人教版2019-2020学年八年级期中考试数学试卷A卷
2019学年第一学期八年级期中考试数学试卷参考答案
2019学年第一学期期中考试八年级数学参考答案 2019.11一、选择题:(本大题共6题,每题2分,满分12分)D .1 B .2 C .3 A .4 D .5 D .6二、填空题(本大题共12题,每题2分,满分24分).71≤x 33.8 3.9-π 2,0.1021==x x 231.11+>x )143)(143.(12-+++y y 43.13 x y 55.14=.1521>m 1.16± 4.17 )303,0.18-,)或((三、简答题:(每题5分,满分30分).19计算:)0(2531931>+-a aa a a a解:原式=53331aa a aa a +•-•----------(3分)=53aa a a +-----------(1分)=53aa ------------(1分).20计算:02)1()123()832)(328(-+---+解:原式=1)2619(52+--- ----------- (3分) =2670+------------ (2分).21解方程:12)32312=-x ( 解: 36)322=-x ( --------------------(1分) 632=-x 或632-=-x --------------------(2分)29=x 或23-=x --------------------(2分) ∴原方程的根为 23,2921-==x x.22解方程:0)52)(1()52(2=+--+x x x x解:0)]1(2)[52(=--+x x x --------------------(1分)0)1)(52(=++x x --------------------(1分)01,052=+=+x x --------------------(1分)25-=x 或1-=x -----------------(2分) ∴原方程的根为1,2521-=-=x x.23 解方程:x x 2222=+ 解:02222=+-x x --------------------(1分)0)2(2=-x --------------------(2分) 221==x x --------------------(2分) ∴原方程的根为221==x x.24 用配方法解方程:0181622=++x x解: 982-=+x x --------------------(1分) 1691682+-=++x x --------------------(1分)7)42=+x (--------------------(1分)或74=+x 74-=+x --------------------(2分)74 ,或74--=+-=x x ∴原方程的根为74,7421--=+-=x x.25先化简,再求值:2))(2y x y xy x ++-(,其中5,5-==y x 解:2)(y x -2)(y x + --------------------(1分) =[)(y x -)(y x +]2 --------------------(2分) =2)y x -( --------------------(1分) =222y xy x +-当5,5-==y x 时原式=5+10+5 --------------------( 3分)=20 --------------------(1分).26解:(1)01172=-++m x x --------------------(1分)m 45+=∆>0--------------------(2分)45->m --------------------(1分) (2) 当1-=m 时,--------------------(1分)11172-=++x x --------------------(1分)解得3,421-=-=x x --------------------(2分)∴原方程的根为3,421-=-=x x.72解:(1)200(1+2%)a =288 --------------------(2分)解得20=a --------------------(1分)答:a 的值20.(2)22%)1(200%)1200a a --+(=12 --------------------(3分) 解得%5.1%=a --------------------(2分)答:甲区的工作量的平均每月增长率%5.1..28 (1))16,18(D(2) 设)31,(),31,(),2,(b a B b b C a a A 则 由AB BC =,得b a a b 312-=- 得a b 49=∴)43,(a a B ∴直线OB 的解析式为x y 43=(3) )43,49(),2,(a a C a a A 170434921221249四边边=••-••-•=a a a a a a S oADC 解得舍去)(8,821-==a a ∴)6,18(C。
2019-2020学年山西省太原市八年级(上)期中数学试卷(含答案)
2019-2020学年山西省太原市八年级(上)期中数学试卷一、选择题(本愿共10小题,商小题3分,共30分)在每题给出的四个选项中,只有一项符合题目要求,请将其字母序号填入下表相应位置.1.(3分)下列实数中的无理数是()A.B.C.D.2.(3分)有理数4的平方根是()A.B.C.2D.±23.(3分)下列各组数中,能作为直角三角形三边长的是()A.2,3,5B.C.8,15,17D.4.(3分)下列计算结果正确的是()A.B.C.D.5.(3分)已知一次函数y=kx+b(k,b为常数)的图象经过平面直角坐标系的第一、二、三象限,则下列结论一定正确的是()A.kb>0B.kb<0C.k﹣b>0D.k+b<06.(3分)在平面直角坐标系中,已知一次函数y=﹣x+5的图象经过A(﹣3,y1),B(2,y2)两点,则y1,y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.无法确定7.(3分)如图,在Rt△ABC中,∠BAC=90°,以Rt△ABC的三边为边分别向外作等边三角形△A'BC,△AB'C,△ABC',若△A'BC,△AB'C的面积分别是10和4,则△ABC'的面积是()A.4B.6C.8D.98.(3分)对于一次函数y=kx+b(k,b为常数),表中给出5组自变量及其对应的函数值,其中只有1个函数值计算有误,则这个错误的函数值是()A.1B.4C.8D.109.(3分)为比较与的大小,小亮进行了如下分析后作一个直角三角形,使其两直角边的长分别为与,则由勾股定理可求得其斜边长为.根据“三角形三边关系”,可得.小亮的这一做法体现的数学思想是()A.分类讨论思想B.方程思想C.类此思想D.数形结合思想10.(3分)棱长分别为8cm,6cm的两个正方体如图放置,点A,B,E在同一直线上,顶点G在棱BC上,点P是棱E1F1的中点.一只蚂蚁要沿着正方体的表面从点A爬到点P,它爬行的最短距离是()A.B.C.D.二、填空题(本大题含5个小题,每小题2分,共10分)把答案写在题中横线上.11.(2分)把化成最简二次根式为.12.(2分)已知点P(6,m)在一次函数y=﹣x+5的图象上,则点P的坐标为.13.(2分)在平整的路面上,某型号汽车紧急刹车后仍将滑行sm,一般地有经验公式,其中v表示刹车前汽车的速度(单位:km/h).一次行驶中汽车紧急刹车后滑行的距离s =12m,则这辆汽车刹车前的速度v=km/h.14.(2分)《算法统宗》中有一道“荡秋千”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A离地1尺,将它往前推送10尺(水平距离)时,点A对应的点B就和某人一样高,若此人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”根据上述条件,秋千绳索长为尺.15.(2分)如图,在△ABC中,AB=AC=8,BC=4,AD⊥BC于点D,点P是线段AD上一个动点,过点P作PE⊥AB于点E,连接PB,则PB+PE的最小值为.三、解答题(本大题含8个小题,共60分)解答应写出必要的文字说明、演算步骤或推理过程.16.(12分)计算:(1);(2);(3);(4).17.(5分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(3,﹣1),B (4,2),C(2,4).(1)请在如图的坐标系中画出△ABC;(2)在如图的坐标系中,画出△ABC关于y轴对称的△A′B'C',并直接写出△A′B'C'三个顶点的坐标.18.(6分)在一次综合实践活动中,老师让同学们测量公园里凉亭A,B之间的距离(A,B之间有水池,无法直接测量).智慧小组的同学们在公园里选了凉亭C,D,测得AD=CD=10m,∠D=90°,BC=40m,∠DCB=135°.请你根据上述数据求出A,B之间的距离.19.(5分)如图,已知一次函数y=x﹣3的图象与x轴,y轴分别交于A,B两点.点C (﹣4,n)在该函数的图象上,连接OC.求点A,B的坐标和△OAC的面积.20.(5分)如图,在△ABC中,AC=6.BC=8,AB=10.点C在y轴的正半轴上,边AB 在x轴上(点A在点B的左侧).(1)求点C的坐标;(2)点D是BC边上一点,点E是AB边上一点,且点E和点C关于AD所在直线对称,直接写出点D的坐标.21.(5分)2019年10月1日是中华人民共和国成立70周年纪念日,红色旅游成为旅游热点.小王要和朋友们去某红色景点旅游,其门票零售价为80元/张.国庆节期间,景点推出优惠活动,方案1:门票一律九折优惠;方案2:对10人以内(含10人)购门票不优惠,超过10人超出部分八折优惠.设小王一行参加旅游的人数为x(人),购买门票费用为y(元).(1)小王分别写出方案1和方案2购买门票的费用y(元)与旅游人数x(人)之间的函数表达式如下,请你将空缺部分补充完整:y1=(x>0);y2=(2)小王一行共有40人一起去该景点旅游,通过计算,判断选择哪种方案更省钱?22.(9分)阅读材料:材料一:两个含有二次根式而非零代数式和乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式例如:,我们称的一个有理化因式是的一个有理化因式是.材料二:如果一个代数式的分母中含有二次根式,通常可将分子、分母同乘分母的有理化因式,使分母中不含根号,这种变形叫做分母有理化.例如:,请你仿照材料中的方法探索并解决下列问题:(1)的有理化因式为,的有理化因式为;(均写出一个即可)(2)将下列各式分母有理化:;②;(要求;写出变形过程)(3)请从下列A,B两题中任选一题作答,我选择题.A计算:的结果为.B计算:的结果为.23.(13分)如图1,已知直线y=3x+3与y轴,x轴分别交于A,B两点,过点B在第二象限内作BC⊥AB且BC=AB,连接AC.(1)求点C的坐标;(2)如图2,过点C作直线CD∥x轴交AB于点D,交y轴于点E请从下列A,B两题中任选一题作答,我选择题A.①求线段CD的长;②在坐标平面内,是否存在点M(除点B外),使得以点M,C,D为顶点的三角形与△BCD全等?若存在,请直接写出所有符合条件的点M的坐标:若不存在,请说明理由.B.①如图3,在图2的基础上,过点D作DF⊥AC于点F,求线段DF的长;②在坐标平面内,是否存在点M(除点F外),使得以点M,C,D为顶点的三角形与△FCD全等?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由.2019-2020学年山西省太原市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本愿共10小题,商小题3分,共30分)在每题给出的四个选项中,只有一项符合题目要求,请将其字母序号填入下表相应位置.1.(3分)下列实数中的无理数是()A.B.C.D.【分析】根据无理数的概念判断即可.【解答】解:A、=2是无理数;B、=3,不是无理数;C、﹣不是无理数;D、=3,不是无理数;故选:A.【点评】本题考查的是无理数的概念,掌握无限不循环小数叫做无理数是解题的关键.2.(3分)有理数4的平方根是()A.B.C.2D.±2【分析】依据平方根的定义求解即可.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:D.【点评】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.3.(3分)下列各组数中,能作为直角三角形三边长的是()A.2,3,5B.C.8,15,17D.【分析】欲判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.【解答】解:A、22+32≠52,不能构成直角三角形;B、()2+()2≠()2,不能构成直角三角形;C、82+152=172,能构成直角三角形;D、12+()2≠32,不能构成直角三角形.故选:C.【点评】此题主要考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.4.(3分)下列计算结果正确的是()A.B.C.D.【分析】根据二次根式的加减法对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的性质对C、D进行判断.【解答】解:A、原式=2,所以A选项错误;B、原式==2,所以B选项正确;C、原式=12,所以C选项错误;D、原式=2,所以D选项错误.故选:B.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.(3分)已知一次函数y=kx+b(k,b为常数)的图象经过平面直角坐标系的第一、二、三象限,则下列结论一定正确的是()A.kb>0B.kb<0C.k﹣b>0D.k+b<0【分析】根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵一次函数y=kx+b的图象经过一、二、三象限,∴k>0,b>0.∴kb>0,故选:A.【点评】本题考查的是一次函数的图象上与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过第二、三、四象限是解答此题的关键.6.(3分)在平面直角坐标系中,已知一次函数y=﹣x+5的图象经过A(﹣3,y1),B(2,y2)两点,则y1,y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.无法确定【分析】根据一次函数的增减性,k<0,y随x的增大而减小解答.【解答】解:∵k=﹣1<0,∴y随x的增大而减小,∵﹣3<2,∴y1>y2.故选:B.【点评】本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.7.(3分)如图,在Rt△ABC中,∠BAC=90°,以Rt△ABC的三边为边分别向外作等边三角形△A'BC,△AB'C,△ABC',若△A'BC,△AB'C的面积分别是10和4,则△ABC'的面积是()A.4B.6C.8D.9【分析】先设AC=b,BC=a,AB=c,根据勾股定理有c2+b2=a2,再根据等式性质和等边三角形的性质解答即可.【解答】解:如图,设等边三角形△A'BC,△AB'C,△ABC'的面积分别是S3,S2,S1,设AC=b,BC=a,AB=c,∵△ABC是直角三角形,且∠BAC=90度,∴c2+b2=a2,∴c2+b2=a2.又∵S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,∴S1+S2=S3,∵S3=10,S2=4,∴S1=S3﹣S2=10﹣4=6,故选:B.【点评】本题考查了勾股定理,注意等边三角形的性质、特殊三角函数值的利用.解题关键是根据等边三角形的性质求出每一个三角形的面积.8.(3分)对于一次函数y=kx+b(k,b为常数),表中给出5组自变量及其对应的函数值,其中只有1个函数值计算有误,则这个错误的函数值是()A.1B.4C.8D.10【分析】经过观察5组自变量和相应的函数值得(﹣1,﹣2),(0,1),(1,4),(3,10)符合解析式y=3x+1,(2,8)不符合,即可判定.【解答】解:∵(﹣1,﹣2),(0,1),(1,4),(3,10)符合解析式y=3x+1,当x=2时,y=7≠8∴这个计算有误的函数值是8,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是解决本题的关键.9.(3分)为比较与的大小,小亮进行了如下分析后作一个直角三角形,使其两直角边的长分别为与,则由勾股定理可求得其斜边长为.根据“三角形三边关系”,可得.小亮的这一做法体现的数学思想是()A.分类讨论思想B.方程思想C.类此思想D.数形结合思想【分析】比较与的大小,属于实数大小的比较,而根据“三角形三边关系”,可得,属于图形的性质,体现了数形结合思想.【解答】解:比较与的大小,根据“三角形三边关系”,可得,小亮的这一做法体现的数学思想是数形结合思想,故选:D.【点评】本题主要考查了勾股定理以及三角形三边关系的运用,解题时注意三角形三边关系定理:三角形两边之和大于第三边.10.(3分)棱长分别为8cm,6cm的两个正方体如图放置,点A,B,E在同一直线上,顶点G在棱BC上,点P是棱E1F1的中点.一只蚂蚁要沿着正方体的表面从点A爬到点P,它爬行的最短距离是()A.B.C.D.【分析】求出两种展开图P A的值,比较即可判断.【解答】解:如图,有两种展开方法:方法一:P A==cm,方法二:P A==cm.故需要爬行的最短距离是cm.故选:C.【点评】本题考查平面展开﹣最短问题,解题的关键是学会用转化的思想思考问题,属于中考常考题型.二、填空题(本大题含5个小题,每小题2分,共10分)把答案写在题中横线上.11.(2分)把化成最简二次根式为3.【分析】根据二次根式的性质进行化简即可.【解答】解:==3.故答案为:3.【点评】本题考查最简二次根式的定义,解题的关键是明确最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.12.(2分)已知点P(6,m)在一次函数y=﹣x+5的图象上,则点P的坐标为(6,3).【分析】把点P(6,m)代入y=﹣x+5即可求得.【解答】解:∵点P(6,m)在一次函数y=﹣x+5的图象上,∴m=﹣+5=3,∴P(6,3),故答案为(6,3).【点评】本题考查了一次函数图象上点的坐标特征,图象上点的坐标适合解析式.13.(2分)在平整的路面上,某型号汽车紧急刹车后仍将滑行sm,一般地有经验公式,其中v表示刹车前汽车的速度(单位:km/h).一次行驶中汽车紧急刹车后滑行的距离s =12m,则这辆汽车刹车前的速度v=60km/h.【分析】求出V的算术平方根即可.【解答】解:把s=12m代入s=,得=12,所以v2=3600,所以v=60(负值舍去),故答案为:60.【点评】本题考查的是算术平方根.掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.14.(2分)《算法统宗》中有一道“荡秋千”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A离地1尺,将它往前推送10尺(水平距离)时,点A对应的点B就和某人一样高,若此人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”根据上述条件,秋千绳索长为14.5尺.【分析】设绳索有x尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理可求解.【解答】解:设绳索有x尺长,则102+(x﹣4)2=x2,解得:x=14.5.故绳索长14.5尺.故答案为:14.5.【点评】本题考查勾股定理的应用,理解题意能力,关键是能构造出直角三角形,用勾股定理来解.15.(2分)如图,在△ABC中,AB=AC=8,BC=4,AD⊥BC于点D,点P是线段AD上一个动点,过点P作PE⊥AB于点E,连接PB,则PB+PE的最小值为.【分析】根据等腰三角形的性质得到BD=CD=2,由勾股定理得到AD===2,过C作CE⊥AB于E,交AD于P,则此时,PB+PE的值最小,且PB+PE的最小值=CE,根据三角形的面积公式即可得到结论.【解答】解:∵AB=AC=8,BC=4,AD⊥BC于点D,∴BD=CD=2,∴AD===2,∴点B与点C关于直线AD对称,过C作CE⊥AB于E,交AD于P,则此时,PB+PE的值最小,且PB+PE的最小值=CE,∵S△ABC=AB•CE=BC•AD,∴CE==,故答案为:.【点评】本题考查了轴对称﹣最短路线问题,等腰三角形的性质,勾股定理,三角形的面积的计算,正确的理解题意是解题的关键.三、解答题(本大题含8个小题,共60分)解答应写出必要的文字说明、演算步骤或推理过程.16.(12分)计算:(1);(2);(3);(4).【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式计算;(3)利用二次根式的除法法则运算;(4)先把二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式==(2)原式===(3)原式===(4)原式==【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(5分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(3,﹣1),B(4,2),C(2,4).(1)请在如图的坐标系中画出△ABC;(2)在如图的坐标系中,画出△ABC关于y轴对称的△A′B'C',并直接写出△A′B'C'三个顶点的坐标.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据A′B′,C′的位置写出坐标即可.【解答】解:(1)如图△ABC即为所求.(2)如图△A′B′C′即为所求△A'B'C'的顶点坐标分别为A'(﹣3,﹣1),B'(﹣4,2),C'(﹣2,4).【点评】本题考查作图轴对称变换,解题的关键是熟练掌握基本知识,属于中考常考题型.18.(6分)在一次综合实践活动中,老师让同学们测量公园里凉亭A,B之间的距离(A,B之间有水池,无法直接测量).智慧小组的同学们在公园里选了凉亭C,D,测得AD=CD=10m,∠D=90°,BC=40m,∠DCB=135°.请你根据上述数据求出A,B之间的距离.【分析】连接AC,构造直角三角形,利用勾股定理求得答案即可.<【解答】解:连接AC在△ADC中,∠D=90°,DC=AD=10m,∴,由勾股定理得,∵∠BCD=135°,∴∠ACB=∠BCD﹣∠ACD=135°﹣45°=90°,在Rt△ACB中,BC=40m,由勾股定理得,答:A,B之间的距离为.【点评】考查了勾股定理的应用,解题的关键是了解如何构造直角三角形,难度不大.19.(5分)如图,已知一次函数y=x﹣3的图象与x轴,y轴分别交于A,B两点.点C (﹣4,n)在该函数的图象上,连接OC.求点A,B的坐标和△OAC的面积.【分析】对于一次函数解析式,分别令x与y为0求出对应y与x的值,确定出OA与OB的值,得到A、B两点的坐标,然后根据三角形的面积公式即可得到结论.【解答】解:在中,当y=0时,,∴x=6,∴点A的坐标为(6,0),∴OA=6,当x=0时,y=﹣3,∴点B的坐标为(0,﹣3),把点C(﹣4,n)代入得,∴点C的坐标为(﹣4,﹣5),过点C作CD⊥x轴于点D,则CD=5,∴.【点评】本题考查了一次函数图象上点的坐标特征,三角形的面积的计算,正确的识别图形是解题的关键.20.(5分)如图,在△ABC中,AC=6.BC=8,AB=10.点C在y轴的正半轴上,边AB 在x轴上(点A在点B的左侧).(1)求点C的坐标;(2)点D是BC边上一点,点E是AB边上一点,且点E和点C关于AD所在直线对称,直接写出点D的坐标.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据轴对称解答即可.【解答】解:(1)在△ABC中,AC=6,BC=8,AB=10,∴AC2+BC2=62+82=100=AB2,∴∠ACB=90°,△ACB是直角三角形,由题意可知CO⊥AB,∴,∴,∴,∴点C的坐标为;(2)AO===,OE=6﹣=,BE:BO=DE:CO,(10﹣﹣):(10﹣)=DE:,解得DE=3.则点D的坐标为.【点评】此题考查勾股定理的逆定理,关键是根据勾股定理的逆定理得出△ACB是直角三角形解答.21.(5分)2019年10月1日是中华人民共和国成立70周年纪念日,红色旅游成为旅游热点.小王要和朋友们去某红色景点旅游,其门票零售价为80元/张.国庆节期间,景点推出优惠活动,方案1:门票一律九折优惠;方案2:对10人以内(含10人)购门票不优惠,超过10人超出部分八折优惠.设小王一行参加旅游的人数为x(人),购买门票费用为y(元).(1)小王分别写出方案1和方案2购买门票的费用y(元)与旅游人数x(人)之间的函数表达式如下,请你将空缺部分补充完整:y1=72x(x>0);y2=(2)小王一行共有40人一起去该景点旅游,通过计算,判断选择哪种方案更省钱?【分析】(1)由费用=具体的单价×人数,分别求出y1,y2与x的关系式;(2)代入计算即可求解.【解答】解:(1)方案1:y与x的函数关系式是y=72x(x为自然数);方案2:y与x的函数关系式为故答案为:72x,64x+160(2)将x=40代入y1=72x得y1=72×40=2880(元),将x=40代入y2=64x+160得y2=64×40+160=2720(元),∵2880>2720,∴y1>y2,∴选择方案2更省钱.【点评】此题考查一次函数的实际运用,根据数字特点找出临界点是解决问题的关键.22.(9分)阅读材料:材料一:两个含有二次根式而非零代数式和乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式例如:,我们称的一个有理化因式是的一个有理化因式是.材料二:如果一个代数式的分母中含有二次根式,通常可将分子、分母同乘分母的有理化因式,使分母中不含根号,这种变形叫做分母有理化.例如:,请你仿照材料中的方法探索并解决下列问题:(1)的有理化因式为,的有理化因式为﹣;(均写出一个即可)(2)将下列各式分母有理化:;②;(要求;写出变形过程)(3)请从下列A,B两题中任选一题作答,我选择A、B题.A计算:的结果为﹣1.B计算:的结果为.【分析】(1)根据分母有理化因式的定义求解;(2)①中分子分母都乘以;②中分子分母都乘以2+3;(3)①先分母有理化,然后合并即可;②先利用因式分解中提公因式的方法变形得到原式=++…+,然后分母有理化后合并即可.【解答】解:(1)的有理化因式为,的有理化因式为﹣;(2)①.=②==;(3)A题:原式=﹣1+﹣+…+﹣=﹣1;B题:原式=++…+=++…+=1﹣+﹣+…+﹣=1﹣=.故答案为;﹣;A、B;﹣1;.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23.(13分)如图1,已知直线y=3x+3与y轴,x轴分别交于A,B两点,过点B在第二象限内作BC⊥AB且BC=AB,连接AC.(1)求点C的坐标;(2)如图2,过点C作直线CD∥x轴交AB于点D,交y轴于点E请从下列A,B两题中任选一题作答,我选择A(B)题A.①求线段CD的长;②在坐标平面内,是否存在点M(除点B外),使得以点M,C,D为顶点的三角形与△BCD全等?若存在,请直接写出所有符合条件的点M的坐标:若不存在,请说明理由.B.①如图3,在图2的基础上,过点D作DF⊥AC于点F,求线段DF的长;②在坐标平面内,是否存在点M(除点F外),使得以点M,C,D为顶点的三角形与△FCD全等?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由.【分析】(1)证明△BCH≌△ABO(AAS),则CH=BO=1,BH=AO=3,OH=BH+BO =4,即可求解;(2)A.①由(1)知点C的坐标为(﹣4,1),CD∥x轴交AB于点D,则点D的纵坐标为1,将y=1代入y=3x+3得1=3x+3,即可求解;②存在,理由:以点M,C,D 为顶点的三角形与△BCD全等,点M与点B对应,有如图2的三种情况,即可求解;B.①由(1)知点C的坐标为(﹣4,1),CD∥x轴交AB于点D,交y轴于点E,点D 的纵坐标为1,AE=3﹣1=2将y=1代入y=3x+3得1=3x+3,即可求解;②如图3,作点A关于x轴的对称轴A′,连接A′C,以点M,C,D为顶点的三角形与△FCD全等,则点D与点B为对应点,此时图3和图2情况相同,即可求解.【解答】解:(1)在y=3x+3中,当x=0时,y=3,∴点A的坐标为((0,3),∴AO=3,在y=3x+3中,当y=0时,0=3x+3,x=﹣1,∵点B的坐标为(﹣1,0),∴BO=1,过点C作CH⊥x轴于点H,则∠BHC=90°,∵BC⊥AB,∴∠ABC=90°,∴∠CBH+∠ABO=180°﹣∠ABC=90°,∵∠AOB=90°,∴∠BAO+∠ABO=90°,∴∠CBH=∠BAO,∵∠BHC=∠ABO=90°,BC=AB,∴△BCH≌△ABO(AAS),∴CH=BO=1,BH=AO=3,∴OH=BH+BO=4∵点C在第二象限,∴点C的坐标为(﹣4,1)(2)A.①由(1)知点C的坐标为(﹣4,1),∵CD∥x轴交AB于点D,∴点D的纵坐标为1,将y=1代入y=3x+3得1=3x+3,∴∴点D的坐标为,∴;②存在,理由:以点M,C,D为顶点的三角形与△BCD全等,点M与点B对应,有如图2的三种情况:当△M1DC≌△BDC时,则点M1和点B关于直线CE对称,则点M1的坐标为:(﹣1,2);当△M2CD≌△BDC时,则点M2和点B关于CD的中垂线对称,故点M2(﹣,0);当△M3CD≌△BDC时,同理可得:点M3(﹣,2);综上:;B.①由(1)知点C的坐标为(﹣4,1),∵CD∥x轴交AB于点D,交y轴于点E,∴点D的纵坐标为1,AE=3﹣1=2将y=1代入y=3x+3得1=3x+3,∴,∴点D的坐标为,∴在Rt△AOB中,AO=3,BO=1,由勾股定理得,∵BC=AB,∴,∴,∴,∴;②存在,理由:如图3,作点A关于x轴的对称轴A′,连接A′C,以点M,C,D为顶点的三角形与△FCD全等,则点D与点B为对应点,此时图3和图2情况相同,同理可得,点M的坐标为:.【点评】本题考查的是二次函数综合运用,涉及到一次函数、三角形全等、图形的面积计算等,其中(2),要注意分类求解,避免遗漏.。
2019-2020学年武汉市汉阳区八年级上期中数学试卷(有答案)
.2019-2020学年湖北省武汉市汉阳区八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列“表情图”中,属于轴对称图形的是(中,属于轴对称图形的是( )A .B .C .D .2.(3分)下列四个图形中,线段BE 是△ABC 的高的是(的高的是( )A .B .C .D .3.(3分)下列长度的三条线段能组成三角形的是(分)下列长度的三条线段能组成三角形的是( ) A .1,2,3 B .1,,3 C .3,4,8 D .4,5,6 4.(3分)一定能确定△ABC ≌△DEF 的条件是(的条件是( ) A .∠A=∠D ,AB=DE ,∠B=∠E B .∠A=∠E ,AB=EF ,∠B=∠D C .AB=DE ,BC=EF ,∠A=∠DD .∠A=∠D ,∠B=∠E ,∠C=∠F5.(3分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是(书本上完全一样的三角形,那么聪聪画图的依据是( )A .SSSB .SASC .ASAD .AAS6.(3分)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为(,则这个等腰三角形的周长为( ) A .11 B .16 C .17 D .16或17 7.(3分)如图,在△ABC 中,AB=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E=35°,则∠BAC 的度数为(的度数为( )A .40°B .45°C .60°D .70°8.(3分)如图,在△ABC 中,AB=AC ,AB 的垂直平分线交边AB 于D 点,交边AC 于E 点,若△ABC 与△EBC 的周长分别是40,24,则AB 为(为( )A .8B .12C .16D .20 9.(3分)如图,四边形ABCD 是直角梯形,AB ∥CD ,AD ⊥AB ,点P 是腰AD 上的一个动点,要使PC +PB 最小,则点P 应该满足(应该满足( )A .PB=PCB .PA=PDC .∠BPC=90°D .∠APB=∠DPC10.(3分)在平面直角坐标系中,已知A (0,2),B (2,0),若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是(的个数是( ) A .6B .7C .8D .9二、填空题(每题3分,共18分)11.(3分)已知点P 关于x 轴的对称点P 1的坐标是(2,1),则点P 的坐标是的坐标是 . 12.(3分)如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3的度数是度数是.13.(3分)如图,在△ABC 中,AB=AC ,AE ⊥AB 交BC 于点E ,∠BAC=120°,AE=3,则BC 的长是长是.14.(3分)如果一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的底角的度数度数.15.(3分)在△ABC 中,AB=2cm ,AC=4cm ,则BC 边上的中线AD 的取值范围是的取值范围是 . 16.(3分)请你仔细观察图中等边三角形图形的变换规律,写出你发现关于等边三角形内一点到三边距离的数学事实:点到三边距离的数学事实:.三、解答题(共8道小题,共72分)17.(8分)一个多边形的内角和是外角和的2倍,则这个多边形是几边形? 18.(8分)如图,点B 、E 、C 、F 在同一直线上,BE=CF ,AB=DE ,AC=DF . 求证:AB ∥DE .19.(8分)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F . (1)∠ABC=40°,∠A=60°,求∠BFD 的度数; (2)直接写出∠A 与∠BFD 的数量关系.20.(8分)如图,在平面直角坐标系中,A (﹣1,5),B (﹣1,0),C (﹣4,3).(1)在图中作出△ABC 关于直线m (直线m 上各点的横坐标都为﹣2)对称的图形△A 1B 1C 1;(2)线段BC 上有一点P (﹣,),直接写出点P 关于直线m 对称的点的坐标; (3)线段BC 上有一点M (a ,b ),直接写出点M 关于直线m 对称的点的坐标.21.(8分)如图△ABC是等边三角形.(1)请按要求完成图形,分别作∠ABC,∠ACB的平分线,交点为O;再分别作OB,OC的垂直平分线分别交BC于点D,E;(2)在(1)的条件下,判断△ODE的形状,并证明你的结论.22.(10分)如图,在△ABC中,∠ACB=90°,∠A=30°.(1)教材中有这样的结论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.请结合图1,证明该结论;(2)若将图2分割成三个全等的三角形,请你画出图形,并简单描述辅助线的作法.23.(10分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.24.(12分)(1)问题解决:如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.;个性质是①如图1,若α=90°,根据教材中一个重要性质直接可得AD=CD,这个性质是②在图2中,求证AD=CD;(2)拓展探究:根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证BD+AD=BC.2019-2020学年湖北省武汉市汉阳区八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列“表情图”中,属于轴对称图形的是(中,属于轴对称图形的是( )A. B. C. D.【解答】解:A不属于轴对称图形,故错误;B不属于轴对称图形,故错误;C不属于轴对称图形,故错误;D属于轴对称图形,故正确;故选:D.2.(3分)下列四个图形中,线段BE是△ABC的高的是(的高的是( )A. B.C.D.【解答】解:线段BE是△ABC的高的图是选项D.故选D.3.(3分)下列长度的三条线段能组成三角形的是(分)下列长度的三条线段能组成三角形的是( )A .1,2,3 B.1,,3 C.3,4,8 D.4,5,6【解答】解:A、1+2=3,不能组成三角形,故本选项错误;B、1+<3,不能组成三角形,故本选项错误;C、3+4<8,不能组成三角形,故本选项错误;D、4+5>6,能组成三角形,故本选项正确.故选D.4.(3分)一定能确定△ABC≌△DEF的条件是(的条件是( )A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F【解答】解:A 、根据ASA 即可推出△ABC ≌△DEF ,故本选项正确;B 、根据∠A=∠E ,∠B=∠D ,AB=DE 才能推出△ABC ≌△DEF ,故本选项错误; C 、根据AB=DE ,BC=EF ,∠B=∠E 才能推出△ABC ≌△DEF ,故本选项错误;D 、根据AAA 不能推出△ABC ≌△DEF ,故本选项错误; 故选A .5.(3分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是(书本上完全一样的三角形,那么聪聪画图的依据是( )A .SSSB .SASC .ASAD .AAS【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形. 故选:C .6.(3分)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为(,则这个等腰三角形的周长为( ) A .11 B .16 C .17 D .16或17【解答】解:①6是腰长时,三角形的三边分别为6、6、5, 能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5, 能组成三角形, 周长=6+5+5=16.综上所述,三角形的周长为16或17. 故选D .7.(3分)如图,在△ABC 中,A B=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E=35°,则∠BAC 的度数为(的度数为( )A.40° B.45° C.60° D.70°【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.8.(3分)如图,在△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若)为(△ABC与△EBC的周长分别是40,24,则AB为(A.8 B.12 C.16 D.20【解答】解:∵DE是AB的垂直平分线,∴AE=BE;∵△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,∴△ABC的周长﹣△EBC的周长=AB,∴AB=40﹣24=16.故选:C.9.(3分)如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,)应该满足(要使PC+PB最小,则点P应该满足(A.PB=PC B.PA=PD C.∠BPC=90° D.∠APB=∠DPC【解答】解:如图,作点C关于AD的对称点E,连接BE交AD于P,连接CP.根据轴对称的性质,得∠DPC=∠EPD,根据对顶角相等知∠APB=∠EPD,所以∠APB=∠DPC.故选D.10.(3分)在平面直角坐标系中,已知A(0,2),B(2,0),若在坐标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C的个数是()的个数是(A.6 B.7 C.8 D.9【解答】解:如图所示:当AB=AC时,符合条件的点有3个;当BA=BC时,符合条件的点有3个;当点C在AB的垂直平分线上时,符合条件的点有一个.故符合条件的点C共有7个.故选:B .二、填空题(每题3分,共18分)11.(3分)已知点P 关于x 轴的对称点P 1的坐标是(2,1),则点P 的坐标是的坐标是 (2,﹣1) . 【解答】解:点P 关于x 轴的对称点P 1的坐标是(2,1),则点P 的坐标是(2,﹣1), 故答案为:(2,﹣1).12.(3分)如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3的度数是度数是 20° .【解答】解:由题意得:∠4=∠2=40°; 由三角形外角的性质得:∠4=∠1+∠3, ∴∠3=∠4﹣∠1=40°﹣20°20°=20°=20°, 故答案为:20°.13.(3分)如图,在△ABC 中,AB=AC ,AE ⊥AB 交BC 于点E ,∠BAC=120°,AE=3,则BC 的长是长是 9 .【解答】解:过点A 作AF ⊥BC 交BC 于F ,∵AB=AC ,∠BAC=120°,∴∠B=∠C=30°,BC=2BF , 在Rt △BAE 中, AB=AE•cot30°=3×=3,在Rt △AF B 中,BF BF=AB•cos30°=3=AB•cos30°=3×=, ∴BC=2BF=2×=9, 故答案为:9.14.(3分)如果一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的底角的度数度数 15°或75° .【解答】解:解:(1)当等腰三角形是锐角三角形时,腰上的高在三角形内部,如图,BD 为等腰三角形ABC 腰AC 上的高,并且BD=AB ,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角为30°,此时底角为75°;(2)当等腰三角形是钝角三角形时,腰上的高在三角形外部,如图,BD 为等腰三角形ABC 腰AC 上的高,并且BD=AB ,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角的邻补角为30°,此时顶角是150°, 底角为15°.故答案为:15°或75°.15.(3分)在△ABC 中,AB=2cm ,AC=4cm ,则BC 边上的中线AD 的取值范围是的取值范围是 1cm <AD <3cm .【解答】解:延长AD 到E ,使AD=DE ,连接BE , ∵AD 是△ABC 的中线, ∴BD=CD ,在△ADC 与△EDB 中, ∵,∴△ADC ≌△EDB , ∴EB=AC ,根据三角形的三边关系定理:4cm ﹣2cm <AE <4cm +2cm , ∴1cm <AD <3cm ,故答案为:1cm <AD <3cm .16.(3分)请你仔细观察图中等边三角形图形的变换规律,写出你发现关于等边三角形内一点到三边距离的数学事实:点到三边距离的数学事实: 等边三角形内任意一点到三边的距离之和等于该等边三角形的高 .【解答】解:由图可知,等边三角形里任意一点到三边的距离和等于它的高.三、解答题(共8道小题,共72分)17.(8分)一个多边形的内角和是外角和的2倍,则这个多边形是几边形? 【解答】解:设这个多边形的边数为n ,∴(n ﹣2)•180•180°°=2×360°, 解得:n=6.故这个多边形是六边形.18.(8分)如图,点B 、E 、C 、F 在同一直线上,BE=CF ,AB=DE ,AC=DF . 求证:AB ∥DE .【解答】证明:∵BE=CF , ∴BC=EF ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF (SSS ), ∴∠B=∠DEF , ∴AB ∥DE .19.(8分)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F . (1)∠ABC=40°,∠A=60°,求∠BFD 的度数; (2)直接写出∠A 与∠BFD 的数量关系.【解答】解:(1)∵∠ABC=40°,∠A=60°, ∴∠ACB=180°﹣40°﹣60°60°=80°=80°, ∵∠B 、∠C 的平分线BE ,CD 相交于点F ,∴∠BFD=∠FBC +∠FCB=∠ABC +∠ACB=20°+40°40°=60°=60°.(2)∵∠B 、∠C 的平分线BE ,CD 相交于点F ,∴∠BFD=∠FBC +∠FCB=∠ABC +∠ACB=(∠ABC +∠ACB )=(180°﹣∠A )=90°﹣∠A .20.(8分)如图,在平面直角坐标系中,A (﹣1,5),B (﹣1,0),C (﹣4,3).(1)在图中作出△ABC 关于直线m (直线m 上各点的横坐标都为﹣2)对称的图形△A 1B 1C 1;(2)线段BC 上有一点P (﹣,),直接写出点P 关于直线m 对称的点的坐标; (3)线段BC 上有一点M (a ,b ),直接写出点M 关于直线m 对称的点的坐标.【解答】解:(1)如图所示,(2)线段BC 上有一点P (﹣,),点P 关于直线m 对称的点的坐标是(﹣,), (3)线段BC 上有一点M (a ,b ),点M 关于直线m 对称的点的坐标是(﹣4﹣a ,b ).21.(8分)如图△ABC是等边三角形.(1)请按要求完成图形,分别作∠ABC,∠ACB的平分线,交点为O;再分别作OB,OC的垂直平分线分别交BC于点D,E;(2)在(1)的条件下,判断△ODE的形状,并证明你的结论.【解答】解:(1)如图,(2)△ODE为等边三角形.理由如下:∵△ABC是等边三角形.∴∠ABC=∠ACB=60°,∵OB平分∠ABC,OC平分∠AC B,∴∠OBC=∠ABC=30°,∠OCB=∠ACB=30°,∵OB,OC的垂直平分线分别交BC于点D,E,∴DB=DO,EC=EO,∴∠ODB=∠DBO=30°,∠EOC=∠ECO=30°,∴∠ODE=∠ODB+∠DBO=60°,∠OED=∠EOC+∠ECO=60°,∴△ODE为等边三角形.22.(10分)如图,在△ABC中,∠ACB=90°,∠A=30°.(1)教材中有这样的结论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.请结合图1,证明该结论;(2)若将图2分割成三个全等的三角形,请你画出图形,并简单描述辅助线的作法.【解答】解:(1)证法一:如答图所示,延长BC到D,使CD=BC,连接AD,易证AD=AB,∠BAD=60°.∴△ABD为等边三角形,∴AB=BD,∴BC=CD=AB,即BC=AB.证法二:如答图所示,取AB的中点D,连接DC,有CD=AB=AD=DB,∴∠DCA=∠A=30°,∠BDC=∠DCA+∠A=60°.∴△DBC为等边三角形,∴BC=DB=AB,即BC=AB.证法三:如答图所示,在AB 上取一点D ,使BD=BC , ∵∠B=60°,∴△BDC 为等边三角形,∴∠DCB=60°,∠ACD=90°﹣∠DCB=90°﹣60°60°=30°=30°=30°==∠A .∴DC=DA ,即有BC=BD=DA=AB ,∴BC=AB .证法四:如图所示,作△ABC 的外接圆⊙D ,∠C=90°,AB 为⊙O 的直径, 连DC 有DB=DC ,∠BDC=2∠A=2×30°=60°, ∴△DBC 为等边三角形,∴BC=DB=DA=AB ,即BC=AB .(2)如图2,作∠ACB 平分线交AC 于点D ,作DE ⊥AB 于点E , 则△ADE ≌△BDE ≌△BDC由作图知∠DBC=∠DBE=∠A=30°,∠AED=∠BED=∠C=90°, ∴AD=BD ,∴AE=BE=AB , 又∵BC=AB , ∴AE=BE=BC ,在△ADE 、△BDE 、△BDC 中,∵,∴△ADE≌△BDE≌△BDC.23.(10分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【解答】解:(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得2x=,解得:x=36°,则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE 时, ∵2x +x=30°+30°, ∴x=20°; ②当AD=DE 时, ∵30°+30°+2x +x=180°, ∴x=40°;综上所述,∠C 为20°或40°的角.24.(12分)(1)问题解决:如图,在四边形ABCD 中,∠BAD=α,∠BCD=180°﹣α,BD 平分∠ABC .①如图1,若α=90°,根据教材中一个重要性质直接可得AD=CD ,这个性质是,这个性质是 角平分线上的点到角的两边距离相等点到角的两边距离相等 ; ②在图2中,求证AD=CD ;(2)拓展探究:根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC 中,∠BAC=100°,BD 平分∠ABC ,求证BD +AD=BC .【解答】解:(1)①根据角平分线的性质定理可知AD=CD . 所以这个性质是角平分线上的点到角的两边距离相等. 故答案为角平分线上的点到角的两边距离相等. ②如图2中,作DE ⊥BA 于E ,DF ⊥BC 于F .∵BD平分∠EBF,DE⊥BE,DF⊥BF,∴DE=DF,∵∠BAD+∠C=180°,∠BAD+∠EAD=180°,∴∠EAD=∠C,∵∠E=∠DFC=90°,∴△DEA≌△DFC,∴DA=DC.(2)如图3中,在BC时截取BK=BD,BT=BA,连接DK.∵AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBK=∠ABC=20°,∵BD=BK,∴∠BKD=∠BDK=80°,∵∠BKD=∠C+∠KDC,∴∠KDC=∠C=40°,∴DK=CK,∵BD=BD,BA=BT,∠DBA=∠DBT,∴△DBA≌△DBT,∴AD=DT,∠A=∠BTD=100°,∴∠DTK=∠DKT=80°,∴DT=DK=CK,∴BD+AD=BK+CK=BC.。
2019-2020学年重庆八中八年级(上)期中数学试卷(含解析)
2019-2020学年重庆八中八年级(上)期中数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题4分,共40分)1.下列算式中,正确的是()A.3=3 B.C.D.=32.下列条件中,不能判断△ABC为直角三角形的是()A.a2=3,b2=4,c2=5 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=1:2:33.下列方程中是二元一次方程的有()①﹣m=12;②z+1;③=1;④mn=7;⑤x+y=6zA.1个B.2个C.3个D.4个4.如图,直线y1=kx+2与y2=x+b交于点P,点P的横坐标是1,则关于x的不等式kx+2>x+b的解集是()A.x<0 B.x<1 C.0<x<1 D.x>15.若A(m+2n,2m﹣n)关于x轴对称点是A1(5,5),则P(m,n)的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(﹣1,3)D.(1,3)6.已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的边长分别为9cm和12cm,则正方形③的边长为()A.3cm B.13cm C.14cm D.15cm7.若方程组的解中x与y互为相反数,则m的值为()A.﹣2 B.﹣1 C.0 D.18.如图,将一根长27厘米的筷子,置于高为11厘米的圆柱形水杯中,且筷子露在杯子外面的长度最少为(27﹣)厘米,则底面半径为()厘米.A.6 B.3 C.2 D.129.有一长、宽、高分别是5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A.cm B.cm C.cm D.cm10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为()A.5 B.C.9D.6二、填空题(每小题4分,共12分)11.直角三角形的两条直角边长分别是3cm、4cm,则斜边长是cm.12.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=.13.已知实数x,y满足y=+2,则(y﹣x)2011的值为.三、解答题(共48分)14.(8分)(1)(2)15.(10分)数学课上,静静将一副三角板如图摆放,点A,B,C三点共线,其中∠FAB=∠ECD=90°,∠D=45°,∠F=30°,且DE∥AC.(1)若AB=2,BF=4.求AF的长.(2)若ED=4,求BC的长.16.(10分)探究函数y=|x﹣1|﹣2的图象和性质.静静根据学习函数的经验,对函数y=|x﹣1|﹣2的图象进行了探究,下面是静静的探究过程,请补充完成:(1)化简函数解析式,当x<1时,y=,当x≥1时,y=.(2)根据(1)的结果,完成下表,并补全函数y=|x﹣1|﹣2图象;x ……y ……(3)观察函数图象,请写出该函数的一条性质:.17.(10分)已知函数y=kx+b(k≠0)图象经过点A(﹣2,1),点B(1,).(1)求直线AB的解析式;(2)若在直线AB上存在点C,使S△ACO=S△ABO,求出点C坐标.18.(10分)小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:制作普通花束(束)制作精致花束(束)所用时间(分钟)10 25 60015 30 750请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?B卷(50分)一、选填题(每小题4分,共20分)19.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)20.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则重叠部分△DEF的面积是()cm2.A.15 B.12 C.7.5 D.621.半期考试来临,元元到文具店购买考试用的铅笔,签字笔和钢笔,其中铅笔每支8元,签字笔每支10元,钢笔每支20元,若他一共用了122元,那么他最多能买钢笔支.22.如图,Rt△ABC中,∠CAB=90°,△ABD是等腰三角形,AB=BD=4,CB⊥BD,交AD于E,BE=1,则AC=.23.A、B两地之间有一条直线跑道,甲,乙两人分别从A,B同时出发,相向而行匀速跑步,且乙的速度是甲速度的90%.当甲,乙分别到达B地,A地后立即调头往回跑,甲的速度保持不变,乙的速度提高20%(仍保持匀速前行).甲,乙两人之间的距离y(米)与跑步时间x(分钟)之间的关系如图所示,则他们在第二次相遇时距B地米.二、解答题(共30分)24.(10分)材料:对于平面直角坐标系中的任意两点M1(x1,y1),M2(x2,y2),我们把d=叫做M1,M2两点间的距离公式,记作d(M1,M2).如A(﹣2,3),B(2,5)则A,B两点的距离为d(A,B)=.请根据以上阅读材料,解答下列问题:(1)当A(a,1),B(﹣1,4)的距离d(A,B)=5时,求出a的值.(2)若在平面内有一点C(x0,y0),使有最小值,求出它的最小值和此时x0的范围.(3)若有最小值,请直接写出最小值.25.(8分)已知,如图,∠BAC=∠DAE=90°,且AD=AE,AC=AB.其中B、E、D共线且DE交AC于F.(1)如图1,若E为BD的中点,且DC=,求AB的长;(2)如图2,若DE=BE,过点E作EG⊥AE交AB于点G,求证:AB+BG=BC.26.(12分)如图,直线L1:y=﹣x+3与x轴,y轴分别交于A,B两点,若将直线l1向右平移2个单位得到直线L2,L2与x轴,y轴分别交于C,D两点.(1)求点D的坐标;(2)如图1,若点M是直线L2上一动点,且MN⊥L1,NH⊥x轴,连接BM,求BM+MN+NH的最小值及此时点N 的坐标;(3)如图2,将线段AB绕点C顺时针旋转90°得到线段A′B′,延长线段A′B′得到直线L3,线段A′B′在直线L3上移动,当以点C、A′、B′构成的三角形是等腰三角形时,直接写出点A′的坐标.1.【解答】解:A、原式=2,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=3﹣3+2=5﹣2,所以C选项正确;D、原式==,所以D选项错误.故选:C.2.【解答】解:A、3+4=7≠5,利用勾股定理逆定理判定△ABC不为直角三角形,故此选项符合题意;B、42+43=52,根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠C=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=30°,∠B=60°,∠C=90°,可判定△ABC不是直角三角形,故此选项不合题意.故选:A.3.【解答】解:①﹣m=12,不是整式方程,不符合题意;②y=z+2,是二元一次方程,符合题意;③=1,不是整式方程,不符合题意;④mn=7,是二元二次方程,不符合题意;故选:A.4.【解答】解:当x<1时,kx+2>x+b,即不等式kx+2>x+b的解集为x<1.故选:B.5.【解答】解:∵A(m+2n,2m﹣n)关于x轴对称点是A1(5,5),∴m+2n=5,2m﹣n=﹣5,∴P(m,n)的坐标是(﹣8,3).故选:C.6.【解答】解:∵四边形①、②、③都是正方形,∴∠EAB=∠EBD=∠BCD=90°,BE=BD,∴∠AEB=∠CBD.,∴AE=BC=9cm,AB=CD=12cm.∴AB2=63.BE2=AE2+AB2=81+144=225,故选:D.7.【解答】解:根据题意得:,解得:,解得:m=0,故选:C.8.【解答】解:27﹣(27﹣)=(厘米),筷子,圆柱的高,圆柱的直径正好构成直角三角形,6÷2=3(厘米).故选:B.9.【解答】解:如图,AB==,∴需要爬行的最短路径长为,故选:A.10.【解答】解:如图所示:∵Rt△ABC的周长为15+9,∠ACB=90°,AB=15,∴(AC+BC)2=(8)2,即AC2+2AC×BC+BC6=405,∴AC×BC=90,∴CD===6;故选:D.11.【解答】解:∵直角三角形的两条直角边长分别是3cm、4cm,则∴斜边长=cm,故答案为:512.【解答】解:根据一次函数的定义可得:m﹣2≠0,|m|﹣1=1,由|m|﹣6=1,解得:m=﹣2或2,则m=﹣2.故答案为:﹣2.13.【解答】解:∵与都有意义,∴x=3,则y=2,故答案为:﹣1.14.【解答】解:(1)原式=++12﹣1=2+3+12﹣1(2)方程组整理为,②﹣①得4x=8,解得x=2,把x=3代入①得2﹣4y=﹣2,解得y=1,所以原方程组的解为.15.【解答】(1)解:如图,直角△AFB中,∠FAB=90°,AB=2,BF=4.由勾股定理知,AF===2;∵∠F=30°,∴BG=BE.∴∠DEC=∠D=45°.∴ED=EC.∴EC=2.∴∠ECG=∠DEC=45°.∴EG=CG.∴GC=2.∴BG=.∴BC=GC﹣GB=2﹣.16.【解答】解:(1)化简函数解析式,当x<1时,y=(1﹣x)﹣2=﹣x﹣,当x≥1时,y=(x ﹣1)﹣2=x﹣,故答案为﹣x﹣,x﹣.当x=0时,y=﹣,故答案为0,﹣1.﹣,﹣7,故答案为:当x≥1时,y随x的增大而增大.17.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣2,1)、点B(1,).∴,解得:.(2)如图,∵C在直线AB上,且S△ACO=S△ABO,∵A(﹣2,1),B(1,).∴C(﹣,)或(﹣,);18.【解答】解:(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,依题意,得:,答:小华每制作一束普通花束需要10分钟,每制作一束精致花束需要20分钟.依题意,得:W=1800+2×+5×=﹣+4200(3000≤x≤5000).∴W的值随x值的增大而减小,3000÷10=300(束),答:小华该月收入W最多是4050元,此时小华本月制作普通花束300束,制作精致花束330束.19.【解答】解:令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(6,1),P2(2,0),P3(6,﹣1),P4(4,0),P5(5,1),…,∵17=4×4+1,故选:A.20.【解答】解:长方形ABCD中,AB=CD=3,AD=9,∠C=90°根据翻折可知:设AE=A′E=x,则DE=9﹣x,(4﹣x)2=x2+32,解得x=4,∴S△DEF=DE•CD=×5×3=7.5(cm8).故选:C.21.【解答】解:设购买x支钢笔,y支铅笔,z支签字笔,依题意,得:20x+8y+10z=122由题意可知x,y,z均为正整数当y=2,z=1时,x=4.8,不符合题意;当y=2,z=4时,由奇偶性可知,分子为奇数,不符合题意;故答案为:4.22.【解答】解:∵AB=BD=4,∴∠BAE=∠BDE,∴∠DBE=∠CAB=90°,∴∠CAE=∠DEB,∴∠CAE=∠CEA,∵BE=1,∵AC2+AB2=BC2,∴AC=,故答案为:.23.【解答】解:甲的速度为2700÷9=300(米/分钟),乙的初始速度为300×90%=270(米/分钟),乙加速后的速度为270×(1+20%)=324(米/分钟).根据题意得:(300+324)t=2700﹣300×(10﹣9),∴他们在第二次相遇时距B地2700﹣300×()=(米),故答案为:.24.【解答】解:(1)由题意:(a+1)2+(7﹣4)2=52,解答a=3或﹣5.(3)∵=,∴+=+,求+,相当于求点(2x,3)到点(4,1)和点(0,7)的距离和的最小值,这个最小值==,∴原式的最小值=+3.25.【解答】解:(1)如图1中,∴∠BAC=∠EAD=90°,AB=AC,AE=AD=1,∴△DAC≌△EAB,∵∠CFD=∠AFB,∵DE=EB=CD=,∴AB=AC=BC=.∴AE=EB,∵∠DEA=45°=∠EAB+∠EBA,∴∠EAB=∠EBA=∠EBC=22.5°,∴∠CJA=180°﹣∠CAJ﹣∠ACJ=67.5°,∴CA=CJ=CB,∴∠AEG=∠GEJ=90°,∵∠AGE=∠EBG+∠GEB,∵BE=BE,∠EBJ=∠EBG,∴BG=BJ,∴BC=CJ+BJ=AB+BG.26.【解答】解:(1)由已知可得A(3,0),B(0,5),∵将直线l1向右平移2个单位得到直线L2,∴直线L2:y=﹣x+5,(2)过点A作AE⊥L2,∴AE=,∴BM+MN+NH的最小值即为BM++NH的最小值,则BM+MN+NH的最小值即为+FH;∴B'M=FN,∴BM=B'M,在Rt△BDF中,BF=,BD=2,过点B作BG⊥FH,∴GB=,FG=,在Rt△BNG中,∠GBN=30°,BG=,∴N(,),∴BM+MN+NH的最小值+;∴A'(4,2),∴直线L3:y=x+2﹣15,∴AB=6,①当A'B'=A'C时,A'C=6,∴m=或m=,②当A'B'=B'C时,B'C=6,∴m=或m=;③当A'C=B'C时,∴m=4﹣;综上所述:A'(,),A'(,);A'(,),A'(,);A'(5﹣,﹣);).。
【解析版】2019-2020学年许昌市禹州市八年级上期中数学试卷
【解析版】2019-2020学年许昌市禹州市八年级上期中数学试卷一、选择题:(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A. 1,2,4 B. 4,9,6 C. 5,5,11 D. 3,5,82.将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A. B. C. D.3.如图,C在AB延长线上,CE⊥AF于点E,交BF于点D,∠F=60°,∠C=20°,则∠FBA=()A. 50° B. 60° C. 70° D. 80°4.下列说法:①用同一张底片冲洗出来的8张1存相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A. 1个 B. 2个 C. 3个 D. 4个5.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A. AB=AD,AC=AE B. AB=AD,BC=DE C. AB=DE,BC=AE D. AC=AE,BC=DE6.已知一个三角形的周长为18cm,且它的角平分线的交点到一边的距离是2.5cm,则这个三角形的面积是()A. 22.5cm2 B. 19cm2 C. 21cm2 D. 23.5cm27.下列“表情图”中,属于轴对称图形的是()A. B. C. D.8.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为()A. 36° B. 36°或90° C. 90° D. 60°二、填空题(共7小题,每小题3分,满分21分)9.在平面直角坐标系中,点A(﹣1,2)和(﹣1,6)的对称轴是直线.10.在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是.11.若一个多边形的每一个外角都等于20°,则它的内角和等于.12.如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有对.13.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=.15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于.三、解答题.16.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线共有k条,你能算出代数式的值吗?17.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF 的度数.18.已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,求四边形AA′C′C的面积.20.在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.21.(10分)(秋•期中)如图,14:00时,一条船从A处出发,以18海里/小时的速度,向正北航行,16:00时,船到达B处,从A处测得灯塔C在北偏西28°,从B处测得灯塔C在北偏西56°,求B处到灯塔C的距离.22.(10分)(秋•期中)如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠1=∠2,∠BPA=∠CQA,试判断△APQ的形状,并说明理由.23.(11分)(秋•期中)如图,在△ABC中,D是AB边的中点,PD⊥AB交∠ACB的平分线与点P,PM⊥AC于点M,PN⊥BC交CB的延长线于点N.求证:CM=CN=(AC+BC)-学年八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A. 1,2,4 B. 4,9,6 C. 5,5,11 D. 3,5,8考点:三角形三边关系.分析:根据三角形的三边关系进行分析判断.解答:解:根据三角形任意两边的和大于第三边,得A中,1+2=3<4,不能组成三角形;B中,4+6>9,能组成三角形;C中,5+5=11,不能够组成三角形;D中,5+3=8,不能组成三角形.故选B.点评:本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.2.将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A. B. C. D.考点:三角形的稳定性.分析:根据三角形具有稳定性进行解答.解答:解:根据三角形具有稳定性可得A、B、D都具有稳定性,C未曾构成三角形,因此不稳定,故选:C.点评:此题主要考查了三角形的稳定性,是需要识记的内容.3.如图,C在AB延长线上,CE⊥AF于点E,交BF于点D,∠F=60°,∠C=20°,则∠FBA=()A. 50° B. 60° C. 70° D. 80°考点:三角形的外角性质;直角三角形的性质.分析:首先根据三角形内角和定理可得∠FDE=30°,根据对顶角相等可得∠BDC=30°,再根据三角形外角的性质可得∠ABF=30°+20°=50°.解答:解:∵CE⊥AF,∴∠FED=90°,∵∠F=60°,∴∠FDE=30°,∴∠BDC=30°,∴∠C=20°,∴∠ABF=30°+20°=50°,故选:A.点评:此题主要考查了三角形外角的性质,以及三角形内角和,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.4.下列说法:①用同一张底片冲洗出来的8张1存相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A. 1个 B. 2个 C. 3个 D. 4个考点:全等图形.分析:直接利用全等图形的性质分别分析得出即可.解答:解:①用同一张底片冲洗出来的8张1存相片是全等形,正确;②我国国旗上的四颗小五角星是全等形,正确;③所有的等边三角形是全等形,错误;④全等形的面积一定相等,正确.故选:C.点评:此题主要考查了全等图形,正确利用全等图形的性质分析得出是解题关键.5.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A. AB=AD,AC=AE B. AB=AD,BC=DE C. AB=DE,BC=AE D. AC=AE,BC=DE考点:全等三角形的判定.分析:根据三角形内角和定理,由∠1=∠2,然后根据“SAS”对各选项进行判断.解答:解:∵∠1=∠2,∴∠C=∠E,∴当AE=AC,DE=BC时,可根据“SAS”判断△ABC≌△ADE.故选D.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.6.已知一个三角形的周长为18cm,且它的角平分线的交点到一边的距离是2.5cm,则这个三角形的面积是()A. 22.5cm2 B. 19cm2 C. 21cm2 D. 23.5cm2考点:角平分线的性质.分析:根据角平分线的性质得到OD=OE=OF=2.5,根据三角形面积公式得到答案.解答:解:∵点O是角平分线的交点,OD⊥AB,OF⊥AC,OE⊥BC,∴OD=OE=OF=2.5,△ABC的面积为:×AB×OD+×AC×OF+×BC×OE=×18×2.5=22.5,故选:A.点评:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.下列“表情图”中,属于轴对称图形的是()A. B. C. D.考点:轴对称图形.分析:根据轴对称图形的定义:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形直接回答即可.解答:解:A、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;B、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;C、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;D、是轴对称图形;故选D.点评:本题考查了轴对称图形的定义,牢记轴对称图形的定义是解答本题的关键,属于基础题,比较简单.8.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为()A. 36° B. 36°或90° C. 90° D. 60°考点:等腰三角形的性质.分析:根据已知条件,根据一个等腰三角形两内角的度数之比先设出三角形的两个角,然后进行讨论,即可得出顶角的度数.解答:解:在△ABC中,设∠A=x,∠B=2x,分情况讨论:当∠A=∠C为底角时,x+x+2x=180°解得,x=45°,顶角∠B=2x=90°;当∠B=∠C为底角时,2x+x+2x=180°解得,x=36°,顶角∠A=x=36°.故这个等腰三角形的顶角度数为90°或36°.故选B.点评:本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.二、填空题(共7小题,每小题3分,满分21分)9.在平面直角坐标系中,点A(﹣1,2)和(﹣1,6)的对称轴是直线y=4.考点:坐标与图形变化-对称.专题:数形结合.分析:利用两已知点的坐标特征得这两个点的连线段与y轴平行,且连线段的中点坐标为(﹣1,4),则过点(﹣1,4)且与y轴垂直的直线是它们的对称轴.解答:解:∵(﹣1,2)和(﹣1,6)的横坐标相同,∴这两个点的连线段与y轴平行,且连线段的中点坐标为(﹣1,4),∴点(﹣1,2)与(﹣1,6)关于直线y=4对称.故答案为y=4.点评:本题考查了坐标与图形变化﹣对称:记住关于x轴对称和关于y轴对称的点的坐标特征.通常利用数形结合的思想解决此类问题.10.在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是45°.考点:三角形内角和定理.分析:根据三角形内角和等于180°和∠A=75°求得∠B+∠C=105°,由于∠B﹣∠C=15°,解方程组即可得到结果.解答:解:在△ABC中,∠A=75°,根据三角形的内角和定理和已知条件得到∠C+∠B=180°﹣∠A=180°﹣105°=105°,∵∠B﹣∠C=15°,∴∠C=45°.则∠C的度数为45°.故答案为:45°.点评:本题考查三角形的内角和定理,进行角的等量代换是解答本题的关键.11.若一个多边形的每一个外角都等于20°,则它的内角和等于2880°.考点:多边形内角与外角.分析:首先根据外角和与外角的度数可得多边形的边数,再根据多边形内角和公式180(n ﹣2)计算出答案.解答:解:∵多边形的每一个外角都等于20°,∴它的边数为:360°÷20°=18,∴它的内角和:180°(18﹣2)=2880°,故答案为:2880°.点评:此题主要考查了多边形的内角与外角,关键是正确计算出多边形的边数.12.如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有6对.考点:全等三角形的判定.分析:先根据“SSS”可证明△ABC≌△ABD,△AEC≌△AED,利用全等三角形的性质得∠ABC=∠ABD,则利用”SAS”可判断△BCF≌△BDF,然后再利用“SSS”可分别判断△AFC≌△AFD,△CEF≌△DEF,△BCE≌△BDE.解答:解:在△ABC和△ABD中,,∴△ABC≌△ABD(SSS);同理可得△AEC≌△AED(SSS),由△ABC≌△ABC得∠ABC=∠ABD,在△BCF和△BDF中,,∴△BCF≌△BDF(SAS),∴CF=DF,同理可得△AFC≌△AFD(SSS),△CEF≌△DEF(SSS),△BCE≌△BDE(SSS).故答案为6.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.13.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是5.考点:全等三角形的性质.分析:先求出AB的长度,再根据全等三角形对应边相等解答即可.解答:解:∵BE=4,AE=1,∴AB=BE+AE=4+1=5,∵△ABC≌△DEF,∴DE=AB=5.故答案为:5.点评:本题考查了全等三角形对应边相等的性质,先求出DE的对应边AB的长度是解题的关键.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=6cm.考点:线段垂直平分线的性质.分析:根据直角三角形的性质得到DE=BD,根据线段垂直平分线的性质得到DA=DB,证明∠CAD=∠DAB,根据角平分线的性质得到答案.解答:解:∵DE⊥AB,∠B=30°,∴DE=BD=6,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=30°,又∠C=90°,∴∠CAD=∠DAB,又∠C=90°,DE⊥AB,∴DC=DE=6.故答案为:6cm.点评:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于120°.考点:等边三角形的性质.分析:根据等边三角形性质得出∠ABC=∠ACB=60°,根据角平分线性质求出∠IBC和∠ICB,根据三角形的内角和定理求出即可.解答:解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC=30°,∠ICB=∠ACB=30°,∴∠BIC=180°﹣30°﹣30°=120°,故答案为:120°.点评:本题考查了等边三角形的性质,三角形的内角和定理,角平分线定义等知识点的应用,关键是求出∠IBC和∠ICB的度数.三、解答题.16.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线共有k条,你能算出代数式的值吗?考点:多边形的对角线.分析:根据n边形从一个顶点出发可引出(n﹣3)条对角线.从n个顶点出发引出(n﹣3)条,而每条重复一次,所以n边形对角线的总条数为:(n≥3,且n为整数)可得到m、k、n的值,进而可得答案解答:解:解:由题意得:m﹣3=7,n=3解得m=10,n=3,由题意得:=k,解得k=5,=200.点评:此题主要考查了多边形的对角线,关键是掌握对角线条数的计算公式.17.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF 的度数.考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:在△ADF中,由三角形的外角性质知:∠ADF=∠B+∠BAC,所以∠B+∠BAC+∠FAD=90°,联立△ABC中,由三角形内角和定理得到的式子,即可推出∠DAF,∠B,∠C的关系,再代值求解即可.解答:解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.点评:此题主要考查了三角形的外角性质、角平分线的性质以及三角形内角和定理等知识,熟记此题的结论在解选择和填空题时会加快解题效率.18.已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.专题:作图题.分析:由所求的点P满足PC=PD,利用线段垂直平分线定理得到P点在线段CD的垂直平分线上,再由点P到∠AOB的两边的距离相等,利用角平分线定理得到P在∠AOB的角平分线上,故作出线段CD的垂直平分线,作出∠AOB的角平分线,两线交点即为所求的P点.解答:解:如图所示:作法:(1)以O为圆心,任意长为半径画弧,与OA、OB分别交于两点;(2)分别以这两交点为圆心,大于两交点距离的一半长为半径,在角内部画弧,两弧交于一点;(3)以O为端点,过角内部的交点画一条射线;(4)连接CD,分别为C、D为圆心,大于CD长为半径画弧,分别交于两点;(5)过两交点画一条直线;(6)此直线与前面画的射线交于点P,∴点P为所求的点.点评:此题考查了作图﹣复杂作图,涉及的知识有:角平分线性质,以及线段垂直平分线性质,熟练掌握性质是解本题的关键.19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,求四边形AA′C′C的面积.考点:作图-轴对称变换.分析:(1)根据轴对称的性质作出△ABC关于直线MN对称的△A′B′C′即可;(2)根据梯形的面积公式求出梯形AA′C′C的面积即可.解答:解:(1)如图所示;(2)∵由图得四边形AA′C′C的面积是等腰梯形,CC′=2,AA′=4,高是3,∴S四边形AA′C′C=(AA′+CC′)×3=(4+2)×3=9.点评:本题考查的是作图﹣轴对称变换,熟知轴对称图形的作法是解答此题的关键.20.在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.考点:关于x轴、y轴对称的点的坐标.分析:(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求解即可;(2)根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求解即可.解答:解:(1)∵M、N关于x轴对称,∴,解得;(2)∵M、N关于y轴对称,∴,解得.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.21.(10分)(秋•期中)如图,14:00时,一条船从A处出发,以18海里/小时的速度,向正北航行,16:00时,船到达B处,从A处测得灯塔C在北偏西28°,从B处测得灯塔C在北偏西56°,求B处到灯塔C的距离.考点:等腰三角形的判定与性质;方向角.分析:根据所给的角的度数,容易证得△BCA是等腰三角形,而AB的长易求,所以根据等腰三角形的性质,BC的值也可以求出.解答:解:据题意得,∠A=28°,∠DBC=56°,∵∠DBC=∠A+∠C,∴∠A=∠C=28°,∴AB=BC,∵AB=18×2=36,∴BC=36(海里).∴B处到灯塔C的距离36(海里).点评:本题考查了等腰三角形的性质及方向角的问题;由已知得到三角形是等腰三角形是正确解答本题的关键.要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法.22.(10分)(秋•期中)如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠1=∠2,∠BPA=∠CQA,试判断△APQ的形状,并说明理由.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:先证△ABP≌△ACD得AP=AD,再证∠PAD=60°,从而得出△APD是等边三角形.解答:解:△APQ是等边三角形.理由如下:∵AB=AC,∠1=∠2,∠BPA=∠CQA,∴△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∴∠PAQ=∠CAQ+∠PAC=∠BAP+∠PAC=∠BAC=60°,∴△APQ是等边三角形.点评:本题考查了等边三角形的判定与性质及全等三角形的判定方法,注意条件与问题之间的联系.23.(11分)(秋•期中)如图,在△ABC中,D是AB边的中点,PD⊥AB交∠ACB的平分线与点P,PM⊥AC于点M,PN⊥BC交CB的延长线于点N.求证:CM=CN=(AC+BC)考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AP,BP,易证PM=PN和AP=BP,即可证明RT△APM≌RT△BPN和RT△CPM≌RT△CPN,可得AM=BN和CM=CN,即可解题.解答:证明:连接AP,BP,∵CP是∠ACB平分线,∴PM=PN,∵PD⊥AB,D是AB中点,∴AP=BP,在RT△APM和RT△BPN中,,∴RT△APM≌RT△BPN(HL),∴AM=BN,在RT△CPM和RT△CPN中,,∴RT△CPM≌RT△CPN(HL),∴CM=CN,∵CN=BC+BN,CM=AC﹣AM∴CM=CN=(BC+BN+AC﹣AM)=(BC+AC).点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证RT△APM≌RT△BPN和RT△CPM≌RT△CPN是解题的关键.。
2019-2020学年上海市青浦区实验中学八年级上学期期中数学试题(解析版)
上海市青浦区实验中学2019-2020学年八年级上学期期中考试数学试卷一、选择题(共18分,每题3分)1.下列方程是一元二次方程的是()A.1x-=0x+1 B.2x-2x C.23x-2x+1=0 D.2ax+bx+c=0【答案】C【解析】【分析】根据一元二次方程的定义进行判断即可.【详解】A.该方程属于分式方程,故本选项错误;B.根号内含有未知数,是无理方程,故本选项错误;C.该方程符合一元二次方程的定义,故本选项正确;D.当a=0时,它不是一元二次方程,故本选项错误.故选C.【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).2.二次三项式2x2-8x+5在实数范围内因式分解为()A.4+64-6(x+)(x+)22 B.4+66(x-)(x-)22C.4+64-62(x+)(x-)22 D.4+64-62(x-)(x-)22【答案】D【解析】【分析】令二次三项式等于0,求出x的值,即可得到分解因式的结果.【详解】令2x 2-8x +5=0,解得:x 1=426,x 2=426,则2x 2-8x +5=46462()()22x x +---.故选D .【点睛】本题考查了实数范围内分解因式-求根公式法.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.注意当无法用十字相乘法的方法时用求根公式法可分解因式.3.对圆的周长公式2C r π=的说法正确的是()A.π,r 是变量,2是常量B.C ,r 是变量,π,2是常量C.r 是变量,2,π,C 是常量D.C 是变量,2,π,r 是常量【答案】B 【解析】在变化过程中,某量若保持不变,则称之为常量;反之,则称之为变量.π是常数,约等于3.14,和2一样是不变的常数,所以它们是常量;C 和r 是变化的量,故是变量,故选B.4.在下列函数中,当x 增大时,y 的值减小的函数是()A.y=2xB.y=5xC.3y=-xD.x y=-4【答案】D 【解析】【分析】根据一次函数的性质,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小,反比例函数的增减性必须是在每个象限内或在双曲线的每一支上,否则,不能讨论它的增减性.【详解】A .是反比例函数,其增减性必须强调在双曲线的每一支上,故本选项错误;B .k =5>0,所以y 随x 的增大而增大,故本选项错误;C .是反比例函数,其增减性必须强调在双曲线的每一支上,故本选项错误.D .是一次函数k =14-<0,所以y 随x 的增大而减小,正确.故选D .【点睛】本题考查了一次函数与反比例函数的性质,反比例函数的增减性必须强调在每个象限内或在双曲线的每一支上,这也是同学们经常出错的地方.5.函数1y=k x 和2k y=x(k 1>0,且k 1k 2<0)的图像大致是()A. B.C.D.【答案】C 【解析】【分析】首先根据k 1>0且k 1k 2<0,可得k 2<0,再根据正比例函数的性质可得y =k 1x 的图象在第一三象限,根据反比例函数的性质可得2k y x=的图象在第二四象限,进而可选出答案.【详解】∵k 1>0且k 1k 2<0,∴k 2<0,∴y =k 1x 的图象在第一三象限,2k y x=的图象在第二四象限.故选C .【点睛】本题考查了正比例函数与反比例函数的图象与性质,关键是熟练掌握两个函数的性质.6.同学聚会,每两人都握手一次,共握手45次,设x 人参加聚会,列方程为()A.x(x-1)=45 B.x(x-1)=452C.12x(x-1)=45 D.x(x+1)=45【答案】C 【解析】【分析】本题利用一元二次方程应用中的基本数量关系:x 人参加聚会,两人只握一次手,握手总次数为12x (x ﹣1),列方程即可.【详解】由题意列方程得:12x (x ﹣1)=45.故选C .【点睛】本题考查了一元二次方程的应用.找准相等关系是解答本题的关键.二、填空题(共36分,每题3分)7.如果x=12是一元二次方程x2+bx+2=0的一个根,则b的值为____________.【答案】9-2【解析】【分析】把方程的解x=12代入方程得到关于b的等式,可以求出字母系数b的值.【详解】把x=12代入方程有:112042b++=,解得:b=92-.故答案为:9 2-.【点睛】本题考查了一元二次方程的解,把方程的解代入方程可以求出字母系数的值.8.方程x2=8x的根是______.【答案】x1=0,x2=8【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:x2=8x,x2-8x=0,x(x-8)=0,x=0,x-8=0,x1=0,x2=8,故答案为:x1=0,x2=8.【点睛】考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.9.将方程x2-4x-3=0用配方法化成(x+a)2=b的形式,所得方程是____________________.【答案】(x-2)2=7【解析】【分析】根据配方法的步骤把常数项移到等号的右边,再在等式两边同时加上一次项系数一半的平方,然后进行配方即可求出答案.【详解】x2﹣4x﹣3=0,x2﹣4x=3,x2﹣4x+4=3+4,(x﹣2)2=7.故答案为:(x﹣2)2=7.【点睛】本题考查了配方法解一元二次方程,掌握配方法的步骤是解答本题的关键.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.10.方程x2-2x-3=0的根的判别式的值为________________.【答案】16【解析】【分析】先找出一元二次方程x2﹣2x﹣3=0中a、b、c的值,再代入判别式△=b2﹣4ac计算即可.【详解】∵a=1,b=﹣2,c=﹣3,∴△=b2﹣4ac=(﹣2)2﹣4×1×(﹣3)=4+12=16.故答案为:16.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式,牢记根的判别式为△=b2﹣4ac是解题的关键.11.函数y=x-2x-3的定义域是____________________.【答案】x≥2且x≠3【解析】【分析】当表达式的分母中含有自变量时,自变量取值要使分母不为零.当函数的表达式是二次根式时,自变量的取值范围必须使被开方数不小于零.【详解】∵函数y=23xx--,∴x-2≥0且x-3≠0,解得:x≥2且x≠3,∴函数y=23xx--的定义域为x≥2且x≠3.故答案为:x≥2且x≠3.【点睛】本题考查了函数自变量的取值范围,对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.12.已知函数y=32x-1-2x,则f(1)=_________________.【答案】1【解析】【分析】把x =1代入函数解析式,计算即可.【详解】f (1)=3221--=3-2=1.故答案为:1.【点睛】本题考查了函数值.掌握函数值的求法是解答本题的关键.13.已知直角三角形的一个锐角为36°,则另一个锐角的大小为________________.【答案】54°【解析】【分析】根据直角三角形两锐角互余列式计算即可得解.【详解】90°﹣36°=54°.故答案为:54°.【点睛】本题考查了直角三角形两锐角互余的性质,是基础题.14.已知,RtΔABC 中,∠C =90°,∠ABC =30°,BC =3,那么AC =________________.3【解析】【分析】设AC =x .由30°角所对直角边等于斜边的一半,得到AB =2AC =2x .由Rt △ABC 中,利用勾股定理,即可求出AC 的长.【详解】设AC =x .∵∠C =90°,∠ABC =30°,∴AB =2AC =2x .又∵BC 2222(2)3AB AC x x x -=-=3,∴x 3,∴AC 33.【点睛】本题考查了含30度角的直角三角形的性质以及勾股定理,知道30度角所对的直角边等于斜边的一半是解答本题的关键.15.在实数范围内因式分解:2x2-x-2=__________________.【答案】117117 2()44x x+--【解析】【分析】当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.2x2-x-2不是完全平方式,所以只能用求根公式法分解因式.【详解】2x2-x-2=0的解是x1=1174,x2=﹣1174,所以2x2-x-2=1171172(44x x+---.【点睛】本题考查了实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.求根公式法分解因式:ax2+bx+c=a(x﹣x1)(x﹣x2),其中x1,x2是方程ax2+bx+c=0的两个根.16.一次函数y=112x-+图像与坐标轴围成的三角形的面积是______________.【答案】1【解析】【分析】求得函数与坐标轴的交点,然后根据三角形的面积公式即可求得三角形的面积.【详解】一次函数的关系式是y=112x-+,当x=0时,y=1;当y=0时,x=2,它的图象与坐标轴围成的三角形面积是:12×1×2=1.故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征.求线段的长的问题一般是转化为求点的坐标的问题解决.17.某药品原来售价为20元,经过连续两次降价后的售价为12.8元,则平均每次的降价率为____________________.【答案】20%【解析】【分析】设平均每次降价率为x,可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣x)=12.8,把相应数值代入即可求解.【详解】设平均每次降价率为x,则第一次降价后的价格为20×(1﹣x),两次连续降价后售价后的价格为:20×(1﹣x)×(1﹣x),则列出的方程是20×(1﹣x)2=12.8,解得:x1=0.2=20%,x2=1.8(舍去).即平均每次的降价率为20%.故答案为:20%.【点睛】本题考查了一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.18.若A、B两点关于y轴对称,点A在双曲线y=2x上,点B在直线y=-x上,则点B的坐标是___________________________.【答案】2,2)或(22)【解析】【分析】首先根据A、B两点关于y轴对称,设B的坐标是B(a,b),则A(﹣a,b).根据点B在直线y=﹣x上,得到a,b之间的关系,再根据反比例函数图象上点的坐标特征求出a、b的值,进而得到B的坐标.【详解】∵A、B两点关于y轴对称,∴设B点坐标是(a,b),则A(﹣a,b).∵点B在直线y=﹣x上,∴﹣a=b,∴B坐标变为:(a,﹣a),A点坐标变为(﹣a,﹣a).∵点A在双曲线y=2x上,∴a2=2,∴a=2.当a=2时,b=2;当a=2时,b2,∴B点2,2)或(2-2).故答案为:2,2-)或(2,2).【点睛】本题考查了关于y轴对称的点的坐标特征,反比例函数图象上点的特征,以及正比例函数图象上点的特征,关键是要准确掌握各函数图象上的点的特征,才能正确解决问题.三、解答题(共46分,19-22题每题5分,23-24每题8分,25题10分)19.已知关于x的一元二次方程(m-1)x2-2x+3=0有两个不相等的实数根,求m的取值范围.【答案】m<43且m≠1.【解析】【分析】根据判别式的意义得到△=22﹣4(m﹣1)×3>0,且m﹣1≠0,然后解不等式即可.【详解】根据题意得:△=22﹣4(m﹣1)×3>0且m﹣1≠0,解得:m<43且m≠1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.20.建一个面积为1152平方米的长方形仓库,仓库的一面靠墙,墙长100米,另三面用长度为120米的铁栅栏围起来,求仓库两条邻边的长度各是多少米?【答案】长为48米,宽为24米或长为96米,宽为12米【解析】【分析】设垂直于墙的一边是x米.根据面积为1152平方米的长方形列方程求解.【详解】设垂直于墙的一边是x米.根据题意,得:x(120﹣2x)=1152整理得:x2﹣60x+576=0.解得:x=48或x=12.当x=48时,120-2x=24;当x=12时,则120﹣2x=96.答:仓库两条邻边的长各是48米、24米或96米、12米.【点睛】本题考查了一元二次方程的应用,找准等量关系列方程是解答本题的关键.21.已知正比例函数y=1x2和反比例函数的图像都经过A,点A的纵坐标是-3,求这个反比例函数的解析式.【答案】18 yx【解析】【分析】根据题意将y =-3代入正比例函数解析式,求出点A 的坐标,再将点A 代入反比例函数(0)ky k x=≠求出解析式即可.【详解】∵点A 在正比例函数y =12x 的图象上,∴-3=12x ,解得:x =-6,∴A (-6,-3).又∵A 在反比例函数k y x=的图象上,∴63k -=-,解得:k =18,∴反比例函数的解析式为18y x =.【点睛】本题考查了反比例函数和一次函数的交点问题,注意交点同时满足两个函数的解析式.22.已知:BE⊥CD,BE=DE,BC=DA.求证:FD⊥BC.【答案】证明见解析【解析】【分析】根据已知利用HL 即可判定△BEC ≌△DEA ,利用全等三角形的对应角相等可得到∠B=∠D ,从而不难求得DF ⊥BC .【详解】∵BE ⊥CD ,∴∠CEB=∠AED=90°,在Rt △BEC 和Rt △DEA 中,{BE DE BC DA==∴Rt △BEC ≌Rt △DEA (HL ),∴∠CBE=∠ADC ,∵∠CBE+∠C=90°,∴∠ADC+∠C=90°,∴DF ⊥BC.【点睛】此题主要考查学生对全等三角形的判定及性质的理解及运用,做题时要注意思考,认真寻找全等三角形全等的条件是解决本题的关键.23.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长千米;(2)小强下坡的速度为千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是分钟.【答案】(1)2(2)0.5(3)14【解析】【分析】(1)根据题意和函数图象可以得到下坡路的长度;(2)根据函数图象中的数据可以求的小强下坡的速度;(3)根据题意可以求得小强上坡的速度,进而求得小强返回时需要的时间.【详解】(1)由题意和图象可得:小强去学校时下坡路为:3﹣1=2(千米).故答案为:2;(2)小强下坡的速度为:2÷(10﹣6)=0.5千米/分钟.故答案为:0.5;(3)小强上坡时的速度为:1÷6=16千米/分钟,故小强回家骑车走这段路的时间是:2110.56=14(分钟).故答案为:14.【点睛】本题考查了函数图象,解题的关键是明确题意,找出所求问题需要的条件.24.如图,在平面直角坐标系中,直线y=2x经过点A(m,6),点B坐标为(4,0).(1)求点A的坐标;(2)若P为射线OA上的一点,当ΔPOB是直角三角形时,求P点的坐标.【答案】(1)(3,6);(2)(4,8)或(0.8,1.6).【解析】【分析】(1)根据直线y=2x经过点A(m,6),可得6=2m,易求m=3,即可得A点坐标;(2)考虑有两种情况:①当∠OBP=90°时,点P的横坐标与点B的横坐标相同,均为4,把x=4代入y=2x,易求y=8,从而可得P点坐标;当∠OPB=90°时,可先设P点坐标是(n,2n),根据勾股定理易得n2+(2n)2+(n﹣4)2+(2n)2=42,解方程即可得到结论.【详解】(1)∵直线y=2x经过点A(m,6),∴6=2m,解得:m=3,∴点A的坐标为(3,6);(2)分两种情况讨论:①当∠OBP=90°时,点P的横坐标与点B的横坐标相同,均为4,将x=4代入y=2x,得y=8,∴点P的坐标为(4,8);②当∠OPB=90°时,PO2+PB2=OB2,设P点坐标为(n,2n),n2+(2n)2+(n﹣4)2+(2n)2=42,解得:n1=0.8,n2=0(舍去),∴点P的坐标为(0.8,1.6).综上所述:当△POB是直角三角形时,点P的坐标为(4,8)或(0.8,1.6).【点睛】本题考查了一次函数综合题、勾股定理.解题的关键是根据题意画出图,要根据P点的不同位置进行分类讨论.25.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C顺时针方向旋转60°,到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由.(3)探索:当α为多少度时,△AOD是等腰三角形.【答案】(1)见解析;(2)见解析;(3)110°或125°或140°.【解析】【分析】(1)根据△BOC绕点C按顺时针方向旋转60°得△ADC,得CO=CD,∠OCD=60°故△COD是等边三角形;(2)求得∠ADO=∠ADC-∠CDO=90°即可知△AOD是直角三角形;(3)分别求出∠ADO=α-60°,∠AOD=360°-60°-110°-α=190°-α,再根据等腰三角形的底角相同分3中情况讨论.【详解】解:(1)∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴∠ADC=∠BOC=α=150°,∵△COD是等边三角形,∴∠CDO=60°,∴∠ADO=∠ADC-∠CDO=90°,∴△AOD是直角三角形;(3)∵△COD是等边三角形,∴∠CDO=∠COD=60°,∴∠ADO=α-60°,∠AOD=360°-60°-110°-α=190°-α,当∠AOD=∠ADO时,△AOD是等腰三角形,即190°-α=α-60°,解得α=125°;当∠AOD=∠DAO时,△AOD是等腰三角形,即2(190°-α)+α-60°=180°,解得α=140°;当∠ADO=∠DAO时,△AOD是等腰三角形,即190°-α+2(α-60°)=180°,解得α=110°,综上所述,∠BOC的度数为110°或125°或140°时,△AOD是等腰三角形.【点睛】此题主要考察旋转的性质与应用.。
2019-2020学年山东省德州市禹城市八年级(上)期中数学试卷(解析版)
2019-2020学年山东省德州市禹城市八年级(上)期中数学试卷一、选择题(本大题共12个小题得小题4分,共18分.在每小题余出的四个选理中,以有一项是符合题目要求的)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下面各组线段中,能组成三角形的是()A.5,11,6B.8,8,16C.10,5,4D.6,9,143.如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°4.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC5.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OA对称,P2与P于OB对称,则△P1OP2的形状一定是()A.直角三角形B.等边三角形C.底边和腰不相等的等腰三角形D.钝角三角形6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.27.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D.则∠D的度数为()A.15°B.17.5°C.20°D.22.5°8.△ABC中,∠ABC与∠ACB的平分线相交于I,且∠BIC=130°,则∠A的度数是()A.40°B.50°C.65°D.80°9.如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是()A.∠1+∠6=∠2B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠5+∠4=180°10.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°11.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°12.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB′=∠ACB,④AB =A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)13.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.14.点A(3,﹣2)关于x轴对称的点的坐标是.15.等腰三角形的一个角为50°,那么它的一个底角为.16.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.17.如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则EC =.18.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QP A全等,则AP =.三、解答题(共78分)19.(9分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标;(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使P A=PB(保留作图痕迹).20.(9分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.21.如图,CA=CD,∠BCE=∠ACD,BC=EC,求证:∠A=∠D.22.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.23.如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED =EC.(1)当点E为AB的中点时(如图1),则有AE DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.24.(1)阅读理解:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.25.如图①,已知等腰直角△ABC中,BD为斜边上的中线,E为DC上的一点,且AG⊥BE于G,AG交BD于F.(1)求证:AF=BE;(2)如图②,若点E在DC的延长线上,其它条件不变,①的结论还能成立吗?若不能,请说明理由;若能,请予以证明.2019-2020学年山东省德州市禹城市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题得小题4分,共18分.在每小题余出的四个选理中,以有一项是符合题目要求的)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.2.下面各组线段中,能组成三角形的是()A.5,11,6B.8,8,16C.10,5,4D.6,9,14【解答】解:A、∵5+6=11,∴不能组成三角形,故A选项错误;B、∵8+8=16,∴不能组成三角形,故B选项错误;C、∵5+4<10,∴不能组成三角形,故C选项错误;D、∵6+9>14,∴能组成三角形,故D选项正确.故选:D.3.如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°【解答】解:∵图中是三个等边三角形,∴∠1=180°﹣60°﹣∠ABC=120°﹣∠ABC,∠2=180°﹣60°﹣∠ACB=120°﹣∠ACB,∠3=180°﹣60°﹣∠BAC=120°﹣∠BAC,∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°﹣180°=180°,故选:D.4.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.5.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OA对称,P2与P于OB对称,则△P1OP2的形状一定是()A.直角三角形B.等边三角形C.底边和腰不相等的等腰三角形D.钝角三角形【解答】解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形.故选:B.6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.2【解答】解:过点P作PE⊥BC于E,∵AB∥CD,P A⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴P A=PE,PD=PE,∴PE=P A=PD,∵P A+PD=AD=8,∴P A=PD=4,∴PE=4.故选:C.7.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D.则∠D的度数为()A.15°B.17.5°C.20°D.22.5°【解答】解:∵AB=AC,∴∠ACB=∠ABC=75°,∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4=37.5°,∵∠ACE=180°﹣∠ACB=105°,∴∠2=52.5°,∴∠BCD=75°+52.5°=127.5°,∴∠D=180°﹣∠3﹣∠BCD=15°.故选:A.8.△ABC中,∠ABC与∠ACB的平分线相交于I,且∠BIC=130°,则∠A的度数是()A.40°B.50°C.65°D.80°【解答】解:∵∠BIC=130°,∴∠EBC+∠FCB=180°﹣∠BIC=180°﹣130°=50°,∵BE、CF是△ABC的角平分线,∴∠ABC+∠ACB=2(∠EBC+∠FCB)=2×50°=100°,∴∠A=180°﹣100°=80°.故选:D.9.如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是()A.∠1+∠6=∠2B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠5+∠4=180°【解答】解:A、∠1+∠6与∠2没有关系,结论不成立,故本选项正确;B、由三角形的外角性质,∠4+∠5=∠2成立,故本选项错误;C、由三角形的内角和定理与对顶角相等,∠1+∠3+∠6=180°成立,故本选项错误;D、由三角形的内角和定理与对顶角相等,∠1+∠5+∠4=180°成立,故本选项错误.故选:A.10.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°【解答】解:∵ED是AC的垂直平分线,∴AE=CE∴∠EAC=∠C,又∵∠B=90°,∠BAE=10°,∴∠AEB=80°,又∵∠AEB=∠EAC+∠C=2∠C,∴∠C=40°.故选:B.11.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°【解答】解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.12.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB′=∠ACB,④AB =A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:①②③为条件,根据SAS,可判定△BCA≌△B′CA′;可得结论④;①②④为条件,根据SSS,可判定△BCA≌△B′CA′;可得结论③;①③④为条件,SSA不能证明△BCA≌△B′CA′.②③④为条件,SSA不能证明△BCA≌△B′CA′.最多可以构成正确结论2个.故选:B.二、填空题(每小题4分,共24分)13.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是三角形的稳定性.【解答】解:给凳子加了两根木条之后形成了三角形,所以“这样凳子就比较牢固了”的数学原理是:三角形的稳定性,故答案为:三角形的稳定性.14.点A(3,﹣2)关于x轴对称的点的坐标是(3,2).【解答】解:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为:(3,2).15.等腰三角形的一个角为50°,那么它的一个底角为50°或65°.【解答】解:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50°或65°.故答案是:50°或65°.16.一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.17.如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则EC =8.【解答】解:∵AB=AC,∠A=120°,∴∠B=∠C=30°,∵DE垂直平分AB,∴BE=AE,∴∠B=∠BAE=30°,∴∠EAC=90°,∴AE CE=2DE=4,∴CE=2AE=8,故答案为:818.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QP A全等,则AP=6或12.【解答】解:①当AP=CB时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QP A中,,∴Rt△ABC≌Rt△QP A(HL),即AP=BC=6;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QP A中,,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=12,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,AP=6或12.故答案为:6或12.三、解答题(共78分)19.(9分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标(1,﹣3);(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使P A=PB(保留作图痕迹).【解答】解:(1)如图所示:A1的坐标(1,﹣3);故答案为:(1,﹣3);(2)如图所示:点C即为所求;(3)如图所示:点P即为所求.20.(9分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.【解答】解:(1)如图所示:BD即为所求;(2)∵AB=AC,∴∠ABC=∠C,∵∠A=36°,∴∠ABC=∠ACB=(180°﹣36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=36°+36°=72°,∴BD=BC,∴△DBC是等腰三角形.21.如图,CA=CD,∠BCE=∠ACD,BC=EC,求证:∠A=∠D.【解答】证明:∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴∠A=∠D.22.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.【解答】证明:如图,连接AD,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,又∵DE⊥AB,DF⊥AC,∴DE=DF.23.如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED =EC.(1)当点E为AB的中点时(如图1),则有AE=DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.【解答】解:(1)如图1,∵△ABC是等边三角形,点E是AB的中点,∴CE平分∠ACB,CE⊥AB,∴∠ACB=60°,∠BEC=90°,AE=BE,又∵ED=EC,∴∠D=∠ECB=30°,∴∠DEC=120°,∴∠DEB=120°﹣90°=30°,∴∠D=∠DEB=30°,∴BD=BE=AE,即AE=DB.故答案为:=.(2)当点E为AB上任意一点时,如图2,AE与DB的大小关系不会改变.理由如下:过E作EF∥BC交AC于F,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF,∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,在△DEB和△ECF中,,∴△DEB≌△ECF(AAS),∴BD=EF=AE,即AE=BD24.(1)阅读理解:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是2<AD<8;(2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.【解答】解:(1)如图1所示:延长AD至E,使DE=AD,连接BE,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,∵,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)如图2所示:延长FD至点M,使DM=DF,连接BM、EM,同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF.25.如图①,已知等腰直角△ABC中,BD为斜边上的中线,E为DC上的一点,且AG⊥BE于G,AG交BD于F.(1)求证:AF=BE;(2)如图②,若点E在DC的延长线上,其它条件不变,①的结论还能成立吗?若不能,请说明理由;若能,请予以证明.【解答】证明:(1)∵△ABC是等腰三角形,BD为斜边上的中线,∴BD=AD AC,∠ADB=90°,∴∠1+∠GAD=90°,∵AG⊥BE于G,∴∠2+∠DBE=90°,∵∠1=∠2,∴∠DAF=∠DBE,在△AFD和△BED中,,∴△AFD≌△BED(ASA),∴AF=BE;(2)①的结论还能成立;∵△ABC是等腰三角形,BD为斜边上的中线,∴BD=AD AC,∠ADB=90°,∴∠DBE+∠DEB=90°,∵AG⊥BE于G,∴∠GBF+∠F=90°,∵∠DBE=∠GBF,∴∠F=∠DEB,在△AFD和△BED中,,∴△AFD≌△BED(AAS),∴AF=BE;。
2019-2020学年河南省平顶山市舞钢市八年级(下)期中数学试卷
2019-2020学年河南省平顶山市舞钢市八年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)(2020春•舞钢市期中)已知a<b,则下列不等式不成立的是()A.a﹣1<b﹣1B.<C.a﹣b<0D.<2.(3分)(2020秋•定西期末)已知一个等腰三角形的底角为50°,则这个三角形的顶角为()A.40°B.50°C.80°D.100°3.(3分)(2019秋•呼兰区期末)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)(2019秋•沙河市期末)用反证法证明“在△ABC中,AB=AC,则∠B是锐角”,应先假设()A.在△ABC中,∠B一定是直角B.在△ABC中,∠B是直角或钝角C.在△ABC中,∠B是钝角D.在△ABC中,∠B可能是锐角5.(3分)(2020春•舞钢市期中)下列说法正确的是()A.不等式x<有3个正整数解B.点P到线段AB的两端点距离相等,则过点P的直线是线段AB的垂直平分线C.任何一个定理都对应一个逆定理D.三角形三个内角的平分线相交于一点,这个点到三角形三个顶点的距离相等6.(3分)(2019春•许昌期末)在下列四个图案中,不能用平移变换来分析其形成过程的是()A.B.C.D.7.(3分)(2020春•舞钢市期中)已知关于x的不等式组:的解集是﹣3<x<2,则a+b的值为()A.﹣3B.2C.0D.﹣68.(3分)(2019秋•瑶海区期末)利用函数y=ax+b的图象解得ax+b<0的解集是x<﹣2,则y=ax+b的图象是()A.B.C.D.9.(3分)(2020春•舞钢市期中)如图,四边形ABCD中,∠A=90°,AD=2,连接BD,BD⊥CD,垂足是D且∠ADB=∠C,点P是边BC上的一动点,则DP的最小值是()A.1B.1.5C.2D.2.510.(3分)(2020春•舞钢市期中)如图,把△ABC绕点A逆时针旋转50°得到△AB1C1,点B、C的对应点分别为B1、C1,若∠BCC1=95°,则∠B1C1C的度数为()A.35°B.40°C.45°D.50°二、填空题(每空4分,共32分)11.(4分)(2020春•舞钢市期中)不等式﹣2x+3>x的解集是.12.(4分)(2008•宿迁)“两直线平行,内错角相等”的逆命题是.13.(4分)(2020春•舞钢市期中)如图,在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于点E,交BC于点F,若BF=1,则BC的长为:.14.(4分)(2020春•舞钢市期中)制作糕点的张师傅现有面粉460千克,武汉成为新冠肺炎的重灾区后,张师傅想把这些面粉制作成A、B两种型号的糕点,装盒后送给武汉的医护人员,已知每盒可以装2块A和4块B,而制作1块A需要0.05千克的面粉,制作1块B需要0.02千克面粉,每盒都装满,他最多能制作这样的糕点盒.15.(4分)(2020春•舞钢市期中)关于x的不等式组无解,则a的取值范围是.16.(4分)(2019秋•常州期末)如图,若BD为等边△ABC的一条中线,延长BC至点E,使CE=CD=1,连接DE,则DE=.17.(4分)(2019秋•东莞市期末)如图,在△ABC中,AB=AC,∠B=70°,把△ABC绕点C顺时针旋转得到△EDC,若点B恰好落在AB边上D处,则∠1=°.18.(4分)(2019秋•浦东新区期末)已知,大正方形的边长为5厘米,小正方形的边长为2厘米,起始状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向右沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S平方厘米.当S=2时,小正方形平移的时间为秒.三、解答题(共58分)19.(14分)(2020春•舞钢市期中)解不等式、不等式组:(1)解不等式:x﹣<,并把它的解集表示在数轴上.(2)解不等式组:,并写出该不等式组的所有整数解.20.(8分)(2019秋•甘井子区期末)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣2,﹣4)、B(0,﹣4)、C(1,﹣2).(1)△ABC关于原点O对称的图形是△A1B1C1,不用画图,请直接写出△A1B1C1的顶点坐标:A1,B1,C1;(2)在图中画出△ABC关于原点O逆时针旋转90°后的图形△A2B2C2,请直接写出△A2B2C2的顶点坐标:A2,B2,C2.21.(8分)(2019秋•铜山区期末)如图,在△ABC中,AB=AC=CD,点D在BC上,且AD=BD.(1)求证:∠ADB=∠BAC;(2)求∠B的度数.22.(9分)已知:如图,在等腰三角形ADC中,AD=CD,且AB∥DC,CB⊥AB于B,CE⊥AD交AD的延长线于E.(1)求证:CE=CB;(2)如果连接BE,请写出BE与AC的关系并证明.23.(9分)(2019春•息县期末)某文化用品店出售书包和文具盒,书包每个定价50元,文具盒每个定价8元,该店制定了两种优惠方案.方案一:买一个书包赠送一个文具盒;方案二:按总价的九折付款.购买时,顾客只能选用其中的一种方案.某学校为给学生发奖品,需购买10个文具盒,书包若干(大于0且不多于10个).设书包个数为x(个),付款金额为y(元).(1)分别写出两种优惠方案中y与x之间的关系式:方案一:y1=;方案二:y2=.(2)试分析以上两种方案中哪种更省钱?(3)学校计划用420元购买这两种奖品,最多可以买到多少个书包?24.(10分)(2020秋•槐荫区期末)(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.2019-2020学年河南省平顶山市舞钢市八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵a<b,∴a﹣1<b﹣1,a<b,a﹣b<0,>.故选:D.2.【解答】解:180°﹣50°×2=180°﹣100°=80°.故这个三角形的顶角的度数是80°.故选:C.3.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选:B.4.【解答】解:用反证法证明命题:“△ABC中,若AB=AC,则∠B是锐角”,首先应假设∠B是直角或钝角,故选:B.5.【解答】解:A、不等式x<的正整数解为1、2、3,共3个,本选项说法正确;B、点P到线段AB的两端点距离相等,则过点P的线段AB的垂线是线段AB的垂直平分线,本选项说法错误;C、任何一个定理都对应一个逆命题,不一定是逆定理,本选项说法错误;D、三角形三个内角的平分线相交于一点,这个点到三角形三边的距离相等,本选项说法错误;故选:A.6.【解答】解:由图可知,ACD三个图形通过平移而成,B中图案通过旋转而成.故选:B.7.【解答】解:不等式组整理得:,解得:2b+3<x<,由已知解集为﹣3<x<2,得到2b+3=﹣3,=2,解得:a=﹣3,b=﹣3,则a+b=﹣6.故选:D.8.【解答】解:∵不等式ax+b<0的解集是x<﹣2,∴当x<﹣2时,函数y=ax+b的函数值为负数,即直线y=ax+b的图象在x轴下方.故选:C.9.【解答】解:过点D作DE⊥BC于E,则DE即为DP的最小值,∵∠BAD=∠BDC=90°,∠ADB=∠C,∴∠ABD=∠CBD,∵∠ABD=∠CBD,DA⊥AB,DE⊥BC,∴DE=AD=2,故选:C.10.【解答】解:∵把△ABC绕点A逆时针旋转50°得到△AB1C1,∴∠CAC1=50°,AC=AC1,∴∠AC1C=∠ACC1=65°,又∠BCC1=95°,∴∠ACB=30°,∴∠AC1B1=∠ACB=30°,∴∠B1C1C=65°﹣30°=35°.故选:A.二、填空题(每空4分,共32分)11.【解答】解:移项,得:﹣2x﹣x>﹣3,合并同类项,得:﹣3x>﹣3,系数化为1,得:x<1,故答案为:x<1.12.【解答】解:“两直线平行,内错角相等”的条件是:两直线平行,结论是:内错角相等.将条件和结论互换得逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.故答案为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.13.【解答】解:连接AF,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵EF是线段AB的垂直平分线,∴FA=FB=1,∴∠FAB=∠B=30°,∴∠FAC=∠BAC﹣∠FAB=90°,在Rt△FAC中,∠C=30°,∴FC=2FA=2,∴BC=BF+FC=3,故答案为:3.14.【解答】解:设最多能生产这种盒装糕点的盒数是x盒,可得:(2×0.05+4×0.02)x≤460,解得:x≤2555,故答案为:2555.15.【解答】解:不等式组整理得:,由不等式组无解,得到≥a+2,去分母得:a+5≥3a+6,解得:a≤﹣.故答案为:a≤﹣.16.【解答】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△BDC中,由勾股定理得:BD=,即DE=BD=,故答案为:.17.【解答】解:∵AB=AC,∠B=70°,∴∠ACB=∠B=70°,∴∠A=180°﹣70°﹣70°=40°,∵△ABC绕点C顺时针旋转得到△EDC,∴∠CDE=∠B=70°,BC=CD,∴∠B=∠BDC=70°,∴∠ADE=180°﹣70°﹣70°=40°,∴∠1=180°﹣40°﹣40°=100°,故答案为:100.18.【解答】解:当S=2时,重叠部分长方形的宽=2÷2=1cm,重叠部分在大正方形的左边时,t=1÷1=1秒,重叠部分在大正方形的右边时,t=(5+2﹣1)÷1=6秒,综上所述,小正方形平移的时间为1或6秒.故答案为:1或6.三、解答题(共58分)19.【解答】解:(1)去分母得:6x+3(x﹣1)<2(1+5x),去括号,得:6x+3x﹣3<2+10x,移项,得:6x+3x﹣10x<2+3,合并同类项,得:﹣x<5,系数化为1,得:x>﹣5,在数轴上表示不等式的解集为:;(2),解不等式①得:x≤33,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤3,∴整数解为0,1,2,3.20.【解答】解:(1)△A1B1C1的顶点坐标:A1(2,4),B1(0,4),C1(﹣1,2),故答案为:(2,4),(0,4),(﹣1,2).(2)如图所示,△A2B2C2即为所求,A2(4,﹣2),B2(4,0),C2(2,1),故答案为:(4,﹣2),(4,0),(2,1).21.【解答】(1)证明:∵AB=AC,AD=BD ∴∠B=∠C,∠B=∠1,∴∠C=∠1,∵∠ADB=∠2+∠C,∠BAC=∠2+∠1∴∠ADB=∠BAC;(2)∵AC=CD,∴∠2=∠ADC,又∵∠ADC=∠B+∠1,∴∠2=2∠B,在△ABC中,∠B+∠BAC+∠C=5∠B=180°,∴∠B=36°.22.【解答】(1)证明:∵AD=CD,∴∠DAC=∠DCA,∵AB∥CD,∴∠DCA=∠CAB,∴∠DAC=∠CAB,∴AC是∠EAB的角平分线,∵CE⊥AE,CB⊥AB,∴CE=CB;(2)AC垂直平分BE,证明:由(1)知,CE=CB,∵CE⊥AE,CB⊥AB,∴∠CEA=∠CBA=90°,在Rt△CEA和Rt△CBA中,,∴Rt△CEA≌Rt△CBA(HL),∴AE=AB,CE=CB,∴点A、点C在线段BE的垂直平分线上,∴AC垂直平分BE.23.【解答】解:(1)由题意可得,方案一:y1=50x+8(10﹣x)=42x+80,方案二:y2=(50x+10×8)×0.9=45x+72,故答案为:42x+80,45x+72;………………………………2分(2)由(1)知y1=42x+80,y2=45x+72,分情况讨论:①当y1>y2时,有42x+80>45x+72,………………………………3分解得,x<,………………………………4分②当y1<y2时,有42x+80<45x+72,………………………………5分解得,x>,………………………………6分由题意可知x是正整数,∴当0<x≤2时,方案二省钱,当3≤x≤10时,方案一省钱;………………………………7分(3)由题意可知,选择方案一时购买的书包更多,可列42x+80≤420,………………………………8分解得,x≤8.1,………………………………10分∴当学校计划用420元购买这两种奖品时,最多可以买到8个书包.………………………………11分24.【解答】解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;②∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=60°,∴△OBD为等边三角形;∴OD=OB=4;③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD=OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.。
河北省唐山市路北区2019-2020学年八年级上学期期中数学试题(含答案解析)
2019~2020学年度第一学期学生素质中期评价八年级数学(人教版)一、选择题(本大题共14个小题,每题2分,共28分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算23()a a -⋅的结果正确的是()A.6a -B.6a C.5a - D.5a 2.下列图形具有稳定性的是()A. B. C. D.3.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.114.在△ABC 中,∠A =40°,∠B =60°,则∠C =()A.40°B.80°C.60°D.100°5.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是()A.∠A=∠DB.AB=DCC.∠ACB=∠DBCD.AC=BD6.在三角形中,最大的内角不小于()A .30°B.45°C.60°D.90°7.如果n 边形的内角和是它外角和的3倍,则n 等于()A.6B.7C.8D.98.下列计算错误的是()A.235m n mn+= B.624a a a ÷= C.()326x x = D.23a a a ⋅=9.若(x+m )(x ﹣8)中不含x 的一次项,则m 的值为()A.8B.﹣8C.0D.8或﹣810.下列各多项式中,能用平方差公式分解因式有是()A.﹣x 2+16B.x 2+9C.﹣x 2﹣4D.x 2﹣2y11.把代数式322363x x y xy -+分解因式,结果正确的是()A.(3)(3)x x y x y +-B.223(2)x x xy y -+C.2(3)x x y - D.23()x x y -12.如图所示,一个直角三角形纸片,剪去这个直角后,得到一个四边形,则∠1+∠2的度数为()A.150°B.180°C.240°D.270°13.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°14.如图,90B C ∠=∠=︒,M 是BC 的中点,D M 平分ADC ∠,且110ADC ∠=︒,则MAB ∠=()A.30°B.35︒C.40︒D.45︒二、填空题(本题共4个小题,每小题3分,共12分)15.计算:(x+3)2=_____.16.已知3xy =-,2x y +=,则代数式22x y xy +的值是__________.17.如图,ABC ∆中,90C = ∠,AD 平分BAC ∠,过点D 作DE AB ⊥于E ,测得9BC =,5BD =,则DE 的长为__________.18.一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,3x ﹣2y ,x +2y ,若这两个三角形全等,则x +y 的值是_.三、解答题(本题共8道题,满分60分)19.计算:(1)3222132a b c a b ⨯.(2)()22121(4)x x x x x +----();20.(1)若35a =,310b =,则3a b +的值.(2)已知3a b +=,225a b +=,求ab 的值.21.如图,在ABC ∆中(1)画出BC 边上的高AD 和角平分线AE .(2)若30B ∠=°,130ACB ∠=°,求BAD ∠和CAD ∠的度数.22.如图,AD 为ABC 的中线,BE 为ABD △的中线.(1)15ABE ∠=︒,55BED ∠=︒,求BAD ∠的度数;(2)若ABC 的面积为20, 2.5BD =,求BDE 中BD 边上的高.23.某学校的操场是一个长方形,长为2x 米,宽比长少5米,实施“阳光体育”行动以后,学校为了扩大学生的活动场地,让学生能更好地进行体育活动,将操场的长和宽都增加4米.(1)求操场原来的面积是多少平方米(用代数式表示)?(2)若x=20,求操场面积增加后比原来多多少平方米?24.对于任意的正整数n ,代数式n (n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由.25.已知,如图所示,CE AB ⊥与E ,BF AC ⊥与F ,且BD CD =,求证:(1)BDE CDF≌(2)点D 在BAC ∠的角平分线上.26.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q 在BD 上由点B 向点D 运动,它们运动的时间为()t s .(1)如图①,AC AB ⊥,BD AB ⊥,若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP △与BPQ V 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图②,将图①中的“AC AB ⊥,BD AB ⊥”为改“60CAB DBA ∠=∠=︒”,其他条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP △与BPQ V 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.2019~2020学年度第一学期学生素质中期评价八年级数学(人教版)一、选择题(本大题共14个小题,每题2分,共28分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算23()a a -⋅的结果正确的是()A.6a -B.6a C.5a - D.5a 【答案】D 【解析】【分析】根据同底数幂的运算即可求解.【详解】原式235a a a =⋅=.故选D.【点睛】容易题.失分原因是:对幂的乘法和乘方法则混淆,没有熟练掌握.2.下列图形具有稳定性的是()A. B. C. D.【答案】A 【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断即可得.【详解】A 、具有稳定性,符合题意;B 、不具有稳定性,故不符合题意;C 、不具有稳定性,故不符合题意;D 、不具有稳定性,故不符合题意,故选A .【点睛】本题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.3.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.11【答案】C 【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断.【详解】设第三边长为x ,则有7-3<x<7+3,即4<x<10,观察只有C 选项符合,故选C.【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边之间的关系是解题的关键.4.在△ABC 中,∠A =40°,∠B =60°,则∠C =()A.40° B.80°C.60°D.100°【答案】B 【解析】根据三角形的内角和定理得:180406080B ∠=︒-︒-︒=︒.故选B.5.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是()A.∠A=∠DB.AB=DCC.∠ACB=∠DBCD.AC=BD【答案】D 【解析】A .添加∠A =∠D 可利用AAS 判定△ABC ≌△DCB ,故此选项不合题意;B .添加AB =DC 可利用SAS 定理判定△ABC ≌△DCB ,故此选项不合题意;C .添加∠ACB =∠DBC 可利用ASA 定理判定△ABC ≌△DCB ,故此选项不合题意;D .添加AC =BD 不能判定△ABC ≌△DCB ,故此选项符合题意.故选D .6.在三角形中,最大的内角不小于()A.30°B.45°C.60°D.90°【答案】C 【解析】解:∵三角形的内角和等于180°,180°÷3=60°,∴最大的角不小于60°.故选C .7.如果n 边形的内角和是它外角和的3倍,则n 等于()A.6 B.7C.8D.9【答案】C 【解析】【分析】利用多边形的外角和是360度,一个n 边形的内角和等于它外角和的3倍,则内角和是3×360°,而n 边形的内角和是(n-2)•180°,则可得到方程,解之即可.【详解】根据题意列方程,得:(n-2)180°=3×360°,解得:n=8,即边数n 等于8,故选C.【点睛】本题考查了多边形的内角和的计算公式以及多边形的外角和定理,熟练掌握是解题的关键.8.下列计算错误的是()A.235m n mn +=B.624a a a ÷= C.()326x x = D.23a a a ⋅=【答案】A 【解析】【分析】根据幂的乘方、同底数幂乘除的运算及合并同类项的法则解答.【详解】解:A 、2m 与3n 不是同类项,不能合并;B 、C 、D 符合同底数幂的运算,都正确;故选:A .【点睛】考查同底数幂的运算:乘法法则,底数不变,指数相加;除法法则,底数不变,指数相减;乘方,底数不变,指数相乘.9.若(x+m )(x ﹣8)中不含x 的一次项,则m 的值为()A.8B.﹣8C.0D.8或﹣8【答案】A 【解析】试题分析:根据整式的乘法可得(x+m)(x-8)=x 2+(m-8)x-8m,由于不含x 项,则可知m-8=0,解得m=8.故选A10.下列各多项式中,能用平方差公式分解因式有是()A.﹣x 2+16B.x 2+9C.﹣x 2﹣4D.x 2﹣2y【答案】A 【解析】【分析】利用平方差公式对选项进行判断即可.【详解】−x 2+16=(4+x )(4−x ),而B 、C 、D 都不能用平方差公式分解因式,故选:A .【点睛】本题考查因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.11.把代数式322363x x y xy -+分解因式,结果正确的是()A.(3)(3)x x y x y +-B.223(2)x x xy y -+C.2(3)x x y -D.23()x x y -【答案】D 【解析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.解答:解:322363x x y xy -+,=3x (x 2-2xy+y 2),=3x (x-y )2.故选D .12.如图所示,一个直角三角形纸片,剪去这个直角后,得到一个四边形,则∠1+∠2的度数为()A.150°B.180°C.240°D.270°【答案】D【解析】【分析】先由三角形内角和为180°得∠A+∠3+∠4=180°,则∠3+∠4=90°.再由邻补角互补得∠1=180°-∠3,∠2=180°-∠4,最后代入计算∠1+∠2即可.【详解】解:由三角形内角和为180°可得,∠A+∠3+∠4=180°,则∠3+∠4=180°-90°=90°;又∠1=180°-∠3,∠2=180°-∠4,∴∠1+∠2=(180°-∠3)+(180°-∠4)=360°-(∠3+∠4)=360°-90°=270°,故选D.【点睛】本题考查了三角形内角和定理及邻补角性质,熟练掌握相关知识是解题关键.13.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°【答案】A【解析】分析:依据AD 是BC 边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE 平分∠BAC ,即可得到∠DAE=5°,再根据△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,可得∠EAD+∠ACD=75°.详解:∵AD 是BC 边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE 平分∠BAC ,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A .点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.14.如图,90B C ∠=∠=︒,M 是BC 的中点,D M 平分ADC ∠,且110ADC ∠=︒,则MAB ∠=()A.30°B.35︒C.40︒D.45︒【答案】B 【解析】【分析】作MN ⊥AD 于N ,根据平行线的性质求出∠DAB ,根据角平分线的判定定理得到∠MAB=12∠DAB ,计算即可.【详解】解:作MN ⊥AD 于N ,∵∠B=∠C=90°,∴AB ∥CD ,∴∠DAB=180°-∠ADC=70°,∵DM 平分∠ADC ,MN ⊥AD ,MC ⊥CD ,∴MN=MC ,∵M 是BC 的中点,∴MC=MB ,∴MN=MB ,又MN ⊥AD ,MB ⊥AB ,∴∠MAB=12∠DAB=35°,故选:B.【点睛】本题考查的是角平分线的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.二、填空题(本题共4个小题,每小题3分,共12分)15.计算:(x+3)2=_____.【答案】x 2+6x+9【解析】【分析】根据完全平方公式进行计算.【详解】(x +3)2=x 2+2×x×3+32=x 2+6x+9.故答案为x 2+6x+9.【点睛】本题考查了完全平方公式的运用,熟练掌握完全平方公式是本题的解题关键.16.已知3xy =-,2x y +=,则代数式22x y xy +的值是__________.【答案】-6【解析】【分析】将所求的代数式利用提公因式法进行因式分解,然后代入求.【详解】解:∵3xy =-,2x y +=,∴22()326xy x x y x y y =+=-+⨯=-.故答案是:6-.【点睛】本题考查了求代数式的值,以及因式分解——提公因式法,口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.17.如图,ABC ∆中,90C = ∠,AD 平分BAC ∠,过点D 作DE AB ⊥于E ,测得9BC =,5BD =,则DE 的长为__________.【答案】4【解析】【分析】先根据角平分线的性质,得出DE =DC ,再根据BC =9,BD =5,得出DC =9−5=4,即可得到DE =4.【详解】∵∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,∴DE =DC ,∵BC =9,BD =5,∴DC =9−5=4,∴DE =4,故答案为:4.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.18.一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,3x ﹣2y ,x +2y ,若这两个三角形全等,则x +y 的值是_.【答案】5或4【解析】【分析】根据全等三角形的性质可得方程组32527x y x y -=⎧⎨+=⎩,或25327x y x y +=⎧⎨-=⎩,解方程组可得答案.【详解】解:由题意得32527x y x y -=⎧⎨+=⎩,或25327x y x y +=⎧⎨-=⎩,解得:32x y =⎧⎨=⎩或31x y =⎧⎨=⎩,x+y=5或x+y=4,故答案为5或4【点睛】此题考查全等三角形的性质,解题关键在于根据题意列出方程.三、解答题(本题共8道题,满分60分)19.计算:(1)3222132a b c a b ⨯.(2)()22121(4)x x x x x +----();【答案】(1)5313a b c ;(2)3294x x -+-【解析】【分析】(1)直接利用单项式乘以单项式计算得出答案;(2)直接利用单项式乘以多项式以及多项式乘以多项式运算法则分别计算得出答案.【详解】(1)解:原式322153211323a b c a b c ++=⨯=;(2)解:原式32323228494x x x x x x x x =+--++-=-+-;【点睛】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.20.(1)若35a =,310b =,则3a b +的值.(2)已知3a b +=,225a b +=,求ab 的值.【答案】(1)50;(2)2【解析】【分析】(1)直接利用同底数幂的乘法运算法则计算得出答案;(2)利用完全平方公式将原式变形得出答案.【详解】(1)解:原式3351050a b =⨯=⨯=;(2)解:3a b += ,2229a ab b ∴++=,225a b += ,∴2954ab =-=.解得:2ab =.【点睛】此题主要考查了同底数幂的乘法运算以及完全平方公式,正确将原式变形是解题关键.21.如图,在ABC ∆中(1)画出BC 边上的高AD 和角平分线AE .(2)若30B ∠=°,130ACB ∠=°,求BAD ∠和CAD ∠的度数.【答案】(1)见解析;(2)60BAD ∠=°,40CAD ∠=°【解析】【分析】(1)延长BC ,作AD ⊥BC 于D ;根据角平分线的做法作出角平分线AE 即可;(2)可根据三角形的内角和定理解答即可.【详解】解:(1)如图所示:AD,AE 即为所求;(2)在△ABD 中,AD ⊥BD ,即∠ADB=90°,∵∠B=30°,∴∠BAD=180°-90°-30°=60°;在△ABC 中,∠B+∠ACB+∠BAC=180°∴∠BAC=180°-30°-130°=20°∴∠CAD=60°-20°=40°.【点睛】此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.22.如图,AD 为ABC 的中线,BE 为ABD △的中线.(1)15ABE ∠=︒,55BED ∠=︒,求BAD ∠的度数;(2)若ABC 的面积为20, 2.5BD =,求BDE 中BD 边上的高.【答案】(1)40°;(2)4【解析】【分析】(1)利用三角形外角的性质即可求得;(2)作EF ⊥BC 于F ,三角形的中线将三角形的面积等分成两份,从而求得△ABD 的面积,再由S △ABD 再求出三角形BDE 的面积,则得BD 边上的高.【详解】解:(1)在ABE △中,15ABE ∠=︒ ,55BED ∠=︒,40BAD BED ABE ∴∠=∠-∠=︒;(2)过点E 作BD 边上的高EF ,AD 为ABC 的中线,BE 为ABD △的中线,12ABD ABC S S ∴=△△,12BDE S S ∴=△△ABD ,14BDE ABC S S ∴=△△,ABC 的面积为20, 2.5BD =,11524BDE ABC S BD EF S ∴=⋅==△△,即:1 2.552EF ⨯⨯=,4EF ∴=;【点睛】本题考查了三角形的面积,三角形的中线将三角形分成两个三角形,它们的面积等于原三角形面积的一半.23.某学校的操场是一个长方形,长为2x 米,宽比长少5米,实施“阳光体育”行动以后,学校为了扩大学生的活动场地,让学生能更好地进行体育活动,将操场的长和宽都增加4米.(1)求操场原来的面积是多少平方米(用代数式表示)?(2)若x=20,求操场面积增加后比原来多多少平方米?【答案】(1)2x(2x-5);(2)316【解析】试题分析:(1)根据等式“操场原来的面积=操场的长×宽”列出代数式即可;(2)根据等式“操场增加的面积=(操场的原来的长+4)×(操场原来的宽+4)-操场原来的面积”列出代数式,再把x=20代入即可求出.试题解析:(1)2x(2x -5);(2)(2x +4)(2x -1)-2x(2x -5)=16x -4,当x=20时,原式=316.答:活动场地面积增加后比原来多316平方米.24.对于任意的正整数n ,代数式n (n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由.【答案】能,理由见详解.【解析】【分析】将原代数式化简并因式分解得6(n+1)即可解题.【详解】解:n (n+7)-(n+3)(n-2)=n 2+7n-(n 2+n-6)=n 2+7n-n 2-n+6=6n+6=6(n+1)∵n 为任意的正整数∴代数式n (n+7)-(n+3)(n-2)的值总能被6整除【点睛】本题考查了多项式的因式分解,属于简单题,正确因式分解是解题关键.25.已知,如图所示,CE AB ⊥与E ,BF AC ⊥与F ,且BD CD =,求证:(1)BDE CDF≌(2)点D 在BAC ∠的角平分线上.【答案】(1)详见解析;(2)详见解析【解析】【分析】(1)根据全等三角形的判定定理ASA 证得△BED ≌△CFD ;(2)连接AD .利用(1)中的△BED ≌△CFD ,推知全等三角形的对应边ED=FD .因为角平分线上的点到角的两边的距离相等,所以点D 在∠BAC 的平分线上.【详解】证明:(1)BF AC ⊥ ,CE AB ⊥,90BED CFD ∴∠=∠=︒,在Rt BED 和Rt CFD △中,BED CFD BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,BED CFD ∴ ≌;(2)连接AD.由(1)知BED CFD ≌V V ,ED FD∴=AD ∴是EAF ∠的角平分线,即点D 在A ∠的平分线上.【点睛】本题考查了全等三角形的判定与性质.常用的判定方法有:ASA ,AAS ,SAS ,SSS ,HL 等,做题时需灵活运用.26.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q 在BD 上由点B 向点D 运动,它们运动的时间为()t s .(1)如图①,AC AB ⊥,BD AB ⊥,若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP △与BPQ V 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图②,将图①中的“AC AB ⊥,BD AB ⊥”为改“60CAB DBA ∠=∠=︒”,其他条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP △与BPQ V 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.【答案】(1)全等,PC 与PQ 垂直;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP 和△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩,解得11t x =⎧⎨=⎩,②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩,解得232 tx=⎧⎪⎨=⎪⎩,综上所述,存在11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩使得△ACP与△BPQ全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.。
人教版2019-2020学年湖北省武汉市八校联考八年级(下)期中数学试卷(网络测试 4月份)解析版
人教版2019-2020学年湖北省武汉市八校联考八年级(下)期中数学试卷(网络测试4月份)姓名座号题号一二三总分得分考后反思(我思我进步):一、选择题(每小题3分,共30分)1.(3分)要使二次根式有意义,则x的取值范围是()A.x>﹣2B.x≥﹣2C.x≠﹣2D.x≤﹣22.(3分)若,则()A.b>3B.b<3C.b≥3D.b≤33.(3分)估算的值是()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间4.(3分)已知ab<0,则化简后为()A.a B.﹣a C.a D.﹣a5.(3分)下列命题:①两直线平行,内错角相等;②对角线互相平分的四边形是平行四边形;③全等三角形对应角相等;④平行四边形的两组对边分别相等.其逆命题成立的个数有()A.1个B.2个C.3个D.4个6.(3分)如图,数轴上A表示数﹣2,过数轴上表示1的点B作BC⊥x轴,若BC=2,以A为圆心,AC为半径作圆弧交数轴于点P,那么数轴上点P所表示的数是()A.B.﹣2C.﹣3D.4﹣7.(3分)如图,花园住宅小区有一块长方形绿化带,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A.6步B.5步C.4步D.2步8.(3分)如图,在平行四边形ABCD中,BC=10,AC=14,BD=8,则△BOC的周长是()A.21B.22C.25D.329.(3分)如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为()A.10°B.15°C.20°D.30°10.(3分)已知,在河的两岸有A,B两个村庄,河宽为4千米,A、B两村庄的直线距离AB=10千米,A、B两村庄到河岸的距离分别为1千米、3千米,计划在河上修建一座桥MN垂直于两岸,M点为靠近A村庄的河岸上一点,则AM+BN的最小值为()A.2B.1+3C.3+D.二、填空题(每小题3分,共18分)11.(3分)在实数范围内因式分解:x2﹣2=.12.(3分)已知实数a满足|2006﹣a|+=a,则a﹣20062=.13.(3分)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了cm.14.(3分)在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则折痕CE的长为.15.(3分)将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为度.16.(3分)如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.三、解答题(共72分)17.(8分)计算(1)2﹣++(2)÷(﹣)×.18.(7分)已知a,b,c为实数且c=,求代数式c2﹣ab 的值.19.(7分)如图,在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.求证:四边形AECF是平行四边形.20.(7分)一块试验田的形状如图,已知:∠ABC=90°,AB=4m,BC=3m,AD=12m,CD=13m.求这块试验田的面积.21.(7分)如图,正方形网格的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,图中四条线段的端点均在格点上.(1)平移图中的线段,你能使哪三条线段首尾连接构成一个格点三角形,请画出平移后的图形;(2)判断并说明三角形的形状.22.(7分)已知:如图,矩形ABCD的对角线交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.23.(7分)如图,有两条公路OM和ON相交成30°角,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁50米内会受到噪声影响.已知有两台相距50米的拖拉机正沿ON方向行驶,它们的速度均为5米/秒,问这两台拖拉机沿ON方向行驶时给小学带来噪声影响的时间是多少?24.(10分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s 的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.25.(12分)如图1,在平面直角坐标系xOy中,A(a,0)、B(0,b)、C(﹣a,0),且+b2﹣4b+4=0(1)求证:∠ABC=90°;(2)作∠ABO的平分线交x轴于一点D,求D点的坐标;(3)如图2所示,A、B两点在x轴、y轴上的位置不变,在线段AB上有两动点M、N,满足∠MON=45°,下列结论:①BM+AN=MN;②BM2+AN2=MN2,其中有且只有一个结论成立.请你判断哪一个结论成立,并证明成立的结论.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:根据题意得,x+2≥0,解得x≥﹣2.故选:B.2.【解答】解:∵,∴3﹣b≥0,解得b≤3.故选D.3.【解答】解:∵,∴,故选:B.4.【解答】解:∵a2≥0,ab<0,∴a<0,b>0,∴=|a|=﹣a,故选:B.5.【解答】解:①“两直线平行,内错角相等”的逆命题为“内错角相等,两直线平行”,此逆命题为真命题;②“对角线互相平分的四边形是平行四边形的逆命题为“平行四边形的对角线互相平分”,此逆命题为真命题;③“全等三角形对应角相等”的逆命题为“对应角相等的三角形全等”,此逆命题为假命题;④“平行四边形的两组对边分别相等”的逆命题为“两组对边分别相等的四边形为平行四边形”,此逆命题为真命题.故选:C.6.【解答】解:∵CA==,∴AC=AP=,∴P到原点的距离是﹣2,且P在原点右侧.∴点P所表示的数是﹣2.故选:B.7.【解答】解:在直角△ABC中,AB2=AC2+BC2AB===5m.则少走的距离是AC+BC﹣AB=3+4﹣5=2m=4步.故选:C.8.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=7,OB=OD=4,∴△BOC的周长=OB+OC+BC=4+7+10=21;故选:A.9.【解答】解:根据菱形的对角相等得∠ADC=∠B=70°.∵AD=AB=AE,∴∠AED=∠ADE.根据折叠得∠AEB=∠B=70°.∵AD∥BC,∴∠DAE=∠AEB=70°,∴∠ADE=∠AED=(180°﹣∠DAE)÷2=55°.∴∠EDC=70°﹣55°=15°.故选:B.10.【解答】解:如图,作BB'垂直于河岸,使BB′等于河宽,连接AB′,与靠近A的河岸相交于M,作MN垂直于另一条河岸,则MN∥BB′且MN=BB′,于是MNBB′为平行四边形,故MB′=BN.根据“两点之间线段最短”,AB′最短,即AM+BN最短.∵AB=10千米,BC=1+3+4=8千米,∴在RT△ABC中,AC==6,在RT△AB′C中,B′C=1+3=4千米,∴AB′==2千米;故选:A.二、填空题(每小题3分,共18分)11.【解答】解:x2﹣2=(x﹣)(x+).故答案是:(x﹣)(x+).12.【解答】解:根据题意得,a﹣2007≥0,解得a≥2007,∴原式可化为:a﹣2006+=a,即=2006,两边平方得,a﹣2007=20062,∴a﹣20062=2007.故答案为:2007.13.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.14.【解答】解:∵折叠∴FC=BC=10,BE=EF(设为x)∵四边形ABCD为矩形,∴∠D=90°,DC=BC=8,由勾股定理得:DF2=102﹣82=36,∴DF=6,AF=10﹣6=4;由勾股定理得:EF2=AE2+AF2,即x2=(8﹣x)2+42解得:x=5,∴BE=5,∴CE==5故答案为:515.【解答】解:过点A作AE⊥BC于点E,∵将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),∴当AE=AB,则符合要求,此时∠B=30°,即这个平行四边形的最小内角为:30度.故答案为:30.16.【解答】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=,即DE=cm,根据勾股定理得:AE==2cm,∵M为AE的中点,∴AM=AE=cm,在Rt△ADE和Rt△PNQ中,,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PF A=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=,∴AP===2cm;由对称性得到AP′=DP=AD﹣AP=3﹣2=1cm,综上,AP等于1cm或2cm.故答案为:1或2.三、解答题(共72分)17.【解答】解:(1)原式=2﹣2++=3﹣;(2)原式=×(﹣)×=﹣=﹣=﹣9.18.【解答】解:根据二次根式有意义的条件可得:,∴a=3,b=﹣1,∴c=2﹣代入代数式c2﹣ab得:原式=,=12﹣4.19.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AF=CE,∴四边形AECF是平行四边形.20.【解答】解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又AB=4,BC=3,∴根据勾股定理得:AC=5,又AD=12,CD=13,∴AD2=122=144,AD2+AC2=122+52=144+25=169,∴AD2+AC2=CD2,∴△ACD为直角三角形,∠ACAD=90°,则S四边形ABCD=S△ABC+S△ACD=AB•BC+AC•AD=36.21.【解答】解:(1)如图,线段②③④首尾连接构成一个三角形,△ABC为所作;(2)△ABC为直角三角形.理由如下:∵AC2=12+22=5,BC2=22+42=20,AC2=32+42=25,而5+20=25,∴AC2+BC2=AC2,∴△ACB为直角三角形,∠ACB=90°.22.【解答】证明:∵DE∥AC,即DE∥OC,CE∥BD,即CE∥OD.∴四边形OCED是平行四边形.又∵四边形ABCD是矩形,∴OC=AC,OD=BD,且AC=BD,∴OC=OD.∴四边形OCED是菱形.23.【解答】解:如图所示:过点A作AC⊥ON,∵∠MON=30°,OA=80米,∴AC=40米,当第一台拖拉机到B点时对学校产生噪音影响,此时AB=50米,由勾股定理得:BC=30米,∴BD=2BC=60米,CD=30米第一台拖拉机到D点时噪音消失,∵两台拖拉机相距50米,则第二台到B点时第一台已经影响小学50米,∴影响的距离为60米+50米=110米,∴影响的时间应是:110÷5=22(秒);答:这两台拖拉机沿ON方向行驶时给小学带来噪声影响的时间是22秒.24.【解答】(1)证明:∵在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,∴∠C=90°﹣∠A=30°.∵CD=4tcm,AE=2tcm,又∵在直角△CDF中,∠C=30°,∴DF=CD=2tcm,∴DF=AE;(2)解:∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)解:当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4tcm,∴DF=AE=2tcm,∴AD=2AE=4tcm,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t(cm),AE=DF=CD=2tcm,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).25.【解答】解:(1)∵+b2﹣4b+4=0,∴+(b﹣2)2=0,则a=2,b=2,∴OA=OB=OC,∴∠ABC=90°;(2)过点D作DE⊥AB于E,∵BD平分∠ABO,∴OD=DE,设OD=x,∵S△AOB=×2×2=×2×x+×2×x,解得,x=2﹣2,∴D(2﹣2,0);(3)结论②是对的,证明:过点O作OE⊥OM,并使OE=0M,连接AE、NE,∵∠AOB=90°,∠MOE=90°,∴∠MOB=∠AOE,在△MOB和△EOA中,,∴△MOB≌△EOA,∴BM=AE,∠OBM=∠OAE,∴∠NAE=90°,∴AE2+AN2=EN2,在△MON和△EON中,,∴△MON≌△EON,∴MN=NE,∴BM2+AN2=MN2,即结论②正确.。
2019-2020学年浙江省温州市八年级(下)期中数学试卷(附答案详解)
2019-2020学年浙江省温州市八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.二次根式√x−3中x的取值范围是()A. x≥0B. 3C. x≥3D. x≤−32.下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3.方程x2=9x的解为()A. x=0B. x=9C. x1=0,x2=9D. x1=3,x2=−34.下列二次根式中,是最简二次根式的是()A. √8B. √10C. √16D. √275.甲、乙、丙、丁四名同学进行跳高测试,每人10次跳高成绩的平均数都是1.27m.方差分别是S甲2=0.60,S乙2=0.62,S丙2=0.57,S丁2=0.49,则这四名同学跳高成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6.如图,用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图2中,∠BAC的大小是()A. 72°B. 36°C. 30°D. 54°7.如图,▱ABCD的对角线相交于点O,下列条件中能判定这个平行四边形是矩形的是()A. AC=BDB. AB=BCC. ∠BAC=∠CADD. AC⊥BD8.用反证法证明命题“若√a2=a,则a≥0”时,第一步应假设()A. √a2≠aB. a≤0C. a<0D. a>09.受益于电子商务的发展以及法治环境的改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2018年我国快递业务量为500亿件,2020年快递量预计将达到740亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A. 500(1+x)2=740B. 500(1+2x)=740C. 500(1+x)=740D. 500(1−x)2=74010.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P不与B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连结EF,则EF 的最小值为()A. 4B. 4.8C. 5D. 6二、填空题(本大题共8小题,共24.0分)11.计算:√6÷√2=______.12.已知x=1是方程x2+ax+2=0的一个根,则a的值为______ .13.在某市举办的垂钓比赛上,7名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,10,6,10,7,9,则这组数据的众数是______ .14.若关于x的一元二次方程kx2−5x+4=0有两个相等的实数根,则k的值为______ .15.如图,河坝横断面迎水坡AB的坡比是1:√3(坡比是斜坡AB两点之间的高度差BC与水平距离AC之比),坝高BC=2m,则坡面AB的长度是______m.16.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=4,BC=7,则EF的长为______ .17.七巧板又称“智慧板”,是我们古代祖先的一项卓越创造.小华利用七巧板(如图1)拼出一个房子模型(如图2),已知图1中正方形ABCD的边长为4cm,则图2中六边形EFGHIJ的周长是______ cm.18.如图1,在菱形ABCD中,动点P从点C出发,沿C−A−D运动至终点D.设点P的运动路程为x(cm),△BCP的面积为y(cm2).若y与x的函数图象如图2所示,则图中a的值为______ .三、解答题(本大题共6小题,共46.0分)19.计算与解方程:(1)计算(4+√32)×2−8;(2)解方程x2−4x+1=0.20.如图,在所给的8×8方格纸中,点A,B均为格点,请画出符合要求的格点四边形.(1)在图1中画出一个以AB为边的矩形.(2)在图2中画出一个以AB为对角线的正方形.21.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,某高校为了解本校学生出行使用共享单车的情况,随机调查了某天50名出行学生使用共享单车的情况,并整理成如下统计表.使用次数(012345次)人数(名)12144884(1)这50名出行学生使用共享单车次数的中位数是______ 次.(2)这50名出行学生平均每人使用共享单车多少次?(3)若该校某天有1100名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?22.在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,AE=CF,连接BF、AF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,AE=3,DE=4.则AF长为______ .23.瑞安城市规划展览馆位于瑞样新区瑞祥公园内,是温州目前规模最大的城市规划展览馆.为了让参观的人方便停车,城市规划展览馆利用一块矩形空地建了一个停车场,其布局如图所示,已知停车场的长为58米,宽为22米,阴影部分为停车位,其余部分是等宽的通道,已知停车位的面积为700平方米.(1)求通道的宽是多少米?(2)该停车场共有车位70个,据调查分析,当每个车位的月租金为300元时,可全部租出:当每个车位的月租金每上涨10元,就会少租出1个车位,那么停车场的月租金收入最大为______ 元?(请直接写出答案)24.如图1,在平面直角坐标系中,正方形OABC的边OA,OC分别在x轴,y轴的正半轴上,直线y=2x−4经过线段OA的中点D,与y轴交于点G,E是射线CG上一点,作点E关于直线DG的对称点F,连接BE,BF,FG.设点E的坐标为(0,m).(1)求点B的坐标是(______ ,______ ).(2)如图2,当点F落在线段BA的延长线上时,求证:四边形BEGF为菱形.(3)在点E的整个运动过程中,①当S△BEG=58S正方形OABC时,求线段CE的长.②N为平面内任意一点,当B,E,F,N四点构成的四边形为矩形时,则m的值为______ .(请直接写出答案)答案和解析1.【答案】C【解析】解:由题意知x−3≥0,解得:x≥3,故选:C.根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.本题考查的知识点为:二次根式的被开方数是非负数.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、是轴对称图形,也是中心对称图形.故本选项正确;C、不是轴对称图形,是中心对称图形.故本选项错误;D、不是轴对称图形,是中心对称图形.故本选项错误.故选:B.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】C【解析】解:移项,得x2−9x=0,x(x−9)=0,即x=0或x−9=0∴x1=0,x2=9.故选:C.方程x2=9x移项,得x2−9x=0,再运用因式分解法求出方程的解,选出正确的答案.此类问题也可以根据方程的解的定义,把四个选项分别代入原方程进行检验得出正确的解.4.【答案】B【解析】解:A 、√8=√4×2=2√2,被开方数中含能开得尽方的因数,不是最简二次根式;B 、√10是最简二次根式;C 、√16=4,被开方数中含能开得尽方的因数,不是最简二次根式;D 、√27=√9×3=3√3,被开方数中含能开得尽方的因数,不是最简二次根式; 故选:B .根据最简二次根式的概念判断.本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.5.【答案】D【解析】解:∵S 甲2=0.60,S 乙2=0.62,S 丙2=0.57,S 丁2=0.49, ∴S 丁2<S 丙2<S 甲2<S 乙2,∴这四名同学跳高成绩最稳定的是丁, 故选:D .根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.【答案】B【解析】解:∵∠ABC =(5−2)×180°5=108°,△ABC 是等腰三角形,∴∠BAC =∠BCA =36°. 故选:B .利用多边形的内角和定理和等腰三角形的性质即可解决问题.本题主要考查了多边形的内角和定理和等腰三角形的性质.n 边形的内角和为:180°(n −2).7.【答案】A【解析】解:A、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形;故选项A符合题意;B、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形;故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴AB//CD,∴∠BAC=∠ACD,∵∠BAC=∠CAD,∴∠ACD=∠CAD,∴AD=CD,∴平行四边形ABCD是菱形;故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形;故选项D不符合题意;故选:A.根据矩形的判定方法和菱形的判定方法分别对各个选项进行判断,即可得出结论.本题考查矩形的判定、菱形的判定、平行四边形的性质、等腰三角形的判定等知识;熟练掌握矩形和菱形的判定方法是解题的关键,属于中考常考题型.8.【答案】C【解析】解:用反证法证明命题“若√a2=a,则a≥0”时,第一步应假设a<0.故选:C.用反证法证明命题的真假,先假设命题的结论不成立,从这个结论出发,经过推理论证,得出矛盾;由矛盾判定假设不正确,从而肯定命题的结论正确.考查了反证法,反证法是指“证明某个命题时,先假设它的结论的否定成立,然后从这个假设出发,根据命题的条件和已知的真命题,经过推理,得出与已知事实(条件、公理、定义、定理、法则、公式等)相矛盾的结果.这样,就证明了结论的否定不成立,从而间接地肯定了原命题的结论成立.”9.【答案】A【解析】解:设快递量平均每年增长率为x,依题意,得:500(1+x)2=740.故选:A.设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.【答案】B【解析】解:连接OP,∵四边形ABCD是菱形,AC=12,BD=16,∴AC⊥BD,BO=12BD=8,OC=12AC=6,∴BC=√OB2+OC2=√64+36=10,∵PE⊥AC,PF⊥BD,AC⊥BD,∴四边形OEPF是矩形,∴FE=OP,∵当OP⊥BC时,OP有最小值,此时S△OBC=12OB×OC=12BC×OP,∴OP=6×810=4.8,∴EF的最小值为4.8,故选:B.由菱形的性质可得AC⊥BD,BO=12BD=8,OC=12AC=6,由勾股定理可求BC的长,可证四边形OEPF是矩形,可得EF=OP,OP⊥BC时,OP有最小值,由面积法可求解.本题考查了菱形的性质,矩形的判定和性质,勾股定理,掌握菱形的性质是本题的关键.11.【答案】√3【解析】解:√6÷√2=√6÷2=√3,故答案为:√3.根据二次根式的除法法则:√a√b =√ab(a≥0,b>0)进行计算即可.此题主要考查了二次根式的除法,关键是掌握计算法则.12.【答案】−3【解析】解:∵x=1是方程x2+ax+2=0的一个根,∴1+a+2=0,∴a=−3.故答案为:−3.把x=1代入方程得到关于a的方程,解方程即可.本题考查了一元二次方程的解的概念:使方程两边成立的未知数的值叫方程的解.13.【答案】10【解析】解:这组数据中数字10出现2次,次数最多,所以这组数据的众数是10,故答案为:10.根据众数的概念求解可得.本题主要考查众数,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据叫做众数.14.【答案】2516【解析】解:根据题意得k≠0且△=(−5)2−4k×4=0,.解得k=2516.故答案为2516根据判别式的意义得到△=(−5)2−4k×4=0,本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.15.【答案】4【解析】解:∵坡AB的坡比是1:√3,坝高BC=2m,∴AC=2√3,由勾股定理得,AB=√BC2+AC2=4(m),故答案为:4.根据坡度的概念求出AC,根据勾股定理求出AB.本题考查的是解直角三角形的应用−坡度坡角问题,掌握坡度的概念是解题的关键.16.【答案】1.5【解析】解:∵DE为△ABC的中位线,BC=3.5,∴DE=12在Rt△AFB中,∠AFB=90°,D是AB的中点,∴DF=1AB=2,2∴EF=DE−DF=1.5,故答案为:1.5.根据三角形中位线定理求出DE,根据直角三角形的性质求出DF,结合图形计算,得到答案.本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.【答案】8√2+4.【解析】解:在图2中加上节点K:观察图1和图2可知:EK=EF=FL=HG=12BD,JI=KH=LG=12EK=14BD,EJ=IH,∵正方形ABCD的边长为4CM,∴BD=√42+42=4√2,FL=EF=HG=12×4√2=2√2,JI=KH=LG=12EK=14×4√2=√2,则EJ=IH=2,∴六边形EFGKIJ的周长为:EJ+JI+IH+HG+(LG+FL)+EF,=2+√2+2+2√2+√2+2√2+2√2,=8√2+4,故答案为:8√2+4.七巧板由正方形分割成七小块(其中:五块等腰直角三角形,一块正方形和一块平行四边形组成),再根据图形的特点,由正方形的性质和勾股定理求出各板块的边长,即可求出图2中六边形的周长.本题考查七巧板的识图以及正方形的性质和勾股定理,数形结合是解决本题的关键.18.【答案】2512【解析】解:从图2知,AC=5,AD=2a,当点P在点A时,此时,y=4a=S△BCP=S△ABC,此时,AB=BC=AD=2a,即△ABC为等腰三角形,过点B作BH⊥AC于点H,则CH=AH=12AC=52,在△ABC中,S△ABC=12AC×BH=12×5×BH=4a,解得BH=8a5,在Rt△HBC中,BC2=BH2+CH2,即(2a)2=(8a5)2+(52)2,解得a=±2512(舍去负值),故答案为2512.从图2知,AC=5,AD=2a,在△ABC中利用S△ABC=12AC×BH=12×5×BH=4a,求得BH=8a5,最后在Rt△HBC中,利用勾股定理即可求解.本题考查的是动点图象问题,涉及到三角形的面积公式、菱形和等腰三角形的性质,勾股定理的运用等,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.19.【答案】解:(1)原式=(4+4√2)×2−8=8+8√2−8=8√2;(2)∵x2−4x=−1,∴x2−4x+4=−1+4,即(x−2)2=3,则x−2=±√3,∴x=2±√3,即x1=2+√3,x2=2−√3.【解析】(1)先化简二次根式,再计算乘法,最后计算加减可得;(2)利用配方法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.【答案】解:(1)如图,矩形ABCD即为所求.(2)如图,正方形ADBC即为所求.【解析】(1)利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题即可.本题考查作图−应用与设计,矩形的判定和性质,正方形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.【答案】1=1(次),【解析】解:(1)这50名出行学生使用共享单车次数的中位数是1+12故答案为:1;×(0×12+1×14+2×4+3×8+ (2)这50名出行学生平均每人使用共享单车1504×8+5×4)=1.96(次);=440(人).(3)估计这天使用共享单车次数在3次以上(含3次)的学生有1100×8+8+450(1)根据中位数的概念求解可得;(2)利用加权平均数的概念列式计算可得;(3)用总人数乘以样本中使用共享单车次数在3次以上(含3次)的学生人数占被调查人数的比例.本题考查了中位数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.22.【答案】4√5【解析】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴DF//BE,∵CF=AE,∴DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.(2)解:∵AB//CD,∴∠BAF=∠AFD,∵AF平分∠BAD,∴∠DAF=∠AFD,∴AD=DF,在Rt△ADE中,∵AE=3,DE=4,∴AD=√32+42=5,∴DF=5,∵四边形DEBF是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴AF=√AB2+BF2=√82+42=4√5;故答案为:4√5.(1)根据有一个角是90度的平行四边形是矩形即可判定.(2)首先证明AD=DF,求出AD=5,由矩形的性质得BE=DF=5,BF=DE=4,则AB=AE+BE=8,由勾股定理即可解决问题.本题考查了平行四边形的判定和性质,矩形的判定和性质、角平分线的定义、等腰三角形的判定、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.23.【答案】25000【解析】解:(1)设通道的宽为x米,根据题意得:(58−2x)(22−2x)=700,解得:x=36(舍去)或x=4,答:甬道的宽为4米;(2)设月租金上涨a元,设停车场的月租金收入为w元,根据题意得:w=(300+a)(70−110a)=−110(a−700)(a+300),∵−110<0,故w有最大值,当a=12(700−300)=200(元)时,w的最大值为25000(元),故答案为25000.(1)设通道的宽为x米,根据矩形的面积公式列出方程并解答.(2)设车位的月租金上涨a元,则租出的车位数量是(70−110a)个,根据“月租金=每个车位的月租金×车位数”列出函数表达式,进而求解.本题考查了二次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,进而求解.24.【答案】4 4 83【解析】解:(1)对于y=2x−4,令x=0,则y=−4,令y=0,即2x−4=0,解得x=2,故点D、G的坐标分别为(2,0)、(0,−4),则点A(4,0),即正方形的边长为4,故点B(4,4),故答案为4,4;(2)如题干图2,∵点E、点F关于直线DG对称,∴BE=BF,EG=GF,而BG=BG,∴△BGE≌△BGF(SSS),∴∠EBG=∠FBG,∵BF//EG,∴∠GBF=∠EGB,∴∠EBG=∠EGB,∴BE=GE,∵BE=BF,EG=GF,∴EB=BF=FG=GE,∴四边形BEGF为菱形;(3)①∵S△BEG=58S正方形OABC,∴12×GE×BC=58×4×4,即12×|m+4|×4=10,解得m=1或−9,故CE=3或13;②如下图,当B,E,F,N四点构成的四边形为矩形时,∵BE=BF,则该矩形为正方形,则∠EBF为直角,故点F作x轴的平行线交BA的延长线于点T,∵∠CBE+∠EBA=90°,∠EBA+∠FBA=90°,∴∠CBE=∠FBA,∵∠BCE=∠BTF=90°,BE=BF,∴△BCE≌△BTF(AAS),∴CE=TF=4−m,BT=BC,故点A、T重合,则点F在x轴上,则AF=CE=4−m,故点F(8−m,0),∵GE=GF,∴(m+4)2=(8−m)2+(−4)2,解得:m=83,故答案为83.(1)对于y=2x−4,令x=0,则y=−4,令y=0,即2x−4=0,解得x=2,故点D、G的坐标分别为(2,0)、(0,−4),则点A(4,0),即可求解;(2)证明△BGE≌△BGF(SSS),则可证∠EBG=∠EGB,则BE=GE,进而求解;(3)①S△BEG=58S正方形OABC,即12×GE×BC=58×4×4,则12×|m+4|×4=10,即可求解;②当B,E,F,N四点构成的四边形为矩形时,则该矩形为正方形,然后证明△BCE≌△BGF(AAS),得到F(8−m,0),再利用GE=GF,即可求解.本题考查的是一次函数综合运用,涉及到一次函数的性质、菱形的性质、三角形全等等,其中(3)①,要注意分类求解,避免遗漏.。
2019-2020学年北京八中八年级(下)期中数学试卷
2019-2020学年北京八中八年级(下)期中数学试卷一、选择题(每题3分,共30分)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.2.(3分)下列各式中,计算正确的是()A.B.=﹣2C.=3D.23.(3分)已知n是正整数,是整数,则n的值可以是()A.5B.7C.9D.104.(3分)如图,▱ABCD的对角线交点是直角坐标系的原点,BC∥x轴,若顶点C坐标是(5,3),BC=8,则顶点D的坐标是()A.(3,﹣3)B.(﹣3,3)C.(5,﹣3)D.(3,﹣5)5.(3分)如图,在▱ABCD中,AB=3,AD=5,∠BCD的平分线交BA的延长线于点E,则AE的长为()A.3B.2.5C.2D.1.56.(3分)已知a=3,b=2,c=,将其按照从小到大的顺序排列,正确的是()A.b<c<a B.b<a<c C.a<c<b D.c<a<b 7.(3分)如图,小明将一张长为20cm,宽为15cm的长方形纸(AE >DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm 8.(3分)如图,菱形ABCD,E是对角线AC上一点,将线段DE绕点E顺时针旋转角度2α,点D恰好落在BC边上点F处,则∠DAB 的度数为()A.αB.90°﹣αC.180°﹣2αD.2α9.(3分)有公共边的两个直角三角形,称为“双生直角三角形”.下列给定的数组中,不能构成“双生直角三角形”边长的是()A.3,4,5,12,13B.,4,,3,5C.7,15,20,24,25D.5,6,8,10,510.(3分)如图,矩形ABCD中,AB=9,AD=3,点E从D向C 以每秒1个单位的速度运动,以AE为一边在AE的左上方作正方形AEFG同时垂直于CD的直线MN也从C向D以每秒2个单位的速度运动,当点F落在直线MN上,设运动的时间为t,则t的值为()A.1B.4C.D.二、填空题(每题3分,共30分)11.(3分)已知二次根式,写出x的范围.12.(3分)化简二次根式:=,=.13.(3分)计算:=,()2=.14.(3分)如图,在△ABC中,∠B=30°,∠BAC=105°,AB=6,则∠C=°,BC的长是.15.(3分)如图,菱形ABCD的对角线长分别为2和4,EF∥DC分别交AD,BC于点E,F,在EF上任取两点G,H,那么图中阴影部分的面积为.16.(3分)如图,已知△ABC中,∠BAC=68°,点D、E、F分别是三角形三边AB,AC,BC的中点,AM是三角形BC边上的高,连接DM,EM,EF,则∠DME=°,∠DFE=°.17.(3分)已知,如图,四边形ABCD,AC,BD交于点O,请从给定四个条件:①AB=CD;②AD∥BC;③∠BAD=∠BCD;④BO=DO中选择两个,使得构成四边形可判定为平行四边形.你的选择是.18.(3分)已知a+=7,则=,a﹣=.19.(3分)我们学完二次根式后,爱思考的小鲍和小黄提出了一个问题:我们可以算22,3﹣2的值,我们可以算,的值吗?金老师说:也是可以的,你们可以查阅资料来进行学习.他们查阅资料后,发现了这样的结论:(a≥0),例如:,=8,那请你根据以上材料,写出=,=.20.(3分)已知,如图:一张矩形纸片ABCD,AB=6,AD=8,E为AD边上一动点,将矩形沿BE折叠,要使点A落在BC上,则折痕BE的长度是;若点A落在AC上,则折痕BE与AC 的位置关系是;若翻折后A点的对应点是A'点,连接DA',则在点E运动的过程中,DA'的最小值是.三、解答题(21题12分,22题4分,23题5分,24题6分,25题6分,26题7分,共40分)21.(12分)计算(1);(2)2;(3).22.(4分)小易同学在数学学习时,遇到这样一个问题:如图,已知点P在直线l外,请用一把刻度尺(仅用于测量长度和画直线),画出过点P且平行于l的直线,并简要说明你的画图依据.小易想到一种作法:①在直线l上任取两点A、B(两点不重合);②利用刻度尺连接AP并延长到C,使PC=AP;③连接BC并量出BC中点D;④作直线PD.∴直线PD即为直线l的平行线.(1)请依据小易同学的作法,补全图形.(2)证明:∵PC=AP,∴P为AC的中点,又∵D为BC中点,∴PD∥AB().(3)你还有其他画法吗?请画出图形,并简述作法.作法:23.(5分)求代数式a+的值,其中a=﹣2020.如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:;(3)求代数式a+2的值,其中a=﹣2019.24.(6分)如图,已知等腰△ABC,AB=AC,AD平分∠BAC,E为AD上一动点,作EF平行AB,交AC于F,在AB上取一点G,使得AG=CF,连接GF.(1)根据题意补全图形;(2)求证四边形BEFG是平行四边形;(3)若∠BAC=50°,写出一个∠ABE的度数,使得四边形BEFG 是菱形.25.(6分)如图,每个小正方形的边长都是1.A、B、C、D均在网格的格点上.(1)直接写出四边形ABCD的面积与BC、BD的长度;(2)∠BCD是直角吗?请说出你的判断理由.(3)找到一个格点E,并画出四边形ABED,使得其面积与四边形ABCD的面积相等.26.(7分)如图,在正方形ABCD中,点E在边CD上(点E与点C、D不重合),过点E作FG⊥BE,FG与边AD相交于点F,与边BC的延长线相交于点G.(1)BE与FG有什么样的数量关系?请直接写出你的结论:;(2)DF、CG、CE的数量之间具有怎样的关系?并证明你所得到的结论.(3)如果正方形的边长是1,FG=1.5,直接写出点A到直线BE 的距离.一、填空题(5分)27.(5分)如图,在矩形ABCD中,AB=6,BC=8.(1)如果E、F分别是AD、BC的中点,G是对角线AC上的点,∠EGF=90°,则AG的长为;(2)如果E、F分别是AD、BC上的点,G,H是对角线AC上的点.下列判断正确的是.①在AC上存在无数组G,H,使得四边形EGFH是平行四边形;②在AC上存在无数组G,H,使得四边形EGFH是矩形;③在AC上存在无数组G,H,使得四边形EGFH是菱形;④当AG=时,存在E、F、H,使得四边形EGFH是正方形.二、作图题(6分)28.(6分)下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.三、探究题(9分)29.(9分)学完二次根式一章后,小易同学看到这样一题:“函数y =中,自变量x的取值范围是什么?”这个问题很简单,根据二次根式的性质很容易得到自变量x的取值范围.联想到一次函数,小易想进一步研究这个函数的图象和性质.以下是他的研究步骤:第一步:函数y=中,自变量x的取值范围是.第二步:根据自变量取值范围列表:x﹣101234……y=01m2……m=.第三步:描点画出函数图象.在描点的时候,遇到了,这样的点,小易同学用所学勾股定理的知识,找到了画图方法,如图所示:你能否从中得到启发,在下面的y轴上标出表示2、m、的点,并画出y=的函数图象.第四步:分析函数的性质.请写出你发现的函数的性质(至少写两条):;第五步:利用函数y=图象解含二次根式的方程和不等式.(1)请在上面坐标系中画出y=x的图象,并估算方程=x的解.(2)不等式>x的解是.2019-2020学年北京八中八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【解答】解:A、=4,不合题意;B、=,不合题意;C、=2,不合题意;D、为最简二次根式,符合题意,故选:D.2.【解答】解:(A)与不是同类二次根式,故不能合并,故A错误.(B)原式=2,故B错误.(D)原式=6×3=18,故D错误.故选:C.3.【解答】解:A、当n=5时,==2,不是整数,故A不符合题意;B、当n=7时,=,不是整数,故B不符合题意;C、当n=9时,==2,不是整数,故C不符合题意;D、当n=10时,==7,是整数,故D符合题意.故选:D.4.【解答】解:∵平行四边形ABCD的对角线交点是直角坐标系的原点,BC∥x轴,BC=8,C(5,3),∴B(﹣3,3),B与D关于原点O对称,∴D(3,﹣3);故选:A.5.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠E=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠E=∠BCE,∴BE=BC=5,∴AE=BE﹣AB=5﹣3=2;故选:C.6.【解答】解:∵a=3=,b=2=,c==,∴b<c<a;故选:A.7.【解答】解:延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15﹣3)2+(20﹣4)2=122+162=400,所以BC=20.则剪去的直角三角形的斜边长为20cm.故选:D.8.【解答】解:如图,连接BE,∵四边形ABCD是菱形,∴CD=BC,∠DAB=∠DCB,∠ACD=∠ACB,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴DE=BE,∠EDC=∠EBC,∵将线段DE绕点E顺时针旋转角度2α,∴DE=EF,∠DEF=2α,∴BE=DE=EF,∴∠EBF=∠EFB,∴∠EDC=∠EBC=∠EFB,∵∠EFB+∠EFC=180°,∴∠EDC+∠EFC=180°,∵∠EDC+∠EFC+∠DEF+∠DCF=360°,∴∠DCF=180°﹣2α=∠DAB,故选:C.9.【解答】解:A.∵32+42=52,52+122=132,∴能组成两个直角三角形,公共边的长度是5,即是“双生直角三角形”,故本选项不符合题意;B.∵32+42=52,()2+()2≠32,()2+()2≠42,()2+()2≠52,∴不能组成两个直角三角形,即不是“双生直角三角形”,故本选项符合题意;C.∵72+242=252,152+202=252,∴能组成两个直角三角形,公共边的长度是25,即是“双生直角三角形”,故本选项不符合题意;D.∵62+82=102,52+(5)2=102,∴能组成两个直角三角形,公共边的长度是10,即是“双生直角三角形”,故本选项不符合题意;故选:B.10.【解答】解:过点F作FH⊥CD,交直线CD于点H,则∠EHF =90°,如图所示:∵四边形ABCD为矩形,∴∠ADE=90°,∴∠ADE=∠EHF,∵在正方形AEFG中,∠AEF=90°,AE=EF,∴∠AED+∠HEF=90°,∵∠HEF+∠EFH=90°,∴∠AED=∠EFH,在△ADE和△EHF中,,∴△ADE≌△EHF(AAS),∴AD=EH=3,由题意得:t+2t=3+9,∴t=4,故选:B.二、填空题(每题3分,共30分)11.【解答】解:由题意得,x﹣2≥0,解得,x≥2,故答案为:x≥2.12.【解答】解:==,=.故答案为:,.13.【解答】解:(+2)(﹣2)=5﹣4=1.(1﹣2)2=1﹣4+12=13﹣4.故答案为:1,13﹣4.14.【解答】解:如图,过点A作AD⊥BC于D,∵∠B=30°,AB=6,∴AD=AB=3,∠BAD=90°﹣30°=60°,由勾股定理得,BD=,∵∠BAC=105°,∴∠CAD=105°﹣60°=45°,∴△ACD是等腰直角三角形,∴CD=AD=3,∠C=45°,∴BC=BD+CD=3+3.故答案为:45;3+3.15.【解答】解:∵四边形ABCD是菱形,对角线长分别为2和4,∴AB∥DC,AD∥BC,菱形ABCD的面积=×2×4=4,∵EF∥DC,∴EF∥DC∥AB,∴四边形ABFE和四边形CDEF是平行四边形,∴△ABH的面积=平行四边形ABFE的面积,△CDG的面积=平行四边形CDEF的面积,∴△ABH的面积+△CDG的面积=菱形ABCD的面积=2,∴图中阴影部分的面积=4﹣2=2;故答案为:2.16.【解答】解:∵∠BAC=68°,∴∠B+∠C=180°﹣68°=112°,∵AM是三角形BC边上的高,∴∠AMB=∠AMC=90°,在Rt△AMB中,D是AB的中点,∴DM=AB=DB,∴∠DMB=∠B,同理可得,∠EMC=∠C,∴∠DMB+∠EMC=∠B+∠C=112°,∴∠DME=180°﹣(∠DMB+∠EMC)=68°,∵点D、E、F分别是三角形三边AB,AC,BC的中点,∴DF、EF分别是△ABC的中位线,DF∥AC,EF∥AB,∴∠DFB=∠C,∠EFC=∠B,∴∠DFB+∠EFC=∠B+∠C=112°,∴∠DFE=180°﹣(∠DFB+∠EFC)=68°,故答案为:68;68.17.【解答】解:选择②③或②④;理由如下:选择②③时,∵AD∥BC,∴∠BAD+∠ABC=180°,∵∠BAD=∠BCD,∴∠BCD+∠ABC=180°,∴AB∥CD,∴四边形ABCD是平行四边形;选择②④时,∵AD∥BC,∴∠OAD=∠OCB,在△OAD和△OCD中,,∴△OAD≌△OCD(AAS),∴OA=OC,又∵OB=OD,∴四边形ABCD是平行四边形;故答案为:②③或②④.18.【解答】解:∵a+=7,∴====3;a﹣=±=±=±=±3.故答案为3;±3.19.【解答】解:;.故答案为:;4.20.【解答】解:若将矩形沿BE折叠,点A落在BC上,∴AB=AE=6,∴BE=6,若将矩形沿BE折叠,点A落在AC上,∴AC⊥BE,如图,连接BD,∵AB=6,AD=8,∴BD===10,若翻折后A点的对应点是A'点,∴BA=BA'=6,∴点A'在以点B为圆心,6为半径的圆上,∴当点A'在线段BD上时,DA'有最小值=10﹣6=4,故答案为:6;AC⊥BE;4.三、解答题(21题12分,22题4分,23题5分,24题6分,25题6分,26题7分,共40分)21.【解答】解:(1)原式=×4﹣3×+=2﹣+=+;(2)原式=6÷5==;(3)原式=﹣1+2﹣+2=﹣.22.【解答】解:(1)如图,(2)故答案为三角形中位线定理;(3)如图,过P点作直线MP交直线l于点Q,作∠MPN=∠PQG,则直线PN∥直线l.23.【解答】解:(1)∵a=﹣2020,∴1﹣a=1﹣(﹣2020)=2021,故小芳开方时,出现错误,故答案为:小芳;(2)错误的原因在于未能正确地运用二次根式的性质:=|a|,故答案为:=|a|;(3)a+2=a+2,∵a=﹣2019,∴a﹣3<0,∴原式=a+2(3﹣a)=a+6﹣2a=6﹣a=6﹣(﹣2019)=6+2019=2025,即代数式a+2的值是2025.24.【解答】(1)解:如图,(2)证明:∵AB=AC,AG=CF,∴AF=BG,∵AD平分∠BAC,∴∠BAD=∠CAD,∵EF∥AB,∴∠AEF=∠EAB,∴∠AEF=∠F AE,∴EF=AF,∴EF=BG,而BG∥EF,∴四边形BEFG是平行四边形;(3)解:当FG=FE时,四边形BEFG为菱形,而FE=F A,∴F A=FG,∴∠FGA=∠FAG=50°,∵GF∥BE,∴∠ABE=∠AGF=50°,即当∠ABE=50°时,四边形BEFG是菱形.25.【解答】解:(1)由题意:S四边形ABCD=5×5﹣×1×5﹣×2×5﹣×1×2﹣×1×3﹣1=.BC==,BD==4.(2)结论:∠BCD不是直角.理由:∵CD==,BC=,BD=4,∴BC2+CD2=34,BD2=32,∴BC2+CD2≠BD2,∴∠BCD不是直角.(3)如图点E或点E′即为所求.26.【解答】解:(1)过点F作FH∥DC交BC于H,∵四边形ABCD是正方形,∴∠BCD=90°,BC=CD,AD∥BC,∵FH∥DC,∴∠FHG=90°,FH=CD,∵∠BCD=90°,FG⊥BE,∴∠EBC+∠BEC=90°,∠EBC+∠G=90°,∴∠G=∠BEC,在△BEC和△FGH中,,∴△BEC≌△FGH(AAS),∴BE=FG,故答案为:BE=FG;(2)DF+CG=CE,理由如下:∵FH∥DC,AD∥BC,∠BCD=90°,∴四边形FHCD为矩形,∴DF=HC,由(1)得,△BEC≌△FGH,∴HG=CE,∵HG=HC+CG=DF+CG,∴DF+CG=CE;(3)连接AE,过点A作AP⊥BE于P,∵△BEC≌△FGH,∴BE=FG=1.5,∵正方形的边长为1,∴△ABE的面积=×1×1=,则×BE×AP=,即××AP=,解得,AP=,即点A到直线BE的距离为.一、填空题(5分)27.【解答】解:(1)如图,∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,AD=BC,∴AC===10,∵AD∥BC,∴∠EAO=∠FCO,∵E、F分别是AD、BC的中点,∴AE=CF=BF=DE,∴四边形ABFE是平行四边形,∴EF=AB=6,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO=3,AO=CO=5,当点G在点O上方时,∵∠EGF=90°,EO=FO,∴GO=EO=3,∴AG=AO﹣GO=5﹣3=2,当点G'在点O下方时,∵∠EG'F=90°,EO=FO,∴G'O=EO=3,∴AG'=AO+G'O=5+3=8,综上所述:AG=2或8;(2)①在AC上存在无数组G,H,使得四边形EGFH是平行四边形,故该说法正确;②在AC上存在无数组G,H,使得四边形EGFH是矩形,故该说法正确;③在AC上存在无数组G,H,使得四边形EGFH是菱形,故该说法正确;④当AG=时,存在E、F、H,使得四边形EGFH是正方形,故答案为①②③④.二、作图题(6分)28.【解答】解:(1)根据剪拼前后图形的面积相等,得出拼成的正方形的边长==4,(2)如图,②③都属于平移,(3)如图乙:或者三、探究题(9分)29.【解答】解:第一步:∵x+1≥0,∴x≥﹣1,∴x的取值范围是x≥﹣1,故答案为:x≥﹣1;第二步:当x=2时,m==,故答案为:;第三步:根据勾股定理,得=,=,=,函数图象如图所示:第四步:根据函数图象可知:该函数的两条性质(答案不唯一):性质一:当x≥﹣1时,y随x的增大而增大;性质二:函数图象只有一个点在x轴上,其余的都在x轴上方;故答案为:当x≥﹣1时,y随x的增大而增大;函数图象只有一个点在x轴上,其余的都在x轴上方;第五步:(1)函数图象如下:利用函数图象可知:根据函数的交点估算方程=x的解是:x≈1.6;(2)根据函数图象可知:不等式>x的解是﹣1≤x<1.6.故答案为:﹣1≤x<1.6。
2019-2020学年湖北省黄石实验中学八年级(下)期中数学试卷 (解析版)
24.(9 分)已知点 O 是△ABC 内任意一点,连接 OA 并延长到点 E,使得 AE=OA,以 OB,
OC 为邻边作平行四边形 OBFC,连接 OF,与 BC 交于点 H,连接 EF.
(1)问题发现
如图 1,若△ABC 为等边三角形,线段 EF 与 BC 的位置关系是
,数量关系
为
;
(2)拓展探究
25.(10 分)感知:如图①,在正方形 ABCD 中,E 是 AB 一点,F 是 AD 延长线上一点, 且 DF=BE,求证:CE=CF; 拓展:在图①中,若 G 在 AD,且∠GCE=45°,则 GE=BE+GD 成立吗?为什么? 运用:如图②在四边形 ABCD 中,AD∥BC(BC>AD),∠A=∠B=90°,AB=BC= 20,E 是 AB 上一点,且∠DCE=45°,BE=4,求 DE 的长.
.
15.(3 分)如图,矩形 ABCD 面积为 40,点 P 在边 CD 上,PE⊥AC,PF⊥BD,垂足分别
为 E,F.若 AC=10,则 PE+PF=
.
16.(3 分)如图,∠MON=90°,矩形 ABCD 的顶点 A、B 分别在边 OM、ON 上,当 B 在
边 ON 上运动时,A 随之在 OM 上运动,矩形 ABCD 的形状保持不变,其中 AB=6,BC
A.
B.2
C.1
D.
3.(3 分)下列计算正确的是( )
A.
=
B.
=
C.3
=5
D.
=×
4.(3 分)下列说法中,错误的是( )
A.平行四边形的对角线互相平分
B.菱形的对角线互相垂直平分
C.矩形的对角线互相垂直
D.正方形的对角线相等
2019-2020学年河南省郑州八中八年级(上)期中数学试卷(解析版)
2019-2020学年河南省郑州八中八年级(上)期中数学试卷一、选择题(共10小题,满分30分,每小题3分)1.计算西的结果是()A. 9B. -9C. 3D. ±32. 下列实数中,无理数有( )个77、0、3.1415926、兀、0.1010010001...(每两个 1 之间 0 的个数依次加 1)A. 1B. 2C. 3D. 43. 在平面直角坐标系中,点F (4,-3)到x 轴的距离( )A. 4B. 3C. 5D. -34. 将下列长度的三根木棒首尾顾次连接,能构成直角三角形的是( )A. 6, 8, 12B. V3,4,V5C. 5, 12, 13D.扼播,75.已知点(k,b )为第二象限内的点,则一次函数y = -kx + b 的图象大致是( )A.面的平方根是±9C.上的平方根是上36 6B. -5的立方根是-如D. -9没有立方根7.如图,在2x2的正方形网格中,每个小正方形边长为1,点A, B, C 均为格点,以点A 为圆心,A3长为半径作弧,交格线于点则CD 的长为()A ' IB・|D. 2-V38.如图,点A 的坐标为(1,3) , O 为坐标原点,将。
4绕点O 按顺时针方向旋转90。
得到04,C.(一3,-1)D. (3,1)9.如图在AA3C 中,ZC = 90° ,平分匕BAC,DE1AB 于 E , DE = 3, BD = 2CD ,则 BC = ()10.如图,8 C. D. 10甲、乙两人以相同路线前往距离单位ios 的培训中心参加学习,图中4,匕分别表示甲、乙两人前往目的地所走的路程S (千米)随时间7 (分)变化的函数图象,以下说法:①甲比乙提前12分钟到达;②甲的平均速度为15千米/小时;③甲、乙相遇时,乙走了 6千米;④乙出发6分钟后追上甲,其中正确的是()9A.①②B.③④C.①③④D.②③④二、填空题(共5小题,满分15分,每小题3分)11.|V2-l|=.12.若x、y为实数,且满足|2x+31+J9-4y=0,则xy的立方根为.13.如图一个圆柱,底圆周长10cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到3点,则最少要爬行cm.C~B14.在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是.15.如图,矩形ABCD中,AB=6,BC=8,点.E是BC边上点连接AE,把ZB沿AE折叠,使点3落在点甘处,当左CB'E为直角三角形时,则AE的长为.三、解答题(共7小题,满分55分)16.计算:(1)(2V12-^|)xV6⑵(V3-V2)(V3+V2)+27^+^17.如图,已知在四边形ABCD中,ZA=90°,AB=2cm,AD=45cm,CD=5cm,BC=4cm,求四边形ABCD的面积.18.如图,\ABC中,A点坐标为(2,4),3点坐标为(-3,-2),C点坐标为(3,1).(1)在图中画出AA3C 关于y 轴对称的(不写画法),并写出点A, B', (7的坐标.(2)求AABC 的面积..二..:.4.............• • • • • :::::2 r - -1- - -1 - - r - -! ::-4: :................:\B' \ :-2................Illi*'• • • i i i i i ■L_«___________■r : 1 r :-4r i ---i 1 • ■>Illi 119.八年级(1)班张山同学利用所学函数知识,对函数y=\x + 2\-x-l 进行了如下研究:列表如下:描点并连线(如下图)X-5-4-3-2-10123Y 753m1n111(1) 自变量X 的取值范围是;(2) 表格中: m =; n =;(3) 在给出的坐标系中画出函数y=\x + 2\-x-l 的图象;(4) 一次函数y = -x + 3的图象与函数y=|x + 2|-x -1的图象交点的坐标为.20. 一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为必千米,出租车离甲地的距离为为千米,两车行驶的时间为x 小时,芳、方关于 x 的图象如图所示:(1)根据图象,分别写出为关于*的关系式(需要写出自变量取值范围);(2)当两车相遇时,求x的值;(3)甲、乙两地间有A、8两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入3加油站,求A加油站离甲地的距离.21.如图,将长方形A8CD沿AC对折,使AABC落在AAEC的位置,且CE与AD相文于点F(1)求证:EF=DF(2)若AB=也,BC=3求折叠后的重叠部分(阴影部分)的面积.22.如图,在平面直角坐标系中,过点A(0,6)的直线A3与直线。
2019-2020学年北京市东城区文汇中学八年级下学期期中数学试卷 (解析版)
2019-2020学年八年级第二学期期中数学试卷一、选择题(共10小题).1.一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是()A.3,﹣4,﹣5B.3,﹣4,5C.3,4,5D.3,4,﹣52.函数y=中自变量x的取值范围是()A.x≤3B.x≠3C.x≠﹣3D.x≥33.已知2是关于x的方程x2+ax﹣3a=0的根,则a的值为()A.﹣4B.4C.2D.4.在Rt△ABC中,D为斜边AB的中点,且BC=3,AC=4,则线段CD的长是()A.2B.3C.D.55.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4B.C.3D.56.下列命题中正确的是()A.对角线相等的四边形是矩形B.有一个角是直角的四边形是矩形C.对角线互相平分且相等的四边形是矩形D.一组对边相等,另一组对边平行的四边形是平行四边形7.如果关于x的方程x2﹣2x﹣k=0有实根.那么以下结论正确的是()A.k>l B.k=﹣1C.k≥﹣1D.k<﹣18.▱ABCD的两条对角线AC,BD交于点O,点E是CD的中点,△DOE的面积为l0cm2,则△ABD的面积为()A.15cm2B.20cm2C.30cm2D.40cm29.如图,平行四边形ABCD的两条对角线相交于点O,点E是AB边的中点,图中已有三角形与△ADE面积相等的三角形(不包括△ADE)共有()个.A.3B.4C.5D.610.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm二、填空题(本题24分,每小题3分)11.一元二次方程x2=2x的根是.12.若有意义,则x的取值范围是.13.如图,▱ABCD中,AC=AD,BE⊥AC于E,若∠D=70°,则∠ABE=.14.在平行四边形ABCD中,BC=2AB,E为BC中点,则∠AED=.15.已知y=++5,则=.16.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根0,则a值为.17.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为.18.如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是.三、解答题(本题共46分,第19-20题,每小题8分,第21题4分,第22-24题.每题6分,第25题8分)19.计算:(1)π0+2﹣1﹣﹣|﹣|;(2)(3﹣2)2﹣(3+2)2.20.解方程:(1)x2+4x﹣1=0;(2)2(x﹣3)2=x2﹣9.21.作图题:在数轴上表示出﹣的点.22.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.(1)求证:无论k取什么实数值,这个方程总有实根.(2)若等腰△ABC的一边长a=4,另两边b、c恰好是这个方程的两根,求△ABC的周长.23.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?24.如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠BFA=60°,BE=2,求平行四边形ABCD的周长.25.阅读下列材料:问题:如图1,在▱ABCD中,E是AD上一点,AE=AB,∠EAB=60°,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.求证:EG=AG+BG.小明同学的思路是:作∠GAH=∠EAB交GE于点H,构造全等三角形,经过推理使问题得到解决.参考小明同学的思路,探究并解决下列问题:(1)完成上面问题中的证明;(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.参考答案一、选择题(本题共30分,每小题3分)1.一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是()A.3,﹣4,﹣5B.3,﹣4,5C.3,4,5D.3,4,﹣5【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).其中a,b,c分别叫二次项系数,一次项系数,常数项.解:一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是3,﹣4,﹣5.故选:A.【点评】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx 叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.函数y=中自变量x的取值范围是()A.x≤3B.x≠3C.x≠﹣3D.x≥3【分析】根据二次根式的意义,被开方数是非负数即可解答.解:根据题意得:x﹣3≥0,解得x≥3,故选:D.【点评】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足被开方数非负.3.已知2是关于x的方程x2+ax﹣3a=0的根,则a的值为()A.﹣4B.4C.2D.【分析】根据题意把x=2代入方程,即可求出a的值,从而选出选项.解:∵2是关于x的方程x2+ax﹣3a=0的一个根,∴把x=2代入得:22+2a﹣3a=0,解得:a=4.故选:B.【点评】本题主要考查了对一元一次方程的解及解法的理解和掌握,把2代入方程,求出关于a的方程的解是解此题的关键.4.在Rt△ABC中,D为斜边AB的中点,且BC=3,AC=4,则线段CD的长是()A.2B.3C.D.5【分析】根据勾股定理列式求出AB的长度,再根据直角三角形斜边上的中线等于斜边的一半解答.解:∵AC=4cm,BC=3,∴AB==5,∵D为斜边AB的中点,∴CD=AB=×5=.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,熟记性质是解题的关键.5.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4B.C.3D.5【分析】先由矩形的性质得出OA=OB,再证明△AOB是等边三角形,得出AB=OB=4即可.解:∵四边形ABCD是矩形,∴OA=AC,OB=BD=4,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4;故选:A.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.6.下列命题中正确的是()A.对角线相等的四边形是矩形B.有一个角是直角的四边形是矩形C.对角线互相平分且相等的四边形是矩形D.一组对边相等,另一组对边平行的四边形是平行四边形【分析】根据矩形和平行四边形的判定判断即可.解:A、对角线互相平分且相等的四边形是矩形,原命题是假命题;B、有一个角是直角的平行四边形是矩形,原命题是假命题;C、对角线互相平分且相等的四边形是矩形,是真命题;D、一组对边相等且平行的四边形是平行四边形,原命题是假命题;故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题叫定理.7.如果关于x的方程x2﹣2x﹣k=0有实根.那么以下结论正确的是()A.k>l B.k=﹣1C.k≥﹣1D.k<﹣1【分析】根据方程有实数根结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.解:由题意知△=(﹣2)2﹣4×1×(﹣k)≥0,解得:k≥﹣1,故选:C.【点评】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.8.▱ABCD的两条对角线AC,BD交于点O,点E是CD的中点,△DOE的面积为l0cm2,则△ABD的面积为()A.15cm2B.20cm2C.30cm2D.40cm2【分析】根据三角形的中线平分三角形的面积可得S△COD=20cm2,根据平行四边形的性质可得O为AC和BD中点,再根据三角形的中线平分三角形的面积可得S△AOD=S△COD =S△AOB=20cm2,进而可得答案.解:∵点E是CD的中点,∴S△DOE=S△COD,∵△DOE的面积为l0cm2,∴S△COD=20cm2,∵四边形ABCD是平行四边形,∴S△AOD=S△COD=S△AOB=20cm2,∴△ABD的面积为40cm2,故选:D.【点评】此题主要考查了平行四边形的性质,以及三角形中线的性质,关键是掌握平行四边形的对角线互相平分.三角形的中线平分三角形的面积.9.如图,平行四边形ABCD的两条对角线相交于点O,点E是AB边的中点,图中已有三角形与△ADE面积相等的三角形(不包括△ADE)共有()个.A.3B.4C.5D.6【分析】首先利用平行四边形的性质证明△ADB≌△CBD,从而得到△CDB,与△ADB 面积相等,再根据DO=BO,AO=CO,利用三角形的中线把三角形的面积分成相等的两部分可得△DOC、△COB、△AOB、△ADO面积相等,都是△ABD的一半,根据E 是AB边的中点可得△ADE、△DEB面积相等,也都是△ABD的一半,从而得到答案.解:∵四边形ABCD是平行四边形,∴AD=CB,DC=AB,在△ADB和△CBD中:,∴△ADB≌△CBD(SSS),∴S△ADB=S△CBD,∵四边形ABCD是平行四边形,∴DO=BO,CO=AO,即:O是DB、AC中点,∴S△DOC=S△COB=S△DOA=S△AOB=S△ADB,∵E是AB边的中点,∴S△ADE=S△DEB=S△ABD,∴S△DOC=S△COB=S△DOA=S△AOB=S△ADE=S△DEB=S△ADB,∴不包括△ADE共有5个三角形与△ADE面积相等,故选:C.【点评】此题主要考查了平行四边形的性质,以及三角形的中线平分三角形面积,解决问题的关键是熟练把握三角形的中线平分三角形面积这一性质.10.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=2dm,∴这圈金属丝的周长最小为2AC=4dm.故选:A.【点评】本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.二、填空题(本题24分,每小题3分)11.一元二次方程x2=2x的根是x1=0,x2=2.【分析】先移项,再提公因式,使每一个因式为0,从而得出答案.解:移项,得x2﹣2x=0,提公因式得,x(x﹣2)=0,x=0或x﹣2=0,∴x1=0,x2=2.故答案为:x1=0,x2=2.【点评】本题考查了一元二次方程的解法:解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.12.若有意义,则x的取值范围是x≥.【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解.解:要是有意义,则2x﹣1≥0,解得x≥.故答案为:x≥.【点评】本题主要考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.13.如图,▱ABCD中,AC=AD,BE⊥AC于E,若∠D=70°,则∠ABE=20°.【分析】首先利用等边对等角可得∠ACD的度数,再利用平行四边形的性质可得∠BAC 的度数,然后根据直角三角形的性质可得∠ABE的度数.解:∵AC=AD,∴∠D=∠ACD=70°,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD=∠ACD=70°,∵BE⊥AC,∴∠AEB=90°,∴∠ABE=20°,故答案为:20°.【点评】此题主要考查了平行四边形的性质,关键是掌握平行四边形对边平行且相等.14.在平行四边形ABCD中,BC=2AB,E为BC中点,则∠AED=90°.【分析】根据平行四边形的性质和已知推出AB=BE=AF=DF,AF=BE,AF∥BE,得到平行四边形AFEB,推出AF=BE=DF,根据直角三角形的判定求出即可.解:取AD的中点F,连接EF,∵平行四边形ABCD,BC=2AB,E为BC的中点,∴AD∥BC,AD=BC=2AB=2BE=2AF=2DF,∴AB=BE=AF=DF,∴AF=BE,AF∥BE,∴四边形AFEB是平行四边形,∴EF=AB=AF=DF,∴∠AED=90°.故答案为:90°.【点评】本题主要考查对直角三角形斜边上的中线,平行四边形的性质和判定等知识点的理解和掌握,能求出AF=DF=EF是解此题的关键.15.已知y=++5,则=.【分析】先根据二次根式有意义的条件求出x的值,进而得出y的值,代入代数式进行计算即可.解:∵与有意义,∴,解得x=2,∴y=5,∴=.故答案为:.【点评】本题考查的是二次根式有意义的条件,即二次根式中的被开方数是非负数.16.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根0,则a值为﹣1.【分析】根据一元二次方程的定义和一元二次方程的解的定义得出a﹣1≠0,a2﹣1=0,求出a的值即可解:把x=0代入方程得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+x+a2﹣1=0是关于x的一元二次方程,∴a﹣1≠0,即a≠1,∴a的值是﹣1.故答案为:﹣1.【点评】本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a﹣1≠0且a2﹣1=0,题目比较好,但是一道比较容易出错的题.17.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为.【分析】根据勾股定理可得BD=5,由折叠的性质可得△ADG≌△A'DG,则A'D=AD =3,A'G=AG,则A'B=5﹣3=2,在Rt△A'BG中根据勾股定理求AG的即可.解:在Rt△ABD中,AB=4,AD=3,∴BD===5,由折叠的性质可得,△ADG≌△A'DG,∴A'D=AD=3,A'G=AG,∴A'B=BD﹣A'D=5﹣3=2,设AG=x,则A'G=AG=x,BG=4﹣x,在Rt△A'BG中,x2+22=(4﹣x)2解得x=,即AG=.【点评】此题主要考查折叠的性质,综合利用了勾股定理的知识.认真分析图中各条线段的关系,也是解题的关键.18.如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是.【分析】根据平行四边形的性质得到AB=CD=3,AD=BC=4,求出BE、BF、EF,根据全等得出CH=BF=1,根据三角形的面积公式求△DEF的面积即可.解:∵四边形ABCD是平行四边形,∴AD=BC=4,AB∥CD,AB=CD=3,∵E为BC中点,∴BE=CE=2,∵∠B=60°,EF⊥AB,∴∠FEB=30°,∴BF=1,由勾股定理得:EF=,∵AB∥CD,∴∠HCE=∠B,在△BFE和△CHE中∴△BFE≌△CHE(ASA),∴EF=EH=,BF=CH=1,即HD=1+3=4,∴S△DEF=EF×DH==2,故答案为:2.【点评】本题主要考查对平行四边形的性质,平行线的性质,勾股定理,含30度角的直角三角形,三角形的面积,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.三、解答题(本题共46分,第19-20题,每小题8分,第21题4分,第22-24题.每题6分,第25题8分)19.计算:(1)π0+2﹣1﹣﹣|﹣|;(2)(3﹣2)2﹣(3+2)2.【分析】(1)利用零指数幂、负整数指数幂和绝对值的意义计算;(2)先利用平方差公式计算,然后根据二次根式的乘法法则运算.解:(1)原式=1+﹣﹣=;(2)原式=(3﹣2+3+2)(3﹣2﹣3﹣2)=6×(﹣4)=﹣24.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.解方程:(1)x2+4x﹣1=0;(2)2(x﹣3)2=x2﹣9.【分析】(1)利用配方法求解比较简单;(2)利用因式分解法求解比较简单.解:(1)∵x2+4x﹣1=0,∴x2+4x+4=3,∴(x+2)2=3,∴x+2=±,∴x1=﹣2,x2=﹣﹣2;(2)∵2(x﹣3)2=x2﹣9.∴2(x﹣3)2﹣(x2﹣9)=0,∴2(x﹣3)2﹣(x+3)(x﹣3)=0,∴(x﹣3)[2(x﹣3)﹣(x+3)]=0,∴(x﹣3)(x﹣9)=0,∴x﹣3=0或x﹣9=0,∴x1=3,x2=9.【点评】本题考查了解一元二次方程中的因式分解法和配方法,熟练掌握一元二次方程的解法是解题的关键.21.作图题:在数轴上表示出﹣的点.【分析】因为10=1+9,所以只需作出以1和3为直角边的直角三角形,则其斜边的长即是,然后以原点为圆心,以为半径画弧,和数轴的负半轴交于一点即可.解:过表示﹣3的点B作数轴的垂线AB,取AB=1,连接OA,以O为圆心,OA为半径画弧,与数轴的负半轴交于点C,则C点表示的数为﹣.【点评】本题考查的是实数与数轴,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.22.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.(1)求证:无论k取什么实数值,这个方程总有实根.(2)若等腰△ABC的一边长a=4,另两边b、c恰好是这个方程的两根,求△ABC的周长.【分析】(1)先把方程化为一般式:x2﹣(2k+1)x+4k﹣2=0,要证明无论k取任何实数,方程总有两个实数根,即要证明△≥0;(2)先利用因式分解法求出两根:x1=2,x2=2k﹣1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b,c的值,求出三角形的周长.【解答】(1)证明:方程化为一般形式为:x2﹣(2k+1)x+4k﹣2=0,∵△=(2k+1)2﹣4(4k﹣2)=(2k﹣3)2,而(2k﹣3)2≥0,∴△≥0,所以无论k取任何实数,方程总有两个实数根;(2)解:x2﹣(2k+1)x+4k﹣2=0,整理得(x﹣2)[x﹣(2k﹣1)]=0,∴x1=2,x2=2k﹣1,当a=4为等腰△ABC的底边,则有b=c,因为b、c恰是这个方程的两根,则2=2k﹣1,解得k=,则三角形的三边长分别为:2,2,4,∵2+2=4,这不满足三角形三边的关系,舍去;当a=4为等腰△ABC的腰,因为b、c恰是这个方程的两根,所以只能2k﹣1=4,则三角形三边长分别为:2,4,4,此时三角形的周长为2+4+4=10.所以△ABC的周长为10.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了分类思想的运用、等腰三角形的性质和三角形三边的关系.23.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?【分析】(1)可设年平均增长率为x,根据等量关系:2018年五一长假期间,接待游客达20万人次,在2020年五一长假期间,接待游客将达28.8万人次,列出方程求解即可;(2)可设每碗售价定为y元时,店家才能实现每天利润6300元,根据利润的等量关系列出方程求解即可.解:(1)可设年平均增长率为x,依题意有20(1+x)2=28.8,解得x1=0.2=20%,x2=﹣2.2(舍去).答:年平均增长率为20%;(2)设每碗售价定为y元时,店家才能实现每天利润6300元,依题意有(y﹣6)[300+30(25﹣y)]=6300,解得y1=20,y2=21,∵每碗售价不得超过20元,∴y=20.答:当每碗售价定为20元时,店家才能实现每天利润6300元.【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠BFA=60°,BE=2,求平行四边形ABCD的周长.【分析】(1)根据平行四边形的性质得出AB=CD,AD∥BC,求出∠FAD=∠AFB,根据角平分线定义得出∠FAD=∠FAB,求出∠AFB=∠FAB,即可得出答案;(2)求出△ABF为等边三角形,根据等边三角形的性质得出AF=BF=AB,∠ABF=60°,在Rt△BEF中,∠BFA=60°,BE=,解直角三角形求出EF=2,BF=4,AB=BF=4,BC=AD=2,即可得出答案.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BC,∴∠FAD=∠AFB,又∵AF平分∠BAD,∴∠FAD=∠FAB.∴∠AFB=∠FAB.∴AB=BF,∴BF=CD;(2)解:∵由(1)知:AB=BF,又∵∠BFA=60°,∴△ABF为等边三角形,∴AF=BF=AB,∠ABF=60°,∵BE⊥AF,∴点E是AF的中点.∵在Rt△BEF中,∠BFA=60°,BE=,∴EF=2,BF=4,∴AB=BF=4,∵四边形BACD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠DCF=∠ABC=60°=∠F,∴CE=EF,∴△ECF是等边三角形,∴CE=EF=CF=2,∴BC=4﹣2=2,∴平行四边形ABCD的周长为2+2+4+4=12.【点评】本题考查了平行四边形的性质和判定,平行线的性质,解直角三角形,等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.25.阅读下列材料:问题:如图1,在▱ABCD中,E是AD上一点,AE=AB,∠EAB=60°,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.求证:EG=AG+BG.小明同学的思路是:作∠GAH=∠EAB交GE于点H,构造全等三角形,经过推理使问题得到解决.参考小明同学的思路,探究并解决下列问题:(1)完成上面问题中的证明;(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.【分析】(1)作∠GAH=∠EAB交GE于点H,则∠GAB=∠HAE,先根据ASA定理得出△ABG≌△AEH,由∠GAH=∠EAB=60°可知△AGH是等边三角形,故可得出结论;(2)作∠GAH=∠EAB交GE的延长线于点H,先根据ASA定理得出△ABG≌△AEH,故可得出BG=EH,AG=AH,根据∠GAH=∠EAB=90°可知△AGH是等腰直角三角形,所以AG=HG,由此可得出结论.解:(1)证明:如图1,作∠GAH=∠EAB交GE于点H,则∠GAB=∠HAE.∵∠EAB=∠EGB,∠GAB=∠HAE,∴∠ABG=∠AEH.又∵AB=AE,∴(ASA),∴△ABG≌△AEH.∴BG=EH,AG=AH.∵∠GAH=∠EAB=60°,∴△AGH是等边三角形.∴AG=HG.∴EG=AG+BG;(2)线段EG、AG、BG之间的数量关系是EG=AG﹣BG.理由如下:如图2,作∠GAH=∠EAB交GE的延长线于点H,则∠GAB=∠HAE.∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°.∴∠ABG=∠AEH.又∵AB=AE,∴(ASA),∴△ABG≌△AEH.∴BG=EH,AG=AH.∵∠GAH=∠EAB=90°,∴△AGH是等腰直角三角形.∴AG=HG,∴EG=AG﹣BG.【点评】本题考查的是四边形综合题,涉及到全等三角形的判定与性质、直角三角形的性质、勾股定理等知识,难度适中.。
2019-2020学年北京人大附中八年级(上)期中数学试卷
2019-2020学年北京人大附中八年级(上)期中数学试卷一、选择题(每小题分,共30分)1.(3分)下列倡导节约的图案中是轴对称图形的是()A.B.C.D.2.(3分)分式有意义,x的取值范围是()A.x≠2B.x≠﹣2C.x=2D.x=﹣2 3.(3分)在下列运算中,正确的是()A.a3•a4=a12B.(ab2)3=a6b6C.(a3)4=a7D.a4÷a3=a4.(3分)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确5.(3分)如图,AB=AC=5,DB=DC,若∠ABC为60°,则BE长为()A.5B.3C.2.5D.26.(3分)如图,△ABC中,点D在BC边上,将点D分别以AB、AC为对称轴,画出对称点E、F,并连接AE、AF.根据图中标示的角度,可得∠EAF的度数为()A.108B.115C.122D.1307.(3分)如图(一),在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b),把余下的部分剪成一个矩形(如图(二)),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.(a+b)2=a2+2ab+b2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b28.(3分)如图,AD是△ABC的角平分线,作AD的垂直平分线EF交BC的延长线于F.下列结论不一定成立的是()A.AF=DF B.∠BAF=∠ACFC.BF⊥AC D.S△ABD:S△ACD=AB:AC9.(3分)已知a,b,c是△ABC的三边长,且满足a2+c2=2b(a+c﹣b),则此三角形是()A.等边三角形B.等腰三角形C.直角三角形D.无法确定10.(3分)在坐标系xOy中,已知点A(3,1)关于x轴、y轴的对称点分别为P、Q.若坐标轴上的点M恰使△MAP、△MAQ均为等腰三角形,则满足条件的点有()A.4个B.5个C.8个D.9个二、填空题(每空2分,共18分)11.(2分)分式的值为0,则x的值是.12.(2分)(a﹣2)0=1,则a的取值范围为.13.(2分)计算32019×()2018=.14.(2分)若(x+1)(kx﹣2)的展开式中不含有x的一次项,则k的值是.15.(2分)如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为.16.(2分)已知m+n=5,mn=2,则m3n﹣2m2n2+mn3的值为.17.(2分)在△ABC中,AB=AC,AD⊥BC,∠CBE=30°,若以C为圆心,CB长为半径画圆交BE延长线于F,且EF=6,则BF=.18.(2分)如图等腰△ABC中,AB=AC,M为其底角平分线的交点,将△BCM沿CM折叠,使B点恰好落在AC边上的点D处,若DA=DM,则∠ABC的度数为.19.(2分)在等边△ABC中,M、N、P分别是边AB、BC、CA上的点(不与端点重合),对于任意等边△ABC,下面四个结论中:①存在无数个△MNP是等腰三角形;②存在无数个△MNP是等边三角形;③存在无数个△MNP是等腰直角三角形;④存在一个△MNP在所有△MNP中面积最小.所有正确结论的序号是.三、解答题(21,22题,每小题,4分22-27题,每小题8分28题6分,共52分)20.(8分)分解因式:(1)3ma2﹣3mb2(2)4ax2﹣4ax+a21.(8分)计算:(1)x(1﹣x)+(x﹣2)(x+3)(2)(a+5b)(a﹣5b)﹣(a+2b)222.(5分)先化简,再求值:(5x3+3x2﹣x)÷x+(x﹣1)2﹣7,其中6x2+x=1.23.(5分)下面是小康设计的“过直线外一点作这条直线的垂线”的尺规作图过程.已知直线l及直线l外一点P.求作:直线l的垂线,使它经过点P.做法:如图,①以P为圆心,以大于P到直线l的距离的长度为半径画弧,交直线l于A、B两点;②连接PA、PB;③作∠APB的角平分线PQ.直线PQ即为所求.根据小康设计的尺规作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵PA=,PQ平分∠APB,∴PQ⊥l()(填推理的依据)24.(5分)如图,AC和BD相交于点O,且AB∥DC,OA=OB.求证:OC=OD.25.(5分)阅读:在一次数学活动中,“揭秘”学习小组发现:53×57=302138×32=121684×86=722471×79=5609这组计算蕴含着简算规律:十位数字相同,个位数字和为10的两个两位数相乘,结果末两位的是个位数字的乘积前几位是十位数字与十位数字加一的乘积.小乐同学用所学知识做了如下解释:将相同的十位数字设为a,个位数字为b,d,则•=(10a+b)(10a+d)=100a2+10a(b+d)+bd,∵b+d=10∴原式=100a2+100a+bd=100a(a+1)+bd.(1)请你利用小组发现的规律计算:63×67=;(2)小乐同学进一步思考,个位数字相同,十位数字之和为10的两个两位数相乘会不会也有简算规律呢?于是,小乐计算了35×75=2625,83×23=1909,48×68=3264,17×97=1649,但是还是没有发现规律,你能帮助小乐发现规律,并用所学知识解释吗?26.(5分)如图,在四边形ABCD中,对角线BD平分∠ABC,∠A=120°,∠C=60°,AB=17,AD=12.(1)求证:AD=DC;(2)求四边形ABCD的周长.27.(5分)等腰△ABC中,AB=AC,∠ACB>60°,点D为边AC上一点,满足BD=BC,点E与点B位于直线AC的同侧,△ADE是等边三角形.(1)①请在图1中将图形补充完整;②若点D与点E关于直线AB轴对称,∠ACB=;(2)如图2所示,若∠ACB=80°,用等式表示线段BA、BD、BE之间的数量关系,并说明理由.28.(6分)在平面直角坐标系xOy中,我们称横纵坐标都是整数的点为整点,若坐标系内两个整点A(p,q)、B(m,n)(m≤n)满足关于x的多项式x2+px+q能够因式分解为(x+m)(x+n),则称点B是A的分解点.例如A(3,2)、B(1,2)满足x2+3x+2=(x+1)(x+2),所以B是A的分解点.(1)在点A1(5,6)、A2(0,3)、A3(﹣2,0)中,请找出不存在分解点的点:;(2)点P、Q在纵轴上(P在Q的上方),点R在横轴上,且点P、Q、R都存在分解点,若△PQR面积为6,请直接写出满足条件的△PQR的个数及每个三角形的顶点坐标;(3)已知点D在第一象限内,D是C的分解点,请探究△OCD是否可能是等腰三角形?若可能请求出所有满足条件的点D的坐标;若不可能,请说明理由.2019-2020学年北京人大附中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题分,共30分)1.(3分)下列倡导节约的图案中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.(3分)分式有意义,x的取值范围是()A.x≠2B.x≠﹣2C.x=2D.x=﹣2【解答】解:根据题意得:x+2≠0,解得:x≠﹣2.故选:B.3.(3分)在下列运算中,正确的是()A.a3•a4=a12B.(ab2)3=a6b6C.(a3)4=a7D.a4÷a3=a【解答】解:A、底数不变指数相加,即a3•a4=a7,故A错误;B、积得乘方等于每个因式分别乘方,再把所得的幂相乘,即(ab2)3=a3b6,故B错误;C、底数不变指数相乘,即(a3)4=a12,故C错误;D、底数不变指数相减,即a4÷a3=a,故D正确;故选:D.4.(3分)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【解答】解:如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.5.(3分)如图,AB=AC=5,DB=DC,若∠ABC为60°,则BE长为()A.5B.3C.2.5D.2【解答】解:∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,A在BC的垂直平分线上,∴BC=AB=5,∵DB=DC,∴点D在BC的垂直平分线上,∴AD垂直平分BC,∴BE=BC=2.5.故选:C.6.(3分)如图,△ABC中,点D在BC边上,将点D分别以AB、AC为对称轴,画出对称点E、F,并连接AE、AF.根据图中标示的角度,可得∠EAF的度数为()A.108B.115C.122D.130【解答】解:如图,∵D点分别以AB、AC为对称轴,画出对称点E、F,∴∠EAB=∠BAD,∠FAC=∠CAD,∵∠B=61°,∠C=54°,∴∠BAC=∠BAD+∠DAC=180°﹣61°﹣54°=65°,∴∠EAF=2∠BAC=130°,故选:D.7.(3分)如图(一),在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b),把余下的部分剪成一个矩形(如图(二)),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.(a+b)2=a2+2ab+b2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b2【解答】解:由题意可得:(a﹣b)(a+b)=a2﹣b2.故选:B.8.(3分)如图,AD是△ABC的角平分线,作AD的垂直平分线EF交BC的延长线于F.下列结论不一定成立的是()A.AF=DF B.∠BAF=∠ACFC.BF⊥AC D.S△ABD:S△ACD=AB:AC【解答】解:A、∵EF是AD的垂直平分线,∴AF=DF,故选项A不符合题意;B、∵AF=DF,∴∠DAF=∠ADF,∵AD是△ABC的角平分线,∴∠BAD=∠CAD,∵∠DAF=∠CAD+∠CAF,∠ADF=∠BAD+∠B,∴∠B=∠CAF,∵∠BAF=∠BAC+∠CAF,∠ACF=∠BAC+∠B,∴∠BAF=∠ACF,故选项B不符合题意;C、根据已知不能得出BF⊥AC,故选项C符合题意;D、∵AD是△ABC的角平分线,∴点D到AB和AC的距离相等,:S△ACD=AB:AC,∴S△ABD故选:C.9.(3分)已知a,b,c是△ABC的三边长,且满足a2+c2=2b(a+c﹣b),则此三角形是()A.等边三角形B.等腰三角形C.直角三角形D.无法确定【解答】解:∵a2+c2=2b(a+c﹣b),∴a2+c2+b2+b2﹣2ba﹣2bc=0,∴(a﹣b)2+(b﹣c)2=0,∴a=b=c,∴△ABC是等边三角形,故选:A.10.(3分)在坐标系xOy中,已知点A(3,1)关于x轴、y轴的对称点分别为P、Q.若坐标轴上的点M恰使△MAP、△MAQ均为等腰三角形,则满足条件的点有()A.4个B.5个C.8个D.9个【解答】解:如图,AQ=AM1,AQ=AM5,AQ=AM2,QA=QM4,AM3=QM3,故坐标轴上的点M恰使△MAP、△MAQ均为等腰三角形,则满足条件的点有5个,故选:B.二、填空题(每空2分,共18分)11.(2分)分式的值为0,则x的值是1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.12.(2分)(a﹣2)0=1,则a的取值范围为a≠2.【解答】解:(a﹣2)0=1,∴a﹣2≠0,a≠2,故答案为a≠2.13.(2分)计算32019×()2018=3.【解答】解:原式=(3×)2018×3=3.故答案为:3.14.(2分)若(x+1)(kx﹣2)的展开式中不含有x的一次项,则k的值是2.【解答】解:(x+1)(kx﹣2),=kx2﹣2x+kx﹣2,=kx2+(k﹣2)x﹣2,∵不含有x的一次项,∴k﹣2=0,解得:k=2.故答案为:2.15.(2分)如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为19cm.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19cm.16.(2分)已知m+n=5,mn=2,则m3n﹣2m2n2+mn3的值为34.【解答】解:∵m+n=5,mn=2,∴m3n﹣2m2n2+mn3=mn(m2﹣2mn+n2)=mn[(m+n)2﹣4mn]=2×(52﹣4×2)=2×(25﹣8)=2×17=34,故答案为:34.17.(2分)在△ABC中,AB=AC,AD⊥BC,∠CBE=30°,若以C为圆心,CB长为半径画圆交BE延长线于F,且EF=6,则BF=9.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD,∠ADB=90°,设BD=CD=x,则BC=2x,∴CF=BC=2x,∵∠CBE=30°,∴BE=x,∵EF=6,∴BF=6+x,过C作CH⊥BF于H,∴BF=2BH=2FH,∴BH=3+x,CH=BC=x,∵BH2+CH2=BC2,∴(3+x)2+x2=(2x)2,解得:x=(负值舍去),∴BF=6+x=9,故答案为:9.18.(2分)如图等腰△ABC中,AB=AC,M为其底角平分线的交点,将△BCM沿CM折叠,使B点恰好落在AC边上的点D处,若DA=DM,则∠ABC的度数为72°.【解答】解:∵M为其底角平分线的交点,∴AM平分∠BAC,∵AB=AC,∴∠ABC=∠ACB,设∠A=2x,则∠DAM=x,∠MBC=∠MCB=45°﹣x,∵DA=DM,∴∠DAM=∠DMA,由折叠的性质可得:∠MDC=∠MBC=45°﹣x,则∠ADM=180°﹣∠MDC=135°+x,在△ADM中,∠DAM+∠DMA+∠ADM=180°,即x+x+135°+x=180°,解得:x=18°,则∠A=2x=36°.∴∠ABC=72°,故答案为:72°.19.(2分)在等边△ABC中,M、N、P分别是边AB、BC、CA上的点(不与端点重合),对于任意等边△ABC,下面四个结论中:①存在无数个△MNP是等腰三角形;②存在无数个△MNP是等边三角形;③存在无数个△MNP是等腰直角三角形;④存在一个△MNP在所有△MNP中面积最小.所有正确结论的序号是①②③.【解答】解:如图1中,满足AM=BN=PC,可证△PMN是等边三角形,这样的三角形有无数个.如图2中,当NM=NP,∠MNP=90°时,△MNP是等腰直角三角形,这样的三角形有无数个(见图3).故①②③正确,△PNM的面积不存在最小值.故答案为①②③.三、解答题(21,22题,每小题,4分22-27题,每小题8分28题6分,共52分)20.(8分)分解因式:(1)3ma2﹣3mb2(2)4ax2﹣4ax+a【解答】解:(1)原式=3m(a2﹣b2)=3m(a+b)(a﹣b);(2)原式=a(4x2﹣4x+1)=a(2x﹣1)2.21.(8分)计算:(1)x(1﹣x)+(x﹣2)(x+3)(2)(a+5b)(a﹣5b)﹣(a+2b)2【解答】解:(1)原式=x﹣x2+x2+3x﹣2x﹣6=2x﹣6;(2)原式=a2﹣25b2﹣(a2+4b2+4ab)=a2﹣25b2﹣a2﹣4b2﹣4ab=﹣29b2﹣4ab.22.(5分)先化简,再求值:(5x3+3x2﹣x)÷x+(x﹣1)2﹣7,其中6x2+x=1.【解答】解:原式=5x2+3x﹣1+x2﹣2x+1﹣7=6x2+x﹣7,当6x2+x=1时,原式=1﹣7=﹣6.23.(5分)下面是小康设计的“过直线外一点作这条直线的垂线”的尺规作图过程.已知直线l及直线l外一点P.求作:直线l的垂线,使它经过点P.做法:如图,①以P为圆心,以大于P到直线l的距离的长度为半径画弧,交直线l于A、B两点;②连接PA、PB;③作∠APB的角平分线PQ.直线PQ即为所求.根据小康设计的尺规作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵PA=,PQ平分∠APB,∴PQ⊥l(等腰三角形底边上的高线与顶角平分线互相重合)(填推理的依据)【解答】解:(1)如图所示,直线PQ即为所求.(2)证明:∵PA=PB,PQ平分∠APB,∴PQ⊥l(等腰三角形底边上的高线与顶角平分线互相重合).故答案为:PB,等腰三角形底边上的高线与顶角平分线互相重合.24.(5分)如图,AC和BD相交于点O,且AB∥DC,OA=OB.求证:OC=OD.【解答】证明:∵AO=BO,∴∠A=∠B,∵DC∥AB,∴∠D=∠B,∠C=∠A,∴∠C=∠D,∴CO=DO.25.(5分)阅读:在一次数学活动中,“揭秘”学习小组发现:53×57=302138×32=121684×86=722471×79=5609这组计算蕴含着简算规律:十位数字相同,个位数字和为10的两个两位数相乘,结果末两位的是个位数字的乘积前几位是十位数字与十位数字加一的乘积.小乐同学用所学知识做了如下解释:将相同的十位数字设为a,个位数字为b,d,则•=(10a+b)(10a+d)=100a2+10a(b+d)+bd,∵b+d=10∴原式=100a2+100a+bd=100a(a+1)+bd.(1)请你利用小组发现的规律计算:63×67=4221;(2)小乐同学进一步思考,个位数字相同,十位数字之和为10的两个两位数相乘会不会也有简算规律呢?于是,小乐计算了35×75=2625,83×23=1909,48×68=3264,17×97=1649,但是还是没有发现规律,你能帮助小乐发现规律,并用所学知识解释吗?【解答】解:(1)由规律得,63×67=100×6×(6+1)+3×7=4200+21=4221,故答案为:4221;(2)规律:个位数字相同,十位数字和为10的两个两位数相乘,结果末两位的是个位数字的平方(或乘积),前几位是十位数字的乘积与与个位数字的和.理由:设将相同的个位数字设为m,十位数字分别为p,q,则p+q=10,∴•=(10p+m)(10q+m)=100pq+10pm+10qm+m2=100pq+10m(p+q)+m2=100pq+100m+m2=100(pq+m)+m2,即:个位数字相同,十位数字和为10的两个两位数相乘,结果末两位的是个位数字的平方(或乘积),前几位是十位数字的乘积与与个位数字的和.26.(5分)如图,在四边形ABCD中,对角线BD平分∠ABC,∠A=120°,∠C=60°,AB=17,AD=12.(1)求证:AD=DC;(2)求四边形ABCD的周长.【解答】证明:(1)在BC上取一点E,使BE=AB,连接DE.∵BD平分∠ABC,∴∠ABD=∠CBD.在△ABD和△EBD中,∴△ABD≌△EBD(SAS);∴DE=AD=12,∠BED=∠A,AB=BE=17,∵∠A=120°,∴∠DEC=60°.∵∠C=60°,∴∠DEC=∠C.∴DE=DC,∴AD=DC.(2)∵∠C=60°,DE=DC,∴△DEC为等边三角形∴EC=CD=AD.∵AD=12,∴EC=CD=12,∴四边形ABCD的周长=17+17+12+12+12=70.27.(5分)等腰△ABC中,AB=AC,∠ACB>60°,点D为边AC上一点,满足BD=BC,点E与点B位于直线AC的同侧,△ADE是等边三角形.(1)①请在图1中将图形补充完整;②若点D与点E关于直线AB轴对称,∠ACB=75°;(2)如图2所示,若∠ACB=80°,用等式表示线段BA、BD、BE之间的数量关系,并说明理由.【解答】解:(1)①根据题意,补全图形如图1所示,②当点D与点E关于直线AB轴对称时,∴AB⊥DE,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAC=∠DAE=30°,∵AB=AC,∴∠ACB=(180°﹣∠BAC)=75°,故答案为75°;(2)如图2,在BA上取一点F,使BF=BD,DE与AB的交点记作点H,∵△ADE是等边三角形,∴AD=ED,∠EAD=∠AED=60°,在△ABC中,AB=AC,∠ACB=80°,∴∠ABC=∠ACB=80°,∴∠BAC=180°﹣∠ACB﹣∠ABC=20°,∴∠BAE=∠DAE﹣∠BAC=40°,在△BCD中,BC=BD,∴∠BDC=∠ACB=80°,∴∠DBC=180°﹣∠ACB﹣∠BDC=20°,∴∠ABD=∠ABC﹣∠DBC=60°,∵BF=BD,∴△BDF是等边三角形,∵∠AED=∠ABD=60°,∠AHE=∠BHD,∴∠BDE=∠BAE=40°,∴∠BDF=60°,BD=FD=BF,∴∠ADF=180°﹣∠BDC﹣∠BDF=40°,∵DE=AD,∴△BDE≌△FDA(SAS),∴FA=BE,∴BA=BF+FA=BD+BE.28.(6分)在平面直角坐标系xOy中,我们称横纵坐标都是整数的点为整点,若坐标系内两个整点A(p,q)、B(m,n)(m≤n)满足关于x的多项式x2+px+q能够因式分解为(x+m)(x+n),则称点B是A的分解点.例如A(3,2)、B(1,2)满足x2+3x+2=(x+1)(x+2),所以B是A的分解点.(1)在点A1(5,6)、A2(0,3)、A3(﹣2,0)中,请找出不存在分解点的点:A2;(2)点P、Q在纵轴上(P在Q的上方),点R在横轴上,且点P、Q、R都存在分解点,若△PQR面积为6,请直接写出满足条件的△PQR的个数及每个三角形的顶点坐标;(3)已知点D在第一象限内,D是C的分解点,请探究△OCD是否可能是等腰三角形?若可能请求出所有满足条件的点D的坐标;若不可能,请说明理由.【解答】解:(1)对于A1(3,2),x2+3x+2=(x+1)(x+2),故B1(1,2)是A1的分解点.对于A3(﹣2,0),x2﹣2x=x(x﹣2),故B3(0,﹣2)是A3的分解点.点A2不存在分解点.故答案为A2.(2)∵P,Q在纵轴上,P,Q都存在分解点,∴P,Q的纵坐标只能是0,﹣1,﹣4,﹣16,当R1(1,0)时,∵△PQR的面积为6,∴PQ=12,∵P在Q的上方,∴P1(0,﹣4),Q1(0,﹣16),同法当R2(﹣1,0)时,可得P2(0,﹣4),Q2(0,﹣16),当R3(3,0)时,可得P3(0,0),Q3(0,﹣4),不符合题意;当R4(﹣3,0)时,可得P4(0,0),Q4(0,﹣4),不符合题意;当R5(4,0)时,可得P5(0,﹣1),Q5(0,﹣4),当R6(﹣4,0)时,可得P6(0,﹣1),Q6(0,﹣4),当R7(12,0)时,可得P7(0,0),Q7(0,﹣1),不符合题意;当R8(﹣12,0)时,可得P8(0,﹣1),Q8(0,﹣4),综上所述,△PQR的个数为4.(3)如图,设D(m,n),则m,n是正整数,∵(x+m)(x+n)=x2+(m+n)x+mn且D为C的分解点,∴C(m+n,mn).当m=1时,D(1,n),C(n+1,n),此时OC>OD>CD,不可能构成等腰三角形.当m≠1时,则m+n>m,mn>m,则点C必在直线x=m,y=n相交直线的右上角区域,此时OC>OD,OC>CD,若△OCD为等腰三角形,只可能OD=CD,如图,过C作CN⊥直线y=n,过点D作DM⊥x轴于M.在Rt△ODM和Rt△CDN中,DM=DN=n,若OD=CD,则Rt△ODM≌Rt△CDN(HL),∴DM=CN,即m=mn﹣n,此式子可以化为(m﹣1)(n﹣1)=1,∵m,n为正整数,∴m=2,n=2,即D(2,2),C(4,4),此时O,C,D共线,△OCD不存在,综上所述,△OCD不可能为等腰三角形.。
2019-2020学年新疆乌鲁木齐八十七中八年级下学期期中数学试卷 (解析版)
2019-2020学年八年级第二学期期中数学试卷一、选择题(共8小题)1.下列式子是最简二次根式的是()A.B.C.D.2.下列各式,正确的是()A.B.C.D.3.已知平行四边形ABCD中,对角线AC,BD相交于O,且AD=8,BD=12,AC=6,则△OBC的周长等于()A.13B.17C.20D.264.一棵高为16m的大树被台风刮断,若树在离地面6m处折断,则树顶端落在离树底部()处.A.5m B.7m C.8m D.10m5.如图所示:数轴上点A所表示的数为a,则a的值是()A.+1B.﹣+1C.﹣1D.6.如表是某班体育考试跳绳项目模拟考试时10名同学的测试成绩(单位:个/分钟)成绩(个/分钟)140160169170177180人数111232则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.众数是177B.平均数是170C.中位数是173.5D.方差是1357.下列命题①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果三角形的三个内角的度数比是3:4:5,那么这个三角形是直角三角形;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是()A.①②B.①③C.①④D.②④8.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.2.2米B.2.3米C.2.4米D.2.5米二、填空题(每小题3分,共18分)9.要使式子有意义,a的取值范围是.10.矩形相邻两边长分别为,,则它的周长是,面积是.11.三角形两边分别是6和8,要使这个三角形是直角三角形,则第三条边长是.12.如图,在▱ABCD中,∠ABC的平分线BE交AD于E,∠BCD的平分线交AD于点F,BC=5,AB=3,则EF长.13.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=.14.2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为.三、解答题15.(1)2﹣6+3;(2)(2020﹣)0+|3﹣|﹣.16.已知x=+,y=﹣,求x3y﹣xy3的值.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,已知在四边形ABCD中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,∠ABC=90°.猜想∠A与∠C关系并加以证明.19.如图,四边形ABCD是平行四边形,对角线AC、BD交于点O,过点O画直线EF分别交AD、BC于点E、F.求证:OE=OF.20.如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.21.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 9070 80 95 75 100 90整理数据成绩x(分)60≤x≤7070<x≤8080<x≤9090<x≤100甲小区25a b乙小区3755分析数据统计量平均数中位数众数甲小区85.7587.5c乙小区83.5d80应用数据(1)填空:a=,b=,c=,d=;(2)若甲小区共有800人参与答卷,请估计甲小区成绩大于90分的人数;(3)社区管理员看完统计数据,认为甲小区对新型冠状病毒肺炎防护知识掌握更好,请你写出社区管理员的理由.22.如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.(1)求CD的长:(2)求四边形ABCD的面积.附加题(每题10分,共20分)23.如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离.(容器厚度忽略不计)24.如图所示,已知△ABC中,∠B=90°,AB=16cm,AC=20cm,P、Q是△ABC的边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.(1)则BC=cm;(2)当t为何值时,点P在边AC的垂直平分线上?此时CQ=;(3)当点Q在边CA上运动时,直接写出使△BCQ成为等腰三角形的运动时间.参考答案一.选择题(每小题3分,共24分)1.下列式子是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式进行分析即可.解:A、=2,则不是最简二次根式,故此选项不合题意;B、是最简二次根式,故此选项符合题意;C、==,则不是最简二次根式,故此选项不合题意;D、=,则不是最简二次根式,故此选项不合题意;故选:B.2.下列各式,正确的是()A.B.C.D.【分析】根据同类项、二次根式的乘法和除法的法则分析各个选项.解:A、不是同类二次根式,不能合并,错误;B、根号外的因数相乘,结果应等于9,错误;C、==3,正确;D、=|﹣5|=5,错误.故选:C.3.已知平行四边形ABCD中,对角线AC,BD相交于O,且AD=8,BD=12,AC=6,则△OBC的周长等于()A.13B.17C.20D.26【分析】根据平行四边形的性质可得CB、BO、CO的长,进而可得答案.解:∵四边形ABCD是平行四边形,∴BC=AD=8,AO=CO=AC=3,BO=DO=BD=6,∴△OBC的周长:8+3+6=17,故选:B.4.一棵高为16m的大树被台风刮断,若树在离地面6m处折断,则树顶端落在离树底部()处.A.5m B.7m C.8m D.10m【分析】首先设树顶端落在离树底部x米,根据勾股定理可得62+x2=(16﹣6)2,再解即可.解:设树顶端落在离树底部x米,由题意得:62+x2=(16﹣6)2,解得:x=8.故选:C.5.如图所示:数轴上点A所表示的数为a,则a的值是()A.+1B.﹣+1C.﹣1D.【分析】先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.解:图中的直角三角形的两直角边为1和2,∴斜边长为:=,∴﹣1到A的距离是,那么点A所表示的数为:﹣1.故选:C.6.如表是某班体育考试跳绳项目模拟考试时10名同学的测试成绩(单位:个/分钟)成绩(个/分钟)140160169170177180人数111232则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.众数是177B.平均数是170C.中位数是173.5D.方差是135【分析】根据平均数、方差、中位数和众数的定义分别进行解答,即可求出答案.解:A、这组数据中177出现次数最多,即众数为177,此选项正确;B、这组数据的平均数是:(140+160+169+170×2+177×3+180×2)÷10=170,此选项正确;C、∵共有10个数,∴中位数是第5个和6个数的平均数,∴中位数是(170+177)÷2=173.5;此选项正确;D、方差=[(140﹣170)2+(160﹣170)2+(169﹣170)2+2×(170﹣170)2+3×(177﹣170)2+2×(180﹣170)2]=134.8;此选项错误;故选:D.7.下列命题①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果三角形的三个内角的度数比是3:4:5,那么这个三角形是直角三角形;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是()A.①②B.①③C.①④D.②④【分析】分别利用勾股数的定义、勾股定理以及等腰直角三角形的边的关系分别判断得出即可.解:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数,是真命题;②如果三角形的三个内角的度数比是3:4:5,这个三角形不是直角三角形,原命题是假命题;③如果一个三角形的三边是12、25、21,三角形不是直角三角形,原命题是假命题;④一个等腰直角三角形的三边是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1,是真命题;故选:C.8.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.2.2米B.2.3米C.2.4米D.2.5米【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:A.二、填空题(每小题3分,共18分)9.要使式子有意义,a的取值范围是a≥﹣1且a≠2.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.解:根据题意得,a+1≥0且a﹣2≠0,解得a≥﹣1且a≠2.故答案为:a≥﹣1且a≠2.10.矩形相邻两边长分别为,,则它的周长是6,面积是4.【分析】利用矩形的周长和面积计算公式列式计算即可.解:矩形的周长是2×(+)=2×(+2)=6,矩形的面积是×=4.故答案为:6,4.11.三角形两边分别是6和8,要使这个三角形是直角三角形,则第三条边长是10或2.【分析】根据勾股定理的逆定理分类讨论进行解答即可.解:∵一个三角形的两边分别是6和8,∴可设第三边为x,∵此三角形是直角三角形,∴当x是斜边时,x2=62+82,解得x=10;当8是斜边时,x2+62=82,解得x=2.故答案为:10或2.12.如图,在▱ABCD中,∠ABC的平分线BE交AD于E,∠BCD的平分线交AD于点F,BC=5,AB=3,则EF长1.【分析】根据平行四边形的性质证明DF=CD,AE=AB,进而可得AF和ED的长,然后可得答案.解:∵四边形ABCD是平行四边形,∴AD∥CB,AB=CD=3,AD=BC=5,∴∠DFC=∠FCB,又∵CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC=3,同理可证:AE=AB=3,∵AD=5,∴AF=5﹣3=2,DE=5﹣3=2,∴EF=5﹣2﹣2=1故答案为:1.13.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′= 1.5.【分析】首先根据折叠可得BE=EB′,AB′=AB=3,然后设BE=EB′=x,则EC =4﹣x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中,由勾股定理可得方程x2+22=(4﹣x)2,再解方程即可算出答案.解:根据折叠可得BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,∵∠B=90°,AB=3,BC=4,∴在Rt△ABC中,由勾股定理得,,∴B′C=5﹣3=2,在Rt△B′EC中,由勾股定理得,x2+22=(4﹣x)2,解得x=1.5,故答案为:1.5.14.2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为25.【分析】根据大正方形的面积即可求得c2,利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面积即可求得ab的值,根据(a+b)2=a2+b2+2ab=c2+2ab即可求解.解:∵大正方形的面积是13,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25.故答案是:25.三、解答题15.(1)2﹣6+3;(2)(2020﹣)0+|3﹣|﹣.【分析】(1)首先化简二次根式进而合并得出答案;(2)直接利用二次根式的性质、零指数幂的性质计算得出答案.解:(1)2﹣6+3=4﹣6×+12=4﹣2+12=14;(2)(2020﹣)0+|3﹣|﹣=1+2﹣3﹣2=﹣2.16.已知x=+,y=﹣,求x3y﹣xy3的值.【分析】首先把代数式利用提取公因式法和平方差公式因式分解,进一步代入求得答案即可.解:∵x=+,y=﹣,∴x3y﹣xy3=xy(x+y)(x﹣y)=(+)(﹣)×2×2=4.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBF=180°﹣60°﹣30°=90°,在Rt△ABC中,∴==200,∴A、C两点之间的距离为200km.18.如图,已知在四边形ABCD中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,∠ABC=90°.猜想∠A与∠C关系并加以证明.【分析】连接AC,然后根据勾股定理求出AC的值,然后根据勾股定理的逆定理判断△ADC为Rt△,然后根据四边形的内角和定理即可得到∠A与∠C关系.【解答】证明:猜想∠A与∠C关系为:∠A+∠C=180°.连结AC,∵∠ABC=90°,∴在Rt△ABC中,由勾股定理得:AC==25cm,∵AD2+DC2=625=252=AC2,∴△ADC是直角三角形,且∠D=90°,∵∠DAB+∠B+∠BCD+∠D=180°,∴∠DAB+∠BCD=180°,即∠A+∠C=180°.19.如图,四边形ABCD是平行四边形,对角线AC、BD交于点O,过点O画直线EF分别交AD、BC于点E、F.求证:OE=OF.【分析】由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,继而可利用ASA,判定△AOE≌△COF,继而证得OE=OF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.20.如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.【分析】先作出三角形的高,然后求出高,利用三角形的面积公式进行计算.解:如图,过点A作AD⊥BC交BC于点D,设BD=x,则CD=14﹣x.在Rt△ABD中,AD2=AB2﹣BD2=152﹣x2,在Rt△ACD中,AD2=AC2﹣CD2=132﹣(14﹣x)2,∴152﹣x2=132﹣(14﹣x)2,解得x=9,此时AD2=152﹣92=122,故AD=12,△ABC的面积:.21.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 9070 80 95 75 100 90整理数据成绩x(分)60≤x≤7070<x≤8080<x≤9090<x≤100甲小区25a b乙小区3755分析数据统计量平均数中位数众数甲小区85.7587.5c乙小区83.5d80应用数据(1)填空:a=8,b=5,c=90,d=82.5;(2)若甲小区共有800人参与答卷,请估计甲小区成绩大于90分的人数;(3)社区管理员看完统计数据,认为甲小区对新型冠状病毒肺炎防护知识掌握更好,请你写出社区管理员的理由.【分析】(1)数出甲小区80<x≤90的数据数可求a;甲小区90<x≤100的数据数可求b;根据中位数的意义,将乙小区的抽查的20人成绩排序找出处在中间位置的两个数的平均数即可为中位数,从甲小区成绩中找出出现次数最多的数即为众数;(2)抽查甲小区20人中成绩高于90分的人数有5人,因此甲小区成绩大于90分的人数占抽查人数,求出甲小区成绩大于90分的人数即可;(3)依据表格中平均数、中位数、众数等比较做出判断即可.解:(1)a=8,b=5,甲小区的出现次数最多的是90,因此众数是90,即c=90.中位数是从小到大排列后处在第10、11位两个数的平均数,由乙小区中的数据可得处在第10、11位的两个数的平均数为(80+85)÷2=82.5,因此d=82.5.(2)800×=200(人).答:估计甲小区成绩大于90分的人数是200人.(3)根据(1)中数据,甲小区对新型冠状病毒肺炎防护知识掌握得更好,理由是:甲小区的平均数、中位数、众数都比乙小区的大.故答案为:8,5,90,82.5;甲,甲小区的平均数、中位数、众数都比乙小区的大.22.如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.(1)求CD的长:(2)求四边形ABCD的面积.【分析】(1)过点D作DH⊥AC,根据∠CED=45°可得出△DEH是等腰直角三角形,由勾股定理可得出EH=DH=1,再根据直角三角形的性质可得出DC的长;(2)在Rt△DHC中,根据勾股定理求出HC的长,再由直角三角形的性质得出AB=AE=2,故可得出AC的长,根据S四边形ABCD=S△BAC+S△DAC即可得出结论.解:(1)过点D作DH⊥AC,∵∠CED=45°,∴∠EDH=45°,∴∠HED=∠EDH,∴EH=DH,∵EH2+DH2=DE2,DE=,∴EH2=1,∴EH=DH=1,又∵∠DCE=30°,∠DHC=90°,∴DC=2;(2)∵在Rt△DHC中,DH2+HC2=DC2,∴12+HC2=22,∴HC=,∵∠AEB=∠CED=45°,∠BAC=90°,BE=2,∴AB=AE=2,∴AC=2+1+=3+,∴S四边形ABCD=S△BAC+S△DAC=×2×(3+)+×1×(3+)=.附加题(每题10分,共20分)23.如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离.(容器厚度忽略不计)【分析】将容器侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.解:如图:∵高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,∴A′D=0.5m,BD=1.2m,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===1.3(m).故壁虎捕捉蚊子的最短距离为1.3m.24.如图所示,已知△ABC中,∠B=90°,AB=16cm,AC=20cm,P、Q是△ABC的边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.(1)则BC=12cm;(2)当t为何值时,点P在边AC的垂直平分线上?此时CQ=13cm;(3)当点Q在边CA上运动时,直接写出使△BCQ成为等腰三角形的运动时间.【分析】(1)由勾股定理即可得出结论;(2)可得PC=PA=t,PB=16﹣t,则122+(16﹣t)2=t2,解出t=.可求出CQ;(3)用t分别表示出BQ和CQ,利用等腰三角形的性质可分BQ=BC、CQ=BC和BQ =CQ三种情况,分别得到关于t的方程,可求得t的值.解:(1)∵∠B=90°,AB=16cm,AC=20cm∴BC===12(cm).故答案为:12;(2)∵点P在边AC的垂直平分线上,∴PC=PA=t,PB=16﹣t,在Rt△BPC中,BC2+BP2=CP2,即122+(16﹣t)2=t2解得:t=.此时,点Q在边AC上,CQ=(cm);故答案为:13cm.(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,∴,∴=.∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.。
广东省惠州市龙门县八年级上学期期中考试数学试卷
2019-2020 学年广东省惠州市龙门县八年级上学期期中考试数学试卷解析版一、选择题(本大题共 10 小题, 每小题 3 分, 共 30 分) 1.(3 分)下列各组数中, 能作为一个三角形三边边长的是(A .1, 1, 2B .1, 2, 4C .2, 3, 4) D .2, 3, 5【解答】解:A 、1+1=2, 不满足三边关系, 故错误;B 、1+2<4, 不满足三边关系, 故错误;C 、2+3>4, 满足三边关系, 故正确;D 、2+3=5, 不满足三边关系, 故错误.故选:C.2.(3 分)在如图中, 正确画出 AC 边上高的是( ) A. C. B. D.【解答】解:画出 AC 边上高就是过 B 作 AC 的垂线,故选:C. 3.(3 分)等腰三角形的一个外角是 80°, 则其底角是( ) A. 100° B. 100°或 40° C. 40° D. 80°【解答】解:当 80°的外角在底角处时, 则底角=180°﹣80°=100°, 因此两底角和=200°>180°, 故此种情况不成立.因此只有一种情况:即 80°的外角在顶角处.则底角=80°÷2=40°;故选:C. 4.(3 分)如图, ∠1=120°, ∠E =80°, 则∠A 的大小是( )A. 10°B. 40°C. 30°D. 80°【解答】解:由三角形的外角的性质可知, ∠A=∠1﹣∠E=40°,故选:B.5.(3 分)如图所示, 若△ABE≌△ACF, 且 AB=6, AE=2, 则 BF 的长为()A. 2B. 3C. 5D. 4【解答】解:∵△ABE≌△ACF,∴AF=AE=2,∴BF=AB﹣AF=6﹣2=4,故选:D.6.(3 分)如图所示, ∠A, ∠1, ∠2 的大小关系是()A. ∠A>∠1>∠2B. ∠2>∠1>∠A 【解答】解:∵∠1 是△ACD 的外角, ∴∠1>∠A;C. ∠A>∠2>∠1D. ∠2>∠A>∠1∵∠2 是△CDE 的外角, ∴∠2>∠1,∴∠2>∠1>∠A.故选:B.2019-2020 学年广东省惠州市龙门县八年级上学期期中考试数学试卷解析版一、选择题(本大题共 10 小题, 每小题 3 分, 共 30 分) 1.(3 分)下列各组数中, 能作为一个三角形三边边长的是(A .1, 1, 2B .1, 2, 4C .2, 3, 4) D .2, 3, 5【解答】解:A 、1+1=2, 不满足三边关系, 故错误;B 、1+2<4, 不满足三边关系, 故错误;C 、2+3>4, 满足三边关系, 故正确;D 、2+3=5, 不满足三边关系, 故错误.故选:C.2.(3 分)在如图中, 正确画出 AC 边上高的是( ) A. C. B. D.【解答】解:画出 AC 边上高就是过 B 作 AC 的垂线,故选:C. 3.(3 分)等腰三角形的一个外角是 80°, 则其底角是( ) A. 100° B. 100°或 40° C. 40° D. 80°【解答】解:当 80°的外角在底角处时, 则底角=180°﹣80°=100°, 因此两底角和=200°>180°, 故此种情况不成立.因此只有一种情况:即 80°的外角在顶角处.则底角=80°÷2=40°;故选:C. 4.(3 分)如图, ∠1=120°, ∠E =80°, 则∠A 的大小是( )A. 10°B. 40°C. 30°D. 80°【解答】解:由三角形的外角的性质可知, ∠A=∠1﹣∠E=40°,故选:B.5.(3 分)如图所示, 若△ABE≌△ACF, 且 AB=6, AE=2, 则 BF 的长为()A. 2B. 3C. 5D. 4【解答】解:∵△ABE≌△ACF,∴AF=AE=2,∴BF=AB﹣AF=6﹣2=4,故选:D.6.(3 分)如图所示, ∠A, ∠1, ∠2 的大小关系是()A. ∠A>∠1>∠2B. ∠2>∠1>∠A 【解答】解:∵∠1 是△ACD 的外角, ∴∠1>∠A;C. ∠A>∠2>∠1D. ∠2>∠A>∠1∵∠2 是△CDE 的外角, ∴∠2>∠1,∴∠2>∠1>∠A.故选:B.。
2019-2020学年广东省揭阳市八年级(下)期中数学试卷
2019-2020学年广东省揭阳市八年级(下)期中数学试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)(2020春•揭阳期中)如果a>b,下列各式中不正确的是()A.a﹣3>b﹣3B.>C.﹣2a<﹣2b D.﹣2a>﹣2b 2.(3分)(2014•威海)已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.3.(3分)(2016•碑林区校级模拟)在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是()A.B.C.D.4.(3分)(2020春•揭阳期中)如图,已知点A(1,2)和点B(3,﹣1),把线段AB向右平移2个单位,则点B的坐标变为()A.(﹣1,5)B.(5,﹣1)C.(1,﹣1)D.(﹣1,1)5.(3分)(2020春•揭阳期中)①3>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个B.2个C.3个D.4个6.(3分)(2021•宁波模拟)在下列命题中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形:③有一边上的高也是这边上的中线的三角形是等边三角形:④三个外角都相等的三角形是等边三角形正确的命题有()A.4个B.3个C.2个D.1个7.(3分)(2020春•盱眙县期末)已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.﹣28.(3分)(2019秋•栾城区期末)如图,将直角三角形ABC绕直角顶点C按顺时针方向旋转90°后得到三角形A′B′C,连接AA′,若∠1=25°,则∠B的度数是()A.55°B.65°C.60°D.70°9.(3分)(2020春•揭阳期中)已知实数x,y满足|x﹣6|+=0,则以x,y的值为两边的等腰三角形的周长为()A.27或36B.27C.36D.以上答案都不对10.(3分)(2020春•松北区期末)关于x的不等式(m+1)x>m+1的解集为x<1,那么m 的取值范围是()A.m<﹣1B.m>﹣1C.m>0D.m<0二、填空题:(本大题7小题,每小题4分,共28分)11.(4分)(2020春•揭阳期中)在△ABC中,AB=AC,∠A=44°,则∠B=度.12.(4分)(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.13.(4分)(2020春•揭阳期中)如图,已知∠A=90°,AC=AB=8,CD=4,BD=12.则∠ACD=度.14.(4分)(2020春•揭阳期中)如图,已知一次函数y1=k1x+b1与一次函数y2=k2x+b2的图象相交于点(1,2),则不等式k1x+b1<k2x+b2的解集是.15.(4分)(2019春•渭滨区期末)已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是.16.(4分)(2013•聊城)如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为.17.(4分)(2013•资阳)如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是.三、解答题:(本大题3小题,每小题6分,共18分)18.(6分)(2019秋•北海期末)解不等式+1≥,并把它的解集在数轴上表示出来.19.(6分)(2020春•揭阳期中)如图,已知点A(﹣2,﹣1)、B(﹣5,﹣5)、C(﹣2,﹣3),点P(﹣6,0).(1)将△ABC绕点P逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出点C的对应点C1的坐标为;(2)画出△ABC关于原点成中心对称的图形△A2B2C2,并写出点A的对应点A2的坐标为.20.(6分)(2020秋•中山市期中)如图,在△ABC中,AB=AC,AB的垂直平分线交AB 于M,交AC于N.(1)若∠ABC=70°,求∠MNA的度数.(2)连接NB,若AB=8cm,△NBC的周长是14cm.求BC的长.四、解答题:(本大题3小题,每小题8分,共24分)21.(8分)(2019春•杜尔伯特县期末)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.22.(8分)(2020春•揭阳期中)已知关于x、y的方程组的解满足x≤0,y<0.(1)用含m的代数式分别表示x和y;(2)求m的取值范围;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1?23.(8分)(2008•荆门)将两块全等的含30°角的三角尺如图(1)摆放在一起,它们的较短直角边长为3.(1)将△ECD沿直线l向左平移到图(2)的位置,使E点落在AB上,则CC′=;(2)将△ECD绕点C逆时针旋转到图(3)的位置,使点E落在AB上,则△ECD绕点C旋转的度数=;(3)将△ECD沿直线AC翻折到图(4)的位置,ED′与AB相交于点F,求证:AF=FD′.五、解答题:(本大题2小题,每小题10分,共20分)24.(10分)(2008•鄂州)为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型B型价格(万元/台)a b处理污水量(吨/月)240180(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理洋澜湖的污水量不低于1860吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.25.(10分)(2015•裕华区模拟)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC =α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?2019-2020学年广东省揭阳市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.【解答】解:A、∵a>b,∴由不等式的基本性质1可知,a﹣3>b﹣3,故本选项正确;B、∵a>b,∴由不等式的基本性质2可知,>,故本选项正确;C、∵a>b,∴由不等式的基本性质3可知,﹣2a<﹣2b,故本选项正确;D、∵a>b,∴由不等式的基本性质3可知,﹣2a<﹣2b,故本选项错误.故选:D.2.【解答】解:已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m>3,m>1,故选:A.3.【解答】解:A、不是中心对称图形.故错误;B、是中心对称图形.故正确;C、不是中心对称图形.故错误;D、不是中心对称图形.故错误.故选:B.4.【解答】解:由线段AB向右平移2个单位的平移规律可知,此题规律是(x+2,y),照此规律计算可知点B的坐标变为(5,﹣1).故选:B.5.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共3个,故选:C.6.【解答】解:①有一个外角是120°的等腰三角形是等边三角形,说法正确;②有两个外角相等的等腰三角形是等边三角形,说法错误;③有一边上的高也是这边上的中线的三角形是等边三角形,说法错误;④三个外角都相等的三角形是等边三角形,说法正确,正确的命题有2个,故选:C.7.【解答】解:∵关于x的不等式组有解,∴a<2,∵0<2,1<2,﹣2<2,∴a的取值可能是0、1或﹣2,不可能是2.故选:C.8.【解答】解:∵将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴AC=A'C,∠ACA'=90°,∠BAC=∠B'A'C,∴∠AA'C=∠CAA'=45°,且∠1=25°,∴∠B'A'C=20°,∴∠BAC=20°,∴∠B=90°﹣∠BAC=70°,故选:D.9.【解答】解:∵实数x,y满足|x﹣6|+=0,∴x=6,y=15.∵6、6、15不能组成三角形,∴等腰三角形的三边长分别为6、15、15,∴等腰三角形周长为6+15+15=36.故选:C.10.【解答】解:∵不等式(m+1)x>m+1的解集为x<1,∴m+1<0,即m<﹣1,故选:A.二、填空题:(本大题7小题,每小题4分,共28分)11.【解答】解:如图:∵在△ABC中,∠A=44°,∴∠B+∠C=180°﹣∠A=136°,又∵AB=AC,∴∠B=∠C,∴∠B=68°.故答案为:68.12.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.13.【解答】解:∵∠A=90°,AC=AB=8,∴BC=,∵CD=4,BD=12,∴CD2+BC2=16+128=144=BD2,∴△BCD是直角三角形,∴∠DCB=90°,∵AC=AB,∠A=90°,∴∠ACB=45°,∴∠ACD=45°,故答案为:4514.【解答】解:一次函数y1=k1x+b1与一次函数y2=k2x+b2的图象相交于点(1,2),所以不等式k1x+b1<k2x+b2的解集是x<1.故答案为:x<1.15.【解答】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故答案为4≤m<7.16.【解答】解:如图,∵在等边△ABC中,∠B=60°,AB=6,D是BC的中点,∴AD⊥BD,∠BAD=∠CAD=30°,∴AD=AB cos30°=6×=3.根据旋转的性质知,∠EAC=∠DAB=30°,AD=AE,∴∠DAE=∠EAC+∠CAD=60°,∴△ADE的等边三角形,∴DE=AD=3,即线段DE的长度为3.故答案为:3.17.【解答】解:∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,∴AD垂直平分CE,即C和E关于AD对称,CD=DE=1,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB =BE+CD+DB=BC+BE,∵∠DEA=90°,∴∠DEB=90°,∵∠B=60°,DE=1,∴BE=,BD=,即BC=1+,∴△PEB的周长的最小值是BC+BE=1++=1+,故答案为:1+.三、解答题:(本大题3小题,每小题6分,共18分)18.【解答】解:去分母,得2(1+2x)+6≥3(1+x)去括号得,2+4x+6≥3+3x,再移项、合并同类项得,x≥﹣5.在数轴上表示为:.19.【解答】解:如图,(1)△A1B1C1即为所求;点C1的坐标为(﹣3,4);(2)△A2B2C2即为所求;点A2的坐标为(2,1).故答案为:(﹣3,4),(2,1).20.【解答】(1)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=40°,∵MN是AB的垂直平分线,∴AN=BN,∴∠ABN=∠A=40°,∴∠ANB=100°,∴∠MNA=50°;(2)①∵AN=BN,∴BN+CN=AN+CN=AC,∵AB=AC=8cm,∴BN+CN=8cm,∵△NBC的周长是14cm.∴BC=14﹣8=6cm.四、解答题:(本大题3小题,每小题8分,共24分)21.【解答】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在Rt△ADC与Rt△ADE中,,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.22.【解答】解:(1),①+②得2x=2m﹣6,所以,x=m﹣3;①﹣②得2y=﹣4m﹣8,所以,y=﹣2m﹣4,故含m的代数式分别表示x和y为;(2)∵x≤0,y<0∴,解,得﹣2<m≤3;(3)(2m+1)x<2m+1,∵原不等式的解集是x>1,∴2m+1<0,∴,又∵﹣2<m≤3∴﹣2<m<﹣,∵m为整数,∴m=﹣1.23.【解答】(1)解:CC′=3﹣.理由如下:∵EC=3,∠A=30°,∴AC=3,∴AE=3﹣3,∴CC′=EE′=AE×tan30°=3﹣;(2)解:△ECD绕点C旋转的度数即∠ECE′的度数;∵∠ABC=60°,BC=CE′=3,AB=6,∴△E′BC是等边三角形,∴BC=E′C=E′B=3,∴AE′=E′C=3,∴∠E′AC=∠E′CA,∴∠ECE′=∠BAC=30°;(3)证明:在△AEF和△D′BF中,∵AE=AC﹣EC,D′B=D′C﹣BC,又∵AC=D′C,EC=BC,∴AE=D′B,又∵∠AEF=∠D′BF=180°﹣60°=120°,∠A=∠CD′E=30°,∴△AEF≌△D′BF,∴AF=FD′.五、解答题:(本大题2小题,每小题10分,共20分)24.【解答】解:(1)根据题意得,解得.(2)设购买污水处理设备A型设备x台,B型设备(10﹣x)台,根据题意得,12x+10(10﹣x)≤105,∴x≤2.5,∵x取非负整数,∴x=0,1,2,∴10﹣x=10,9,8,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+180(10﹣x)≥1860,∴x≥1,又∵x≤2.5,∴x为1,2.当x=1时,购买资金为12×1+10×9=102(万元),当x=2时,购买资金为12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.25.【解答】(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC﹣∠ODC=90°,∵∠α=150°,∠AOB=110°,∠COD=60°,∴∠AOD=360°﹣∠α﹣∠AOB﹣∠COD=360°﹣150°﹣110°﹣60°=40°,∴△AOD不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴190°﹣α=α﹣60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°,∴α﹣60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠OAD==120°﹣,∴190°﹣α=120°﹣,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版2019-2020学年八年级期中考试数学试卷A卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 下列各函数中,是反比例函数的是()
D.
A.
B.C.
2 . 已知反比例函数y=的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2,则m 的取值范围是()
A.m<0B.m>0
C.m<D.m>
3 . 如图,函数与的图象交于点A,将直线向上平移3个单位长度后,与y 轴交于点C,与函数的图象交于点B.若A点横坐标为B点横坐标的两倍,则k的值为()
A.2B.8C.3D.4
4 . 在函数,(为常数)的图象上有三点、、,则函数值、、
的大小关系为()
A.B.
C.D.
5 . 下列选项中,不能判定四边形ABCD是平行四边形的是
A.,B.,
C.,D.,
6 . 如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为3,4,H为线段DF的中点,则BH 的长为()
A.5
B.C.D.
7 . 如图,在平行四边形ABCD中,如果∠A+∠C=100°,则∠B的度数是()
A.130°B.80°C.100°D.50°
8 . 计算的结果是()
A.-3B.3C.-5D.5
9 . 关于的叙述,正确的有()
①是无理数;②面积为12的正方形边长是;③;④在数轴上可以找到表示的点A.1个B.2个C.3个D.4个
10 . 学校的书香苑呈三角形形状,三边分别是9,12,15,那么书香苑的面积是()
A.135B.180C.108D.54
二、填空题
11 . 函数的自变量 x 的取值范围是________.
12 . 满足的整数对,共有______对.
13 . 如果平行四边形的一条边长为4cm,这条边上的高为3cm,那么这个平行四边形的面积等于_______ .
14 . 将长方形纸片沿折叠,得到如图所示的图形,若,则__________
度.
15 . 如图,直线y=kx+1与x轴交点的横坐标为2,若将该直线向左平移1个单位,则所得直线与两坐标轴所
围成的三角形面积为________(平方单位)
16 . 若直线y=kx(k>0)与双曲线y=的交点为(x1,y1),(x2,y2),则2x1y2-5x2y1的值为___.
17 . 一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是________
三、解答题
18 . 阅读理解:
反比例函数y=(k >0)第一象限内的图象如图1所示,点P 、R 是双曲线上不同的两点,过点P 、R 分别做PA⊥y 轴于点A ,RC⊥x 轴于点C ,两垂线交点为
A .
(1)问题提出:线段PB :PA 与BR :RC 有怎样的关系?
问题解决:设点PA=n ,PB=m ,则点P 的坐
标为(n ,),点R 的坐标为(m+n ,),
AO=BC=,RC=,BR==
则BR :RC=,
PB :PA= ∴PB:PA=BR :R
B .
问题应用:
(2)利用上面的结论解决问题:
①如图1,如果BR=6,CR=3,AP=4,BP=_____. ②如图2,如果直线PR 的关系式y2=﹣x+3,与x 轴交于点D ,与y 轴交
于点E ,若ED=3PR ,求出k 的值.
19 . 如图,直线l1,l2交于点A ,直线l2与x 轴、y 轴分别交于点B (﹣3,0)、D (0,3),直线l1所对应的函数关系式为y=﹣2x ﹣2.
(1)求点C 的坐标及直线l2所对应的函数关系式;
(2)求△ABC 的面积;
20 . 已知反比例函数y =
(k≠0)的图象经过点B(3,2),点B 与点C 关于原点O 对称,BA⊥x 轴于点A ,CD⊥x
轴于点D
(1)求这个反比函数的表达式;
(2)求△ACD的面积.
21 . 计算:
(1)(2x﹣y)2﹣(x+y)(2x﹣y)
(2)÷(﹣a﹣2).
22 . 经过实验获得两个变量x(x> 0),y(y>0)的一组对应值如下表.
x1234567
y7 3.5 2.33 1.75 1.4 1.171
(1)在网格中建立平面直角坐标系,画出相应的函数图象,求出这个函数表达式;
(2)结合函数图象解决问题:(结果保留一位小数)
①的值约为多少?
②点A坐标为(6,0),点B在函数图象上,OA=OB,则点B的横坐标约是多少?
23 . 在平行四边形ABCD中,连接BD,过点B作BE⊥BD于点B交DA的延长线于点E,过点B作BG⊥CD于点G.
(1)如图1,若∠C=60°,∠BDC=75°,BD=6,求AE的长度;
(2)如图2,点F为AB边上一点,连接EF,过点F作FH⊥FE于点F交GB的延长线于点H,在△ABE的异侧,以BE为斜边作Rt△BEQ,其中∠Q=90°,若∠QEB=∠BDC,EF=FH,求证:BF+BH=
BQ.
24 . 如图是北京春季某一天的气温随时间变化的图象,仔细观察图象并回答:
()这一天时的气温是__________,时的气温是__________.
()这一天最高气温是__________,最低气温是__________,温度差是__________.
25 . 如图,已知圆上两点A,B,用直尺和圆规求作以AB为一边的圆的内接等腰三角形,这样的三角形能作几
个?
26 . 如图1,△ABC是边长为6的等边三角形,点D、E分别是边AB、AC的中点,将△ADE绕点A旋转,BD与
CE所在的直线交于点F.
(1)如图(2)所示,将△ADE绕点A逆时针旋转,且旋转角小于60°,∠CFB的度数是多少?说明你的理由?
(2)当△ADE绕点A旋转时,若△BCF为直角三角形,线段BF的长为______________(请直接写出答案)
27 . 已知:如图,在半径为2的扇形中,°,点C在半径OB上,AC的垂直平分线交OA 于点D,交弧AB于点E,联结.
(1)若C是半径OB中点,求的正弦值;
(2)若E是弧AB的中点,求证:;
(3)联结CE,当△DCE是以CD为腰的等腰三角形时,求CD的长.
28 . 在平面直角坐标系xOy中,一次函数的图像与反比例函数的图像相交于A,B两点,与x轴相交于点C,连接OB,且的面积为.
(1)求反比例函数的表达式;
(2)将直线AB向下平移,若平移后的直线与反比例函数的图像只有一个交点,试说明直线AB向下平移了几个单位长度?
29 . 已知:如图,,,,在同一直线上,且,,.求证:四边形
是平行四边形.
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
二、填空题
1、
2、
3、
4、
5、
6、
7、
三、解答题1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
11、
12、
第11 页共11 页。