(含解析)-
第六章不等式第1讲不等关系与不等式的性质及一元二次不等式[考纲解读] 1.不等式性质是进行变形、证明、解不等式的依据,掌握不等式关系与性质及比较大小的常用方法:作差法与作商法.(重点)2.能从实际情景中抽象出一元二次不等式模型,通过函数图象了解一元二次不等式与相应的二次函数,一元二次方程之间的联系,能解一元二次不等式.(重点、难点)[考向预测] 从近三年高考情况来看,本讲是高考中的一个热点内容,但一般不会单独命题.预测2020年将会考查:利用不等式的性质判断结论的成立性,求参数的取值X围;一元二次不等式的解法,对含参数的二次不等式的分类讨论等.命题时常将不等式与函数的单调性相结合.试题一般以客观题的形式呈现,属中、低档题型.1.两个实数比较大小的依据2.不等式的基本性质3.必记结论 (1)a >b ,ab >0⇒1a <1b.(2)a <0<b ⇒1a <1b.(3)a >b >0,0<c <d ⇒a c >b d. (4)0<a <x <b 或a <x <b <0⇒1b <1x <1a.(5)若a >b >0,m >0,则b a <b +ma +m; b a >b -m a -m (b -m >0);a b >a +m b +m ; a b <a -m b -m(b -m >0). 4.一元二次函数的三种形式(1)一般式:□01y =ax 2+bx +c (a ≠0). (2)顶点式:□02y =a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a (a ≠0). (3)两根式:□03y =a (x -x 1)(x -x 2)(a ≠0). 5.三个二次之间的关系1.概念辨析(1)a>b⇔ac2>bc2.( )(2)若不等式ax2+bx+c>0的解集是(-∞,x1)∪(x2,+∞),则方程ax2+bx+c=0的两个根是x1和x2.( )(3)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( )(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.()答案(1)×(2)√(3)×(4)×2.小题热身(1)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N等于( )A .(0,4]B .[0,4)C .[-1,0)D .(-1,0] 答案 B解析 因为M ={x |-1<x <4},N ={x |0≤x ≤5},所以M ∩N =[0,4). (2)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是( ) A .ab >ac B .c (b -a )<0 C .cb 2<ab 2D .ac (a -c )>0 答案 A解析 因为c <b <a ,且ac <0,所以a >0,c <0.b 的符号不确定,b -a <0,a -c >0,据此判断A 成立,B ,C ,D 不一定成立.(3)设M =2a (a -2),N =(a +1)(a -3),则有( ) A .M >N B .M ≥N C .M <N D .M ≤N 答案 A解析 M -N =2a (a -2)-(a +1)(a -3)=a 2-2a +3=(a -1)2+2>0,故M >N . (4)已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值X 围是________.答案 [-4,0]解析 当a =0时,f (x )=-1≤0成立, 当a ≠0时,若对∀x ∈R ,f (x )≤0,须有⎩⎪⎨⎪⎧a 2-4×a ×-1≤0,a <0,解得-4≤a <0.综上知,实数a 的取值X 围是[-4,0].题型 一 不等式性质的应用1.若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c答案 D 解析 解法一:⎭⎪⎬⎪⎫c <d <0⇒cd >0 c <d <0⇒⎭⎪⎬⎪⎫c cd <d cd <0⇒1d <1c <0⇒-1d >-1c >0 a >b >0⇒-a d >-b c ⇒a d <b c .故选D. 解法二:依题意取a =2,b =1,c =-2,d =-1, 代入验证得A ,B ,C 均错误,只有D 正确.故选D.2.已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,则S 3a 3与S 5a 5的大小关系为________.答案S 3a 3<S 5a 5解析 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5. 当q >0且q ≠1时,S 3a 3-S 5a 5=a 11-q 3a 1q 21-q -a 11-q 5a 1q 41-q =q 21-q 3-1-q 5q 41-q =-q -1q 4<0,所以S 3a 3<S 5a 5.综上可知S 3a 3<S 5a 5.3.已知二次函数y =f (x )的图象过原点,且1≤f (-1)≤2,3≤f (1)≤4,求f (-2)的取值X 围.解 由题意知f (x )=ax 2+bx ,则f (-2)=4a -2b , 由f (-1)=a -b ,f (1)=a +b ,设存在实数x ,y ,使得4a -2b =x (a +b )+y (a -b ), 即4a -2b =(x +y )a +(x -y )b ,所以⎩⎪⎨⎪⎧x +y =4,x -y =-2,解得⎩⎪⎨⎪⎧x =1,y =3,所以f (-2)=4a -2b =(a +b )+3(a -b ). 又3≤a +b ≤4,3≤3(a -b )≤6,所以6≤(a +b )+3(a -b )≤10, 即f (-2)的取值X 围是[6,10].1.判断不等式是否成立的方法(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.(2)在判断一个关于不等式的命题的真假时,可结合不等式的性质,对数函数、指数函数的性质进行判断.2.比较两个数(式)大小的两种方法3.求代数式的取值X 围利用不等式性质求某些代数式的取值X 围时,一般是利用整体思想,通过“一次性”不等关系的运算求得整体X 围,是避免错误的有效途径.如举例说明3.1.若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2.其中正确的不等式是( )A .①④B .②③C .①③D .②④ 答案 C解析 因为1a <1b <0,所以b <a <0,|b |>|a |,所以|a |+b <0,ln a 2<ln b 2,由a >b ,-1a>-1b 可推出a -1a >b -1b ,显然有1a +b <0<1ab,综上知,①③正确,②④错误. 2.若a >0,且a ≠7,则( ) A .77a a<7a a 7B .77a a =7a a 7C .77a a >7a a 7D .77a a与7a a 7的大小不确定 答案 C解析 显然77a a>0,7a a 7>0,因为77a a7a a 7=⎝ ⎛⎭⎪⎫7a 7·⎝ ⎛⎭⎪⎫a 7a =⎝ ⎛⎭⎪⎫7a 7·⎝ ⎛⎭⎪⎫7a -a =⎝ ⎛⎭⎪⎫7a 7-a.当a >7时,0<7a <1,7-a <0,⎝ ⎛⎭⎪⎫7a 7-a>1,当0<a <7时,7a>1,7-a >0,⎝ ⎛⎭⎪⎫7a 7-a>1. 综上知77a a>7a a 7.3.若1<α<3,-4<β<2,则α-|β|的取值X 围是________. 答案 (-3,3)解析 ∵-4<β<2,∴0≤|β|<4,∴-4<-|β|≤0. ∴-3<α-|β|<3.题型 二 不等式的解法1.函数f (x )=1ln -x 2+4x -3的定义域是( )A .(-∞,1)∪(3,+∞) B.(1,3) C .(-∞,2)∪(2,+∞) D.(1,2)∪(2,3) 答案 D解析 由题意得⎩⎪⎨⎪⎧-x 2+4x -3>0,ln -x 2+4x -3≠0,即⎩⎪⎨⎪⎧x 2-4x +3<0,x 2-4x +4≠0.解得1<x <3且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,3). 2.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 本题采用分类讨论思想. 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1.②当a >0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a;当2a =-1,即a =-2时,解得x =-1满足题意; 当2a<-1,即0>a >-2,解得2a≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫x ≥2a或x ≤-1;当-2<a <0时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫2a≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫-1≤x ≤2a .条件探究 把举例说明2中的不等式改为“ax 2-(a +1)x +1<0,a ∈R ”,如何解答? 解 若a =0,原不等式等价于-x +1<0,解得x >1.若a <0,则原不等式等价于⎝ ⎛⎭⎪⎫x -1a (x -1)>0,解得x <1a或x >1.若a >0,原不等式等价于⎝⎛⎭⎪⎫x -1a (x -1)<0.①当a =1时,1a=1,⎝ ⎛⎭⎪⎫x -1a (x -1)<0无解;②当a >1时,1a <1,解⎝⎛⎭⎪⎫x -1a (x -1)<0得1a<x <1;③当0<a <1时,1a>1,解⎝ ⎛⎭⎪⎫x -1a (x -1)<0得1<x <1a.综上所述,当a <0时,解集为{x ⎪⎪⎪⎭⎬⎫x <1a或x >1;当a =0时,解集为{x |x >1};当0<a <1时,解集为{x ⎪⎪⎪⎭⎬⎫1<x <1a ;当a =1时,解集为∅;当a >1时,解集为{x ⎪⎪⎪⎭⎬⎫1a<x <1.1.解一元二次不等式的四个步骤2.分式不等式的解法求解分式不等式的关键是对原不等式进行恒等变形,转化为整式不等式(组)求解. (1)f xg x>0(<0)⇔f (x )·g (x )>0(<0);如巩固迁移2.(2)f xg x ≥0(≤0)⇔⎩⎪⎨⎪⎧f x ·g x ≥0≤0,g x ≠0.1.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A.52 B.72 C.154 D.152 答案 A解析 由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2.故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,得a =52,故选A.2.不等式2x +1x -5≥-1的解集为________.答案 {x ⎪⎪⎪⎭⎬⎫x ≤43或x >5解析 将原不等式移项通分得3x -4x -5≥0,等价于⎩⎪⎨⎪⎧3x -4x -5≥0,x -5≠0,解得x ≤43或x >5.∴原不等式的解集为{x ⎪⎪⎪⎭⎬⎫x ≤43或x >5.题型 三 二次不等式中的任意性与存在性角度1 任意性与存在性1.(1)若关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞),某某数a 的取值X 围; (2)若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,某某数a 的取值X 围. 解 (1)设f (x )=x 2-ax -a ,则关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞)⇔f (x )>0在(-∞,+∞)上恒成立⇔f (x )min >0,即f (x )min =-4a +a24>0,解得-4<a <0(或用Δ<0).(2)设f (x )=x 2-ax -a ,则关于x 的不等式x 2-ax -a ≤-3的解集不是空集⇔f (x )≤-3在(-∞,+∞)上能成立⇔f (x )min ≤-3,即f (x )min =-4a +a24≤-3,解得a ≤-6或a ≥2.角度2 给定区间上的任意性问题2.(1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值X 围是________.(2)设函数f (x )=mx 2-mxx ∈[1,3],f (x )<-m +5恒成立,求m 的取值X 围. 答案 (1)⎝ ⎛⎭⎪⎫-22,0 (2)见解析解析 (1)要满足f (x )=x 2+mx -1<0对于任意x ∈[m ,m +1]恒成立,只需⎩⎪⎨⎪⎧ f m <0,f m +1<0,即⎩⎪⎨⎪⎧ 2m 2-1<0,m +12+m m +1-1<0,解得-22<m <0.(2)要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:解法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数,所以g (x )max =g (3),即7m -6<0,所以m <67,所以0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1),即m -6<0,所以m <6,所以m <0.综上所述,m 的取值X 围是{m ⎪⎪⎪⎭⎬⎫m <67.解法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以m 的取值X 围是{m ⎪⎪⎪⎭⎬⎫m <67.角度3 给定参数X 围的恒成立问题3.已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值X 围为()A .(-∞,2)∪(3,+∞)B .(-∞,1)∪(2,+∞)C .(-∞,1)∪(3,+∞)D .(1,3)答案 C解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4,则由f (a )>0对于任意的a ∈[-1,1]恒成立,所以f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,解不等式组⎩⎪⎨⎪⎧ x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.故选C.形如f (x )≥0(f (x )≤0)恒成立问题的求解思路(1)x ∈R 的不等式确定参数的X 围时,结合二次函数的图象,利用判别式来求解. (2)x ∈[a ,b ]的不等式确定参数X 围时,①根据函数的单调性,求其最值,让最值大于等于或小于等于0,从而求参数的X 围;②数形结合,利用二次函数在端点a ,b 处的取值特点确定不等式求X 围.如举例说明2.(3)已知参数m ∈[a ,b ]的不等式确定x 的X 围,要注意变换主元,一般地,知道谁的X围,就选谁当主元,求谁的X 围,谁就是参数.如举例说明3.1.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值X 围是________.答案 ⎝ ⎛⎭⎪⎫-235,+∞ 解析 由Δ=a 2+8>0,知方程x 2+ax -2=0恒有两个不等实数根,又知两根之积为负,所以方程x 2+ax -2=0必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值X 围为⎝ ⎛⎭⎪⎫-235,+∞. 2.函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,某某数a 的取值X 围;(2)当x ∈[-2,2]时,f (x )≥a 恒成立,某某数a 的取值X 围; (3)当a ∈[4,6]时,f (x )≥0恒成立,某某数x 的取值X 围.解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立,需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0,∴实数a 的取值X 围是[-6,2].(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0,分如下三种情况讨论(如图所示): ①如图1,当g (x )的图象恒在x 轴上方且满足条件时,有Δ=a 2-4(3-a )≤0,即-6≤a ≤2.②如图2,g (x )的图象与x 轴有交点,但当x ∈[-2,+∞)时,g (x )≥0, 即⎩⎪⎨⎪⎧ Δ≥0,x =-a 2≤-2,g -2≥0,即⎩⎪⎨⎪⎧ a 2-43-a ≥0,-a 2≤-2,4-2a +3-a ≥0, 可得⎩⎪⎨⎪⎧a ≥2或a ≤-6,a ≥4,a ≤73,解得a ∈∅. ③如图3,g (x )的图象与x 轴有交点,但当x ∈(-∞,2]时,g (x )≥0. 即⎩⎪⎨⎪⎧ Δ≥0,x =-a 2≥2,g 2≥0,即⎩⎪⎨⎪⎧a 2-43-a ≥0,-a 2≥2,7+a ≥0, 可得⎩⎪⎨⎪⎧ a ≥2或a ≤-6,a ≤-4,a ≥-7.∴-7≤a ≤-6.综上,实数a 的取值X 围是[-7,2].(3)令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h 4≥0,h 6≥0,即⎩⎪⎨⎪⎧ x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6.∴实数x 的取值X 围是(-∞,-3-6]∪[-3+6,+∞).。
高中数学一轮复习 不等式、推理与证明 第1节 不等关系与不等式
又 ab>0,∴ab>ab2>a.
【答案】 ab>ab2>a
考向 1
利用不等式(组)表示不等关系
【例 1】 某厂拟生产甲、乙两种适销产品,甲、乙产品 都需要在 A,B 两台设备上加工,在 A,B 设备上加工一件甲 产品所需工时分别为 1 小时、2 小时,加工一件乙产品所需工 时分别为 2 小时、1 小时,A,B 两台设备每月有效使用时数 分别为 400 和 500.写出满足上述所有不等关系的不等式.
【思路点拨】 明真假.
利用不等式的性质判定正误或举反例说
【尝试解答】
∵a>0>b,c<d<0,
∴ad<0,bc>0,则 ad<bc,(1)错误. 由 a>0>b>-a,知 a>-b>0, 又-c>-d>0, 因此 a· (-c)>(-b)· (-d),即 ac+bd<0, a b ac+bd ∴d+ c= cd <0,故(2)正确. 显然 a-c>b-d,∴(3)正确. ∵a>b,d-c>0,∴a(d-c)>b(d-c),∴(4)正确. 【答案】 (2)(3)(4)
【思路点拨】 设出甲、 乙两种产品的产量, 根据设备 A、 B 的有效使用时数,与甲、乙两种产品使用设备 A、B 的工时 数的关系列不等式组.
【尝试解答】 设甲、乙两种产品的产量分别为 x 件,y 件, x+2y≤400, 2x+y≤500, 由题意可知, x≥0,x∈N, y≥0,y∈N.
【解】
5-x>0, 由题意知5-x+12-x>13-x, 5-x2+12-x2<13-x2.
考向 2
不等式性质的应用
【例 2】 若 a>0>b>-a,c<d<0,则下ቤተ መጻሕፍቲ ባይዱ命题:(1)ad a b >bc;(2)d+ c <0;(3)a-c>b-d;(4)a· (d-c)>b(d-c)中能成 立的命题为________.
高考数学一轮复习 第六章 不等式 6.1 不等关系与不等式课件
加性
a>b>0
ac>bd
同向同
c>d>0
正
an>bn⇒
⇒
可乘性
n a>n b
可乘方 a>b>0⇒
性
(n∈N,n≥1) a,b
答案
不等式的一些常用性质
(1)倒数的性质
①a>b,ab>0⇒1a
<
1 b.
②a<0<b⇒1a
<
1 b.
③a>b>0,0<c<d⇒ac
>
b d.
④0<a<x<b
或
a<x<b<0⇒1b
<
1 x
<
1a.
知识拓展
答案
(2)有关分数的性质 若 a>b>0,m>0,则 ①ba<ba++mm;ba>ba--mm(b-m>0). ②ab>ab++mm;ab<ab--mm(b-m>0).
判断下面结论是否正确(请在括号中打“√”或“×”) (1)a>b⇔ac2>bc2.( × ) (2)1a>1b⇔a<b(ab≠0).( × ) (3)a>b,c>d⇒ac>bd.( × ) (4)若1a<1b<0,则|a|>|b|.( × ) (5)若 a3>b3 且 ab<0,则1a>1b.( √ )
A.a<b<c
B.c<b<a
C.c<a<b
D.b<a<c
思维升华
解析答案
高考一轮总复习 数学 第六章 第2讲 一元二次不等式及其解法
延伸探究 1 例 2 中(1)变为:若不等式 mx2-mx-1<0 对 m∈[1,2]恒成立,求实数 x 的取值范围.
解 设 g(m)=mx2-mx-1=(x2-x)m-1,
其图象是直线,
当 m∈[1,2]时,图象为一条线段,
则gg12<<00, ,
x2-x-1<0, 即2x2-2x-1<0,
解得1-2
3 1+ <x< 2
3,
故 x 的取值范围为1-2
3,1+2
3 .
延伸探究 2 例 2 中(2)条件“f(x)<5-m 恒成立”改为“f(x)<5-m 无解”,如何求 m 的取值范围?
解 若 f(x)<5-m 无解,即 f(x)≥5-m 恒成立, 即 m≥x2-6x+1恒成立,又 x∈[1,3], 得 m≥6.即 m 的取值范围为[6,+∞).
A.{x|1≤x≤2}
B.{x|x≤1 或 x≥2}
C.{x|1<x<2}
D.{x|x<1 或 x>2}
解析 因为(x-1)(2-x)≥0,所以(x-2)(x-1)≤0, 所以结合二次函数的性质可得 1≤x≤2.故选 A.
3.[2016·辽阳统考]不等式xx- +21≤0 的解集是(
)
A.(-∞,-1)∪(-1,2]
所以不改革时的纯收入为:70n-3n+nn- 2 1·2万元,
90=a+b,
a=80,
由题设知170=2a+b, 所以b=10,
由题意建立不等式:80n+10-300-n>70n-3n-(n-1)n,
解得-
3<k<0.
(2)[2015·兰州模拟]已知函数 f(x)=x2+2xx+a,若对任意 x∈[1,+∞),f(x)>0 恒成立,则实数 a 的取值 范围是_(_-__3_,__+__∞__) __.
2017届高三数学一轮总复习(人教通用)课件:第6章 第一节 不等关系与不等式
1.在应用传递性时,注意等号是否传递下去,如 a≤b,b<c ⇒a<c.
2.在乘法法则中,要特别注意“乘数 c 的符号”,例如当 c≠0 时,有 a>b⇒ac2>bc2;若无 c≠0 这个条件,a>b ⇒ac2>bc2 就是错误结论(当 c=0 时,取“=”).
第六页,编辑于星期六:一点 八分。
[变式 1] 将母题条件改为“-1<x<y<3”,求 x-y 的取 值范围.
解析
第二十二页,编辑于星期六:一点 八分。
[变式 2] 若将母题条件改为“-1<x+y<4,2<x-y<3”, 求 3x+2y 的取值范围. 解:设 3x+2y=m(x+y)+n(x-y), 则mm+-nn==32,, ∴mn==1252,, 即 3x+2y=52(x+y)+12(x-y),
C.a+b<2 ab
D.12a<12b
解析:∵a>b>0,∴1a<1b,且|a|>|b|,a+b>2 ab,又 2a>2b,
∴12a<12b. 答案:C
第十七页,编辑于星期六:一点 八分。
2.若 a>0>b>-a,c<d<0,则下列结论:①ad>bc;
②ad+bc<0;③a-c>b-d;④a(d-c)>b(d-c)中成立
第二十页,编辑于星期六:一点 八分。
利用不等式性质可以求某些代数式的取值范围,但应注 意两点:一是必须严格运用不等式的性质;二是在多次运用 不等式的性质时有可能扩大了变量的取值范围.解决的途径 是先建立所求范围的整体与已知范围的整体的等量关系,最 后通过“一次性”不等关系的运算求解范围.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节不等关系与不等式
[基础达标]
一、选择题(每小题5分,共35分)
1x,y∈R,则x>y的一个充分不必要条件是()
A.|x|>|y|
B.x2>y2
C.
D.x3>y3
1.C【解析】由|x|>|y|,x2>y2未必能推出x>y,排除A,B;由可推出x>y,反之,未必成立,故C项正确;而x3>y3是x>y的充要条件,故D项错误.
2a<b<0,那么下列不等式成立的是() A.- <-B.ab<b2
C.-ab<-a2
D.|a|<|b|
2.A【解析】利用作差法逐一判断.因为<0,所以-<-,A正确;因为
ab-b2=b(a-b)>0,所以ab>b2,B错误;因为ab-a2=a(b-a)<0,所以-ab>-a2,C错误;a<b<0,所以|a|>|b|,D错误.
3<0,则下列结论错误的是()
A.a2<b2
B. >2
C.ab>b2
D.lg a2<lg ab
3.C【解析】∵<0,∴>0,∴a-b>0,∴ab-b2=(a-b)b<0,∴ab<b2,故C项错误.
4.若0<m<n,则下列结论正确的是()
A.2m>2n
B.
C.lo m>lo n
D.log2m>log2n
4.C【解析】函数y=2x和y=log2x均是增函数,又n>m>0,∴2m<2n,log2m<log2n;函数
y=lo x,y=均是减函数,又n>m>0,∴lo m>lo n,.
5∀x∈[1,2],关于x的不等式x2-a≤0恒成立”为真命题的一个必要不充分条件是()
A.a≥4
B.a≤4
C.a≥3
D.a≤3
5.C【解析】不等式x2-a≤0,∀x∈[1,2]恒成立⇔a≥(x2)max=4,x∈[1,2],所以所求的一个必要不充分条件是a≥3.
6p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p ∨q;③p∧(q);④(p)∨q中,真命题是()
A.①③
B.①④
C.②③
D.②④
6.C【解析】由不等式性质可知,命题p是真命题,命题q只有当x>y≥0时成立,故命题q 为假命题,①p∧q为假命题,②p∨q为真命题,③q为真命题,故p∧(q)为真命题,④(p)∨q为假命题.
7a>b>1,c<0,给出下列四个结论:
①a c>1②a c<b c③log b(a-c)>log a(b-c)④b b-c>a a-c
其中所有的正确结论的序号是()
A.①②
B.②③
C.①②③
D.②③④
7.B【解析】因为a>1,所以指数函数y=a x递增,又c<0,所以a c<1,①错误,排除A和C;而B 和D中都有②和③,所以只要判断④是否正确.又b b-c<b a-c<a a-c,所以④错误,排除D,故选择B.
二、填空题(每小题5分,共10分)
8.设A: <0,B:0<x<m,若B是A成立的必要不充分条件,则实数m的取值范围
是.
8.(1,+∞)【解析】不等式<0的解集为(0,1),由题意可知(0,1)⫋(0,m),解得实数m的取值范围是(1,+∞).
9.设实数x,y满足3≤xy2≤8,4≤≤9,则的最大值是.
9.27【解析】根据不等式的基本性质求解.∈[16,81], ,则
∈[2,27],的最大值是27.
[高考冲关]
1.(5分p:若a>b,则a2>b2,q:“x≤1”是“x2+2x-3≤0”的必要不充分条件,则下列命题是真命题的是() A.p∧q B.( p)∧q
C.( p)∧(q)
D.p∧(q)
1.B【解析】取a=-1,b=-2,可知命题p是假命题.x2+2x-3≤0⇔-3≤x≤1,由x≤1不能得知-3≤x≤1;反过来,由-3≤x≤1可得x≤1,因此“x≤1”是“x2+2x-3≤0”的必要不充分条件,命题q是真命题,故(p)∧q是真命题.
2.(5分x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()
A.B.ln(x2+1)>ln(y2+1)
C.sin x>sin y
D.x3>y3
2.D【解析】因为a x<a y(0<a<1),所以x>y,所以x3>y3成立;当x=1,y=0时,;当
x=0,y=-1时,ln(x2+1)<ln(y2+1);当x=π,y=时,sin x<sin y.
3.(5分y=a x(a>0,a≠1)与y=x b的图象如图,则下列不等式一定成立的是()
A.b a>0
B.a+b>0
C.a b>1
D.log a2>b
3.D【解析】由函数图象可知a>1,b<0,所以a b<1,排除C;A,B项中的不等式不一定成
立;log a2>0>b,故D项中的不等式一定成立.
4.(5分a>b>0,则下列不等式中总成立的是()
A.a+>b+
B.a+>b+
C.D.
4.A【解析】a+-b-=(a-b)+ =(a-b)+ =(a-b),其中a-b>0,ab>0,
故a+-b->0,故A正确;令a=2,b=,则a+=b+,故B错误;又<0,所以
,故C错误; <0,故D错误.
5.(5分)设a,b为正实数,现有下列命题:①若a2-b2=1,则a-b<1;②若=1,则a-b<1;③若||=1,则|a-b|<1;④若|a3-b3|=1,则|a-b|<1.其中的真命题有.(写出所
有真命题的编号)
5.①④【解析】由a2-b2=1得(a-b)(a+b)=1,又由已知得a+b>a-b,故a-b<1,所以①是真命题;当a=2,b=时,有=1,此时a-b>1,所以②是假命题;当a=9,b=4时,|
|=1,|a-b|=5>1,所以③是假命题;对于④,假设|a-b|≥1,不妨设a>b,则a≥b+1,因为
|a3-b3|=|a-b||a2+ab+b2|,则a2+ab+b2>a2+b2≥(b+1)2+b2>1,则|a3-b3|=|a-b||a2+ab+b2|>1,与已知矛盾,则|a-b|<1,所以④是真命题.。