【2013-2014学年新版】广东省清新区北师大版八年级数学上册第1章《勾股定理》单元检测
北师大版数学八年级上册第一章1.1探索勾股定理(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
举例解释:在证明勾股定理时,学生可能对面积法的理解存在困难,教师需要通过具体的图形演示和步骤分解,帮助学生理解证明过程中的每一步逻辑,并鼓励学生通过讨论和思考来加深理解。对于难点的突破,教师可以设计不同层次的问题,逐步引导学生深入探究,从而实现知识的内化。
注意:由于字数限制,无法达到2000字,但上述内容已尽量详细列出教学难点与重点,并在每个方面举例解释。在实际教案编写中,可以根据需要进一步拓展和细化。
5.掌握勾股数的特点,能够判断一组数是否为勾股数,并能够找出常见的勾股数。
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,特别是运用勾股定理解决直角三角形相关问题的能力;
2.强化逻辑推理和数学证明的思维训练,通过探索勾股定理的证明过程,提升学生的推理和论证能力;
3.增强学生的几何直观和空间想象力,通过观察和操作,理解直角三角形的性质和勾股定理的内涵;
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表达式a² + b² = c²通过拼图法或面积法等具体例子来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题,如如何计算不同形状的直角三角形的斜边长度。
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
最新【北师大版】八年级数学上册第1章《勾股定理》全章教学案
第一章勾股定理经历勾股定理及其逆定理的探索过程,了解勾股定理的各种探究方法及其内在联系,进一步发展空间观念和推理能力.掌握勾股定理及其逆定理,并能运用它们解决简单的问题.通过实例了解勾股定理的历史与应用,体会勾股定理的文化价值.一、本单元对应的课程标准内容1.经历由情境引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学生学数学、用数学的意识与能力.2.体验勾股定理的探索过程,掌握勾股定理,会运用勾股定理解决相关问题.3.掌握勾股定理的逆定理,会运用勾股定理的逆定理解决相关问题.4.运用勾股定理及其逆定理解决简单的实际问题.5.感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情.二、教材分析实际生活中,有不少问题的解决都涉及直角三角形的三边关系——勾股定理.数学源于生活,又应用于生活,是本章所体现的主要思想.本章的主要内容是勾股定理及其逆定理.勾股定理是初中数学中的一个重要的定理,它揭示了直角三角形中三边之间的数量关系,它是数形结合的典范,可以解决许多直角三角形中的计算问题.它是直角三角形特有的性质,是初中数学内容的重点之一.本章的重点是勾股定理及其逆定理,难点是勾股定理及其逆定理的应用.本章主要有如下特点:1.在呈现方式上,突出实践性与研究性.例如,证明勾股定理是通过问题引出的.2.突出学数学、用数学的意识与过程.勾股定理的应用尽量和实际问题联系起来.3.对实际问题的选取,注意联系学生的实际生活,注意拓展学生的知识面,注意系统训练的科学性,减少操作性习题,增加探索性问题的比重.【重点】1.掌握勾股定理,并运用勾股定理解决实际问题.2.掌握勾股定理的逆定理,并会运用它判定直角三角形.【难点】1.利用面积法证明勾股定理.2.理解定理、逆定理的关系.3.勾股定理的应用.1.注重使学生经历探索勾股定理等活动过程.教材安排了探索勾股定理、验证勾股定理、探索勾股定理的逆定理等活动,教师应鼓励学生充分参与这些活动,通过观察、实验、推理、交流等获得结论,发展空间观念和推理能力.2.注重创设丰富的现实情境,体会勾股定理及其逆定理的广泛应用.勾股定理及其逆定理在现实世界中有着广泛的应用,教师应充分利用教材中的素材,让学生体会这种应用,如利用勾股定理求出一些立体图形表面最短路程,进行各种距离的测量,利用结绳的方法得到直角等.教师还可以创设其他现实情境或鼓励学生自己寻找有关问题,进一步展现勾股定理及其逆定理在解决问题中的作用.3.介绍有关勾股定理的历史,体现勾股定理的文化价值.勾股定理的发现、验证及应用的过程中蕴含着丰富的文化价值,很多古文明都独立地发现了勾股定理,中国也是最早认识勾股定理的国家之一,古希腊在勾股定理的应用中发现了无理数,进而引发了数学史上第一次关于数学基础的危机,有关勾股定理的历史材料十分丰富,教学中教师应鼓励学生阅读教科书中的相关资料,还可以再呈现一些历史资料,以拓宽学生的视野,有条件的话,还可以引导学生从有关书籍、网络上收集并了解更多的历史资料,体会勾股定理的文化价值.4.注意数形结合、化归等数学思想方法的渗透.勾股定理的探索与验证活动过程蕴含着丰富的数学思想,如数形结合思想、化归思想等.教学中,教师应注意渗透并揭示这些数学思想方法.例如,教师应鼓励学生由代数表示联想到有关几何图形,由几何图形联想到有关代数表示,从而渗透数形结合思想,认识数学的内在联系.1探索勾股定理2课时2一定是直角三角形吗1课时3勾股定理的应用1课时回顾与思考1课时1探索勾股定理1.知道勾股定理的由来,初步理解割补拼接的面积证法.2.掌握勾股定理,通过动手操作利用等积法理解勾股定理的证明过程.在探索勾股定理的过程中,让学生经历“观察——猜想——归纳——验证”的数学思想,并体会数形结合以及由特殊到一般的思想方法,培养学生的观察能力、抽象概括能力、创造想象能力以及科学探究问题的能力.1.通过观察、猜想、拼图、证明等操作,使学生深刻感受到数学知识的发生、发展过程.2.介绍“赵爽弦图”,让学生感受到中国古代在勾股定理研究方面所取得的伟大成就,激发学生的数学激情及爱国情感.【重点】掌握勾股定理,并运用勾股定理解决实际问题.【难点】理解勾股定理及其逆定理的关系.第课时1.经历用测量法和数格子的方法探索勾股定理的过程,发展合情推理能力,体会数形结合的思想.2.会解决已知直角三角形的两边求另一边的问题.1.经历“测量—猜想—归纳—验证”等一系列过程,体会数学定理发现的过程.2.在观察、猜想、归纳、验证等过程中培养语言表达能力和初步的逻辑推理能力.3.在探索过程中,体会数形结合、由特殊到一般及化归等数学思想方法.通过让学生参加探索与创造,获得参加数学活动成功的经验.【重点】勾股定理的探索及应用.【难点】勾股定理的探索过程.【教师准备】分发给学生打印的方格纸.【学生准备】有刻度的直尺.导入一:展示教材P2开头的情境.如图所示,从电线杆离地面8 m处向地面拉一条钢索,如果这条钢索在地面的固定点距离电线杆底部6 m,那么需要多长的钢索?事实上,古人发现,直角三角形的三条边长度的平方存在一个特殊关系,学完了这节课,我们就会很容易地求出钢索的长度.[设计意图]创设问题情境,造成学生的认知冲突,激发学生的求知欲望.导入二:如图所示,强大的台风使得一个旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处.旗杆折断之前有多高?【师生活动】在直角三角形中,任意两条边确定了,第三条边确定吗?为什么?在直角三角形中,任意两条边确定了,第三条边也就随之确定,三边之间存在着一种特定的数量关系.事实上,古人发现,直角三角形的三条边长度的平方存在一种特殊的关系.让我们一起去探索吧![过渡语]古代人已经认识到直角三角形的三条边的长度之间存在着特殊的平方关系,究竟存在怎样的关系呢?大家一起来探究下吧.思路一【学生活动】1.画一个直角三角形,使直角边长分别为3 cm和4 cm,测量一下斜边长是多少.2.画一个直角边长分别是6 cm和8 cm的直角三角形,测量一下斜边长是多少.3.画一个直角边长分别是5 cm和12 cm的直角三角形,测量一下斜边长是多少.【问题】你能观察出直角三角形三边之间的关系吗?[设计意图]帮助学生感知直角三角形三条边的长度存在特殊的关系,进而激发学生的探索欲望.思路二任意画一个直角三角形,分别测量三条边长,把长度标在图形中,计算三边的平方,把结果填在表格中.直角三角形直角边长直角边长斜边长123【师生活动】师:观察表格,有什么发现?生1:a2+b2=c2.生2:两直角边的平方和很接近斜边的平方.师:很精确,他用了很接近这个词,非常棒!有哪些数据得到了a2+b2=c2?生:3,4,5;6,8,10;2,1.5,2.5;5,12,13……师:哪些数据没得到a2+b2=c2?生:2,4,4.5;5,8,9.5;2.4,4.8,9.3……师:怎样验证直角三角形三边之间的平方关系呢?二、验证直角三角形三条边长度存在的特殊关系,用数格子的方法探索勾股定理[过渡语]刚才的探究活动,我们只是通过测量和计算发现了直角三角形三条边之间存在的特殊关系,那么我们怎样去验证呢?已知两条直角边能不能求出斜边呢?思路一展示教材P2图1 - 2部分图.探索问题:(1)这个三角形是什么样的三角形?(2)直角三角形三边的平方分别是多少?它们满足怎样的数量关系?(学生通过数格子的方法可以得出S A+S B=S C)[设计意图]通过三个正方形面积的关系,得到直角三角形三边的关系.思路二展示教材P2图1 - 2,直角三角形三边的平方分别是多少,它们满足上面所猜想的数量关系吗?你是如何计算的?【师生活动】师:在这幅图中,边长的平方是如何刻画的?我们的猜想如何实现?生:用正方形A,B,C刻画的,就是证A+B=C.师:再准确点说呢?生:是用三个正方形A,B,C的面积刻画的,就是证明正方形A的面积加上正方形B的面积等于正方形C 的面积.师:请同学们快速算一算正方形A,B,C的面积.(学生交流面积C的求法,教师巡视点评)生:A的面积是9,B的面积也是9,C的面积是18.师:你用什么方法得到正方形C的面积为18个单位面积?生1:我先数整个格子有12个,两个三角形格子拼成一个正方形格子,能凑6个,一共是18个.生2:把正方形对折,得到两个三角形.(学生板演,并列式计算)生3:分成四个全等的直角三角形.(学生板演,口述面积求法)师:方法不错,你们很善于动脑筋,我们用数格子、分割图形的方法得到C的面积,还有什么方法可以得到吗?生:在正方形C的外侧画一个大正方形,用大正方形的面积减去4个三角形的面积.(学生板演,口述面积求法)师:很好,他采用了补形的方法计算面积,我们能得到什么结论?生1:S A+S B=S C.生2:a2+b2=c2.师:我们看到上面的三角形具有特殊性,是等腰直角三角形,一般三角形能验证吗?2.探索边长为3,4,5的直角三角形的情况.展示教材P2图1 - 3部分图.对于一般的直角三角形是否也有这样的关系?你是如何计算的?【问题】(1)正方形A的面积是多少个方格?正方形B的面积是多少个方格?(2)怎样求出正方形C的面积是多少个方格?(3)三个正方形的面积之间有什么关系?同桌交流、小组讨论,共同探讨如何求正方形的面积,找到三边平方之间的关系.【提示】在正方形C的四周再补上三个相等的直角三角形,变成一个新的大正方形.【拓展】如果直角三角形的两直角边分别为1.6个单位长度和2.4个单位长度,上面所猜想的数量关系还成立吗?说明你的理由.学生思考、交流,教师请学生口答,并板书,指出这就是这节课要学习的勾股定理.【学生总结】直角三角形两直角边的平方和等于斜边的平方.如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.[思考](1)运用此定理的前提条件是什么?(2)公式a2+b2=c2有哪些变形公式?(3)由(2)知直角三角形中,只要知道条边,就可以利用求出.[设计意图]让学生经历“独立思考——小组讨论——合作交流”的环节,进一步加深对勾股定理的理解,并激发学生的爱国热情.[知识拓展]1.由勾股定理的基本形式a2+b2=c2可以得到一些变形关系式,如a2=c2-b2=(c+b)(c-b);b2=c2-a2=(c+a)(c-a).2.在钝角三角形中,三角形三边长分别为a,b,c,若c为最大边长,则有a2+b2<c2,在锐角三角形中,三角形三边长分别为a,b,c,若c为最大边长,则有a2+b2>c2.1.勾股定理的由来.2.勾股定理的探索方法:测量法和数格子法.3.勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.1.直角三角形ABC的两直角边BC=12,AC=16,则ΔABC的斜边AB的长是()A.20B.10C.9.6D.8解析:BC2=122=144,AC2=162=256,AB2=AC2+BC2=400=202.故选A.2.直角三角形两直角边长分别是6和8,则周长与最短边长的比是()A.7∶1B.4∶1C.25∶7D.31∶7解析:利用勾股定理求出斜边的长为10.故选B.3.(2015·温州模拟)如图所示,在ΔABC中,AB=AC,AD是ΔABC的角平分线,若BC=10,AD=12,则AC=.解析:根据等腰三角形三线合一,判断出ΔADC为直角三角形,利用勾股定理即可求出AC的长为13.故填13.4.如图所示,在RtΔABC中,∠ACB=90°,AB=10,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于.解析:根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆的面积.所以S1+S2=πAB2=12.5π.故填12.5π.第1课时1.概念:直角三角形两直角边的平方和等于斜边的平方.2.表示法:如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.一、教材作业【必做题】教材第3页随堂练习第1,2题.【选做题】教材第4页习题1.1第2题.二、课后作业【基础巩固】1.在RtΔABC中,AB=6,BC=10,∠A=90°,则AC=.2.若三角形是直角三角形,且两条直角边长分别为5,12,则此三角形的周长为,面积为.3.(2014·凉山中考)已知直角三角形的两边长分别是3和4,则第三边长为.4.如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是.【能力提升】5.如图所示,在正方形网格中,ΔABC的三边长a,b,c的大小关系是()A.a<b<cB.c<a<bC.c<b<aD.b<a<c6.如图所示,在一个由4×4个小正方形组成的正方形网格中,以EF为边的小正方形与正方形ABCD的面积比是.7.如图所示,阴影部分是一个正方形,它的面积为.8.如图所示,三个正方形的面积中,字母A所在的正方形的面积是.9.飞机在空中水平飞行,某一时刻飞机刚好飞到一个男孩头顶正上方4000米处,过20秒,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?10.一个门框的尺寸如图所示,一块长3 m,宽2.2 m的薄木板能否从门框内通过?为什么?11.在ΔABC中,AB=25,AC=30,BC边上的高AD=24,求BC的长.【拓展探究】12.如图所示,在RtΔABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=.13.如图所示,一个机器人从O点出发,向正东方向走3米到A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,…,按此规律走下去,当机器人走到A6点时,离O点的距离是.【答案与解析】1.8(解析:AC2=BC2-AB2=64.)2.3030(解析:由题意得此直角三角形的斜边长为13.)3.5或4.12米5.D(解析:两个正数比较大小,可以按照下面的方法进行:如果a>0,b>0,并且a2>b2,那么a>b.可以设每一个小正方形的边长为1,在直角三角形BDC中,根据勾股定理可以求出a2=10,同理可以求出b2=5,c2=13,因为a>0,b>0,c>0,且b2<a2<c2,所以b<a<c.)6.5∶8(解析:可以设每个小正方形的边长为1,则正方形ABCD的面积就是4×4=16,斜放的小正方形的边长应该是直角三角形DEF的斜边长,另外两条直角边长分别是1和3,根据勾股定理可以求出小正方形的面积是10.所以以EF为边的小正方形与正方形ABCD的面积比是10∶16=5∶8.)7.64 cm2(解析:设阴影部分的边长为x,则它的面积为x2=172-152=64(cm2).)8.7(解析:根据正方形的面积公式和勾股定理,知以直角三角形的两条直角边为边的正方形的面积和等于以斜边为边的正方形的面积,由勾股定理可知A=16-9=7.故A的面积为7.)9.解:根据题意可以先画出符合题意的图形.如图所示,在ΔABC中,∠C=90°,AC=4000米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里飞行的路程,即图中的CB长,由于RtΔABC的斜边AB=5000米=5千米,AC=4000米=4千米,由勾股定理得BC2=AB2-AC2,即BC=3千米.飞机20秒飞行3千米,那么它1小时飞行的距离为×3=540(千米).答:飞机每小时飞行540千米.10.解:连接AC,在RtΔABC中,根据勾股定理得AC2=AB2+BC2=12+22=5.又因为2.22=4.84<5.所以AC>木板的宽,所以木板可以从门框内通过.11.解:在RtΔABD中,由勾股定理得BD2=AB2-AD2=252-242=49,所以BD=7.在RtΔADC中,由勾股定理得CD2=AC2-AD2=302-242=324,所以CD=18.所以BC=BD+DC=7+18=25.12.2(解析:∵在RtΔABC中,AC=3,BC=4,∴AB=5,∵以点A为圆心,AC长为半径画弧,交AB于点D,∴AD=AC,∴AD=3,∴BD=AB-AD=5-3=2.)13.15(解析:解此题时要求出A1A2,A2A3,A3A4,A4A5,A5A6等各线段的长,再利用勾股定理求解.)从本节课教案的思路设计看,始终贯彻以学生为主体,充分运用各种手段调动学生参与探索活动的积极性.课前的导入利用生活中的问题,唤起学生带着问题进入本节课的学习.在探求直角三角形三边平方关系时,遵循了发现问题、证实问题到推导问题的认识过程.在引导学生进行探索的过程中,对学生的指导过多,不敢放手让学生自己进行尝试.比如在利用教材第2页下面的两幅图的时候,要求学生选取与教材一致的数据.在这里应该放手让学生自己选取数据.在总结勾股定理的时候,可以让学生自己总结勾股定理的数学表达式.在利用教材给出的示例进行勾股定理结论探索的时候,一定要立足于“面积相等”这个探究的立足点,这样才能保证学生找准探索活动的方向.随堂练习(教材第3页)1.解:字母A代表的正方形的面积=225+400=625,字母B代表的正方形的面积=225-81=144.2.解:不同意他的想法,因为29 in的电视机是指屏幕长方形的对角线长为29 in,由屏幕的长为58 cm,宽为46 cm,可知屏幕的对角线长的平方=,所以对角线长≈29 in.习题1.1(教材第4页)1.解:①x2=62+82=100,x=10.②y2=132-52=144,y=12.2.解:172-152=64,所以另一条直角边长为8 cm.面积为×8×15=60(cm2).3.解:本题具有一定的开放性,现给出4种方案:如图所示,设①的面积为g,③的面积为e,④的面积为f,⑦的面积为a,⑨的面积为b,⑧的面积为d,⑩的面积为c,则(1)a+b+c+d=g,(2)a+b+f=g,(3)e+c+d=g,(4)e+f=g.4.解:过C点作CD⊥AB于D,因为CA=CB=5 cm,所以AD=BD=AB=3 cm.在RtΔADC中,CD2=AC2-AD2,所以CD=4 cm,所以SΔABC=AB·CD=×6×4=12(cm2).(2014·淮安中考)如左下图所示,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,则线段AB的长度为()A.5B.6C.7D.25〔解析〕本题考查勾股定理的知识,解答本题的关键是掌握格点三角形中勾股定理的应用,建立格点三角形.如图所示,利用勾股定理求解AB的长度即可.由图可知AC=4,BC=3,则由勾股定理得AB=5.故选A.如图所示,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为.〔解析〕∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC.∵∠ABC=∠CDE,AC=CE,∴ΔABC ≌ΔCDE,∴BC=DE.根据勾股定理的几何意义,b的面积=a的面积+c的面积,∴b的面积=3+4=7.故填7.第课时1.掌握勾股定理,理解和利用拼图验证勾股定理的方法.2.能运用勾股定理解决一些简单的实际问题.通过拼图法验证勾股定理,使学生经历观察、猜想、验证的过程,进一步体会数形结合的思想.培养学生大胆探索,不怕失败的精神.【重点】经历勾股定理的验证过程,能利用勾股定理解决实际问题.【难点】用拼图法验证勾股定理.【教师准备】教材图1 - 4,1 - 5,1 - 6,1 - 7的图片.【学生准备】4个全等的直角三角形纸片.导入一:【提问】直角三角形的三边有怎样的关系?在研究直角三角形三边关系时,我们是通过测量、数格子的方法发现了勾股定理,那么,我们怎样用科学的方法去证明勾股定理的正确性呢?请跟我一起去探索吧! 导入二:上节课我们用什么方法探索发现了勾股定理?学生思考(测量、数格子).[过渡语]一样的科学结论,可能会有很多的证明方式,人们对勾股定理的验证,就给出了多种的证明方式,我们也一起来尝试下吧.思路一【师生活动】师:投影教材P4图1 - 4,分别以直角三角形的三条边的长度为边长向外作正方形,你能利用这个图说明勾股定理的正确性吗?你是如何做的?与同伴进行交流.生:割补法进行验证.师:出示教材P5图1 - 5和图1 - 6,想一想:小明是怎样对大正方形进行割补的?生:讨论交流.师总结:图1 - 5是在大正方形的四周补上四个边长为a,b,c的直角三角形;图1 - 6是把大正方形分割成四个边长为a,b,c的直角三角形和一个小正方形.图1 - 5采用的是“补”的方法,而图1 - 6采用的是“割”的方法,请同学们将所有三角形和正方形的面积用a,b,c的关系式表示出来.(1)动笔操作,独立完成.师:图1 - 5中正方形ABCD的面积是多少?你们有哪些方法求?与同伴进行交流.(2)分组讨论面积的不同表示方法.生:得出(a+b)2,4×ab+c2两种方法.(3)板书学生讨论的结果.【提问】你能利用图1 - 5验证勾股定理吗?生:根据刚才讨论的情况列出等式进行化简.师:化简之后能得到勾股定理吗?生:得到a2+b2=c2,即两直角边的平方和等于斜边的平方,验证了勾股定理.师:你能用图1 - 6也证明一下勾股定理吗?独立完成.师:(强调)割补法是几何证明中常用的方法,要注意这种方法的运用.思路二教师出示教材图1 - 4及“做一做”,让学生观察图1 - 5和图1 - 6.【提问】小明是怎样拼的?你来试一试.(学生以小组为单位展开拼图尝试,同伴之间讨论、争辩、互相启发,将拼好的图形画下来)【思考】“做一做”的三个问题.教师讲评验证勾股定理的方法.二、勾股定理的简单应用思路一出示教材P5例题,教师分析并抽象出几何图形.【问题】(1)图中三角形的三边长是否满足AB2=AC2+BC2?(2)要想求敌方汽车的速度,应先求什么?你能利用勾股定理完成这道题吗?(学生独立完成,教师指名板演)出示教材P8图1 - 8.【提问】判断图中三角形的三边长是否满足a2+b2=c2.(学生以组为单位合作完成,分别计算出每个正方形的面积.独立完成,有困难的可以合作完成)思路二我方侦察员小王在距离东西向公路400 m处侦察,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400 m,10 s后,汽车与他相距500 m,你能帮小王计算敌方汽车的速度吗?〔解析〕根据题意,可以画出右图,其中点A表示小王所在位置,点C,点B表示两个时刻敌方汽车的位置.由于小王距离公路400 m,因此∠C是直角,这样就可以由勾股定理来解决这个问题了.解:由勾股定理,可以得到AB2=BC2+AC2,也就是5002=BC2+4002,所以BC=300.敌方汽车10 s行驶了300 m,那么它1 h行驶的距离为300×6×60=108000(m),即它行驶的速度为108 km/h.[知识拓展]利用面积相等来验证勾股定理,关键是利用不同的方法表示图形的面积,一要注意部分面积和等于整体面积的思想,二要注意拼接时要做到不重不漏.曾任美国总统的伽菲尔德在《新英格兰教育日志》上发表了他提出的一个勾股定理证明,如图所示,这就是他拼出的图形.它的面积有两种表示方法,既可以表示为(a+b)(a+b),又可以表示为(2ab+c2),所以可得(a+b)(a+b)=(2ab+c2),化简可得a2+b2=c2.1.勾股定理的验证方法2.在实际问题中,首先要找到直角三角形,然后再应用勾股定理解题.1.下列选项中,不能用来证明勾股定理的是 ()解析:A,B,C都可以利用图形面积得出a,b,c的关系,即可证明勾股定理,故A,B,C选项不符合题意;D,不能利用图形面积证明勾股定理,故此选项正确.故选D.2.用四个边长均为a,b,c的直角三角板,拼成如图所示的图形,则下列结论中正确的是()A.c2=a2+b2B.c2=a2+2ab+b2C.c2=a2-2ab+b2D.c2=(a+b)2解析:由题意得到四个完全一样的直角三角板围成的四边形为正方形,其边长为c,里面的小四边形也为正方形,边长为b-a,则有c2=ab×4+(b-a)2,整理得c2=a2+b2.故选A.3.如图所示,大正方形的面积是,另一种方法计算大正方形的面积是,两种结果相等,推得勾股定理是.解析:如图所示,大正方形的面积是(a+b)2,另一种计算方法是4×ab+c2,即(a+b)2=4×ab+c2,化简得a2+b2=c2.答案:(a+b)24×ab+c2a2+b2=c24.操作:剪若干个大小形状完全相同的直角三角形,三边长分别记为a,b,c(如图(1)所示),分别用4张这样的直角三角形纸片拼成如图(2)(3)所示的形状,图(2)中的两个小正方形的面积S2,S3与图(3)中小正方形的面积S1有什么关系?你能得到a,b,c之间有什么关系?解析:根据已知图形的形状得出面积关系,进一步证明勾股定理即可求解.解:分别用4张直角三角形纸片,拼成如图(2)(3)所示的形状,观察图(2)(3)可发现,图(2)中的两个小正方形的面积之和等于图(3)中的小正方形的面积,即S2+S3=S1,这个结论用关系式可表示为a2+b2=c2.第2课时1.勾股定理的验证.2.勾股定理的简单应用.一、教材作业【必做题】教材第6页随堂练习.【选做题】教材第7页习题1.2第3题.二、课后作业【基础巩固】1.我国古代数学家赵爽的《勾股圆方图》是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a,b,那么(a-b)2的值是()。
北师大版—八年级上册数学—第一章勾股定理
第一节 探索勾股定理
导入课程
8米
问题:从电线杆距离地面8米处拉一个钢索, 如果这根钢索的固定点距离电线杆底 端为6米,那么这根钢索需要多长?
10米
6米
学习内容
通过前面的电线杆钢索可知道: 直角三角形的两个直角边的平方和等于斜边的平方。
直角边(股) 斜边(弦)
直角边(勾)
学习内容
勾股定理 直角三角形两直角边的平方和等于斜边的平方。如果用a,b,c分别 表示直角三角形的两直角边和斜边,则有:a2+b2=c2
c a
b
习题练习
1. 求下列直角三角形未知边的长度。
62+82=x2 x=10
52+y2=132 y=12
习题练习
2. 求斜边长积。
解:设另一直角边长为X cm。 X2+152=172 X=8 S=(15×8)/2=60
答:直角三角形面积为60.
北师版八年级数学上册第一章 勾股定理 教案
第一章勾股定理1.1 探索勾股定理第1课时探索勾股定理1.会用数格子(或割、补、拼等)的办法体验勾股定理的探索过程、理解勾股定理反映的直角三角形三边之间的数量关系.2.学会运用勾股定理进行简单的计算和实际运用.(重难点)阅读课本P1~3,完成预习内容.(一)知识探究1.观察下面两幅图:2.填表:(1)两图中三个正方形A,B,C的面积有什么关系?解:A的面积+B的面积=C的面积.(2)两图中三个正方形A,B,C围成的直角三角形的三边有什么关系?解:A的边长的平方+B的边长的平方=C的边长的平方.3.阅读课本第3页知识并牢记勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.(二)自学反馈1.下列说法中正确的是(C)A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,则a2+b2=c2D.在Rt△ABC中,∠B=90°,则a2+b2=c22.若Rt△ABC中,∠C=90°,且AB=10,BC=8,则AC的值是(B)A.5 B.6C.7 D.83.如图,字母B所代表的正方形的面积是(C)A.12B.13C.144D.194活动1 小组讨论例1 求下列图形中未知正方形的面积或未知边的长度.解:左边未知正方形的面积为225,右边x=8.例2 已知在Rt△ABC中,∠C=90°.①若a=3,b=4,则c2=25,c=5;②若a=6,b=8,则c2=100,c=10;③若a=40,b=9,则c=41;④若a=15,b=8,则c=17.活动2 跟踪训练1.在△ABC中,∠C=90°.若 a=5,b=12,则 c=13;若c=41,a=9,则b=40.2.等腰△ABC的腰长AB=10 cm,底BC为16 cm,则底边上的高为6,面积为48.3.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为(C)A.42 B.32C.42或 32 D.37 或 33活动3 课堂小结1.这一节课我们一起学习了哪些知识和思想方法?2.对这些内容你有什么体会?与同伴进行交流.第2课时验证勾股定理及其计算1.学会用拼图法、等积法验证勾股定理的正确性.2.学会用勾股定理解决实际问题.(重难点)阅读课本P4~6,完成预习内容.(一)知识探究求出下列未知边的长度.解:y=102-62=64=8.(二)自学反馈1.在△ABC中,∠C=90°.若a=6,c=10,则b=8.2.某农舍的大门是一个木制的矩形栅栏,它的高为2 m,宽为1.5 m,现需要在相对的顶点间用一块木板加固,木板的长为2.5m.活动1 小组讨论例1 你能利用图中的正方形和直角三角形验证勾股定理吗?用割补的方法验证勾股定理:(画图说明理由)方法一:方法二:例2我方侦察员小王在距离东西向公路400 m处侦察,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400 m,10 s后,汽车与他相距500 m,你能帮小王算出敌方汽车的速度吗?解:由勾股定理,得AB2=BC2+AC2,即5002=BC2+4002,所以BC=300.敌方汽车10 s行驶了300 m,那么它1 h行驶的距离为300×6×60=108 000(m),即敌方汽车的速度为108 km/h.活动2 跟踪训练1.等腰三角形的腰长为13 cm ,底边长为10 cm ,则它的面积为(D)A .30 cm 2B .130 cm 2C .120 cm 2D .60 cm 22.直角三角形两直角边长分别为5 cm ,12 cm ,则斜边上的高为6013cm.3.你能利用这种方法证明勾股定理吗?解:梯形由三个直角三角形组合而成,利用面积公式,列出代数关系式得:12(a +b)(b +a)=2·12ab +12c 2.化简即为a 2+b 2=c 2.4.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达地点B200 m ,结果他在水中实际游了520 m ,该河流的宽度为多少?解:根据图中数据,运用勾股定理求得AB =AC 2-BC 2=5202-2002=480(m). 答:该河流的宽度为480 m. 活动3 课堂小结通过本节的学习你有何收获呢?1.2 一定是直角三角形吗1.学会用勾股定理逆定理判断三角形是不是直角三角形.(重点)2.理解勾股数的概念,并准确的判断一组数是不是勾股数.(重点)3.能对直角三角形的判别条件进行一些综合运用.(难点)阅读课本P9~10,完成预习内容.(一)知识探究下列各组数是一个三角形的三边长a、b、c.3、4、5;5、12、13;6、10、12.(1)这三组数都满足a2+b2=c2吗?(2)分别以每组数为边长作出三角形,用量角器量一量,它们都是直角三角形吗?(单位:cm)(3)请你说说三角形三边符合什么条件才是直角三角形呢?(4)请你举出几组勾股数.解:(1)前面两组满足,最后一组不满足.(2)前面两组数构成的三角形是直角三角形,最后一组数构成的三角形不是直角三角形.(3)满足a2+b2=c2才是直角三角形.(4)比如9,40,41;7,24,25;6,8,10等.(二) 自学反馈1.下列各组数中,以a,b,c为边的三角形不是直角三角形的是(A)A.a=1.5,b=2,c=3B.a=7,b=24,c=25C.a=6,b=8,c=10D.a=3,b=4,c=52.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为(A)A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对活动1 小组讨论例1判断由线段a、b、c组成的三角形是不是直角三角形.(1)a=15,b=8,c=17;(2)a=13,b=14,c=15.解:(1)因为152+82=225+64=289,172=289,152+82=172,所以这个三角形是直角三角形.(2)因为132+142=169+196=365,152=225,132+142≠152,所以这个三角形不是直角三角形.例2一个零件的形状如图1所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如图2所示,这个零件符合要求吗?图1 图2解:在△ABD中,AB2+AD2=9+16=25=BD2,所以△ABD是直角三角形,∠A是直角.在△BCD中,BD2+BC2=25+144=169=CD2,所以△BCD是直角三角形,∠DBC是直角.因此,这个零件符合要求.活动2 跟踪训练1.如果三条线段长a 、b 、c 满足a 2=c 2-b 2,那么这三条线段组成的三角形是不是直角三角形?为什么?解:是.因为a 2=c 2-b 2,所以a 2+b 2=c 2,由勾股定理的逆定理判断是直角三角形. 2.以下列各组数为边长,能组成直角三角形的是(C) A .5,6,7 B .10,8,4 C .7,25,24 D .9,17,153.古希腊的哲学家柏拉图曾指出,如果m 表示大于1的整数,a =2m ,b =m 2-1,c =m 2+1,那么a 、b 、c 为勾股数.你认为对吗?如果对,你能利用这个结论得出一些勾股数吗?解:对.因为a 2+b 2=(2m)2+(m 2-1)2=4m 2+m 4-2m 2+1=m 4+2m 2+1=(m 2+1)2,而c 2=(m 2+1)2,所以a 2+b 2=c 2,即a 、b 、c 是勾股数.m =2时,勾股数为4、3、5;m =3时,勾股数为6、8、10;m =4时,勾股数为8、15、17. 4.如图,AB =3,CB =4,∠ABC =90°,CD =13,AD =12.求该图形的面积.解:连接AC.因为在Rt △ACB 中,AB =3,CB =4, 所以AC =32+42=5. 在△ACD 中,因为AC 2+AD 2=52+122=132=DC 2, 所以△ADC 为直角三角形.所以该图形的面积为S △ADC -S △ACB =12×5×12-12×3×4=24.活动3 课堂小结1.勾股定理的逆定理. 2.互逆命题. 3.互逆定理. 4.勾股数.5.勾股定理的应用:(1)判断三角形的形状;(2)用于求角的度数;(3)用于求边长;(4)用于求面积;(5)用于证垂直.1.3 勾股定理的应用1.学会用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.(重点) 2.在实际问题中构造直角三角形,提高建模能力,进一步深化对构造法和代数计算法的理解.阅读课本P13~14,完成预习内容. (一)知识探究如图,在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B 处,你们想一想,蚂蚁怎么走最近?容易得出四种方案:情形(1) 情形(2) 情形(3) 情形(4)易算出:情形(1)中A →B 的路线长为:AA ′+d , 情形(2)中A →B 的路线长为:AA ′+πd2.所以情形(1)的路线比情形(2)要短.在情形(3)和(4)的比较中出现困难,可用剪刀沿母线AA ′剪开圆柱得到矩形,情形(3)A →B 是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)较短,最后通过计算比较(1)和(4)即可. (1)中A →B 的路线长为:AA ′+d.(2)中A →B 的路线长为:AA ′+A ′B >AB. (3)中A →B 的路线长为:AO +OB >AB. (4)中A →B 的路线长为:AB.得出结论:利用展开图中两点之间线段最短解决问题.沿母线剪开圆柱体,具体观察.接下来怎样计算AB?解:在Rt △AA ′B 中,利用勾股定理可得AB 2=AA ′2+A ′B 2,若已知圆柱体高为12 cm ,底面半径为3 cm ,π取3,则AB 2=122+(3×3)2,所以AB =15. (二) 自学反馈一根垂直于地面的电线杆AC =16 m ,因特殊情况,在点B 处折断,顶端C 落在地面上的C ′处,测得A C ′的长是8 m ,求底端A 到折断点B 的长.解:设电线杆底端A 到折断点B 的长为x m ,则斜边为长(16-x)m ,根据勾股定理,得x 2+82=(16-x)2.解得x =6.故底端A 到折断点B 的长为6 m.活动1 小组讨论例1 李叔叔想要检测雕塑底座正面的AD 边和BC 边是否分别垂直于底边AB ,但他随身只带了卷尺. (1)你能替他想办法完成任务吗?(2)李叔叔量得AD 长是30厘米,AB 长是40厘米,BD 长是50厘米,AD 边垂直于AB 边吗?为什么?解:(1)能.(2)因为AD2+AB2=302+402=2 500,BD2=2 500,所以AD2+AB2=BD2.所以AD和AB垂直.例2 如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高CE=3 m,CD=1 m,试求滑道AC的长.解:设滑道AC的长为x m,则AB的长为x m,AE的长为(x-1)m.在Rt△ACE中,∠AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32=x2,解得x=5.故滑道AC的长度为5 m.活动2 跟踪训练1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6 km/h的速度向正东行走,1小时后乙出发,他以5 km/h的速度向正北行走.上午10:00,甲、乙两人相距多远?解:如图,已知A是甲、乙的出发点,10:00甲到达B点,乙到达C点.则AB=2×6=12(km),AC=1×5=5(km).在Rt△ABC中,BC2=AC2+AB2=52+122=169=132.所以BC=13 km.故甲、乙两人相距13 km.2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.解:利用展开图中两点之间线段最短可知,AB2=152+202=625=252,所以蚂蚁走的最近距离为25.3.有一个高为1.5 m,半径是1 m的圆柱形油桶,在靠近桶边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5 m,问这根铁棒的长在什么范围内?解:设伸入油桶中的长度为x m.则伸入长度最长时:x2=1.52+22.x=2.5.所以这根铁棒最长是2.5+0.5=3(m).伸入长度最短时:x=1.5.所以这根铁棒最短是1.5+0.5=2(m).答:这根铁棒的长应在2~3 m之间.活动3 课堂小结你会应用勾股定理解决问题了吗?。
北师大版初中数学八年级(上)第一章勾股定理1-1探索勾股定理(第1课时)教学详案
第一章勾股定理1探索勾股定理第2课时勾股定理的证明及应用教学目标1.经历运用拼图的方法说明勾股定理是正确的过程,在教学活动中发展学生的探究意识和合作交流的习惯.2.通过对勾股定理的探索,在探索实践中理解并掌握勾股定理并且会运用勾股定理.教学重难点重点:会验证勾股定理,并能应用勾股定理解决一些实际问题.难点:经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.教学过程导入新课教师提出问题:1.勾股定理的内容是什么?(指名学生回答)2.上节课我们仅仅是通过测量和数格子,对具体的直角三角形进行探索发现了勾股定理,对一般的直角三角形勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?教师:事实上,现在已经有数百种勾股定理的验证方法,这节课我们就来验证一下勾股定理.设计意图:回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度,介绍世界上一些验证方法,激发学生的学习兴趣.探究新知一、预习新知让学生自主预习课本第5页.提出问题:如下图,分别以直角三角形的三条边为边向外作正方形,你能利用这幅图说明勾股定理的正确性吗?.设计意图:通过让学生自己动手作图、验证不仅能锻炼学生的动手能力,还能加深对勾股定理的理解.二、合作探究验证勾股定理为了计算上图中大正方形的面积,小明对这个大正方形进行了适当割补后得到了下面问题1:你可以利用两种方法来表示图1中的大正方形的面积吗?学生先独立思考,再小组交流得到答案(a+b)2和2ab+c2.问题2:你可以得到怎样的等式?从而能得到什么?学生:(a +b )2 = 2ab +c 2,化简后得到a 2+b 2 = c 2.从而利用图1验证了勾股定理,此方法称为毕达哥拉斯法.教师:我们利用拼图的方法,将形的问题与数的问题结合起来,利用整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?问题3:图2中小正方形的边长是多少?问题4:你可以利用两种方法来表示图2中的大正方形的面积吗?问题5:你可以得到怎样的等式?从而能得到什么?提出几个问题让学生根据问题独立探究,再小组交流,最后请一位同学上台讲解利用图2验证勾股定理.图2中小正方形边长是b -a ,(b -a)2和c 2-2ab 都可以表示图2中小正方形的面积,根据同一图形面积相等得到(b -a)2 = c 2-2ab ,化简后得到a 2+b 2 = c 2.从而利用图2也验证了勾股定理,图2我们又称为赵爽弦图.设计意图:教师层层设问引导学生来完成勾股定理的验证,通过两个图形让学生体会数形结合的思想并体会成功的快乐,学生先拼图从形上感知,再利用面积验证,比较容易掌握本节课的重点内容.前面已经讨论了直角三角形的三边长满足的关系,那么锐角三角形和钝角三角形是否也满足这一关系呢? a 2+b 2 = c 2.a ,b ,c 不满足a 2+b 2 = c 2,通过这个结论,学生将对直角三角形的三边关系有进一步认识.巩固练习= S △ABE +S △BCE +S △EDA ,又∵ S 梯形ABCD =12(a +b )2,S △BCE = S △EDA = 12ab ,S △ABE = 12c 2, ∴ 12(a +b )2 = 2×12ab +12c 2, ∴ a 2+b 2 = c 2,即勾股定理得证.典型例题【例1】作8个全等的直角三角形,设它们的两条直角边长分别为a ,b ,斜边长为c ,再作三个边长分别为a ,b ,c 的正方形,将它们如下图所示拼成两个正方形.证明:a 2+b 2 = c 2.a+b,因此它们的面积相等.我们再用不同的方法来表示这两个正方形的面积,即可证明勾股定理.【证明】由图易知,这两个正方形的边长都是a+b,∴它们的面积相等.左边大正方形面积可表示为a2+b2+12ab×4,右边大正方形面积可表示为c2+12ab×4.∵a2+b2+12ab×4 = c2+12ab×4,∴a2+b2 = c2.【总结】根据拼图,通过对拼接图形的面积的不同表示方法,建立相等关系,从而验证勾股定理.典型例题【例2】如图是某沿江地区交通平面图,为了加快经济发展,该地区拟修建一条连接M,O,Q三城市的沿江高速公路,已知沿江高速公路的建设成本为5 000万元/km,该沿江高速公路的造价预计是多少?【问题探索】总造价计算公式是解决此题目的关键,总造价 = 每千米造价×千米数.【解】在Rt△OMN中,根据勾股定理得MN 2+ON 2 = OM 2,∴302+402 = OM 2,∴OM = 50 km.同理O Q = 130 km,∴造价为(50+130)×5 000 = 900 000(万元).答:造价预计是900 000万元.【总结】解答本题的关键是先利用勾股定理求出高速公路的长度,再求总造价.课堂练习1.若等腰三角形的腰长为13 cm,底边长为10 cm,则它的面积为()A.30 cm2B.130 cm2C.120 cm2D.60 cm22.放学以后,小丽和小红从学校出发,分别沿东南方向和西南方向回家.若小丽和小红行走的速度都是40 m/min,小丽走了15 min回到家,小红走了20 min回到家,则小丽家和小红家间的距离为()A.600 m B.800 mC.1 000 m D.不确定3.直角三角形两直角边长分别为8 cm,15cm,则斜边上的高为______.4.某农舍的大门是一个木制的矩形栅栏,它的高为2 m,宽为1.5 m,现在需要在相对的顶点间用一块木板加固,则这块木板的长为______.5.如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA1 = 2 km,BB1 = 4 km,A1B1 = 8 km.现要在高速公路上A1,B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离之和.参考答案1.D2.C3.12017cm 4.2.5 m5.解:如图作点B关于MN的对称点B′,连接AB′交A1B1于点P,连接BP.则AP+BP = AP+PB′ = AB′,易知点P即为到点A,B距离之和最短的点.过点A作AE⊥BB′于点E,则AE = A1B1 = 8 km,B′E = AA1+BB1 = 2+4 = 6( km).由勾股定理,得B′A2 = AE 2+B′E 2 = 82+62,∴AB′ = 10 km,即AP+BP = AB′ = 10 km.10 km.课堂小结(学生总结,老师点评)勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方.验证方法:两种证法.布置作业1.(必做题)习题1.2第1,3题2.(选做题)第4题板书设计1 探索勾股定理第2课时勾股定理的证明及应用1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.2.两种证明方法.。
北师大版八年级数学上册第一章《勾股定理》教案
第一章勾股定理1 探索勾股定理第1课时勾股定理(1)1.经历测量和用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力.3.利用勾股定理,已知直角三角形的两边求第三边长.4.在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.5.经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识.6.通过对勾股定理历史的了解,感受数学变化,激发学习热情.7.在探究活动中,体现解决问题方法的多样性,培养学生的合作交流意识和探索精神.【教学重点】探索勾股定理.【教学难点】用测量和数格子的方法探索勾股定理.一、创设情境,导入新课我们知道,任意三角形的三条边必须满足定理:三角形的两边之和大于第三边.对于等腰三角形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相等的特殊关系.那么对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特殊的关系,这就是我们这一节要研究的问题:勾股定理.出示投影1(章前的图文P1),介绍数学家曾用这个图形作为与“外星人”联系的信号.【教学说明】通过复习旧知识,引入新课.出示投影,介绍与勾股定理有关的背景,激发学生的学习兴趣.二、思考探究,获取新知勾股定理做一做:1.在纸上画若干个直角三角形,分别测量它们的三条边,看看三边长的平方之间有怎样的关系?与同伴交流.【教学说明】学生根据教师的要求完成这个问题,自主交流发现直角三角形的性质.2.观察教材图1—2,正方形A中有个小方格,即A的面积为个面积单位.正方形B中有个小方格.即B的面积为个面积单位.正方形C中有个小方格,即C的面积为个面积单位.你是怎样得出上面结果的?在学生交流回答的基础上教师接着发问.教材图1—2中,A、B、C之间的面积之间有什么关系?【教学说明】通过观察特殊图形下方格数与正方形面积之间的转化,进一步体会探索勾股定理.归纳得出结论:S A+S B=S C.3.教材图1—3中,A、B、C之间是否还满足上面的关系?你是如何计算的?【教学说明】通过观察计算一般情况下方格数与正方形面积之间的转化,进一步加强对勾股定理的理解.4.如果直角三角形两直角边分别是1.6个单位长度和2.4个单位长度,上面所猜想的数量关系还成立吗?说明你的理由.【教学说明】渗透从特殊到一般的数学思想,充分发挥学生的主体地位,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题、解决问题的能力得到了提高.议一议:你能发现直角三角形三边长度之间的关系吗?【教学说明】学生自主探究,发现直角三角形的性质,并整合成精确的语言将之表达出来,有利于培养学生综合概括能力和语言表达能力.【归纳结论】直角三角形的两直角边的平方和等于斜边的平方.这就是著名的“勾股定理”.也就是说:如果直角三角形的两直角边为a、b,斜边为c,那么a2+b2=c2.我国古代称直角三角形的较短的直角边为勾,较长的直角边为股,斜边为弦,这便是勾股定理的由来.三、运用新知,深化理解1.在直角三角形ABC中,∠C=90°,若a=5,b=12,则c= .2.在直角三角形的ABC中,它的两边长的比是3∶4,斜边长是20,则两直角边长分别是.【教学说明】学生的完成,加深对勾股定理的理解和检测对勾股定理的简单运用,对学生的疑惑或出现的错误及时指导,并进行强化.【答案】1.13;2.12,16四、师生互动,课堂小结通过本节课的学习,你掌握了哪些新知识,还有什么困惑?【教学说明】教师引导学生回顾新知识,加强对勾股定理的理解,进一步完善了学生对知识的梳理.完成练习册中本课时相应练习.本节内容重在探索与发现,要给充分的时间让学生讨论与交流.适当的练习以巩固所学也是必要的,当然,这些内容还需在后面的教学内容再加深加广.第2课时勾股定理(2)1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯.2.掌握勾股定理和它的简单应用.3.通过从实际问题中抽象出直角三角形这一模型,初步掌握转化和数形结合的思想方法.4.经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法.5.在数学活动中发展了学生的探究意识和合作交流的习性;体会勾股定理的应用价值,通过本节课学习,让学生体会到数学来源于生活,又应用到生活中,增加学生应用数学知识解决实际问题的经验和感受.【教学重点】能熟练应用拼图法证明勾股定理.【教学难点】用面积证勾股定理.一、创设情境,导入新课我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需要加以论证,下面就是今天所要研究的内容.【教学说明】让学生经历从特殊到一般的数学方法,明白数学问题是需要通过一定的论证才能说明它的正确性,为后面学习证明打下埋伏.二、思考探究,获取新知勾股定理的验证及简单运用做一做:1.画一个直角三角形,分别以这个直角三角的三边为边长向外作正方形,你能利用这个图证明勾股定理的正确性吗?你是如何做的?与同伴进行交流.【教学说明】让学生进一步体会探索勾股定理的过程,体会数形结合的思想.2.为了计算教材图1—4中大正方形的面积,小明对这个大正方形适当割补后,得到教材P51—5、1—6图.(1)将所有三角形和正方形的面积用a,b,c的关系式表示出来;(2)教材图1—5、1—6中正方形ABCD的面积分别是多少?你们有哪些表示方式?与同伴进行交流.(3)你能分别利用教材图1—5、1—6验证勾股定理吗?【教学说明】学生通过各种方法验证勾股定理的正确性,加深对勾股定理的理解,又让学生体会到一题多解.【归纳结论】勾股定理的证明方法达300多种,请同学们利用业余时间探究、讨论并阅读教材P7-8的其它证明勾股定理的方法,以开阔事学们的视野.三、运用新知,深化理解1.一块长3m,宽2.2m的薄木板能否从一个长2m,宽1m的门框内通过,为什么?2.飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?【教学说明】让学生从实际生活的角度大胆的去考虑,用生活经验和学过的知识去解答.并学会把实际问题抽象为直角三角形的数学模型的过程,能够熟练地将勾股定理应用到现实生活中去.【答案】1.能,让薄木板的宽从门框的对角线斜着通过.2.分析:根据题意,可以先画出符合题意的图形.如图,图中△ABC的∠C=90°,AC=4000米,AB=5000米欲求飞机每时飞行多少千米,就要知道20秒时间里飞行的路程,即图中的CB的长,由于△ABC的斜边AB=5000米,AC=4000米,这样BC就可以通过勾股定理得出,这里一定要注意单位的换算.解:由勾股定理得BC2=AB2-AC2=52-42=9(km2)即BC=3千米飞机20秒飞行3千米.那么它1小时飞行的距离为:3600/20×3=540(千米/时)答:飞机每小时飞行540千米.四、师生互动,课堂小结通过这节课的学习,你学会了哪几种证明勾股定理的方法?还有哪些疑问?【教学说明】总结归纳帮助学生进一步掌握解决实际问题的关键是抽象出相应的数学模型.完成练习册中本课时相应练习.了解多种证明勾股定理的方法,有助于加深对勾股定理内容的理解,但这需要花一定的时间,可以让学生课外了解.并运用所学知识解决实际问题,体验数学来源于生活,生活中也蕴含着许多数学道理.2 一定是直角三角形吗1.掌握直角三角形的判别条件,并能进行简单应用.2.通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用.3.敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.【教学重点】探索并掌握直角三角形的判别条件.【教学难点】运用直角三角形判别条件解题.一、创设情境,导入新课展示一根用13个等距的结把它分成等长的12段的绳子,请三个同学上台,按老师的要求操作.甲:同时握住绳子的第一个结和第十三个结.乙:握住第四个结.丙:握住第八个结.拉紧绳子,让一个同学用量角器,测出这三角形其中的最大角.发现这个角是多少度?古埃及人曾经用这种方法得到直角,这三边满足了什么条件?怎样的三角形才能成为直角三角形呢?这就是我们今天要研究的内容.【教学说明】利用古埃及人得到直角的方法,学生亲自动手实践,体验从实际问题中发现数学,同时明确了本节课的研究问题.既进行了数学史的教育,又锻炼了学生的动手实践、观察探究的能力.二、思考探究,获取新知直角三角形的判别做一做:下面的三组数分别是一个三角形的三边a、b、c.5、12、137、24、258、15、171.这三组数都满足a2+b2=c2吗?2.分别用每组数为三边作三角形,用量角器量一量,它们都是直角三角形吗?3.如果三角形的三边长为a、b、c,并满足a2+b2=c2.那么这个三角形是直角三角形吗?【教学说明】鼓励学生大胆发言,让他们体验通过实际的计算和探究得到结论的乐趣,增强了他们勇于探索的精神.【归纳结论】如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.大家可以想这样的勾股数是很多的.今后我们可以利用“三角形三边a、b、c满足a2+b2=c2时,三角形为直角三角形”来判断三角形的形状,同时也可以用来判定两条直线是否垂直的方法.三、运用新知,深化理解1.下列几组数能否作为直角三角形的三边长?说说你的理由.(1)9,12,15;(2)15,36,39;(3)12,35,36;(4)12,18,22.2.已知△ABC中BC=41,AC=40,AB=9,则此三角形为三角形,是最大角.3.四边形ABCD中已知AB=3,BC=12,CD=13,DA=4,且∠DAB=90°,求这个四边形的面积.【教学说明】学生独立完成,能够加深判断一个三角形是直角三角形的条件的理解,帮助学生答疑解惑,及时指导,矫正强化.在完成上述题目后,引导学生完成《创优作业》中本课时的“课堂自主演练”部分.【答案】1.(1)(2)两组能作为直角三角形的三边长.∵92+122=152,152+362=392.∴这两个三角形都是直角三角形.2.直角,∠A3.解:连结BD,在△ABD中,∠DBA=90°,BD2=AB2+AD2=32+42,BD=5.在△DBC中,∵52+122=132,即DB2+BC2=DC2,∴△DBC为直角三角形,∠DBC=90°,∴S四边形ABCD=S△DAB+S△DBC=12×3×4+12×5×12=36.四、师生互动,课堂小结1.判断一个三角形是直角三角形的条件.2.今天的学习,你有哪些收获?还有哪些困惑?与同学交流.【教学说明】及时反馈教与学双边活动的结果,查漏补缺,让学生养成系统整理知识的好习惯.1.教材P10-11习题1.3第2、3、4题.2.完成练习册中本课时相应练习.这是勾股定理的逆向应用.大部分同学只要能正确掌握勾股定理的话,都不难理解.当然勾股定理的理解是关键.3勾股定理的应用1.能运用勾股定理及直角三角形的判别条件解决简单的实际问题.2.学生观察图形,勇于探索图形间的关系,培养学生的空间观念.3.在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.4.在不同条件,不同环境中反复运用勾股定理及直角三角形的判定条件,使学生达到熟练、灵活运用的程度.在解决问题的过程中,培养学生的空间观念,提高学生建立数学模型的能力.5.通过解决实际问题,提高了学生应用数学的意识和锻炼了学生与他人交流合作的意识,再次感悟勾股定理和直角三角形判定的应用价值.【教学重点】探索发现给定事物中隐含的勾股定理及直角三角表判定条件,并用它们解决生活中的实际问题.【教学难点】利用数学中的建模思想构造直角三角形,灵活运用勾股定理及直角三角形的判定,解决实际问题.一、创设情境,导入新课勾股定理的应用前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?日常生活当中,我们还会遇到下面的问题.【教学说明】回忆勾股定理,巩固旧知识,解决实际问题,完成知识的过渡,为学生学习新知识又一次打下了坚实的基础.二、思考探究,获取新知蚂蚁怎么走最近?出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是多少?(π的取值3).(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么?你画对了吗?(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱的侧面爬行的最短路程是多少?【教学说明】让学生经历把曲面上两点之间的距离转化为平面上两点之间线段最短更为直观,再次利用勾股定理解决生活中较为复杂的实际问题,使所学的知识得到充分运用.【归纳结论】我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:哪条路线是最短呢?你画对了吗?第(4)条路线最短.因为“两点之间的连线中线段最短”.三、运用新知,深化理解1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1小时后乙出发,他以5千米/时的速度向北进行,上午10∶00,甲、乙两人相距多远?2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?【教学说明】学生独立解决,把生活中的实际问题转化为解直角三角形,对学生所学的知识进行强化,以利于教师及时纠正.【答案】1.分析:首先我们需要根据题意将实际问题转化成数学模型.解:(如图)根据题意,可知A是甲、乙的出发点,10∶00时甲到达B点,则AB=2×6=12(千米);乙到达C点,则AC=1×5=5(千米).在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.(1)x2=1.52+22,x2=6.25,x=2.5所以最长是2.5+0.5=3(米).(2)x=1.5,最短是1.5+0.5=2(米).答:这根铁棒的长应在2~3米之间(包含2米、3米).四、师生互动,课堂小结通过本节课的学习,你掌握了哪些知识?还有哪些疑问?【教学说明】学生梳理知识,加强教与学的互通,进一步提高课堂教学的效果.1.教材P14~15第1、2、3、4题.2.完成练习册中本课时相应练习.这节课的内容综合性比较强,可能有些同学掌握得不是太好,今后要继续加强这方面的训练.本章归纳总结1.掌握勾股定理和如何判断一个三角形是直角三角形,能灵活运用它们解决实际问题.2.通过梳理本章知识点,回顾解决实际问题中所涉及的数形合的思想和逆向思维思考问题,以便能熟练灵活运用.3.让学生养成把已有的知识建立联系的思维习性,积极参与数学活动,在活动中学会思考、讨论、交流和合作,激发他们的求知欲望.4.用勾股定理和如何判断一个三角形是直角三角形解决简单问题.【教学难点】能理解运用勾股定理解题的基本过程;掌握在复杂图形中确定相应的直角三角形,根据勾股定理建立方程.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,构建知识结构框架,让学生比较系统地了解本章知识及它们之间的相互联系.二、释疑解惑,加深理解1.勾股定理的证明勾股定理的证明方法有多种,一般是采用剪拼的方法,它把“数与形”巧妙地联系起来,是几何与代数沟通的桥梁,同时也为后面的四边形、圆、圆形变换、三角函数等知识的学习提供了方法和依据.说明:利用面积相等是证明勾股定理的关键所在.2.勾股定理中的分类讨论在勾股定理的实际运用中,如果不明给出直角三角形中有两条边的长,要求第三条边的长就需要分两种情况讨论,即第一种情况是告诉两条直角边长求斜边,第二种情况是告诉一条直角边和斜边长求另一条直角边.3.曲面两点间的距离问题在解决曲面中两点间的距离时,往往是要将曲面问题转化为同一平面内两点之间的距离,这是解决问题的关键.三、典例精析,复习新知例1 一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕是DE(如图所示),求CD的长.【分析】设CD为x,∵AD=BD,∴AD=8-x. ∴在△ACD中,根据勾股定理列出关于x的方程即可求解.解:由折叠知,DA=DB.在Rt△ACD中,由勾股定理得AC2+CD2=AD2,若设CD=xcm,则AD=DB=(8-x)cm,代入上式得62+x2=(8-x)2,解得x=7/4=1.75(cm),即CD的长为1.75cm.例2有一个立方体礼盒如图所示,在底部A处有一只壁虎,C′处有一只蚊子,壁虎急于捕捉到蚊子充饥.(1)试确定壁虎所走的最短路线;(2)若立方体礼盒的棱长为20cm,则壁虎如果想在半分钟内捕捉到蚊子,每分钟至少要爬行多少厘米?(保留整数)【分析】求几何表面的最短距离时,通常可以将几何体表面展开,把立体图形转化为平面图形.解:(1)若把礼盒上的底面A′B′C′D′竖起来,如图所示,使它与立方体的正面(ABB′A′)在同一平面内,然后连接AC′,根据“两点间线段最短”知线段AC′就是壁虎捕捉蚊子所走的最短路线.(2)由(1)得,△ABC′是直角三角形,且AB=20,BC′=40.根据勾股定理,得AC′2=AB2+BC′2=202+402,AC′≈44.7(cm),44.7÷0.5≈90(cm/min).所以壁虎要想在半分钟内捕捉到蚊子,它每分钟至少爬行90厘米(只入不舍).【教学说明】师生共同回顾本章主要知识,对于例题中需要注意的事项教师可以适当点评,便于学生熟练加以运用.四、复习训练,巩固提高1.已知在△ABC中,∠B=90°,一直角边为a,斜边为b,则另一条直角边c满足c2= .2.在Rt△ABC中,∠C=90°,若a=12,c-b=8,则b= ,c= .3.如图所示,在△ABC中,∠ACB=90°,CD⊥AB,D为垂足,AC=2.1,BC=2.8.求:(1)△ABC的面积;(2)斜边AB的长;(3)斜边AB上的高CD的长;(4)斜边被分成的两部分AD和BD的长.【答案】1.b2-a2;2.5,13;3.解:(1)S△ABC=12AC×BC=12×2.1×2.8=2.94.(2)AB2=AC2+BC2=2.12+2.82=12.5,∴AB=3.5.(3)由三角形的面积公式得12AC×BC=12AB×CD,所以12×2.1×2.8=12×3.5×CD,解得CD=1.68.(4)在Rt△ACD中,由勾股定理得AD2+CD2=AC2,∴AD2=AC2-CD2=2.12-1.682=(2.1+1.68)(2.1-1.68)=3.78×0.42=2×1.89×2×0.21=22×9×0.214×0.21.∴AD=2×3×0.21=1.26.∴BD=AB-AD=3.5-1.26=2.24.五、师生互动,课堂小结本节复习课你能灵活运用勾股定理和如何判断一个三角形是直角三角形的解决问题吗?还有哪些不足?【教学说明】教师引导学生归纳本章主要的知识点,对于遗漏或需要强调的地方,教师应及时补充和点拨.1.复习题4.5第11、12题.2.完成练习册中本课时相应练习.勾股定理是解决线段计算问题的主要依据,它单独命题比较少见,更多时候是与其他知识综合应用,在综合题中如何找到适当的直角三角形是解题的关键.。
北师大版八年级上册数学第一章勾股定理全章知识点及习题(经典)(K12教育文档)
(直打版)北师大版八年级上册数学第一章勾股定理全章知识点及习题(经典)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)北师大版八年级上册数学第一章勾股定理全章知识点及习题(经典)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)北师大版八年级上册数学第一章勾股定理全章知识点及习题(经典)(word版可编辑修改)的全部内容。
baD C第一章 勾股定理知识点一:勾股定理定义画一个直角边为3cm 和4cm 的直角△ABC ,量AB 的长;一个直角边为5和12的直角△ABC,量AB 的长发现32+42与52的关系,52+122和132的关系,对于任意的直角三角形也有这个性质吗?直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2)1.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系: ; ⑵若D 为斜边中点,则斜边中线 ;⑶若∠B=30°,则∠B 的对边和斜边: ;(给出证明) ⑷三边之间的关系: 。
知识点二:验证勾股定理知识点三:勾股定理证明(等面积法)例1.已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c.求证:a 2+b 2=c 2。
证明:例2.已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
证明:知识点四:勾股定理简单应用 在Rt △ABC 中,∠C=90°(1) 已知:a=6, b=8,求c (2) 已知:b=5,c=13,求abb bccccaa aabbb ba accaaA B D知识点五:勾股定理逆定理如果三角形的三边长为c b a ,,,满足222c b a =+,那么,这个三角形是直角三角形. 利用勾股定理的逆定理判别直角三角形的一般步骤: ①先找出最大边(如c)②计算2c 与22a b +,并验证是否相等。
数学北师大八年级上册(2013年新编)《探索勾股定理一》教案3
《探索勾股定理一》教案教材义务教育课程标准实验教科书(北师大版)八年级数学上册第一章第1节P2~ P6。
勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用。
本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性。
此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。
教学目标1、知识与技能目标:掌握直角三角形三边之间的数量关系,学会用符号表示。
学生在经历用数格子与割补等办法探索勾股定理的过程中,体会数形结合的思想,体验从特殊到一般的逻辑推理过程。
2、能力目标:通过分层训练,使学生学会熟练运用勾股定理进行简单的计算,在解决实际问题中掌握勾股定理的应用技能。
3、情感目标:通过数学史上对勾股定理的介绍,激发学生学数学,爱数学,做数学的情感。
使学生从经历定理探索的过程中,感受数学之美,探究之趣。
教学重点、难点重点:用面积法探索勾股定理,理解并掌握勾股定理。
难点:计算以斜边为边长的大正方形C面积及割补思想的理解与应用。
教学方法选择引导探索法,采用“问题情境----建立模型----解释、应用与拓展”的模式进行教学。
教具准备多媒体课件;若干张已画好直角三角形的方格纸;剪刀;已剪好的纸片若干张。
教学过程一、创设情境,引入新课(师)请同学们观察动画,我国科学家曾向太空发射勾股图试图与外星人沟通,在2002年的国际数学家大会上采用弦图作为会标,它为什么有如此大的魅力呢?它蕴涵着怎样迷人的奥妙呢?这节课我就带领大家一起探索勾股定理。
(设计意图:用一段生动有趣的动画,点燃学生的求知欲,以景激情,以情激思,引领学生进入学习情境。
)二、师生互动,探究新知活动1:(观察图1)你知道正方形C的面积是多少吗?你是怎样得出上面结果的呢?(生)独立思考后交流,采用直接数方格的办法,或者是分割成几个等腰直角三角形的方法计算正方形C的面积。
(名师整理)最新北师大版数学8年级上册第1章第1节《探索勾股定理》精品教案
第一章勾股定理1.1 探索勾股定理⑵【课程标准要求】探索勾股定理,并能运用它解决一些简单的实际问题。
【教材分析】本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力,为后面的学习打下基础。
【学情分析】学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证。
学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验。
【学习目标:】1/ 6知识与技能:掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题。
过程与方法:在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想。
情感与态度:在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识。
【教学重点:】用面积法验证勾股定理,应用勾股定理解决简单的实际问题。
【教学难点:】验证勾股定理。
【教学过程:】一、课前预习:阅读教材P4—6的内容,完成下列问题1.每人剪4个全等的直角三角形纸片,完成做一做3个问题,验证勾股定理。
2.学会例题,会用勾股定理解决简单的实际问题。
3.完成“议一议”。
4.完成随堂练习,习题1.2二、课内检测1.勾股定理:直角三角形的平方和等于的平方。
如果用a、b、c。
x172/ 63 / 62.如图,直角三角形中未知边x 的长度是x =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 勾股定理单元检测
一、选择题:
1、下列四组数据不能作为直角三角形的三边长的是( )
A .6、8、10
B .5、12、13
C .12、18、22
D .9、12、15
2、将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( )
A .钝角三角形
B .锐角三角形
C .直角三角形
D .等腰三角形
3、如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 ( )
A .12米
B .13米
C .14米
D .15米
4、等腰三角形的一腰长为13,底边长为10,则它的面积为( )
A.65
B.60
C.120
D.130
5、已知一直角三角形的木版,三边的平方和为1800cm 2,则斜边长为( )
A .m 80
B .m 30
C .m 90
D .m 120
6、等边三角形的边长是10,它的高的平方等于( )
A.50
B.75
C.125
D.200
7、直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是( )
A .6厘米
B .8厘米
C .1380厘米
D .13
60厘米 8、已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A .24cm 2 B .36cm 2 C .48cm 2
D .60cm 2 二、填空题:
9、⊿ABC 中,若AC 2+AB 2= BC 2,则∠B +∠C= 。
10、若三角形的三边之比为3﹕4﹕5,则此三角形为 三角形。
11、如图(1),∠OAB =∠OBC =∠OCD =90°, AB =BC =CD =1,OA =2,则OD 2=____________。
12、如图(2), 等腰△ABC 的底边BC 为16, 底边上的高AD 为6,则腰AB 的长为____________。
13、如图(3),某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B 300m ,结果他在水中实际游了500m ,求该河流的宽度为________________m 。
第4题图
:
三、解答题
14、如图所示,折叠长方形一边AD,点D落在BC边的点F处,
已知BC=10厘米,AB=8厘米,求FC的长。
15、如图所示,四边形ABCD中,∠ABC=900,AB=4,BC=3,CD=12,AD=13,求四边形ABCD的面积。
16、甲、乙两位探险者到沙漠进行探险。
某日早晨8:00甲先出发,他以6千米/时的速度向正东行走。
1小时后乙出发,他以5千米/时的速度向正北行走。
上午10:00,甲、乙二人相距多远?。