月考试题
黑龙江省哈尔滨市第四十七中学2024-2025学年七年级上学期9月月考数学试题
黑龙江省哈尔滨市第四十七中学2024-2025学年七年级上学期9月月考数学试题一、单选题1.下列方程是一元一次方程的是( )A .352x y -=B .111333x x =-C .2290x x +=D .772x x-= 2.已知ax ay =,下列等式变形不一定成立的是( )A .44ax ay +=+B .2211ax ay b b =++C .33ax ay -=-D .x y =3.已知关于x 的方程235x a +=的解是2x =-,则a 的值为( )A .3-B .3C .13D .13- 4.解方程1123x x --=时,去分母正确的是( ) A .332(1)x x -=- B .3621x x -=-C .362(1)x x -=-D .3321x x -=- 5.某茶具生产车间共有22名工人,每人每天可生产30个茶壶或者100只茶杯,一个茶壶与4只茶杯配套.为使每天生产的茶壶和茶杯刚好配套,需要有_________名工人生产茶壶( )A .8B .14C .10D .126.近年来,网购的蓬勃发展方便了人们的生活.某快递分派站现有包裹若干件需快递员派送,若每个快递员派送150件,还剩60件;若每个快递员派送170件,还差20件,那么该分派站现有派送员( )A .3人B .4人C .5人D .6人7.在一次数学活动中,小明在某月的日历上圈出了相邻的三个数a ,b ,c ,求出它们的和为33,则这三个数在日历中的排布不可能的是( )A .B .C .D .8.设,x y 为任意两个有理数,规定2x y xy x =-◎,若()1215m +=◎,则下列正确的是( )A .5m =B .103m =C .133m =D .4m =9.一益智游戏分二阶段进行,其中第二阶段共有25题,答对一题得3分,答错一题扣2分,不作答得0分.若小明已在第一阶段得50分,且第二阶段答对了20题,则下列哪一个分数可能是小明在此益智游戏中所得的总分( )A .103分B .106分C .109分D .112分二、填空题10.A 、B 两地相距1000km ,一列快车以200km /h 的速度从A 地匀速驶往B 地,到达B 地后立刻原路原速返回A 地,一列慢车以75km /h 的速度从B 地匀速驶往A 地.两车同时出发,截止到它们都到达终点时,两车恰好相距200km 的次数是( )次A .5B .4C .3D .211.已知1320m x --=是关于x 的一元一次方程,则m 的值是.12.若关于x 的方程231x -=与1x k +=的解相同,k =.13.轮船往返A B 、两港之间,逆水航行需要3小时,顺水航行需要2小时,水流速度为3千米/时,则船在静水中的速度是千米/时.14.一件工程,甲工程队独做需要16天完成,乙工程队需要24天完成,若甲工程队先做了6天,余下的由甲乙工程队合做,还需要天.15.王芳出生时父亲33岁,现在父亲的年龄是王芳年龄的4倍,王芳现在的年龄是岁. 16.有一列数,按规律排成一列24816--L 、、、,其中某三个相邻的数的和是3072,则这三个数中最小的是.17.我们定义:如果两个有理数的和等于这两个有理数的积,那么这两个有理数就叫做“和积等数对”,即:如果a b a b +=⨯,那么a 与b 就叫做“和积等数对”,记为(),a b .例如:2222+=⨯,则称数对()2,2是“和积等数对”.根据上述材料,如果(),5x 是“和积等数对”,则x =.18.有理数都可以表示为q p(0p ≠且p q ,不可约分)的形式,无限循环小数也可以写成这种形式,以0.3为例:设0.3x =&,即0.3333x =L ,则3.333310x =L ,则有310x x +=,可得13x =,即10.33=&,则0.47=&&. 19.对于三个数,,a b c ,用{},,M a b c 表示这三个数的平均数,用{}min ,,a b c 表示这三个数中最小的数.例如:{}{}12341,2,3,min 1,2,3133M -++-==-=-,如果{}{}3,21,1min 3,8,29M x x x x +-=-++,那么x =.20.已知:商品利润率100%=⨯商品利润商品成本价,某商人经营甲、乙两种商品,每件甲种商品的利润率为80%,每件乙种商品的利润率为50%,当售出的乙种商品比售出的甲种商品的件数多20%时,这个商人得到的总利润率为60%,甲、乙两种商品进价的比值是.三、解答题21.解方程:(1)()4319x x --=-; (2)2131364x x x -+-=-. 22.m 为何值时,关于x 的方程321x m x -=+的解是421x =-的解的2倍.23.已知3x =是关于x 的方程()131234m x x ⎡⎤-⎛⎫++=⎢⎥ ⎪⎝⎭⎣⎦的解,n 满足关系式230n m +=,求m n +的值.24.秋风送爽、金秋九月,为了让学生更好增强身体素质,我校计划组织全校秋季运动会往返时要坐车.小明发现:七年级若租用45座的客车若干辆,则有20人没有座位;若租用60座的客车,则可以少租7辆,且有一辆空了10个座位,求此次秋游的人数.25.如果有两个一元一次方程的解相差1,则称解较大的方程为另一个方程的“漂移方程”.例如:方程240x -=是方程10x -=的“漂移方程”.(1)判断方程436x x +=是否为方程210x -=的“漂移方程”,并说明理由(2)若关于x 的方程()6312m x m +--=是关于x 的方程()()24133x x --=-+的“漂移方程”,求m 的值.26.红光水果加工厂收购了29吨雪梨.经市场预测,若直接销售,每吨可获利0.05万元;若经过加工包装后销售,每吨可获利0.4万元;若制成雪梨罐头出售,每吨可获利0.6万元.该工厂的加工能力是:每天可包装5吨或制成罐头3吨,受人员限制,同一天内两种加工方式不能同时进行,受气温限制,这些雪梨必须在7天内全部销售或加工完毕,为此,工厂研制了二种方案:方案一:尽可能多的做成罐头,余下的直接销售;方案二:部分制成罐头,其余进行加工包装,并恰好7天完成.(1)请比较说明哪种方案可使工厂所获利润最多?(2)水果加工厂欲将(1)问中获利最多方案制成的所有雪梨罐头由加工厂运到市场售卖,已知有甲、乙两家运输公司都可以承担此次运输,要收取的费用如下表:经水果加工厂计算发现乙运输公司总费用比甲运输公司总费用多243元,求水果加工厂到市场的距离.27.某商场准备订购一批衬衫,现有甲、乙两个供应商,均标价每件80元.为了促销,甲说“凡来我处进货一律九折.”乙说:“如果订货超出100件,则超出的部分打八折.”x ,请用含x的整式表示在甲供应商所需支付的钱数(1)设该商场准备订购x件服衬衫(100)为(_______)元,在乙供应商所需支付的钱数为(_______)元(结果化为最简形式).(2)当x的值为多少时,去两个供应商处的进货价钱一样多?(3)已知该商场第一次从甲供应商处购进了125件补衫,每件加价50%进行零售,迅速销售一空.于是,该商场第二次从乙供应商处购进衬衫,购进的数量是第一次从甲供应商购进数量的4.8倍,并比第一次销售价格高12元进行销售,但市场趋于饱和,所以在销售剩余五分之三时开始打折销售,且第二次全部售出后获得的总利润比第一次获得的总利润多1580元,求第二次销售剩余五分之三时需打几折销售.。
2024-2025学年湖北省高一年级9月月考数学试题(含答案)
2024-2025学年湖北省高一年级9月月考数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.命题“∃x∈R,x2+x−1=0”的否定为( )A. ∃x∉R,x2+x−1=0B. ∃x∈R,x2+x−1≠0C. ∀x∈R,x2+x−1≠0D. ∀x∉R,x2+x−1=02.已知集合A={x|−3≤x≤1},B={x||x|≤2},则A∩B=( )A. {x|−2≤x≤1}B. {x|0≤x≤1}C. {x|−3≤x≤2}D. {x|1≤x≤2}3.下列命题为真命题的是( )A. ∀a>b>0,当m>0时,a+mb+m >abB. 集合A={x|y=x2+1}与集合B={y|y=x2+1}是相同的集合.C. 若b<a<0,m<0,则ma >mbD. 所有的素数都是奇数4.已知−1<a<5,−3<b<1,则以下错误的是( )A. −15<ab<5B. −4<a+b<6C. −2<a−b<8D. −53<ab<55.甲、乙、丙、丁四位同学在玩一个猜数字游戏,甲、乙、丙共同写出三个集合:A={x|0<Δx<2},B={x|−3≤x≤5},C={x|0<x<23},然后他们三人各用一句话来正确描述“Δ”表示的数字,并让丁同学猜出该数字,以下是甲、乙、丙三位同学的描述,甲:此数为小于5的正整数;乙:x∈B是x∈A的必要不充分条件;丙:x∈C是x∈A的充分不必要条件.则“Δ”表示的数字是( )A. 3或4B. 2或3C. 1或2D. 1或36.已知不等式ax2+bx+c<0的解集为{x|x<−1或x>3},则下列结论正确的是( )A. a>0B. c<0C. a+b+c<0D. cx2−bx+a<0的解集为{x|−13<x<1}7.已知m<8,则m+4m−8的最大值为( )A. 4B. 6C. 8D. 108.向50名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成;赞成B的比赞成A的多3人,其余的不赞成;另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1人.则下列说法错误的是( )A. 赞成A的不赞成B的有9人B. 赞成B的不赞成A的有11人C. 对A,B都赞成的有21人D. 对A,B都不赞成的有8人二、多选题:本题共3小题,共18分。
绵阳南山中学2024-2025学年高三上学期9月月考地理试题(含答案)
绵阳南山中学2024-2025学年高三9月月考地理试题注意事项:1.答题前,考生务必将自己的学校、班级、姓名用0.5毫米黑色签字笔填写清楚,同时用2B铅笔将考号准确填涂在“考号”栏目内。
2.选择题使用2B铅笔填涂在答题卡对应题目标号的位置上,如需改动,用橡皮擦擦干净后再选涂其它答案;非选择题用0.5毫米黑色签字笔书写在答题卡的对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
第Ⅰ卷(选择题,每题3分,共48分)近年来,我国多地积极实施“小田变大田”土地综合整治工作,将“一户多块地”改造为“一户一块地”,并通过土地流转,促进土地向种粮大户集中。
完成1-2小题。
1.“小田变大田”土地整治的主要原因是()A.耕地流转费用上涨B.劳动力成本上升C.饮食消费结构升级D.耕地分布不平衡2.该项土地整治可以()A.增加农业经营主体数量B.提高农业生产多样化水平C.缓解耕地非粮化的倾向D.减少农村劳动力流出数量服务业碳强度即服务业单位国内生产总值的二氧化碳排放量,它是衡量区域服务业减排绩效的重要指标。
下图为四省市服务业碳强度变化图。
完成3-4小题。
3.关于四省市服务业碳强度变化的描述,正确的是()A.2005-2019年河南持续上升B.2005-2019年浙江持续下降C.2005-2012年贵州增幅最大D.2012-2019年上海降幅最大4.上海降低服务业碳强度,可()①利用清洁能源,改善能源消费结构②加强城市绿化,扩大绿地面积③加快金融业发展,优化服务业结构④外迁服务业,使其向郊区扩散A.①②B.③④C.①③D.②④某月16日夜间,我国沿海某地开始出现大雾天气。
本次大雾的形成主要源于海洋上的一股冷气流输送。
通常情况下,日出之后大雾会逐渐减弱,而17日日出之后,该地大雾天气加重。
下图示意该地此月份16日17时—17日5时的天气状况。
据此完成5-7小题。
5.据图推测,陆地大致位于海洋的()A.偏西侧B.偏东侧C.偏南侧D.偏北侧6.16日20时—17日5时,该地所处的气压场的特点是()A.南高北低,梯度大B.东高西低,梯度小C.北高南低,梯度大D.西高东低,梯度小7.17日日出之后,陆地大雾天气加重,可能是因为()A.空气对流加强B.海风输送水汽增加C.地表温度上升D.海面蒸发强度变小2024年6月9-15日,形成于西北的气团持续向东移动,并受强大稳定的大陆暖高压脊控制,以冀、鲁、豫为中心的高温地区迅速发展并波及京、津等地。
2024届湖南省长沙雅礼中学高三下学期月考(七)语文试题及答案
雅礼中学2024届高三月考试卷(七)语文注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。
乡土文学内涵丰富多彩,既可书写乡土历史,也可关注乡村现实,或写实,或象征,或抒情。
但无论如何,乡土小说在未来要有所突破,更具审美价值,能对中国乡村历史、现实与未来前景作出更具梯度与广度的思考,须摆脱传统叙事范式的限度,“接通”乡村现实的巨变,在多方面进行更新。
一是更新对乡土文明的价值认知。
也就是说,充分尊重乡村的本体地位与独立价值,重构乡土文明的正向价值。
长期以来,由于对现代性的某种迷思,乡土文明通常被预设、框定为传统、落后的文化形态,与现代化构成一种悖论与张力,总是遭到无情的批判与碾压,中国百年来的乡土文学基本上是在此方向上惯性地书写。
事实上,中华文明本质上是一种农耕文明,而乡村则是农耕文明的实体载体与存在空间。
可以说,乡村文化不仅是建构中华民族心理认同感的重要精神源泉,还滋育着中华文明的根脉。
“乡村文明是中华民族文明史的主体,村庄是这种文明的载体,耕读文明是我们的软实力。
”因此,悠久、灿烂的农耕文明支撑了古代中国的生存与繁荣,也为当代中国积淀了文化基因与根脉。
乡土文明有其独立存在的价值,并非仅仅是评判现代性的参照坐标,亦不是城市文明的附庸,它同样有着现代文明的价值指向。
因此现代化并非是完全要抛弃传统,现代化也可以说是植根于传统的一种转型与生长,与传统一脉相承。
未来的乡土小说不必再视乡村为一种话语批判的武器,实有必要以平视的姿态去看待农耕文化中那些悠远的传统元素,通过对乡村固有的风俗、风情、风景的展示,建构乡村自身之美,从而彰显乡村文化的丰盈,赋予乡土以中华民族的文化记忆功能。
第一次月考(试题)部编版语文六年级下册
2022——2023学年度第二学期阶段性复习第一次月考一、积累与运用。
(共39分)1.读句子,看拼音,写词语。
(10分)(1)李丽在zhǔ zhōu( )时,忘记了jiǎo bàn( ),结果饭的颜色成hè sè( )的了。
她用tāng chí( )舀了一勺尝了尝,简直难以tūn yàn( )。
(2)鲁滨逊的船遭到风暴的qīn xí( ),失去kòng zhì( )并qīng fù( ),他只身流落荒岛,生活qī liáng( ),但他没有kǒng jù( ),而是理性面对。
2.精挑细选。
(7分)(1)下列对句子的分析不恰当的一项是( )。
(2分)A.晚饭桌边,靠着妈妈斜立着的八儿,肚子已成了一面小鼓了。
(运用比喻的修辞手法写出了八儿吃得多,吃得尽兴)B.世界上还有几个剧种是戴着面具演出的呢?(运用问句写出了藏戏的独特之处)C.这不是粥,而是小型的农业产品展览会。
(运用夸张的修辞手法写出了腊八粥的食材多样)D.“噗……”锅内又叹了声气。
(运用拟人的修辞手法让粥具有了生命力,衬托出粥对八儿的吸引力大)(2)下列诗句与“不知秋思落谁家”,表达的情感相同的一项是( )。
(2分)A.待到重阳日,还来就菊花。
B.月落乌啼霜满天,江枫渔火对愁眠。
C.乡书何处达,归雁洛阳边。
D.盈盈一水间,脉脉不得语。
(3)依次填入下面句子中的词语,最恰当的一项是( )。
(3分) 阅读了生命的厚度,了灵魂海拔的高度,了幸福人生的广度。
A.增加提升扩展B.增加扩展提升C.提升增加扩展D.扩展增加提升3.根据积累的知识填空。
(11分)(1)“,冷露无声湿桂花。
”这两句诗描写的景物,给人一种冷清的感觉。
诗句不带一个“月”字,我们却可以从“”二字中看出月色的空明皎洁。
与李白的“,”两句诗有异曲同工之妙。
(2)《腊八粥》中“住方家大院的八儿,今天喜得快要发疯了”一句,运用了的修辞手法,将八儿盼粥时的心情淋漓尽致的表现出来。
浙江省2024-2025学年七年级上学期第一次月考语文试题(含答案)
浙江省2024-2025学年七年级上学期第一次月考语文试题(满分120分,考试用时120分钟)学校举行“亲近自然放飞梦想”研学活动,请你参与以下活动。
活动一:宣传,解读“自然”(20分)写在栏前的话亲近自然,感动于大自然,一草一木,一砖一石,生生不息,都浸染着人物的喜怒哀乐。
让我们远离喧嚣的人群,到大自然中去!千千世界丰富而深沉。
走进温晴的冬天,我们感受济南人心中有了着(A.zhuó B.zháo)落的幸福;漫步秋天的北海,我们感动于史铁生在那片làn 漫的菊花中领悟生命的真谛;畅游百草乐园,我们领略叫天子(云雀)从草间直cuàn 云霄的身影;观察雨中的荷叶红莲,我们深感母爱的细腻伟大……凡此种种,都会让你由衷地感kǎi生命之美好。
1.(3分)根据拼音写出相应的汉字。
làn 漫直cuàn 云霄感kǎi2.(1分)给加点字选择正确的读音。
( )(填序号)着A.zhuó B.zháo3.(2分)结合语境,请给画横线的词语选择正确的词性。
()(1)世界(2)感受(3)中(4)畅游A.名词动词动词名词B.动词名词名词动词C.名词名词动词动词D.名词动词名词动词4.(2分)请结合表格内容推测“草”字的造字法。
造字符概念示例象形直接用来表示具体实物的造字法。
指事用象征性的符号或图形上加上指示性符号来表示意义的造字法。
会意把两个或两个以上的字按意义合起来表示一个新的意义的造字法。
形声由形旁和声旁拼合而成的造字法。
5.绘画社开展了“把想象‘袋’给你——古诗手绘帆布袋”活动,请根据参考,完成设计卡。
(4分)备选古诗A.曹操《观沧海》B.李白《闻王昌龄左迁龙标遥有此寄》C.王湾《次北固山下》D.马致远《天净沙·秋思》帆布袋设计卡背面诗句:“夜阑卧听风吹雨,铁马冰河入梦来”。
正面图画:夜将尽,诗人躺在床上听着窗外的风雨声,恍惚中梦见披着铁甲的战马,跨过冰封的河流,正驰骋疆场。
2023-2024学年吉林省吉林市吉林高一上册第一次月考数学试题(含解析)
2023-2024学年吉林省吉林市吉林高一上册第一次月考数学试题一、单选题1.下列说法正确的是()A .0∈∅B .πQ∈C .∅⊆∅D .A ⋃∅=∅【正确答案】C【分析】根据元素与集合、集合与集合之间的关系,以及空集的定义,逐项分析判断即可.【详解】对于A :0∉∅,选项A 错误;对于B :π是无理数,πQ ∉,选项B 错误;对于C :∅是它本身的子集,即∅⊆∅,选项C 正确;对于D :仅当A 为空集时,A ⋃∅=∅成立,否则不成立,选项D 错误.故选:C .2.设集合{|03}A x x =<<,1{|4}2B x x =≤≤,则A B = ()A .1{|0}2x x <≤B .1{|3}2x x ≤<C .{|34}x x <≤D .{|04}x x <≤【正确答案】B【分析】利用交集定义直接求解.【详解】因为集合{|03}A x x =<<,1{|4}2B x x =≤≤,则1{|3}2A B x x ⋂=≤<.故选:B .3.已知{}{}1,21,2,3,4,5A ⊆⊆,则满足条件的集合A 的个数为()A .5B .6C .7D .8【正确答案】D【分析】由条件分析集合A 的元素的特征,确定满足条件的结合A 即可.【详解】因为{}{}1,21,2,3,4,5A ⊆⊆,所以{}1,2A =或{}1,2,3或{}1,2,4或{}1,2,5或{}1,2,3,4或{}1,2,3,5或{}1,2,4,5或{}1,2,3,4,5,即满足条件的集合A 的个数为8,故选:D .4.设x ∈R ,则“01x <<”成立是“1x <”成立的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【正确答案】A【分析】利用充分条件和必要条件的定义判断即可.【详解】由01x <<成立可推出1x <成立,所以“01x <<”成立是“1x <”成立充分条件当0x =时,1x <,但{}01x x x ∉<<,即由1x <成立不能推出01x <<成立,所以“01x <<”成立不是“1x <”成立必要条件所以01x <<成立是1x <成立的充分不必要条件,故选:A .5.已知a b >,则下列不等关系中一定成立的是()A .2ab b <B .22a b >C .11a b<D .33a b >【正确答案】D【分析】举反例可判断ABC ,利用函数3y x =在R 上单调递增,可判断D .【详解】对于A 选项,取2a =,1b =,满足a b >,但是221ab b =>=,故A 错误,对于BC 选项,取1a =,2b =-,满足a b >,但是2214a b =<=,11112a b =>=-,故BC 错误,对于D 选项,因为函数3y x =在R 上单调递增,所以由a b >可得33a b >,故D 正确,故选:D .6.若不等式组232x a x a ⎧>⎨<-⎩有解,则实数a 的取值范围为()A .12a <<B .1a <或2a >C .12a ≤≤D .1a ≤或2a ≥【正确答案】A【分析】由题意可知232a a <-,从而求出a 的取值范围即可.【详解】 不等式组232x a x a ⎧>⎨<-⎩有解,232a a ∴<-,解得12a <<,即实数a 的取值范围为(1,2).故选:A .7.已知正数,x y 满足1x y +=,则14x y+的最小值为()A .5B .143C .92D .9【正确答案】D【分析】由已知利用乘1法,结合基本不等式即可求解.【详解】因为正数,x y 满足1x y +=,则14144()()559y x x y x y x y x y +=++=++≥+=,当且仅当4y x x y =,即13x =,23y =时取等号,故选:D .8.已知命题236:1,1x x p x a x ++∃>-<+,若命题p 是假命题,则实数a 的取值范围为()A .5a >B .6a >C .5a ≤D .6a ≤【正确答案】C【分析】由题意可知236:1,1x x p x a x ++⌝∀>-≥+为真命题,问题转化为只需2min 36()1x x a x ++≤+,然后利用基本不等式求出最小值,进而可以求解.【详解】若命题p 是假命题,则236:1,1x x p x a x ++⌝∀>-≥+为真命题,即2361x x a x ++≤+在(1,)∈-+∞x 上恒成立,只需2min 36()1x x a x ++≤+,又2236(1)1441115111x x x x x x x x ++++++==+++≥=+++,当且仅当411x x +=+,即1x =时取得最小值为5,所以5a ≤,故选:C .二、多选题9.已知集合{}{}1,4,,1,2,3A a B ==,若{}1,2,3,4A B = ,则a 的取值可以是()A .2B .3C .4D .5【正确答案】AB【分析】根据并集的结果可得{}1,4,a {}1,2,3,4,即可得到a 的取值;【详解】解:因为{}1,2,3,4A B = ,所以{}1,4,a {}1,2,3,4,所以2a =或3a =;故选:AB10.若a ,b ,c ∈R ,则下列命题正确的是()A .若0ab ≠且a b <,则11a b>B .若01a <<,则2a a<C .若0a b >>且0c >,则b c ba c a+>+D .()221222a b a b ++≥--【正确答案】BCD【分析】由不等式的性质逐一判断即可.【详解】解:对于A ,当0a b <<时,结论不成立,故A 错误;对于B ,2a a <等价于()10a a -<,又01a <<,故成立,故B 正确;对于C ,因为0a b >>且0c >,所以b c ba c a+>+等价于ab ac ab bc +>+,即()0a b c ->,成立,故C 正确;对于D ,()221222a b a b ++≥--等价于()()22120a b -++≥,成立,故D 正确.故选:BCD.11.已知关于x 的不等式20ax bx c ++≥的解集为{3x x ≤-或}4x ≥,则下列说法正确的是()A .0a >B .不等式0bx c +>的解集为{}4x x <-C .不等式20cx bx a -+<的解集为14x x ⎧<-⎨⎩或13x ⎫>⎬⎭D .0a b c ++>【正确答案】AC【分析】由题知二次函数2y ax bx c =++的开口方向向上且3434bac a⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,再依次分析各选项即可.【详解】解:关于x 的不等式20ax bx c ++≥的解集为][(),34,-∞-⋃+∞,所以二次函数2y ax bx c =++的开口方向向上,即0a >,故A 正确;方程20ax bx c ++=的两根为3-、4,由韦达定理得3434bac a⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,解得12b a c a =-⎧⎨=-⎩.对于B ,0120bx c ax a +>⇔-->,由于0a >,所以12x <-,所以不等式0bx c +>的解集为{}12x x <-,故B 不正确;对于C ,由B 的分析过程可知12b ac a=-⎧⎨=-⎩所以220120cx bx a ax ax a -+<⇔-++<2112104x x x ⇔-->⇔<-或13x >,所以不等式20cx bx a -+<的解集为14x x ⎧<-⎨⎩或13x ⎫>⎬⎭,故C 正确;对于D ,12120a b c a a a a ++=--=-<,故D 不正确.故选:AC .12.[]x 表示不超过x 的最大整数,则满足不等式[][]25140x x --≤的x 的值可以为()A . 2.5-B .3C .7.5D .8【正确答案】BC【分析】由一元二次不等式得[]27x -≤≤【详解】解:因为[][][]()[]()2514720x x x x --=-+≤,所以[]27x -≤≤,所以28x -≤<.所以x 的值可以为[)2,8-内的任何实数.故选:BC三、填空题13.不等式210-+≥x kx 的解集为R ,则实数k 的取值集合为__.【正确答案】[]22-,【分析】根据二次不等式的解法即得.【详解】因为不等式210-+≥x kx 的解集为R ,所以240k ∆=-≤,所以22k -≤≤,即实数k 的取值集合为[]22-,.故答案为.[]22-,14.已知102x <<,函数(12)y x x =-的最大值是__.【正确答案】18##0.125【分析】由基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭,得()221212(12)24x x x x +-⎡⎤-≤=⎢⎥⎣⎦,由此即可求出函数(12)y x x =-的最大值.【详解】 102x <<,∴()()()2212111122122228x x x x x x +-⎡⎤-=⋅-≤⋅=⎢⎥⎣⎦,当且仅当212x x =-时,即14x =时等号成立,因此,函数(12)y x x =-的最大值为18.故答案为:18.15.若实数x ,y 满足1201x y x y <+<⎧⎨<-<⎩,则3x y +的取值范围为__.【正确答案】(2,5)【分析】将3x y +表示成关于()x y +和()x y -的表达式进行求解即可.【详解】由不等式的性质求解即可.解:32()()+=++-x y x y x y ,因为实数x ,y 满足1201x y x y <+<⎧⎨<-<⎩,所以()()225x y x y <++-<,即3x y +的取值范围为(2,5).故(2,5).四、双空题16.《几何原本》中的几何代数法(用几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一方法,很多代数公理、定理都能够通过图形实现证明,并称之为“无字证明”.设0a >,0b >,称2aba b+为a ,b 的调和平均数.如图,C 为线段AB 上的点,且AC a =,CB b =,O 为AB 中点,以AB 为直径作半圆.过点C 作AB 的垂线,交半圆于D ,连结OD ,AD ,BD .过点C 作OD 的垂线,垂足为E .则图中线段OD 的长度是a ,b 的算术平均数2a b+,线段CD 的长度是a ,b__的长度是a ,b 的调和平均数2aba b+,该图形可以完美证明三者的大小关系为__.【正确答案】DE22ab a ba b +≤≤+【分析】根据圆的性质、勾股定理、三角形三边大小关系以及基本不等式的性质判断即可.【详解】由题意得:2a bOD +=,CD =,由于CD OC ⊥,CE OD ⊥,所以ΔΔOCD CED ∽,则OD CDCD ED=a bED +=,解得2abED a b=+,利用直角三角形的边的关系,所以OD CD DE >>.当O 和C 重合时,OD CD DE ==,所以22ab a ba b +≤≤+.故DE;22ab a ba b +≤≤+五、解答题17.已知集合{}2,1,0,1,2A =--,{}0,1B =,{}1,2C =.(1)求B C ⋃;(2)求()A B C ð.【正确答案】(1){0,1,2}(2){2,1,0,2}--【分析】(1)利用并集的概念即可求解;(2)利用交集及补集的运算即可求解.【详解】(1){}0,1B = ,{}1,2C =,{0,1,2}B C ∴= (2)∵{}0,1B =,{}1,2C =,∴{1}B C = ,又{}2,1,0,1,2A =--故(){2,1,0,2}A B C =-- ð.18.已知集合U 为全体实数集,{1M x x =≤-或6}x ≥,{}131N x a x a =+≤≤-.(1)若3a =,求()U M N ðI ;(2)若M N N ⋂=,求实数a 的取值范围.【正确答案】(1){}46x x ≤<(2)1a <或5a ≥【分析】(1)利用集合的交、补运算即可求解.(2)讨论N =∅或N ≠∅,根据集合的包含关系列不等式即可求解.【详解】(1)解:由题知{1M x x =≤-或6}x ≥,{}131N x a x a =+≤≤-,所以{}16U M x x =-<<ð,当3a =时,{}48N x x =≤≤,所以(){}46U M N x x ⋂=≤<ð;(2)由题知M N N ⋂=,即N M ⊂,①当N =∅时,即131a a +>-,解得:1a <;②当N ≠∅,即1a ≥时,因为N M ⊂,所以311a -≤-或16a +≥,解得:0a ≤(舍)或5a ≥,综上:1a <或5a ≥.19.全国文明城市,简称文明城市,是指在全面建设小康社会中市民整体素质和城市文明程度较高的城市.全国文明城市称号是反映中国城市整体文明水平的最高荣誉称号.连云港市黄海路社区响应号召,在全面开展“创文”的基础上,对一块空闲地进行改造,计划建一面积为24000m 矩形市民休闲广场.全国文明城市是中国所有城市品牌中含金量最高、创建难度最大的一个,是反映城市整体文明水平的综合性荣誉称号,是目前国内城市综合类评比中的最高荣誉,也是最具有价值的城市品牌.为此社区党委开会讨论确定方针:既要占地最少,又要美观实用.初步决定在休闲广场的东西边缘都留有宽为2m 的草坪,南北边缘都留有5m 的空地栽植花木.(1)设占用空地的面积为S (单位:2m ),矩形休闲广场东西距离为x (单位:m ,0x >),试用x 表示为S 的函数;(2)当x 为多少时,用占用空地的面积最少?并求最小值.【正确答案】(1)()()40004100S x x x ⎛⎫=++> ⎪⎝⎭(2)休闲广场东西距离为40m 时,用地最小值为24840m 【分析】(1)根据面积公示列关系式即可.(2)代入第一问求出的解析式结合基本不等式求最值即可即可.【详解】(1)因为广场面积须为24000m ,所以矩形广场的南北距离为4000m x,所以()()40004100S x x x ⎛⎫=++> ⎪⎝⎭;(2)由(1)知16000404010404040408004840S x x =++≥+=+=,当且仅当x =40时,等号成立.答:当休闲广场东西距离为40m 时,用地最小值为24840m .20.集合A ={}|()(3)0,0x x a x a a --<>,B =2|01x x x -⎧⎫<⎨⎬-⎩⎭.(1)若1a =,求()R A C B I ;(2)已知命题:p x A ∈,命题:q x B ∈,若命题p 的充分不必要条件是命题q ,求实数a 的取值范围.【正确答案】(1)[)()2,3R A C B =I (2)213a ≤≤【分析】(1)a =1时,A =(1,3),B =(1,2),可得∁R B =(﹣∞,1]∪[2,+∞).即可得出A ∩(∁R B ).(2)由a >0,可得A =(a ,3a ),B =(1,2).根据q 是p 的充分不必要条件,即可得出B ⊊A .【详解】解:(1)a =1时,A =(1,3),B =(1,2),(][)=,12,R C B -∞+∞U ∴[)()2,3R A C B =I ;(2)∵a >0,∴A =(a ,3a ),B =(1,2).∵q 是p 的充分不必要条件,∴B ⊊A .由B ⊆A 得132a a ≤⎧⎨≥⎩,解得213a ≤≤,又a =1及23a =符合题意.∴213a ≤≤.本题考查了集合的交并补运算、不等式的解法、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.21.已知a ,b ,c 为正数,且a +b +c =1,证明:(1-a )(1-b )(1-c )≥8abc .【正确答案】证明见解析.【分析】根据已知对不等式左边的式子进行变形,结合基本不等式进行证明即可.【详解】证明:(1-a )(1-b )(1-c )=(b +c )(a +c )(a +b ),(b +c )(a +c )(a +b8abc .当且仅当b =c =a =13时,等号成立.本题考查了基本不等式的应用,考查了推理论证能力.22.已知关于x 的不等式()2110ax a x a R ++<∈-,.(1)若不等式的解集为112x x ⎧⎫<<⎨⎬⎩⎭,求a ;(2)当a R ∈时,解此不等式.【正确答案】(1)2(2)0a =时,(1,)x ∈+∞,01a <<时,1(1,x a∈,1a =时,不等式的解集为空集,1a >时,1(,1)x a∈,a<0时,1(,(1,)x a ∈-∞+∞ .【分析】(1)根据不等式的解集和韦达定理,可列出关于a 的方程组,解得a ;(2)不等式化为(1)(1)0ax x --<,讨论a 的取值,从而求得不等式的解集。
江西省2024-2025学年七年级上学期第一次月考语文试题(含答案)
江西省2024-2025学年七年级上学期第一次月考语文试题(满分120分,考试用时150分钟)一、语言文字运用(本大题共6小题,共12分)2024年9月,南昌某学校七年级开展了“四季美景”综合性学习活动,阅读下面文字,完成下面1-4小题。
日月经天,江河行地,春风夏雨,秋霜冬雪,大自然生生不息,四时景物,________。
看吧!自强不息的麦苗企盼生机勃勃的初春,它要用冬天贮()蓄的力量迎接那喷薄而出的瞬间;知知不休的鸣蝉迷恋骄阳如火的盛夏,它要与过去()别,用炽热的真情来迎接三个月的绚烂;暗香浮动的桂花垂青秋高气爽的九月,它要让天地生灵在辽阔与豁达间叹限感慨;傲霜踏雪的红梅则钟情白雪皑皑的寒冬,它一定会用截然不同的态度去演绎生命的另一种精彩。
通过本次综合性学习,让我们领略了绚烂四季的魅力。
1.(2分)文中加点字“贮”的读音正确的是()A.chǔB.chùC.zhòu D.zhù2.(2分)在文中括号内填入汉字,正确的是()A.绝B.决C.诀D.抉3.(2分)在文中横线处填入词语,最为恰当的是()A.眼花缭乱B.美不胜收C.琳琅满目D.纷繁芜杂4.(2分)文中画波浪线的句子有语病,下列修改正确的一项是()A.通过本次综合性学习,使我们领略了绚烂四季的魅力。
B.通过本次综合性学习,使我们认识了绚烂四季的魅力。
C.经过本次综合性学习,让我们领略了绚烂四季的魅力。
D.本次综合性学习,让我们领略了绚烂四季的魅力。
5.(2分)给空缺处选填语句,最恰当的一项是()现在是枝繁叶茂的时节。
那么多的绿叶,一簇堆在另一簇上面,不留一点缝隙。
翠绿的颜色明亮地在我们眼前闪耀,似乎每一片树叶上都有一个新的生命在颤动,这美丽的南国树!A.无数的树根立在地上,像许多根木柱B.我仿佛听见几只鸟扑翅的声音C.这棵榕树好像在把它的全部生命力展现给我们看D.树林变得很热闹6.(2分)下列关于文学常识、语法知识的表述,有误的一项是()A.《春》作者朱自清,字佩弦,号秋实,江苏扬州人,散文家、诗人、学者。
湖南省永州市第一中学2025届高三上学期8月月考语文试题(含答案)
永州市第一中学2024-2025学年高三上学期8月月考语文温馨提示:1.本试卷满分150分,考试时间150分钟。
2.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并按规定贴好条形码。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成下列小题。
材料一:在互联网信息时代背景下,以媒介为载体的信息交互网络正联结起越来越多的社会关系。
阅读文本的生产、传播方式也发生了巨大变化,从平面纸质阅读到手机阅读、社交阅读等网络阅读,阅读媒介多样化趋势不可阻挡,这一发展趋势给传统的以纸质文本为中心的阅读教学带来新的机遇和挑战。
为更好地应对这一机遇与挑战,《普通高中语文课程标准(2017年版)》将“跨媒介阅读与交流”加入学习任务群,使之正式成为语文教学的核心内容。
“媒介”一般指传播介质,如报纸、杂志、广播、电视、网络等,既包括静态的纸质文本、图片,也包括动态的声音、动画、视频等电子文本。
由于文本内容呈现形式的多样性,“阅读”的内涵不再局限于对书面文字的识记、理解、鉴赏、评价,而是进一步拓展到对图片、表格、声音、视频等多元信息的获取、处理和应用。
与传统的纸质阅读相比,跨媒介阅读具有参与度高、自主性强、多样、快捷、便利等特点,人人都可以成为生活事件的发现者、记录者、写作者、传播者和接受者。
“跨媒介阅读与交流”的“跨”既强调“跨越”,更注重“整合”,不同的媒介形式特点各异,求同存异,将之有机整合并应用到语文课堂上来,可以丰富语文学习内容,加强语文学习与时代、与生活的联系。
“跨媒介阅读与交流”应围绕言语活动开展。
阅读以不同媒介为载体的信息,首先应基于语言的建构与运用,引导学生理解多种媒介运用对语言的影响,将“跨媒介阅读与交流”作为培养学生核心素养的手段,而非目的。
“跨媒介阅读与交流”活动应整合丰富的语料,锻炼学生在多样的信息来源中去伪存真、辨识媒体立场的能力,在言语实践中形成价值判断和文化心理。
第一次月考 (试题)(含答案)-2024-2025学年六年级上册数学北师大版
第一次月考 (1-2单元)模拟检测 2024-2025学年六年级上册数学北师大版一、填空题(共8题;共22分)1.(2分)一根电线长10m ,先用去,再用去 m ,还剩 m 。
2.(2分)量得一个树桩的直径是32cm ,这个树桩的横截面的面积是 。
3.(2分)婴儿每分钟的心跳次数比青少年多,婴儿每分钟心跳次数相当于青少年心跳次数的 。
4.(4分)在一个边长是10厘米的正方形中画一个最大的圆,圆的直径是 厘米,圆和正方形组成的图形有 条对称轴。
5.(2分)赵叔叔家的果园占地20公顷,其中种的是苹果树, 种的是梨树,剩下种的全部是李子树。
李子树的占地面积是 公顷。
6.(4分)明明用圆规画圆。
他把圆规两脚间距离定为5cm ,画出的圆的直径是 厘米,周长是 厘米。
7.(4分)一个圆的半径扩大5倍,周长将扩大 倍,面积将扩大 倍.8.(2分)书架上的书有是科普书, 是故事书,书的本数在50至70之间,书架上一共有 本书。
二、判断题(共5题;共15分)9.(3分)车轮滚动一周,所行驶的路程等于车轮的周长。
( )10.(3分)甲数比乙数少,那么乙数比甲数多。
( )11.(3分)一个圆的周长总是它半径的2π倍.( ) 12.(3分)六(1)班男生人数占全班人数的,六(2)班男生人数也占全班人数的 。
所以六(1)班和六(2)班男生人数同样多。
( )13.(3分)周长相等的两个圆,其面积不一定相等。
( )三、单选题(共5题;共15分)14.(3分)在一张长8厘米,宽5厘米的长方形纸上画一个圆,圆规两脚间的距离最大为( )厘米。
A .4B .5C .8D .2.515.(3分)如下图,正方形的面积是16cm 2,则圆的面积是( )cm 2。
1517121545251415161712A .12.56B .50.24C .25.12D .6.2816.(3分)一个半圆的半径为r ,那么它的周长是( )A .πr+rB .πrC .πr+2rD .2πr17.(3分)如图,六位朋友均匀的围坐在圆桌旁聚会,圆桌的半径为110cm ,每人离桌边10cm ,则图中相邻两人之间的圆弧的长(结果保留π)为( )A .10π cmB .20π cmC .30π cmD .40π cm18.(3分)某小学有男生270人,女生是男生的倍,男生比女生少( )A .B .C .D .四、计算题(共2题;共20分)19.(8分)直接写得数.4×= × = 1.5× = 1-÷ = ÷3= 12÷ = ÷ =+ × =20.(12分)计算。
第一次月考试卷(试题)2024-2025学年统编版语文五年级上册
第一次月考试卷(1-2单元试卷)2024-2025上学期五年级语文上册(统编版)(时间: 90 分钟, 满分: 100分)一、根据拼音,写出相应的词语。
(8分)zhào jí shāng yì篮球比赛前夕,他大家一起怎样duó guàn lǎn duò才能。
大家觉得只有改变思想,比赛píng héng yǐn bì时保持好身体,同时注意自己,听从fēn fù xié tiáo教练的致,才能夺取最后的胜利。
二、选词填空。
(7分)1. 精巧精美精彩赞赏赞扬赞叹(1)父亲一定会比母亲更我这首的诗的。
(2)小红制作出的礼物是如此,真是令人不已。
(3)妈妈抱着我,不住地:“你的作品构思太了。
”2. 无论……都…… 如果……就……因为……所以…… 虽然……但是……(1)( )花开的时间太短,( )摇不下来。
(2)小时候,我( )对什么花,( )不懂得欣赏。
(3)( )让它开过了,落在泥土里,尤其是被风吹落,比摇下来的香味( )差多了。
(4)桂花( )小小的,很不起眼,( )它的香气却很迷人。
三、选择正确的答案,将相应的序号填在括号里。
(8分)1.下列句子与课文不完全一致的一项是( )。
A.色素的配合,身段的大小,一切都很适宜。
B.然而白鹭却因为它的常见,而被人忘记了它的美。
C. 白鹭实在是一首诗,一首韵在骨子里的散文诗。
D.黄昏的空中偶见白鹭的低飞,更是乡居生活中的一种恩惠。
2.下列对“人们说它是在望哨,可它真是在望哨吗?”理解不正确的一项是( )。
A. 白鹭不是在“望哨”,而是在悠闲地生活,表现了作者对白鹭悠然自得之美的欣赏。
B.白鹭也许是在领略清新美好的晨光,也许是在等待远出未归的同伴,如诗一般让人回味无穷。
C.这句话体现了白鹭无所事事,嗜好特别。
D.这句话通过描写白鹭登高远眺,表现白鹭气度不凡。
湖北省武汉市2023-2024学年高一上学期第一次月考数学试题含答案
武汉高一年级第一次月考(数学)(答案在最后)第Ⅰ卷一、单选题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}43A x x =∈-≤≤Z ,{}13B x x =∈+<N ,则A B = ()A.{}0,1 B.{}0,1,2 C.{}1,2 D.{}1【答案】A 【解析】【分析】化简集合,根据交集运算求解.【详解】根据题意,得{}{}=4,3,2,1,0,1,2,30,1A B ----=,,所以{}0,1A B = ,故选:A.2.设{}{}2712|0,0|2A x x x B x ax =-+==-=,若A B B = ,求实数a 组成的集合的子集个数有()A.2B.3C.4D.8【答案】D 【解析】【分析】先解方程得集合A ,再根据A B B = 得B A ⊆,根据包含关系求实数a ,根据子集的定义确定实数a 的取值组成的集合的子集的个数.【详解】{}{}271203,4|A x x x =-+==因为A B B = ,所以B A ⊆,因此B =∅或{}3B =或{}4B =,当B =∅时,=0a ,当{}3B =时,23a =,当{}4B =时,12a =,实数a 的取值组成的集合为210,,32⎧⎫⎨⎬⎩⎭,其子集有∅,{}0,23⎧⎫⎨⎬⎩⎭,12⎧⎫⎨⎬⎩⎭,20,3⎧⎫⎨⎬⎩⎭,10,2⎧⎫⎨⎬⎩⎭,21,32⎧⎫⎨⎬⎩⎭,210,,32⎧⎫⎨⎬⎩⎭,共8个,故选:D .3.下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“2,10x R x ∀∈+<”是全称量词命题;③命题“2,210x R x x ∃∈++≤”的否定为“2,210x R x x ∀∈++≤”;④命题“a b >是22ac bc >的必要条件”是真命题;A.0 B.1C.2D.3【答案】C 【解析】【分析】根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案.【详解】对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“2R 10x x ∀∈+<,”是全称量词命题;故②正确;对于③:命题2:R,210p x x x ∃∈++≤,则2:R,210p x x x ⌝∀∈++>,故③错误;对于④:22ac bc >可以推出a b >,所以a b >是22ac bc >的必要条件,故④正确;所以正确的命题为②④,故选:C4.“0m >”是“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”,利用二次函数的性质,求得实数m 的取值范围,结合充分、必要条件的判定方法,即可求解.【详解】由题意,命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”可得命题“x ∀∈R ,2(1)2(1)30m x m x -+-+>是真命题”当10m -=时,即1m =时,不等式30>恒成立;当10m -≠时,即1m ≠时,则满足()()210214130m m m ->⎧⎪⎨⎡⎤---⨯<⎪⎣⎦⎩,解得14m <<,综上可得,实数14m ≤<,即命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”时,实数m 的取值范围是[1,4),又由“0m >”是“14m ≤<”的必要不充分条件,所以“0m >”是“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”的必要不充分条件,故选:B.【点睛】理解全称命题与存在性命题的含义时求解本题的关键,此类问题求解的策略是“等价转化”,把存在性命题为假命题转化为全称命题为真命题,结合二次函数的性质求得参数的取值范围,再根据充分、必要条件的判定方法,进行判定.5.已知()f x =+,则函数(1)()1f xg x x +=-的定义域是()A.[2,1)(1,2]-⋃B.[0,1)(1,4]U C.[0,1)(1,2]⋃ D.[1,1)(1,3]-⋃【答案】A 【解析】【分析】先求出()f x 的定义域,结合分式函数分母不为零求出()g x 的定义域.【详解】()f x = ,10330x x x +≥⎧∴∴≤≤⎨-≥⎩,-1,()f x ∴的定义域为[]1,3x ∈-.又(1)()1f x g x x +=- ,1132210x x x -≤+≤⎧∴∴-≤≤⎨-≠⎩,且1x ≠.(1)()1f xg x x +∴=-的定义域是[2,1)(1,2]-⋃.故选:A6.已知0a >,0b >,且12111a b+=++,那么a b +的最小值为()A.1-B.2C.1+ D.4【答案】C 【解析】【分析】由题意可得()1211211a b a b a b ⎛⎫+=++++-⎪++⎝⎭,再由基本不等式求解即可求出答案.【详解】因为0a >,0b >,12111a b+=++,则()1211211211a b a b a b a b ⎛⎫+=+++-=++++- ++⎝⎭()2113211a b b a ++=++-++()21111111a b ba ++=++≥+=+++.当且仅当()2111112111a b b a a b⎧++=⎪⎪++⎨⎪+=⎪++⎩即2a b ⎧=⎪⎨⎪=⎩时取等.故选:C .7.若两个正实数x ,y 满足141x y +=,且不等式234y x m m +<-有解,则实数m 的取值范围是()A.{14}mm -≤≤∣ B.{0mm <∣或3}m >C .{41}mm -<<∣ D.{1mm <-∣或4}m >【答案】D 【解析】【分析】首先不等式转化为2min34y m m x ⎛⎫->+⎪⎝⎭,再利用基本不等式求最值,即可求解.【详解】若不等式234y x m m +<-有解,则2min 34y m m x ⎛⎫->+ ⎪⎝⎭,因为141x y +=,0,0x y >>,所以144224444y y x y x x x y y x ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭,当44x y y x =,即4y x =时,等号成立,4y x +的最小值为4,所以234m m ->,解得:4m >或1m <-,所以实数m 的取值范围是{1m m <-或4}m >.故选:D8.已知函数222,2,()366,2,x ax x f x x a x x ⎧--≤⎪=⎨+->⎪⎩若()f x 的最小值为(2)f ,则实数a 的取值范围为()A.[2,5]B.[2,)+∞C.[2,6]D.(,5]-∞【答案】A 【解析】【分析】分别求解分段函数在每一段定义区间内的最小值,结合函数在整体定义域内的最小值得到关于a 的不等式组,解不等式组得到a 的取值范围.【详解】当2x >时,3666126x a a a x +-≥=-,当且仅当6x =时,等号成立,即当2x >时,函数()f x 的最小值为126a -;当2x ≤时,2()22f x x ax =--,要使得函数()f x 的最小值为(2)f ,则满足2,(2)24126,a f a a ≥⎧⎨=-≤-⎩解得25a ≤≤.故选:A .二、多选题(本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得2分,有选错的得0分)9.下列函数在区间(2,)+∞上单调递增的是()A.1y x x=+B.1y x x =-C.14y x=- D.y =【答案】AB 【解析】【分析】求函数的单调区间,首先要确定函数的定义域,若存在定义域之外的元素,则不符合条件;对其他选项可根据特殊函数的单调性得出.【详解】由“对勾”函数的单调性可知,函数1y x x=+在(2,)+∞单调递增,A 正确;由y x =在(2,)+∞单调递增,1y x =在(2,)+∞单调递减,知1y x x=-在(2,)+∞单调递增,B 正确;函数14y x=-在4x =处无定义,因此不可能在(2,)+∞单调递增,C 错误;函数y =的定义域为(,1][3,)-∞⋃+∞,因此在(2,3)上没有定义,故不可能在(2,)+∞单调递增,D 错误.故选:AB.10.已知函数()221f x x x =++在区间[],6a a +上的最小值为9,则a 可能的取值为()A.2B.1C.12D.10-【答案】AD 【解析】【分析】根据二次函数的对称轴和开口方向进行分类讨论,即可求解.【详解】因为函数()221f x x x =++的对称轴为=1x -,开口向上,又因为函数()221f x x x =++在区间[],6a a +上的最小值为9,当16a a ≤-≤+,即71a -≤≤-时,函数()221f x x x =++的最小值为min ()(1)0f x f =-=与题干不符,所以此时不成立;当1a >-时,函数()221f x x x =++在区间[],6a a +上单调递增,所以2min ()()219f x f a a a ==++=,解得:2a =或4a =-,因为1a >-,所以2a =;当61a +<-,也即7a <-时,函数()221f x x x =++在区间[],6a a +上单调递减,所以2min ()(6)14499f x f a a a =+=++=,解得:10a =-或4a =-,因为7a <-,所以10a =-;综上:实数a 可能的取值2或10-,故选:AD .11.若0,0a b >>,且4a b +=,则下列不等式恒成立的是()A.228a b +≤B.114ab ≤ C.≤ D.111a b+≤【答案】C 【解析】【分析】利用重要不等式的合理变形可得()()2222a b a b +≥+,即可知A 错误;由基本不等式和不等式性质即可计算B 错误;由()22a b +≥即可求得C 正确;根据不等式中“1”的妙用即可得出111a b+≥,即D 错误.【详解】对于A ,由222a b ab +≥可得()()2222222a bab ab a b +≥++=+,又4a b +=,所以()()222216a ba b +≥+=,即228a b +≥,当且仅当2a b ==时等号成立,故A 错误;对于B ,由4a b +=可得4a b +=≥,即04<≤ab ,所以114ab ≥,当且仅当2a b ==时等号成立,即B 错误;对于C ,由a b +≥可得()22a b a b +≥++=,所以可得28≥+,即≤,当且仅当2a b ==时等号成立,即C 正确;对于D ,易知()11111111121444a b a b a b a b b a ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,即111a b +≥;当且仅当2a b ==时等号成立,可得D 错误;故选:C12.公元3世纪末,古希腊亚历山大时期的一位几何学家帕普斯发现了一个半圆模型(如图所示),以线段AB 为直径作半圆ADB ,CD AB ⊥,垂足为C ,以AB 的中点O 为圆心,OC 为半径再作半圆,过O 作OE OD ⊥,交半圆于E ,连接ED ,设BC a =,,(0)AC b a b =<<,则下列不等式一定正确的是().A.2a b+< B.2a b+<C.b >D.2a b+>【答案】AD 【解析】【分析】先结合图象,利用垂直关系和相似关系得到大圆半径2a b R +=,小圆半径2b ar -=,AD =,BD ==,再通过线段大小判断选项正误即可.【详解】因为AB 是圆O 的直径,则90ADB DAB DBA ∠=︒=∠+∠,因为CD AB ⊥,则=90ACD ∠︒,所以90DAB ADC ∠+∠=︒,故DBA ADC ∠=∠,易有ADC DBC ,故AC DCCD BC=,即2CD AC BC ab =⋅=,大圆半径2a b R +=,小圆半径22a b b ar a +-=-=,90ACD ∠=︒ ,222AC CD AD ∴+=,故AD ==,同理BD ==.选项A 中,,显然当0a b <<时AOD ∠是钝角,在AD 上可截取DM DO =,故OD AD <,即大圆半径R OD AD =<,故2a b+<,正确;选项B 中,当60BOD ∠=︒时,大圆半径R OD OB BD ===,有2a b+=选项C 中,Rt BCD △中,BD =,而AC b =,因为,AC BD 大小关系无法确定,故错误;选项D 中,大圆半径2a b R OD +==,小圆半径2b ar OC -==,=OD >2a b+>,故正确.故选:AD.【点睛】本题解题关键在于将选项中出现的数式均与图中线段长度对应相等,才能通过线段的长短比较反馈到数式的大小关系,突破难点.第Ⅱ卷三、填空题(本题共4小题,每小题5分,共20分)13.若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合{}1,2A =-,{}22,0B x ax a ==≥,若这两个集合构成“鲸吞”或“蚕食”,则a 的取值集合为_____.【答案】10,,22⎧⎫⎨⎬⎩⎭【解析】【分析】分“鲸吞”或“蚕食”两种情况分类讨论求出a 值,即可求解【详解】当0a =时,B =∅,此时满足B A ⊆,当0a >时,B ⎧⎪=⎨⎪⎩,此时,A B 集合只能是“蚕食”关系,所以当,A B 集合有公共元素1=-时,解得2a =,当,A B 集合有公共元素2=时,解得12a =,故a 的取值集合为10,,22⎧⎫⎨⎬⎩⎭.故答案为:10,,22⎧⎫⎨⎬⎩⎭14.一家物流公司计划建立仓库储存货物,经过市场了解到下列信息:每月的土地占地费1y (单位:万元)与仓库到车站的距离x (单位:km )成反比,每月库存货物费2y (单位:万元)与x 成正比.若在距离车站10km 处建立仓库,则1y 与2y 分别为4万元和16万元.则当两项费用之和最小时x =______(单位:km ).【答案】5【解析】【分析】由已知可设:11k y x=,22y k x =,根据题意求出1k 、2k 的值,再利用基本不等式可求出12y y +的最小值及其对应的x 值,即可得出结论.【详解】由已知可设:11k y x=,22y k x =,且这两个函数图象分别过点()10,4、()10,16,得110440k =⨯=,2168105k ==,从而140y x=,()2805xy x =>,故12408165x y y x +=+≥=,当且仅当4085x x =时,即5x =时等号成立.因此,当5x =时,两项费用之和最小.故答案为:5.15.函数()f x 是定义在()0,∞+上的增函数,若对于任意正实数,x y ,恒有()()()f xy f x f y =+,且()31f =,则不等式()()82f x f x +-<的解集是_______.【答案】()8,9【解析】【分析】根据抽象函数的关系将不等式进行转化,利用赋值法将不等式进行转化结合函数单调性即可得到结论.【详解】()()()f xy f x f y =+ ,(3)f 1=,22(3)(3)(3)(33)(9)f f f f f ∴==+=⨯=,则不等式()(8)2f x f x +-<等价为(8)[](9)f x x f <-,函数()f x 在定义域(0,)+∞上为增函数,∴不等式等价为080(8)9x x x x >⎧⎪->⎨⎪-<⎩,即0819x x x >⎧⎪>⎨⎪-<<⎩,解得89x <<,∴不等式的解集为(8,9),故答案为:()8,9.16.已知1:123x p --≤,22:210q x x m -+-≤,若p ⌝是q ⌝的必要不充分条件,则实数m 的取值范围是______.【答案】(][),99,-∞-⋃+∞【解析】【分析】先分别求出命题p 和命题q 为真命题时表示的集合,即可求出p ⌝和q ⌝表示的集合,根据必要不充分条件所表示的集合间关系即可求出.【详解】对于命题p ,由1123x --≤可解出210x -≤≤,则p ⌝表示的集合为{2x x <-或}10x >,设为A ,对于命题q ,22210x x m -+-≤,则()()110x m x m 轾轾---+£臌臌,设q ⌝表示的集合为B , p ⌝是q ⌝的必要不充分条件,B∴A ,当0m >时,()()110x m x m 轾轾---+£臌臌的解集为{}11x m x m -≤≤+,则{1B x x m =<-或}1x m >+,12110m m -≤-⎧∴⎨+≥⎩,解得9m ≥;当0m =时,{}1B x x =≠,不满足题意;当0m <时,()()110x m x m 轾轾---+£臌臌的解集为{}11x m x m +≤≤-,则{1B x x m =<+或}1x m >-,12110m m +≤-⎧∴⎨-≥⎩,解得9m ≤-,综上,m 的取值范围是(][),99,-∞-⋃+∞.故答案为:(][),99,-∞-⋃+∞.【点睛】本题考查命题间关系的集合表示,以及根据集合关系求参数范围,属于中档题.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知集合{0A x x =<或{}2},32x B x a x a >=≤≤-.(1)若A B = R ,求实数a 的取值范围;(2)若B A ⊆R ð,求实数a 的取值范围.【答案】(1)(],0-∞(2)12a ≥【解析】【分析】(1)根据集合的并集运算即可列不等式求解,(2)根据包含关系列不等式求解.【小问1详解】因为{0A x x =<或{}2},32,,x B x a x a A B >=≤≤-⋃=R 所以320322a a a a -≥⎧⎪≤⎨⎪-≥⎩,解得0a ≤,所以实数a 的取值范围是(],0-∞.【小问2详解】{0A x x =<或{}2},02x A x x >=≤≤R ð,由B A ⊆R ð得当B =∅时,32-<a a ,解得1a >;当B ≠∅时,32a a -≥,即1a ≤,要使B A ⊆,则0322a a ≥⎧⎨-≤⎩,得112a ≤≤.综上,12a ≥.18.已知关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >(1b >).(1)求a ,b 的值;(2)当0x >,0y >,且满足1a b x y +=时,有222x y k k +≥++恒成立,求k 的取值范围.【答案】(1)1a =,2b =(2)[]3,2-【解析】【分析】(1)方法一:根据不等式2320ax x -+>的解集为{1x x <或}x b >,由1和b 是方程2320ax x -+=的两个实数根且0a >,利用韦达定理求解;方法二:根据不等式2320ax x -+>的解集为{1x x <或}x b >,由1和b 是方程2320ax x -+>的两个实数根且0a >,将1代入2320ax x -+=求解.(2)易得121x y+=,再利用“1”的代换,利用基本不等式求解.【小问1详解】解:方法一:因为不等式2320ax x -+>的解集为{1x x <或}x b >,所以1和b 是方程2320ax x -+=的两个实数根且0a >,所以3121b a b a ⎧+=⎪⎪⎨⎪⋅=⎪⎩,解得12a b =⎧⎨=⎩方法二:因为不等式2320ax x -+>的解集为{1x x <或}x b >,所以1和b 是方程2320ax x -+>的两个实数根且0a >,由1是2320ax x -+=的根,有3201a a -+=⇒=,将1a =代入2320ax x -+>,得23201x x x -+>→<或2x >,∴2b =;【小问2详解】由(1)知12a b =⎧⎨=⎩,于是有121x y +=,故()12422448y x x y x y x y x y ⎛⎫+=++=++>+ ⎪⎝⎭,当且仅当24x y =⎧⎨=⎩时,等号成立,依题意有()2min 22x y k k +≥++,即282k k ≥++,得26032k k k +-≤→-≤≤,所以k 的取值范围为[]3,2-.19.已知函数()212f x x x =+.(1)试判断函数()f x 在区间(]0,1上的单调性,并用函数单调性定义证明;(2)若(]0,1x ∃∈,使()2f x m <+成立,求实数m 的范围.【答案】(1)单调递减;证明见解析(2)()1,+∞【解析】【分析】(1)运用定义法结合函数单调性即可;(2)将能成立问题转化为最值问题,结合单调性求解最值.【小问1详解】()212f x x x=+在区间(]0,1上单调递减,证明如下:设1201x x <<≤,则()()()()2212121212222212121122x x f x f x x x x x x x x x ⎛⎫--=-+-=-- ⎪⎝⎭()()12121222221212121122x x x x x x x x x x x x ⎡⎤⎛⎫⎛⎫+=--=--+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦∵1201x x <<≤,∴120x x -<,21211x x >,21211x x >,∴2212121120x x x x ⎛⎫-+< ⎪⎝⎭,∴()()120f x f x ->所以,()212f x x x =+在区间(]0,1上单调递减.【小问2详解】由(1)可知()f x 在(]0,1上单调递减,所以,当1x =时,()f x 取得最小值,即()min ()13f x f ==,又(]0,1x ∃∈,使()2f x m <+成立,∴只需min ()2f x m <+成立,即32m <+,解得1m <.故实数m 的范围为()1,+∞.20.已知函数()21ax b f x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式并判断()f x 在()1,1-上的单调性(不必证明);(2)解不等式()()10f x f x -+<.【答案】(1)()21x f x x=+,在(1,1)-上单调递增(2)1(0,)2【解析】【分析】(1)根据奇函数的性质,以及代入条件,即可求解,并判断函数的单调性;(3)根据函数是奇函数,以及函数的单调性,即可求解不等式.【小问1详解】由题意可得()001225f f ⎧=⎪⎨⎛⎫= ⎪⎪⎝⎭⎩,解得01b a =⎧⎨=⎩所以()21x f x x =+,经检验满足()()f x f x -=-,设1211x x -<<<,()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++,因为1211x x -<<<,所以120x x -<,1210x x ->,221210,10x x +>+>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在区间()1,1-单调递增;【小问2详解】(1)()0f x f x -+< ,(1)()()f x f x f x ∴-<-=-,()f x 是定义在(1,1)-上的增函数,∴111111x x x x -<-<⎧⎪-<<⎨⎪-<-⎩,得102x <<,所以不等式的解集为1(0,)2.21.2022年某企业整合资金投入研发高科技产品,并面向全球发布了首批17项科技创新重大技术需求榜单,吸引清华大学、北京大学等60余家高校院所参与,实现企业创新需求与国内知名科技创新团队的精准对接,最终该公司产品研发部决定将某项高新技术应用到某高科技产品的生产中,计划该技术全年需投入固定成本6200万元,每生产x 千件该产品,需另投入成本()F x 万元,且()210100,060810090121980,60x x x F x x x x ⎧+<<⎪=⎨+-≥⎪⎩,假设该产品对外销售单价定为每件0.9万元,且全年内生产的该产品当年能全部售完.(1)求出全年的利润()G x 万元关于年产量x 千件的函数关系式;(2)试求该企业全年产量为多少千件时,所获利润最大,并求出最大利润.【答案】(1)()2108006200,060810015780,60x x x G x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩;(2)该企业全年产量为90千件时,所获利润最大为15600万元【解析】【分析】(1)利用分段函数即可求得全年的利润()G x 万元关于年产量x 千件的函数关系式;(2)利用二次函数求值域和均值定理求值域即可求得该企业全年产量为90千件时,所获利润最大为15600万元.【小问1详解】当060x <<时,()()22900101006200108006200G x x x x x x =-+-=-+-,当60x ≥时,()8100810090090121980620015780G x x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭,所以()2108006200,060810015780,60x x x G x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩.【小问2详解】若060x <<,则()()210409800G x x =--+,当40x =时,()max 9800G x =;若60x ≥,()8100157801578015600G x x x ⎛⎫=-++≤-= ⎪⎝⎭,当且仅当8100x x=,即90x =时,等号成立,此时()max 15600G x =.因为156009800>,所以该企业全年产量为90千件时,所获利润最大为15600万元.22.在以下三个条件中任选一个,补充在下面问题中,并解答此题.①()()()f x y f x f y +=+,()24f =.当0x >时,()0f x >;②()()()2f x y f x f y +=+-,()15f =.当0x >时,()2f x >;③()()()f x y f x f y +=⋅,()22f =.且x ∀∈R ,()0f x >;当0x >时,()1f x >.问题;对任意,x y ∈R ,()f x 均满足___________.(填序号)(1)判断并证明()f x 的单调性;(2)求不等式()148f a +≤的解集.注;如果选择多个条件分别解答,按第一个解答计分.【答案】(1)增函数(2)答案见解析【解析】【分析】(1)根据单调性的定义法,证明单调性即可;(2)根据单调性,列出相应的不等式,解不等式方程可得答案.【小问1详解】若选①:设12,(,)x x ∈-∞+∞,且12x x <,则210x x ->,所以21()0f x x ->.由()()()f x y f x f y +=+得()()()f x y f x f y +-=,所以,2121()()()0f x f x f x x -=->,所以,21()()f x f x >,所以()f x 在(,)-∞+∞上是增函数;若选②:设12,(,)x x ∈-∞+∞,且12x x <.则210x x ->,所以21()2f x x ->.由()()()2+=+-f x y f x f y 得()()()2f x y f x f y +-=-,所以2121()()()20f x f x f x x -=-->,所以21()()f x f x >,所以f (x )在(,)-∞+∞上是增函数;若选③:设12,(,)x x ∈-∞+∞,且12x x <,则210x x ->,所以21()1f x x ->.由()()()f x y f x f y +=⋅得()()()f x y f y f x +=,2211()()1()f x f x x f x =->,又1()0>f x ,所以2()f x >1()f x ,所以函数()f x 为R 上的增函数;【小问2详解】若选①:由(2)4f =得(4)(2)(2)8f f f =+=,所以,(14)8f a +≤可化为(14)(4)f a f +≤,根据()f x 的单调性,得144a +≤,解得34a ≤,所以不等式(14)8f a +≤的解集为3,4⎛⎤-∞ ⎥⎝⎦.若选②:令1x y ==,则(2)2(1)28f f =-=,所以(14)8f a +≤可化为(14)(2)f a f +≤,根据()f x 的单调性,得142a +≤,解得14a ≤,所以不等式(14)8f a +≤的解集为1,4⎛⎤-∞ ⎥⎝⎦.若选③:由(2)2f =得(4)(2)(2)4f f f =⋅=,(6)(4)(2)8f f f =⋅=,所以(14)8f a +≤可化为(14)(6)f a f +≤,根据()f x 的单调性,得146a +≤,解得54a ≤,所以不等式(14)8f a +≤的解集为5,4⎛⎤-∞ ⎥⎝⎦.。
辽宁省普通高中2024年高一10月月考物理模拟试题+答案
辽宁省普通高中2024-2025学年度上学期10月月考模拟试题高一物理注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共10小题,共46分。
在每小题给出的四个选项中,第1~7题中只有一项符合题目要求,每小题4分;第8~10题有多项符合题目要求,每小题6分,全部选对的得6分,选对但不全的得3分,有选错的得0分。
1.在2018年11月6日上午9时开幕的第十二届航展上,中国航天科工集团有限公司正在研发的高速飞行列车仿真模型首次亮相。
该飞行列车利用磁悬浮技术及近真空管道线路减小阻力,未来项目落地时最大运行速度可达4000km/h ,从郑州到北京的路程为693km ,只要12min 就可到达,真是“嗖”的一声,人就到了。
根据以上信息判断,下列说法正确的是( ) A .“2018年11月6日上午9时”和“12min”都是时刻 B .从郑州到北京的路程为693km ,“路程”是矢量 C .飞行列车从郑州到北京的平均速率为3465km/hD .若研究飞行列车经过某一路标所用的时间,可将列车看成质点2.将一弹力球从某一高度处由静止释放,弹力球从地面弹起的最大高度不到释放高度的一半,不计球与地面相互作用的时间和空气阻力,以向下为正方向,下列关于弹力球运动的v t −和a t −图像,可能正确的是( )A .B .C .D .3.如图所示,t =0时刻,一个物体以08m /s v =的初速度沿光滑斜面向上滑动,加速度的大小为2m/s 2,运动到最高点之后,又以相同的加速度往回运动,则物体( ) A .第2s 末的速度大小为4m/s B .前3s 内的位移是9m C .第4s 末的加速度为零 D .前5s 内的路程是15m4.如图所示,一列“和谐号”动车,每节车厢的长度均为l ,列车启动过程中可视为匀加速直线运动,列车员站在列车一侧的站台上,已知第3节车厢经过列车员的时间为t 1,第4节车厢经过列车员的时间为t 2,则列车的加速度为( )A .l (t 1-t 2)t 1t 2(t 1+t 2)B .l (t 1+t 2)t 1t 2(t 1-t 2)C .2l (t 1+t 2)t 1t 2(t 1-t 2)D .2l (t 1-t 2)t 1t 2(t 1+t 2)5.一长为L 的金属管从地面以0v 的速率竖直上抛,管口正上方高()h h L >处有一小球同时自由下落,金属管落地前小球从管中穿过.已知重力加速度为g ,不计空气阻力.关于该运动过程说法正确的是( )A .小球穿过管所用时间大于LB .若小球在管上升阶段穿过管,则0>vC 0v<<D .小球不可能在管上升阶段穿过管6.某人驾驶一辆汽车甲正在平直的公路上以某一速度匀速运动,突然发现前方50m 处停着一辆乙车,立即刹车,刹车后做匀减速直线运动。
安徽省六安第一中学2022-2023学年高三上学期第四次月考数学试题含答案
六安一中2023届高三年级第四次月考数学试卷时间:120分钟满分:150分一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足13i1iz +=-(i 为虚数单位),z 是z 的共轭复数,则复数z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知空间中的两个不同的平面α,β,直线m ⊥平面β,则“αβ⊥”是“//m α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件3.一个水平放置的平面图形,用斜二测画法画出了它的直观图,如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()A.B. C.8D.4.如图,已知1111ABCD A B C D -是正方体,以下结论错误..的是()A.向量AC与向量1C D 的夹角为60°B.110AC A B ⋅= C.()2211111113A A A D A B A B ++=D.若1113A P A C =,则点P 是11AB D 的中心5.(0)kx k ≤>的解集为区间[,]a b ,且2b a -=,则k =() A.33B.C.D.26.过点()3,4P -作圆22:25C x y +=的切线l ,直线:40m ax y -=与切线l 平行,则切线l 与直线m 间的距离为()A.5B.2C.4D.7.如图,已知平面αβ⊥,l αβ= ,,A B 是直线l 上的两点,C D 、是平面β内的两点,且.,3,6,6DA l CB l AD AB CB ⊥⊥===,P 是平面α上的一动点,且直线PD PC 、与平面α所成角相等,则四棱锥P ABCD -体积的最大值为()A.18B.36C.24D.488.在正四棱台1111ABCD A B C D -中,112AB A B =,1AA =.当该正四棱台的体积最大时,其外接球的表面积为(A.332πB.33πC.572π D.57π二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.以下四个命题表述正确的是()A.若直线l 的斜率为l 的倾斜角为π3-B.三棱锥-P ABC 中,E F 、分别为PB PC 、的中点,23PG PA =,则平面EFG 将该三棱锥所分的两部分几何体的体积之比为1:5,即:1:5P EFG EFG ABC V V --=C.若直线l 过点(2,1)P -且在两坐标轴上的截距之和为0,则直线l 的方程为30x y --=D.在四面体O ABC -中,若,OA BC OB AC ⊥⊥,则OC AB⊥10.在三棱锥-P ABC 中,已知PA ⊥底面ABC ,AB BC E F ⊥,、分别是线段PB PC 、上的动点.则下列说法正确的是()A.当AE PB ⊥时,AE PC⊥B.当AF PC ⊥时,AEF △一定为直角三角形C.当//EF BC 时,平面AEF ⊥平面PABD.当PC ⊥平面AEF 时,平面AEF 与平面PAB 不可能垂直11.已知正方体1111ABCD A B C D -的棱长为2,E 为线段1AA 的中点,AP AB AD λμ=+,其中λ,[]0,1μ∈,则下列选项正确的是()A.当12λ=时,三棱锥11A PCD -的体积为定值B.当34μ=时,1B P PD + C.当1λμ+=时,直线1A P 与平面11B D E 的交点轨迹长度为22D.当11,23λμ==时,点1B 到平面11PC D 的距离为6131312.若实数,x y 满足x -=)A.x 的最小值是0B.x 的最大值是5C.若关于y 的方程有一解,则x 的取值范围为[){}1,45D.若关于y 的方程有两解,则x 的取值范围为(4,5)三、填空题:本大题共4小题,每小题5分,共20分.13.若直线120kx y k -+-=与圆229x y +=分别交于M 、N 两点.则弦MN 长的最小值为___________.14.如图,在四面体A BCD -中,2==AC BD ,AC 与BD 所成的角为60︒,M 、N 分别为AB 、CD 的中点,则线段MN 的长为_______.15.已知ABC 的一条内角平分线所在的直线方程为y x =,两个顶点坐标分别为(1,1),(3,2)B C -,则边AC 所在的直线方程为__________.(结果用一般式表示)16.已知数列{}n a 满足:()()()1*21131n nn n a a n n ++-+-=+∈N ,若121a a ==,则数列{}n a 的前20项和20S =___________.四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.如图,四边形ABCD 是圆柱OQ 的轴截面,点P 在圆柱OQ 的底面圆周上,G 是DP 的中点,圆柱OQ 的底面圆的半径2OA =,侧面积为,120AOP ∠=o .(1)求证:AG BD ⊥;(2)求直线PD 与平面ABD 所成角的正弦值.18.如图,P 为ABC 内的一点,BAP ∠记为α,ABP ∠记为β,且α、β在ABP 中的对边分别记为,,(2)sin cos m n m n ββ+=,π,0,3αβ⎛⎫∈ ⎪⎝⎭.(1)求APB ∠;(2)若1,2AB BP AC AP AP PC ===⊥,,求线段AP 和BC 的长.19.如图,在平面直角坐标系xOy 中,已知圆22:40C x y x +-=及点,(1,0)(1,2)A B -.(1)若直线l 过点B ,与圆C 相交于M N 、两点,且||MN =l 的方程;(2)圆C 上是否存在点P ,使得22||12||PA PB +=成立?若存在,求点P 的个数;若不存在,请说明理由.20.已知数列{}n a 的前n 项和为n S ,且22nn n S a =-.(1)求证:2n n a ⎧⎫⎨⎬⎩⎭是等差数列,并求出{}n a 的通项公式;(2)设3(2)n nn b n a +=+,求证:1231n b b b b ++++< .21.在①2AE =,②AC BD ⊥,③EAB EBA ∠=∠,这三个条件中选择一个,补充在下面问题中,并给出解答.如图,在五面体ABCDE 中,已知,,//AC BC ED AC ⊥,且22,AC BC ED DC DB =====.(1)设平面BDE 与平面ABC 的交线为l ,证明://l 平面ACDE ;(2)求证:平面ABE ⊥平面ABC ;(3)线段BC 上是否存在一点F ,使得平面AEF 与平面ABF夹角的余弦值等于43,若存在,求BFBC的值;若不存在,请说明理由.22.已知a b ∈R ,,函数()()sin ,xf x e a xg x =-=(1)求函数()y f x =在()()0,0f 处的切线方程;(2)若()y f x =和()y g x =有公共点,(i )当0a =时,求b 的取值范围;(ii )求证:22e a b +>.六安一中2023届高三年级第四次月考数学试卷时间:120分钟满分:150分一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足13i1i z +=-(i 为虚数单位),z 是z 的共轭复数,则复数z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C 【解析】【分析】求出12i z =-+即得解.【详解】解:因为131i iz+=-,所以()()()()13i 1i 13i 24i 12i 1i 1i 1i 2z +++-+====-+--+,所以12z i =--在复平面内对应的点为()1,2--,在第三象限.故选:C.2.已知空间中的两个不同的平面α,β,直线m ⊥平面β,则“αβ⊥”是“//m α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【答案】B 【解析】【分析】根据直线和平面,平面和平面的位置关系,依次判断充分性和必要性得到答案.【详解】两个不同的平面α,β,直线m ⊥平面β,当αβ⊥时,m α⊂或m α ,不充分;当m α 时,αβ⊥,必要.故选:B.3.一个水平放置的平面图形,用斜二测画法画出了它的直观图,如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()A.B. C.8D.【答案】D 【解析】【分析】根据斜二测画法的过程将直观图还原回原图形,找到直观图中正方形的四个顶点在原图形中对应的点,用直线段连结后得到原四边形,再计算平行四边形的面积即可.【详解】还原直观图为原图形如图所示,因为2O A ''=,所以O B ''=2OA O A =''=,2OB O B =''=;所以原图形的面积为2⨯=故选:D4.如图,已知1111ABCD A B C D -是正方体,以下结论错误..的是()A.向量AC与向量1C D 的夹角为60°B.110AC A B ⋅=C.()2211111113A A A D A B A B ++= D.若1113A P A C =,则点P 是11AB D 的中心【答案】A 【解析】【分析】由1160A C D ∠=︒得向量AC 与1C D夹角,判断A ,建立如图所示的空间直角坐标系,设1AB =,得各点坐标,用空间向量法判断BCD .【详解】正方体中,11//AC AC (由1AA与1CC 平行且相等得平行四边形11ACC A ),11A C D 是正三角形,1160A C D ∠=︒,但AC 与1C D夹角等于11A C 与1C D 的夹角为120︒,A 错;以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,如图,设1AB =,则(1,0,0)A ,(1,1,0)B ,(0,1,0)C ,1(1,1,1)B ,1(1,0,1)A ,1(0,1,1)C ,1(0,0,1)D ,1(1,1,1)AC =- ,1(0,1,1)A B =- ,110AC A B ⋅=,B 正确;111111(1,1,1)A A A D A B AC ++==-- ,221111111()33A A A D A B A B ++== ,C 正确;1111113(,,333A P A C =--= ,P 点坐标为212(,,)333(1,0,0)(1,1,1)(0,0,1)3++=,所以P 是11AB D 的重心,即中心,D 正确.故选:A .5.(0)kx k ≤>的解集为区间[,]a b ,且2b a -=,则k =() A.33B.C.D.2【答案】C 【解析】【分析】将问题转化为半圆y =位于直线(0)y kx k =>下方的区间长度为2,由此可得2,4a b ==,求出直线与半圆的交点坐标即可求得k 的值.【详解】解:如图所示:因为y =表示以坐标原点为圆心,4为半径位于x 轴上方(含和x 轴交点)的半圆,(0)y kx k =>表示过坐标原点及第一三象限内的直线,(0)kx k ≤>的解集为区间[,]a b ,且2b a -=,即半圆位于直线下方的区间长度为2,所以2,4a b ==,所以直线与半圆的交点(2,,所以2k ==.故选:C.6.过点()3,4P -作圆22:C x y +=的切线l ,直线:40m ax y -=与切线l 平行,则切线l 与直线m 间的距离为()A.5 B.2C.4D.【答案】A 【解析】【分析】根据平行关系可假设():434al y x -=+,由直线与圆相切可知圆心到直线距离d 等于半径,由此可构造方程求得a ,利用平行直线间距离公式可求得结果.【详解】由40ax y -=得:4ay x =;//l m ,∴直线l 斜率4a k =,则():434al y x -=+,即:43160l ax y a -++=,l 与圆C 相切,∴圆心()0,0C 到直线l的距离5d ==,解得:3a =,则:34250l x y -+=,:340m x y -=,l ∴与m 之间的距离5d ==.故选:A.7.如图,已知平面αβ⊥,l αβ= ,,A B 是直线l 上的两点,C D 、是平面β内的两点,且.,3,6,6DA l CB l AD AB CB ⊥⊥===,P 是平面α上的一动点,且直线PD PC 、与平面α所成角相等,则四棱锥P ABCD -体积的最大值为()A.18B.36C.24D.48【答案】B 【解析】【分析】首先根据线面角的定义得12PA DA PB BC ==,再在平面α内,建立平面直角坐标系,则()()3030A B -,,,,设()()0P x y y >,,得出点P 的轨迹,从而确定点P 到平面ABCD距离的最大值,即可求解体积的最大值.【详解】DA l ⊥ ,αβ⊥,l αβ= ,AD β⊂AD α∴⊥,同理BC α⊥,DPA ∴∠为直线PD 与平面α所成的角,CPB ∠为直线PC 与平面α所成的角,DPA CPB ∴∠=∠,又90DAP CBP ∠=∠=︒,DAP CPB ∴~ ,3162PA DA PB BC ===,在平面α内,以AB 为x 轴,以AB 的中垂线为y 轴建立平面直角坐标系,则()()3030A B -,,,,设()()0P x y y >,,∴=,整理可得:()22516x y ++=,P ∴在α内的轨迹为()50M -,为圆心,以4为半径的上半圆,所以点P 到直线AB 距离的最大值是半径4,因为αβ⊥,l αβ= ,点P 到AB 距离就是点P 到平面ABCD 的距离即点P 到平面ABCD 距离的最大值是4,所以四棱锥P ABCD -体积的最大值()1114366436332ABCD V S =⨯⨯=⨯⨯+⨯⨯=.故选:B8.在正四棱台1111ABCD A B C D -中,112AB A B =,1AA =.当该正四棱台的体积最大时,其外接球的表面积为()A.332πB.33πC.572π D.57π【答案】D 【解析】【分析】根据正棱台的性质,表示出棱台的高与边长之间的关系,根据棱台的体积公式,将体积函数式子表示出来,利用不等式求解最值,得到棱台的高.因为外接球的球心一定在棱台上下底面中心的连线及其延长线上,通过作图,数形结合,求出外接球的半径,得到表面积.【详解】图1设底边长为a ,原四棱锥的高为h ,如图1,1,O O 分别是上下底面的中心,连结1OO ,11O A ,OA ,根据边长关系,知该棱台的高为2h,则11112173224ABCD A B C D h a h V -==,由1AA =11AOO A为直角梯形,111124O A A B a ==,2222OA AB a ===h =,11112724ABCD A B C D a h V -==283=当且仅当22482a a =-,即4a =时等号成立,此时棱台的高为1.上底面外接圆半径111r A O ==r AO ==,设球的半径为R ,显然球心M 在1OO 所在的直线上.显然球心M 在1OO 所在的直线上.图2当棱台两底面在球心异侧时,即球心M 在线段1OO 上,如图2,设OM x =,则11O M x =-,01x <<,显然1MA MA R===,即=解得0x <,舍去.图3当棱台两底面在球心异侧时,显然球心M 在线段1O O 的延长线上,如图3,设OM x =,则11O M x =+,显然1MC MA R ====解得52x =,572R ==,此时,外接球的表面积为225744572R πππ⎛=⨯= ⎝⎭.故选:D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.以下四个命题表述正确的是()A.若直线l 的斜率为l 的倾斜角为π3-B.三棱锥-P ABC 中,E F 、分别为PB PC 、的中点,23PG PA =,则平面EFG 将该三棱锥所分的两部分几何体的体积之比为1:5,即:1:5P EFG EFG ABC V V --=C.若直线l 过点(2,1)P -且在两坐标轴上的截距之和为0,则直线l 的方程为30x y --=D.在四面体O ABC -中,若,OA BC OB AC ⊥⊥,则OC AB ⊥【答案】BD 【解析】【分析】根据倾斜角的定义即可判断A ;由题意可得14PEF PBC S S =△△,点G 到平面PBC 的距离是点A 到平面PBC 的距离的23,再根据棱锥的体积公式计算即可判断B ;分直线l 过原点和不过原点两种情况讨论,即可判断C ;将,,AB AC BC uu u r uuu r uu u r 分别用,,OA OB OC表示,再根据数量积的运算律及空间向量的线性运算即可判断D.【详解】解:对于A ,若直线l 的斜率为l 的倾斜角为2π3,故A 错误;对于B ,因为E F 、分别为PB PC 、的中点,所以14PEF PBC S S =△△,设点A 到平面PBC 的距离为h ,点G 到平面PBC 的距离为h ',因为23PG PA = ,所以23'=h h ,则13P ABC A PBC PBC V V S h --==,11213436P GEF G PEF PBC P ABC V V S h V ---==⋅⋅= ,则56EFG ABC P ABC P EFG P ABC V V V V ----==-,所以:1:5P EFG EFG ABC V V --=,故B 正确;对于C ,当直线l 过原点时,直线方程为12y x =-,当直线l 不过原点时,设直线方程为1x y a a+=-,则有211a a-+=-,解得3a =,所以直线方程为133x y-=,即30x y --=,综上,所求直线方程为12y x =-或30x y --=;对于D ,在四面体O ABC -中,,,AB OB OA AC OC OA BC OC OB =-=-=-,因为,OA BC OB AC ⊥⊥,所以()()0,0OA BC OA OC OB OB AC OB OC OA ⋅=⋅-=⋅=⋅-=,即,OA OC OA OB OB OC OA OB ⋅=⋅⋅=⋅ ,所以OA OC OB OC ⋅=⋅ ,即()0OA OB OC -⋅= ,所以0BA OC ⋅=,所以AB OC ⊥,故D 正确.故选:BD .10.在三棱锥-P ABC 中,已知PA ⊥底面ABC ,AB BC E F ⊥,、分别是线段PB PC 、上的动点.则下列说法正确的是()A.当AE PB ⊥时,AE PC⊥B.当AF PC ⊥时,AEF △一定为直角三角形C.当//EF BC 时,平面AEF ⊥平面PABD.当PC ⊥平面AEF 时,平面AEF 与平面PAB 不可能垂直【答案】ACD 【解析】【分析】对A ,根据PA ⊥底面ABC 得到PA BC ⊥,结合AB BC ⊥得到BC ⊥平面PAB ,则BC AE ⊥,AE PB ⊥ ,最后利用线面垂直的判定得到⊥AE 平面BCP ,则AE PC ⊥;对B ,取点E 位于点B 处即可判断,对C ,由BC ⊥平面PAB ,//EF BC 得到EF ⊥平面PAB ,则平面AEF ⊥平面PAB ,对D ,利用反证法,假设平面AEF ⊥平面PAB ,根据面面垂直的性质定理得到线面垂直,从而得到与基本事实相矛盾的结论,所以当PC ⊥平面AEF 时,平面AEF 与平面PAB 不可能垂直.【详解】对A 选项,PA ⊥ 底面ABC ,且BC ⊂平面ABC ,PA BC ∴⊥,AB BC ⊥ ,PA AB A = ,且,PA AB ⊂平面PAB ,BC ∴⊥平面PAB ,AE ⊂ 平面PAB ,BC AE ∴⊥,AE PB ⊥ ,BC PB B = ,且,BC PB ⊂平面BCP ,AE ∴⊥平面BCP ,PC ⊂ 平面BCP ,AE PC ∴⊥,故A 正确,对B 选项,当AF PC ⊥时,无法得出AEF △一定为直角三角形,例如E 点取点,B ABF 不是直角三角形,若90AFB ∠= ,则BF AF ⊥,又AF PC ⊥ ,BF PC F ⋂=,,BF PC ⊂平面BCP ,则AF ⊥平面BCP ,BC ⊂ 平面BCP ,则AF BC ⊥,而PA BC ⊥,AF PA A = ,,AF PA ⊂平面ACP ,则BC ⊥平面ACP ,AC ⊂ 平面ACP ,则BC AC ⊥,显然不成立,故此时90AFB ∠≠ ,若90BAF ∠= ,则AF AB ⊥,AP AB ⊥ ,AF AP A ⋂=,,AF AP ⊂平面ACP,AB ∴⊥平面ACP ,AC ⊂ 平面ACP ,AB AC ∴⊥,显然不成立,故此时90BAF ∠≠ ,若90ABF ∠= ,则BF BA ⊥,而CB BA ⊥,,BF CB ⊂平面BCP ,BF CB B = ,所以BA ⊥平面BCP ,BP ⊂ 平面BCP ,BA BP ∴⊥,显然不成立,故90ABF ∠≠ ,故B 错误,对C 选项,由A 选项证得BC ⊥平面PAB ,//EF BC Q ,EF ∴⊥平面PAB ,EF ⊂ 平面AEF ,∴平面AEF ⊥平面PAB ,故C 正确,对D 选项,在平面PAB 内,过点P 作AE 的垂线,垂足为G ,假设平面AEF ⊥平面PAB , 平面AEF ⋂平面PAB AE =,PG AE ⊥,且PG ⊂平面PAB ,PG ∴⊥平面AEF ,而若此时PC ⊥平面AEF ,这与过平面外一点作平面的垂线有且只有一条矛盾,故当PC ⊥平面AEF 时,平面AEF 与平面PAB 不可能垂直,故D 正确,故选:ACD.11.已知正方体1111ABCD A B C D -的棱长为2,E 为线段1AA 的中点,AP AB AD λμ=+,其中λ,[]0,1μ∈,则下列选项正确的是()A.当12λ=时,三棱锥11A PCD -的体积为定值B.当34μ=时,1B P PD +C.当1λμ+=时,直线1A P 与平面11B D E 的交点轨迹长度为2D.当11,23λμ==时,点1B 到平面11PC D 的距离为61313【答案】ABD 【解析】【分析】对A :由题意确定点P 的位置,利用转换顶点法求体积;对B :由题意确定点P 的位置,借助于展开图分析求解;对C :由题意确定点P 的位置,分析可得直线1A P 与平面11B D E 的交点轨迹为MN ,即可求得结果;对D :由题意确定点P 的位置,利用等积法求点到面的距离.【详解】对A :取,AB CD 的中点,M N ,连接MN ,则MN AD ,∵11A D AD ,∴MN 11A D ,MN ⊄平面11ACD ,11A D ⊂平面11ACD ,∴MN 平面11ACD ,若12λ=,则点P 在线段MN 上,∴点P 到平面11ACD 的距离相等,过N 作1NF CD ⊥,垂足为F ,∵11A D ⊥平面11CDD C ,1,CD NF ⊂平面11CDD C ,∴11111,CD A D NF A D ⊥⊥1111CD A D D ⋂=,111,CD A D ⊂平面11ACD ,∴NF ⊥平面11ACD ,故三棱锥11P ACD -的高为2NF =,∴1111122122323A PCD P A CD V V --==⨯⨯⨯⨯(定值),A 正确;对B :分别在,AD BC 上取点,M N ,使得3AM BNDM NC==,连接11,,MN A M B N ,则MN AB ,又∵AB 11A B ,∴MN 11A B ,则11,,,A B M N 四点共面,135,22BN B N ===若34μ=,则P MN ∈,故1B P ⊂平面11A B NM ,如图,将平面11A B NM 和平面CDMN 对接成一个平面时,则113B C B N NC =+=,∴11B P PD B D +≥=B 正确;对C :若1λμ+=,则P BD ∈,1A P ⊂平面1A BD ,设1111,A D D E M A B B E N ==I I ,则平面1A BD ⋂平面11B D E MN =,即直线1A P 与平面11B D E 的交点轨迹为MN ,∵1112A M A N MD BN ==,∴12233MN BD ==,故直线1A P 与平面11B D E 的交点轨迹长为223,C 错误;对D :分别在,AD BC 上取点,M N ,使得12AM BN DM NC ==,连接11,,MN MD NC ,则MN CD ,MN =CD ,∵11C D CD ,11C D =CD ,∴MN 11C D ,11MN C D =,则11MNC D 为平行四边形,又∵11C D ⊥平面11AA D D ,1MD ⊂平面11AA D D ∴111C D MD ⊥,则11MNC D 为矩形,若11,23λμ==,则点P 为MN 的中点,12133D M ==,设点1B 到平面11PC D 的距离为d ,由111111B PC D P B C D V V --=,即1111222232332d ⨯⨯⨯⨯=⨯⨯⨯⨯,解得13d=,故点1B 到平面11PC D 的距离为61313,D 正确;故选:ABD.12.若实数,x y 满足x -=)A.x 的最小值是0B.x 的最大值是5C.若关于y 的方程有一解,则x 的取值范围为[){}1,45D.若关于y 的方程有两解,则x 的取值范围为(4,5)【答案】AB 【解析】【分析】根据特殊值可判断A 项;设t =t ⎡∈⎣,原方程即为2t x -+=,将t 当成变量,设()2f t t x =-+,()g t =t ⎡∈⎣,原方程有解等价于()f t 的图象和()g t 的图象有公共点,即可利用数形结合解出.【详解】对于A 项:由已知可得,0x =≥,且当0x =时,解得0y =,符合题意,故A 项正确;当0x >时,令t =0t ≥,又0x y -≥,则t ≤,即t ⎡∈⎣,则原方程可化为2t x -+=.设()2f t t x =-+,()g t =t ⎡∈⎣,整理得()20t f t x +-=,t ⎡∈⎣,则()f t 的图象是斜率为2-的直线的一部分;整理可得()222t g t x +=,t ⎡∈⎣,()g t 的四分之一圆.如图,作出函数()y f t =与()y g t =的图象,则问题等价于()f t 的图象和()g t 的图象有公共点,观察图形可知,当直线与圆相切时,直线()2f t t x =-+的截距最大,此时x 有最大值,由=得5x =,故B 项正确;当直线过点(时,x =,解得1x =或0x =(舍去);当直线过点)时,x =4x =或0x =(舍去).因此,要使直线与圆有公共点,则有[]1,5x ∈,综上,[]{}1,50x ∈ ,故x 的最大值为5,最小值为0.对于C 、D 项:综上并结合图象可知,当0x =或5x =或[)1,4x ∈时,y 有一解;当[)4,5x ∈时,y 有两解.故C 、D 项错误.故选:AB .三、填空题:本大题共4小题,每小题5分,共20分.13.若直线120kx y k -+-=与圆229x y +=分别交于M 、N 两点.则弦MN 长的最小值为___________.【答案】4【解析】【分析】分析直线过定点,再由勾股定理即可求解.【详解】由圆229x y +=可得圆心()0,0O ,半径为3,直线120kx y k -+-=,即()210k x y --+=,直线过定点P (2,1),又因为22219+<,所以点在圆的内部,当圆心到直线MN 距离最大时,弦长MN 最小,此时OP MN ⊥,此时4MN ==,故答案为:4.14.如图,在四面体A BCD -中,2==AC BD ,AC 与BD 所成的角为60︒,M 、N 分别为AB 、CD 的中点,则线段MN 的长为_______.【答案】1或1【解析】【分析】取BC 的中点E ,连接EM 、EN ,求出MEN ∠的值,利用余弦定理可求得线段MN 的长.【详解】取BC 的中点E ,连接EM 、EN ,M 、E 分别为AB 、BC 的中点,//ME AC ∴且112ME AC ==,同理可得EN //BD 且112EN BD ==,MEN ∴∠为异面直线AC 与BD 所成的角或其补角,则60MEN ∠= 或120 .在MEN 中,1EM EN ==.若60MEN ∠= ,则MEN 为等边三角形,此时,1MN =;若120MEN ∠= ,由余弦定理可得MN =综上所述,1MN =故答案为:115.已知ABC 的一条内角平分线所在的直线方程为y x =,两个顶点坐标分别为(1,1),(3,2)B C -,则边AC 所在的直线方程为__________.(结果用一般式表示)【答案】3250x y --=【解析】【分析】根据题意可知,y x =是角A 的平分线,所以点B 关于角平分线的对称点B '在直线AC 上,即可求得边AC 所在的直线方程.【详解】由题意可知,直线y x =为三角形内角A 的平分线,所以,点B 关于角平分线y x =的对称点B '在直线AC 上,设(,)B a b ',即1111122b a b a -⎧=-⎪⎪+⎨+-⎪=⎪⎩,解得1,1a b ==-,所以(1,1)B '-此时直线BC '所在直线方程即为边AC 所在的直线方程,即212(3)31y x +-=--,整理得3250x y --=.故答案为:3250x y --=16.已知数列{}n a 满足:()()()1*21131n n n n a a n n ++-+-=+∈N ,若121a a ==,则数列{}n a 的前20项和20S =___________.【答案】115-【解析】【分析】分别讨论*21,n m n m m =-=∈N 、,由累加法得2122m m a a ++、的通项,即可求20S .【详解】当*21,n m m =-∈N 时,()()()2212121212111321162m m m m m m a a a a m m -+-+--+-=-=-+=-,∴()()212121212331126121216121312m m m m m a a a a a a a a m m m m m m m m ++---=-+-++-+=+-+++-++=-+=++ ∴()()2221319312912910a a a +++=⨯++++++++ ;当*2,n m m =∈N 时,()()2122222221161m m m m m m a a a a m +++-+-=-+=+,即()22261m m a a m +-=-+,∴()()222222224222612116113412m m m m m a a a a a a a a m m m m m m m m ++-=-+-++-+=-+-+++-+-+=-+=--+ ∴()()22224203129412910a a a +++=-⨯+++-⨯++++ .故()22220131924203129(129)10S a a a a a a =+++++++=⨯++++++++ ()()2229(19)31294129103201152+-⨯+++-⨯++++=-⨯+=- 故答案为:115-四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.如图,四边形ABCD 是圆柱OQ 的轴截面,点P 在圆柱OQ 的底面圆周上,G 是DP 的中点,圆柱OQ 的底面圆的半径2OA =,侧面积为,120AOP ∠=o.(1)求证:AG BD ⊥;(2)求直线PD 与平面ABD 所成角的正弦值.【答案】(1)证明见解析(2)24【解析】【分析】(1)根据圆柱侧面积公式可求得母线长AD ,利用余弦定理可求得AP ,根据等腰三角形三线合一性质可证得AG DP ⊥;由AP BP ⊥,BP AD ⊥可证得BP ⊥平面ADP ,由线面垂直性质可得BP AG ⊥;利用线面垂直的判定和性质可证得结论;(2)取OB 中点E ,根据等腰三角形三线合一和线面垂直性质可证得PE ⊥平面ABD ,由线面角定义可知所求角为PDE ∠,根据长度关系可得结果.【小问1详解】由圆柱侧面积可知:2π4πOA AD AD ⋅⋅=⋅=,解得:AD =2OA OP ==,120AOP ∠=o,AP ∴=,AD AP ∴=,又G 为DP 中点,AG DP ∴⊥;AB 是圆O 的直径,AP BP ∴⊥;AD ⊥ 平面ABP ,BP ⊂平面ABP ,BP AD ∴⊥,又,AD AP ⊂平面ADP ,AD AP A = ,BP ∴⊥平面ADP ,AG ⊂ 平面ADP ,BP AG ∴⊥,又,BP DP ⊂平面BDP ,BP DP P = ,AG ∴⊥平面BDP ,BD ⊂Q 平面BDP ,AG BD ∴⊥.【小问2详解】取OB 中点E ,连接PE ,18060BOP AOP ∠=-∠= ,OB OP =,OBP ∴△为等边三角形,PE AB ∴⊥;AD ⊥ 平面ABP ,PE ⊂平面ABP ,PE AD ⊥∴;AB AD A =Q I ,,AB AD ⊂平面ABD ,PE ∴⊥平面ABD ,PDE ∴∠即为直线PD 与平面ABD 所成角,DP =,PE ==,2sin4PE PDE DP ∴∠==,即直线PD 与平面ABD 所成角的正弦值为4.18.如图,P 为ABC 内的一点,BAP ∠记为α,ABP ∠记为β,且α、β在ABP 中的对边分别记为,,(2)sin cos m n m n ββ+=,π,0,3αβ⎛⎫∈ ⎪⎝⎭.(1)求APB ∠;(2)若1,2AB BP AC AP AP PC ===⊥,,求线段AP 和BC 的长.【答案】(1)2π3(2)1AP =,BC =【解析】【分析】(1)首先利用正弦定理将(2)sin cos m n ββ+=化简为sin sin 3παβ⎛⎫=-⎪⎝⎭,再结合所给角的范围,即可求解.(2)利用余弦定理求出AP ,再结合AP PC ⊥150BPC ∠=︒,,利用余弦定理即可求出BC .【小问1详解】已知()2sin cos m n ββ+=,由正弦定理可得22sin sin sin cos αββββ+=,由sin 0β≠,31sin cos sin sin sin 223παββαβ⎛⎫∴=-⇒= ⎪⎝⎭,πππ,0,0,333αββ⎛⎫⎛⎫∈-∈ ⎪ ⎪⎝⎭⎝⎭,,3παβ=-,233APB ππαβ+=⇒∠=.【小问2详解】在APB △中,由余弦定理得知:2222cos AB AP BP AP BP APB=+-⋅⋅∠即231+1AP AP AP =+⇒=又AP PC ⊥ ,且2AC AP PC =⇒=,又150BPC ∠=︒ ,在BPC △中,2222cos BC PB PC PB PC BPC =+-⋅⋅∠,2312BC BC =+⇒=19.如图,在平面直角坐标系xOy 中,已知圆22:40C x y x +-=及点,(1,0)(1,2)A B -.(1)若直线l 过点B ,与圆C 相交于M N 、两点,且||MN =l 的方程;(2)圆C 上是否存在点P ,使得22||12||PA PB +=成立?若存在,求点P 的个数;若不存在,请说明理由.【答案】(1)1x =或34110x y +-=(2)存在,两个【解析】【分析】(1)根据垂径定理可得圆心到直线l 的距离为1,然后利用点到直线的距离即可求解;(2)假设圆C 上存在点P ,设(,)P x y ,则22(2)4x y -+=,利用题干条件得到点P 也满足22(1)4x y +-=,根据两圆的位置关系即可得出结果.【小问1详解】圆22:40C x y x +-=可化为22(2)4x y -+=,圆心为(2,0),2r =,若l 的斜率不存在时,1l x =:,此时||MN =.当l 的斜率存在时,设l 的斜率为k ,则令:2(1)l y k x -=-,因为||MN =1d ==314k =⇒=-,34110x y ∴+-=所以直线l 的方程为1x =或34110x y +-=.【小问2详解】假设圆C 上存在点P ,设(,)P x y ,则22(2)4x y -+=,222222||||(1)(0)(1)(2)12PA PB x y x y +=++-+-+-=,即22230x y y +--=,即22(1)4x y +-=,|22|22-<<+ ,22(2)4x y ∴-+=与22(1)4x y +-=相交,则点P 有两个.20.已知数列{}n a 的前n 项和为n S ,且22nn n S a =-.(1)求证:2n n a ⎧⎫⎨⎬⎩⎭是等差数列,并求出{}n a 的通项公式;(2)设3(2)n nn b n a +=+,求证:1231n b b b b ++++< .【答案】(1)证明见解析;()112n n a n -=+⋅(2)证明见解析【解析】【分析】(1)利用公式()()1112n nn S n a S S n -⎧=⎪=⎨-≥⎪⎩得到1122n n n a a --=+,可构造等差数列并求通项.(2)求出的通项,利用裂项相消求和证明不等式.【小问1详解】因为22n n n S a =-①,所以2n ≥时,11122n n n S a ---=-②,-①②得112222n n n n n a a a --=--+,即1122n n n a a --=+,2n ≥,所以111222n n n n a a ---=,2n ≥,在①式中,令1n =,得12a =,所以数列2n n a ⎧⎫⎨⎬⎩⎭是以1为首项12为公差的等差数列.所以111(1)222n n a n n +=+-⋅=,所以()112n n a n -=+⋅.【小问2详解】)由121311(2)(1)2(1)2(2)2n n n n n b n n n n ---+==-++⋅+⋅+⋅,所以1230011211111(1()(3232424252n b b b b ++++=-+-+-+⨯⨯⨯⨯⨯ 2111111(1)2(2)2(2)2n n n n n n ---⎡⎤+-=-⎢⎥+⋅+⋅+⋅⎣⎦.因为110(2)2n n ->+⋅,所以1231n b b b b ++++< ,得证.21.在①2AE =,②AC BD ⊥,③EAB EBA ∠=∠,这三个条件中选择一个,补充在下面问题中,并给出解答.如图,在五面体ABCDE 中,已知,,//AC BC ED AC ⊥,且22,AC BC ED DC DB =====.(1)设平面BDE 与平面ABC 的交线为l ,证明://l 平面ACDE ;(2)求证:平面ABE ⊥平面ABC ;(3)线段BC 上是否存在一点F ,使得平面AEF 与平面ABF 夹角的余弦值等于43,若存在,求BF BC的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)答案见解析;(3)线段以上不存在点F ,使得平面AEF 与平面ABF 夹角的余弦值等于54343,理由见解析.【解析】【分析】(1)由线面平行的判定定理证线面平行//DE 平面ABC ,,再由线面平行的性质定理得线线平行//DE l ,从而再得证线面平行;(2)选①,取AC 中点G ,BC 中点,O AB 中点H ,连接,,EG DO OH ,由勾股定理证明AG EG ⊥,然后证明AC ⊥平面BCD ,从而得面面垂直,由面面垂直的性质定理得线面垂直,从而得线线垂直DO ⊥平面ABC ,又有OH BC ⊥,然后以O 为坐标原点,,,OD OH OB 为,,x y z 轴,可建立如图所示空间直角坐标系,用空间向量法证明面面垂直;选②,先证明平面ABC ⊥平面BCD ,然后取BC 中点O ,AB 中点H ,连接,DO OH ,证明DO ⊥平面ABC ,然后同选①,选③,取BC 中点O ,AB 中点H ,连接,,OD OH EH ,结合勾股定理证明BD DE ⊥,然后证明证明DO ⊥平面ABC ,再然后同选①;(3)设在线段BC 上存在点()()0,,011F t t -≤≤,使得平面AEF 与平面ABF 夹角的余弦值等于54343,然后由空间向量法求二面角的余弦,求解t ,有解说明存在,无解说明不存在.【小问1详解】//DE AC ,AC ⊂平面ABC ,DE ⊄平面ABC ,//DE ∴平面ABC ,又DE ⊂ 平面BDE 且平面BDE ⋂平面=ABC l ,//DE l∴又DE ⊂ 平面ACDE ,l ⊄平面ACDE ,//l ⇒平面ACDE .【小问2详解】若选①,取AC 中点G ,BC 中点,O AB 中点H ,连接,,EG DO OH ,//ED AC ,12CG AC ED ==,∴四边形EDCG 为平行四边形,EG CD ∴∥,EG ∴=112AG AC ==,2AE =,222AG EG AE ∴+=,AG EG ∴⊥,又//CD EG ,AC CD ∴⊥,又AC BC ⊥,BC CD C ⋂=,,BC CD ⊂平面BCD ,AC ∴⊥平面BCD ,AC ⊂ 平面ABC ,∴平面ABC ⊥平面BCD ,BD CD = ,DO BC ∴⊥,又DO ⊂平面BCD ,平面BCD 平面ABC BC =,DO ∴⊥平面ABC ,又//OH AC ,AC BC ⊥,OH BC ∴⊥;综上所述:,,DO OH BC 两两互相垂直.则以O 为坐标原点,,,OD OH OB 为,,x y z 轴,可建立如图所示空间直角坐标系,则()2,1,0A -,()0,1,0B,(E ,()2,2,0AB ∴=-,(1,BE =- ,DO ⊥ 平面ABC ,∴平面ABC 的一个法向量()0,0,1m = ;设平面ABE 的法向量()1111,,n x y z = ,则11111112200AB n x y BE n x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令11x =,解得:11y =,10z =,()1=1,1,0∴ n ,10m n ∴⋅= ,即1m n ⊥ ,∴平面ABE ⊥与平面ABC .若选②,AC BD ^ ,AC BC ⊥,BC BD B = ,,BC BD ⊂平面BCD ,AC ∴⊥平面BCD ,AC ⊂ 平面ABC ,∴平面ABC ⊥平面BCD ,取BC 中点O ,AB 中点H ,连接,DO OH ,BD CD = ,DO BC ∴⊥,又DO ⊂平面BCD ,平面BCD 平面ABC BC =,DO ∴⊥平面ABC ,又//OH AC ,AC BC ⊥,OH BC ∴⊥;综上所述:,,DO OH BC 两两互相垂直.以下同选①;若选③,取BC 中点O ,AB 中点H ,连接,,OD OH EH ,DC BD ==DO BC ∴⊥,又2BC =,DO ∴=,O H 分别为,BC AB 中点,12OH AC ∴∥,又12ED AC ∥,OH ED ∴∥,∴四边形DEHO为平行四边形,EH DO ∴==AC BC ⊥,2AC BC ==,AB ∴=,12EH AB ∴=,AE BE ∴⊥,EAB EBA ∠=∠ ,2∴==BE AE ,222BD DE BE ∴+=,BD DE ∴⊥,又//DE AC ,AC BD ∴⊥,又AC BC ⊥,BC BD B = ,,BC BD ⊂平面BCD ,AC ∴⊥平面BCD ,AC ⊂ 平面ABC ,∴平面ABC ⊥平面BCD ,又DO BC ⊥,DO ⊂平面BCD ,平面BCD 平面ABC BC =,DO ∴⊥平面ABC ,又//OH AC ,AC BC ⊥,OH BC ∴⊥;综上所述:,,DO OH BC 两两互相垂直.以下同选①;【小问3详解】设在线段BC 上存在点()()0,,011F t t -≤≤,使得平面AEF 与平面ABF夹角的余弦值等于43,由(2)得:(1,,EF t =-,(AE =- ,设平面AEF 的法向量()2222,,n x y z = ,则2222222200AE n x y EF n x ty ⎧⋅=-++=⎪⎨⋅=-+-=⎪⎩ ,令24y =,则())2221,1x t z t =+=-,())()221,1n t t ∴=+- ,∵面ABF 的法向量为(0,0,1)n = ,222cos ,43n n n n n n ⋅∴<>===⋅ ,化简得2417290t t -+=,21744291750∆=-⨯⨯=-<,方程无实数解,所以线段BC 上不存在点F ,使得平面AEF 与平面ABF 夹角的余弦值等于54343.22.已知a b ∈R ,,函数()()sin ,x f x e a x g x =-=(1)求函数()y f x =在()()0,0f 处的切线方程;(2)若()y f x =和()y g x =有公共点,(i )当0a =时,求b 的取值范围;(ii )求证:22e a b +>.【答案】(1)(1)1=-+y a x (2)(i))b ∞∈+;(ii )证明见解析【解析】【分析】(1)求出(0)f '可求切线方程;(2)(i )当0a =时,曲线()y f x =和()y g x =有公共点即为()2e ,0t s t bt t =-≥在[)0,+∞)b ∈+∞.(ii )曲线()y f x =和()y g x =有公共点即00sin e 0x a x +=,利用点到直线的距离x ≥22e >e sin x x x +,从而可得不等式成立.【小问1详解】()e cos x f x a x '=-,故(0)1f a '=-,而(0)1f =,曲线()f x 在点(0,(0))f 处的切线方程为()()101y a x =--+即()11y a x =-+.【小问2详解】(i )当0a =时,因为曲线()y f x =和()y g x =有公共点,故e x =设t =,故2x t =,故2e t bt =在[)0,+∞上有解,设()2e ,0t s t bt t =-≥,故()s t 在[)0,+∞上有零点,而()22e ,0t s t t b t '=->,若0b =,则()2e 0t s t =>恒成立,此时()s t 在[)0,+∞上无零点,若0b <,则()0s t '>在()0,+∞上恒成立,故()s t 在[)0,+∞上为增函数,而()010s =>,()()01s t s ≥=,故()s t 在[)0,+∞上无零点,故0b >,设()22e ,0t u t t b t =->,则()()2224e 0t u t t '=+>,故()u t 在()0,+∞上为增函数,而()00u b =-<,()()22e 10b u b b =->,故()u t 在()0,+∞上存在唯一零点0t ,且00t t <<时,()0u t <;0t t >时,()0u t >;故00t t <<时,()0s t '<;0t t >时,()0s t '>;所以()s t 在()00,t 上为减函数,在()0,t +∞上为增函数,故()()0min s t s t =,因为()s t 在[)0,+∞上有零点,故()00s t ≤,故200e 0t bt -≤,而2002e 0t t b -=,故220020e 2e 0t t t -≤即02t ≥,设()22e ,0t v t t t =>,则()()2224e 0t v t t '=+>,故()v t 在()0,+∞上为增函数,而2002e t b t =,故12b ≥=.(ii )因为曲线()y f x =和()y g x =有公共点,所以e sin x a x -=有解0x ,其中00x ≥,若00x =,则100a b -⨯=⨯,该式不成立,故00x >.故00sin e 0x a x +=,考虑直线00sin e 0x a x +=,表示原点与直线00sin e 0x a x +=上的动点(),a b 之间的距离,x ≥0222200e sin x a b x x +≥+,下证:对任意0x >,总有sin x x <,证明:当2x π≥时,有sin 12x x π≤<≤,故sin x x <成立.当02x π<<时,即证sin x x <,设()sin p x x x =-,则()cos 10p x x '=-≤(不恒为零),故()sin p x x x =-在[)0,+∞上为减函数,故()()00p x p <=即sin x <成立.综上,sin x x <成立.下证:当0x >时,e 1x x >+恒成立,()e 1,0x q x x x =-->,则()e 10x q x '=->,故()q x 在()0,+∞上为增函数,故()()00q x q >=即e 1x x >+恒成立.下证:22e >e sin xx x+在()0,+∞上恒成立,即证:212e sin x x x ->+,即证:2211sin x x x -+≥+,即证:2sin x x ≥,而2sin sin x x x >≥,故2sin x x ≥成立.e x >,即22e a b +>成立.【点睛】思路点睛:导数背景下零点问题,注意利用函数的单调性结合零点存在定理来处理,而多变量的不等式的成立问题,注意从几何意义取构建不等式关系,再利用分析法来证明目标不等式.。
初中生月考试题及答案
初中生月考试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是正确的?A. 地球是宇宙的中心B. 地球是围绕太阳转动的C. 太阳是围绕地球转动的D. 地球是静止不动的答案:B2. 以下哪个选项是正确的?A. 光速是宇宙中最快的速度B. 光速是宇宙中最慢的速度C. 光速是宇宙中唯一的速度D. 光速是可变的答案:A3. 以下哪个选项是正确的?A. 牛顿第一定律是惯性定律B. 牛顿第二定律是万有引力定律C. 牛顿第三定律是动量守恒定律D. 牛顿的所有定律都与运动有关答案:A4. 以下哪个选项是正确的?A. 氧气是可燃的B. 氧气是助燃的C. 氧气是不可燃的D. 氧气是有毒的答案:B5. 以下哪个选项是正确的?A. 细胞是所有生物的基本单位B. 细胞是所有植物的基本单位C. 细胞是所有动物的基本单位D. 细胞是所有微生物的基本单位答案:A6. 以下哪个选项是正确的?A. 植物通过光合作用产生氧气B. 植物通过呼吸作用产生氧气C. 植物通过光合作用产生二氧化碳D. 植物通过呼吸作用产生二氧化碳答案:A7. 以下哪个选项是正确的?A. 电子是原子核的一部分B. 电子是原子核外的粒子C. 电子是原子核内的粒子D. 电子是分子的一部分答案:B8. 以下哪个选项是正确的?A. 酸雨是由大气中的二氧化碳引起的B. 酸雨是由大气中的二氧化硫引起的C. 酸雨是由大气中的氧气引起的D. 酸雨是由大气中的氮气引起的答案:B9. 以下哪个选项是正确的?A. 所有动物都是恒温动物B. 所有动物都是变温动物C. 哺乳动物和鸟类是恒温动物D. 爬行动物和两栖动物是恒温动物答案:C10. 以下哪个选项是正确的?A. 光年是时间单位B. 光年是长度单位C. 光年是速度单位D. 光年是质量单位答案:B二、填空题(每题2分,共20分)1. 地球的自转周期是________小时。
答案:242. 人体最大的器官是________。
答案:皮肤3. 植物的光合作用主要发生在________。
福建省南安名校2023届高三上学期12月月考数学试题(解析版)
福建省南安名校2023届高三上学期12月月考数学试题一、单选题1.已知集合{}21log A x N x k =∈<<,集合A 中至少有2个元素,则( ) A .16k ≥B .16k >C .8k ≥D .8k >2.已知圆锥的轴截面是一个正三角形,则其侧面积与轴截面面积之比是( ) A .23B .233πC .23π D .32π 3.“函数tan y x =的图象关于0(,0)x 中心对称”是“0sin 0x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.若()()2i 2i 1z z -+=,则z 的最大值为( ) A .2B .3C .2D .35.已知等差数列{}n a 和等比数列{}n b 均为递增数列,且121a b ==,26a b =,若10k a b =,则k 的最小值为( ) A .3B .4C .5D .66.在ABC 中,点P 满足2BP PC =,过点P 的直线与AB ,AC 所在的直线分别交于点M ,N ,若AM x AB =,()0,0AN yAC x y =>>,则2x y +的最小值为( )A .3B .32C .1D .137.下图中的多边形均为正多边形,M ,N 是所在边的中点,双曲线均以1F ,2F 为焦点,且经过M ,N 两点.设图1,图2,图3中双曲线的离心率分别为1e ,2e ,3e ,则( )A .123e e e >>B .213e e e >>C .321e e e >>D .132e e e >>8.已知函数2()ln f x x x ax =+-有两个极值点m ,n ,且[1,2]m ∈,则()()f m f n -的最大值为( )A .2ln 23-B .2ln 23-C .3ln 24-D .3ln 24-二、多选题9.已知a ,b ,c 为非零实数,且0a b -≥,则下列结论正确的有( ) A .a c b c +≥+B .-≤-a bC .22a b ≥D .2211ab ba ≥10.设0ω>,函数()cos f x x x ωω=+在区间0,2π⎛⎤⎥⎝⎦上有零点,则ω的值可以是( )A .16B .56C .13D .2311.四边形ABCD 是边长为2的正方形,E 、F 分别为BC 、CD 的中点,分别沿AE 、AF 及EF 所在直线把AEB △、AFD △和EFC 折起,使B 、C 、D 三点重合于点P ,得到三棱锥P AEF -,则下列结论中正确的有( ). A .三棱锥P AEF -的体积为23B .平面APF ⊥平面EPFC .三棱锥中无公共端点的两条棱称为对棱,则三棱锥P AEF -中有三组对棱相互垂直D .若M 为AF 的中点,则过点M 的平面截三棱锥P AEF -的外接球,所得截面的面积的最小值为5π412.已知实数2a >,2b >,且a b ,若b a a b =,则a b -可能等于( )A .0.5B .1C .2D .3三、填空题13.同时将圆221x y +=和22240x y x y +--=的面积平分的直线的斜截式方程为________.14.12233445555555C 0.998C 0.998C 0.998C 0.998C 0.998++++≈_______(精确到0.01)15.已知定义R 上的函数()f x 满足()()()63f x f x f =-+,又()πf x +的图象关于点()π,0-对称,且()12022f =,则()2023f =______16.已知抛物线2:4C y x =,点()1,2P ,,,,A B M N 是抛物线C 上的四个动点,过点P 作分别作AB ,MN 的垂线,垂足分别为E ,F ,2PA PB PM PN k k k k +=+= ,则点E F 、距离的最大值为__________. 四、解答题17.记ABC 的内角,,A B C 的对边分别为,,a b c ,2sin sin sin()A C B A =+-. (1)证明:cos a A b=; (2)若2b ac =,求cos B .18.已知数列{}n a 满足113(1)1(1)1,22n nn n a a a +--+-==+. (1)设21n n b a -=,求数列{}n b 的通项公式; (2)求数列{}n a 的前2n 项和2n S .19.如图,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,//AD BC ,AB AD ⊥.24AB BC ==,E 是棱PD 上的动点(除端点外),,F M 分别为,AB CE 的中点.(1)求证://FM 平面PAD ;(2)若直线EF 与平面PAD 所成的最大角为30°,求平面CEF 与平面PAD 所成锐二面角的余弦值.20.某中学在一次考试后,对本年级学生物理成绩进行分析,随机抽取了300名同学的物理成绩(均在50~100分之间),将抽取的成绩分组为[)5060,,[)6070,,[)7080,,[)8090,,[]90100,,得到如图所示的频率分布直方图.(1)求这300名同学物理平均成绩x 与第三四分位数的估计值;(结果精确到1)(2)已知全年级同学的物理成绩服从正态分布()2N μσ,,其中μ取(1)中的x ,经计算,σ=11,现从全年级随机选取一名同学的物理成绩,求该成绩在区间()6295,的概率(结果精确到0.1);(3)根据(2)的条件,用频率估计概率,现从全年级随机选取n 名同学的物理成绩,若他们的成绩都在()6295,的概率不低于1%,求n 的最大值(n 为整数). 附:lg20.301≈,若()2~N ξμσ,,则()0.68P μσξμσ-<<+≈,()220.96P μσξμσ-<<+≈.21.已知椭圆()2222:10x y E a b a b +=>>2过坐标原点O 的直线交椭圆E 于,P A两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC .当C 为椭圆的右焦点时,PAC △2(1)求椭圆E 的方程;(2)若B 为AC 的延长线与椭圆E 的交点,试问:APB ∠是否为定值,若是,求出这个定值;若不是,说明理由.22.某大学有A ,B 两个餐厅为学生提供午餐与晚餐服务,甲、乙两位学生每天午餐和晚餐都在学校就餐,近100天选择餐厅就餐情况统计如下: 选择餐厅情况(午餐,晚餐)(),A A(),A B(),B A(),B B甲30天20天40天10天假设甲、乙选择餐厅相互独立,用频率估计概率.(1)分别估计一天中甲午餐和晚餐都选择A 餐厅就餐的概率,乙午餐和晚餐都选择B 餐厅就餐的概率;(2)记X 为甲、乙在一天中就餐餐厅的个数,求X 的分布列和数学期望()E X ;(3)假设M 表示事件“A 餐厅推出优惠套餐”,N 表示事件“某学生去A 餐厅就餐”,()0P M >,一般来说在推出优惠套餐的情况下学生去该餐厅就餐的概率会比不推出优惠套餐的情况下去该餐厅就餐的概率要大,证明:()()P M N P M N >.福建省南安名校2023届高三上学期12月月考数学试题一、单选题1.已知集合{}21log A x N x k =∈<<,集合A 中至少有2个元素,则( ) A .16k ≥ B .16k > C .8k ≥ D .8k >【答案】D【分析】由于集合A 中至少有2个元素,所以2log 3k >,从而可求出k 的取值范围 【详解】解:因为集合A 中至少有2个元素, 所以2log 3k >,解得8k >, 故选:D2.已知圆锥的轴截面是一个正三角形,则其侧面积与轴截面面积之比是( )A .23B C D 【答案】B【分析】分别计算侧面积和面积作比即可. 【详解】设底面圆的半径为r ,则母线长为2r , 得侧面积是212222r r r ππ⨯⨯=轴截面是一个正三角形,边长为2r , 则其面积2122sin6032r r r ⨯⨯⨯= .故选:B3.“函数tan y x =的图象关于0(,0)x 中心对称”是“0sin 0x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【分析】分别求出tan y x =与sin y x =的对称中心,比较两个中心关系.【详解】tan y x =的对称中心为(π,0),Z 2kk ∈,sin y x =的对称中心为(π,0),Z k k ∈,tan y x=的对称中心不一定为sin y x =的对称中心;sin y x =的对称中心一定为tan y x =的对称中心. 故选:B .4.若()()2i 2i 1z z -+=,则z 的最大值为( )A B C .2 D .3【答案】D【分析】根据题意结合共轭复数的概念运算整理的()2221b a -=+,即复数z 对应的点(),a b 在圆()2221x y +-=上,根据圆的性质求z 的最大值.【详解】设()=+i,,R z a b a b ∈,则()()2i=+2i,+2i=2i z a b z a b ----∵()()()()()222i 2i =2i 2i 21a b a b b z z a +----=⎡⎤⎡⎤=+⎣⎦+⎦⎣-∴复数z 对应的点(),a b 在圆()2221x y +-=上圆()2221x y +-=的圆心()0,2C ,半径=1r ,则z 的最大值为3OC r +=,其中O 为复平面的坐标原点 故选:D.5.已知等差数列{}n a 和等比数列{}n b 均为递增数列,且121a b ==,26a b =,若10k a b =,则k 的最小值为( ) A .3 B .4 C .5 D .6【答案】B【分析】由等差数列和等比数列的通项公式可得3k d =+,由0d >,即可得k 的最小值. 【详解】设等差数列{}n a 公差为d ,等比数列{}n b 公比为q , 则0d >,1q >,因为121a b ==,26a b =, 所以41d q +=①,而10k a b =, 所以81(1)k d q +-=②,由①②得:2(1)1(1)d k d +=+-, 即3k d =+,0d >,k *∈N ,所以k 的最小值为4. 故选:B6.在ABC 中,点P 满足2BP PC =,过点P 的直线与AB ,AC 所在的直线分别交于点M ,N ,若AM x AB =,()0,0AN yAC x y =>>,则2x y +的最小值为( )A .3B .32C .1D .13【答案】A【分析】由向量加减的几何意义可得233AB ACAP =+,结合已知有233AM AN AP x y =+,根据三点共线知21133x y+=,应用基本不等式“1”的代换即可求最值,注意等号成立的条件. 【详解】由题设,如下图示:23333BC AC AB AB ACAP AB BP AB AB -=+=+=+=+,又AM x AB =,()0,0AN yAC x y =>>,∴233AM AN AP x y=+,由,,M P N 三点共线,有21133x y +=, ∴21522522)23333333323(2)(x y x yx y y x x xy y y x +=+=⋅++≥++,当且仅当x y =时等号成立. 故选:A【点睛】关键点点睛:利用向量线性运算的几何表示,得到AP 、AM 、AN 的线性关系,根据三点共线有21133x y+=,再结合基本不等式求最值. 7.下图中的多边形均为正多边形,M ,N 是所在边的中点,双曲线均以1F ,2F 为焦点,且经过M ,N 两点.设图1,图2,图3中双曲线的离心率分别为1e ,2e ,3e ,则( )A .123e e e >>B .213e e e >>C .321e e e >>D .132e e e >>【答案】A【分析】由双曲线定义有122F F c =、122F N F N a -=,结合正多边形的性质求得12F N F N -关于c 的表达式,即可求各图对应双曲线的离心率.【详解】在图1中,122F F c =,又122(31)F N F N a c -==,则1232e =-在图2中,122F F c =,221210(2)2F N c c ⎛⎫=+ ⎪ ⎪⎝⎭,22F N =, 121022F N F N a --==,则2102e =-. 在图3中,122F F c =,212F N c =,由余弦定理得:2211221222cos 60F N F F F N F F F N =+-︒13=,121312F N F N a --==,则3131e =-. 因为232102131<,所以123e e e >>. 故选:A8.已知函数2()ln f x x x ax =+-有两个极值点m ,n ,且[1,2]m ∈,则()()f m f n -的最大值为( )A .2ln 23-B .2ln 23-C .3ln 24-D .3ln 24-【答案】C【分析】对()f x 求导得()f x ',得到m ,n 是2210x ax -+=两个根,由根与系数的关系可得m ,n 的关系,然后构造函数,利用导数求单调性,进而得最值.【详解】由2()ln f x x x ax =+-得:2121()2x ax f x x a x x-+=+-=' m ,n 是2210x ax -+=两个根,由根与系数的关系得:1,22a m n mn +==,故12n m=22222221()()ln ln lnln 24m f m f n m m am n n an m n m m n m-=+---+=-+=+-, 令[]2,1,4x m x =∈记[]1()ln 2,1,44g x x x x x =+-∈,则()222222111414()10444x x x g x x x x x----'=--==<,故()g x 在[]1,4x ∈上单调递减. ()()max 311n24g x g ==-故选:C二、多选题9.已知a ,b ,c 为非零实数,且0a b -≥,则下列结论正确的有( ) A .a c b c +≥+ B .-≤-a b C .22a b ≥ D .2211ab ba ≥ 【答案】ABD【解析】根据不等式的性质判断,错误的命题可举反例.【详解】因为0a b -≥,所以a b ≥.根据不等式的性质可知A ,B 正确; 因为a ,b 的符号不确定,所以C 不正确; 2222110a b ab ba a b --=≥. 可得2211ab ba ≥,所以D 正确. 故选:ABD .【点睛】本题考查不等式的性质,掌握不等式的性质是解题关键.10.设0ω>,函数()cos f x x x ωω=+在区间0,2π⎛⎤⎥⎝⎦上有零点,则ω的值可以是( )A .16B .56C .13D .23【答案】BCD【分析】由题得()2sin 6πω⎛⎫=-- ⎪⎝⎭f x x ,令6x k πωπ-=,求出,6k x ππωω=+解不等式062ππω<得解.【详解】由题得()cos 2sin 6f x x x x πωωω⎛⎫=+=-- ⎪⎝⎭,令6x k πωπ-=,解得,06k x ππωωω=+>,取k =0, 062ππω∴<,即13ω. 故选:BCD11.四边形ABCD 是边长为2的正方形,E 、F 分别为BC 、CD 的中点,分别沿AE 、AF 及EF 所在直线把AEB △、AFD △和EFC 折起,使B 、C 、D 三点重合于点P ,得到三棱锥P AEF -,则下列结论中正确的有( ). A .三棱锥P AEF -的体积为23B .平面APF ⊥平面EPFC .三棱锥中无公共端点的两条棱称为对棱,则三棱锥P AEF -中有三组对棱相互垂直D .若M 为AF 的中点,则过点M 的平面截三棱锥P AEF -的外接球,所得截面的面积的最小值为5π4【答案】BCD【分析】由条件结合线面垂直判定定理证明PA ⊥平面EFP ,根据面面垂直判定定理证明平面APF ⊥平面EPF ,判断B ,根据锥体体积公式求三棱锥P AEF -的体积判断A ,由线面垂直的性质判断C ,由球的截面的性质判断D.【详解】由已知22215F AE A =+22112=+=EF 翻折前AB BE ⊥,CE CF ⊥,AD DF ⊥, 翻折后,则有PA PE ⊥,PA PF ⊥,PE PF ⊥, 因为PA PE ⊥,PA PF ⊥,PE PF P =,,PE PF ⊂平面EFP ,所以PA ⊥平面EFP ,因为PA ⊥平面EFP ,PE PF ⊥,又1PE PF ==,2PA =,所以111123323P AEF A EFP EFPV V SAP --==⨯⨯=⨯⨯=,A 错误,因为PA ⊥平面EFP ,又PA ⊂平面APF ,所以平面APF ⊥平面EPF ,B 正确,因为PA ⊥平面EFP ,EF ⊂平面EFP ,所以PA EF ⊥, 因为PA PF ⊥,PE PF ⊥,PA PE P =,,PE PA ⊂平面PAE ,所以PF ⊥平面PAE ,又AE ⊂平面PAE ,所以PF ⊥AE , 同理可证PE AF ⊥,所以三棱锥P AEF -中有三组对棱相互垂直,C 正确, 将三棱锥P AEF -补成长方体PEQA FGNH -,则三棱锥P AEF -的外接球球心O 为体对角线PN 的中点, 且2226PN PE PF PA =++O 的半径为6R =, 所以,过点M 的平面截三棱锥P AEF -的外接球所得截面圆的半径设为r , 设球心O 到截面圆的距离为d ,则0d OM ≤≤, O 、M 分别为PN 、PH 的中点,则1122OM HN ==, 则102d ≤≤,又22r R d -12d =时,2r 取最小值54,所以过点M 的平面截三棱锥P AEF -的外接球,所得截面的面积的最小值为5π4,D 正确, 故选:BCD.12.已知实数2a >,2b >,且a b ,若b a a b =,则a b -可能等于( )A .0.5B .1C .2D .3【答案】AB【分析】问题可转化为,a b 是()ln xf x x=大于2的两个不同零点,利用导数研究单调性并作出图象,结合图象即可求解【详解】因为实数2a >,2b >,且a b ,若b a a b =,所以ln ln b a a b =,即ln ln b a a b =, 所以ln ln a ba b=, 令()ln xf x x=,()21ln xf x x -'=, 令0f x解得0e x <<,令()0f x '<解得e x >,所以()f x 在()0,e 单调递增,在()e,+∞上单调递减, 作出()ln xf x x=的图象如下:2a >,2b >,不妨设a b >,()()()()ln 2ln 4ln 22,4,24242f f f f ====, 由图象可知:e 4a <<,2e b <<,且422a b -<-=, 所以AB 正确,CD 错误; 故选:AB三、填空题13.同时将圆221x y +=和22240x y x y +--=的面积平分的直线的斜截式方程为________. 【答案】2y x =【分析】求出两圆圆心坐标,过两圆圆心的直线即为所求直线. 【详解】圆221x y +=的圆心为()0,0,圆22240x y x y +--=化为标准方程为:()()22125x y -+-=,其圆心为()1,2,同时将圆221x y +=和22240x y x y +--=的面积平分的直线过两圆圆心, 所以所求直线方程为()200010y x --=--,即2y x =. 故答案为:2y x =.14.12233445555555C 0.998C 0.998C 0.998C 0.998C 0.998++++≈_______(精确到0.01)【答案】30.84【分析】先利用二项式定理将原式化为5(10.998)1+-,再变形为5(20.002)1--,利用二项式定理展开,并近似计算.【详解】原式55(10.998)1(20.002)1=+-=--32051423255555555344C 2C 20.002C 20.002C 20.002C 20.002C 0.0021=-⨯+⨯-⨯+⨯-⨯-320.16130.84≈--=故答案为:30.84.15.已知定义R 上的函数()f x 满足()()()63f x f x f =-+,又()πf x +的图象关于点()π,0-对称,且()12022f =,则()2023f =______ 【答案】2022-【分析】根据()πf x +的图象关于点()π,0-对称判断函数为奇函数,再赋值法确定()3f 的值,进而得到函数是周期函数,找出()2023f 与()1f 的关系可得答案.【详解】()πf x +的图象关于点()π,0-对称,所以()f x 的图象关于点()0,0对称, 即()f x 为奇函数,在()()()63f x f x f =-+中,()()()()36333=0f f f f =-+∴,, 所以()()6f x f x =-,又()(),f x f x =--∴()()6f x f x --=-,()()6,f x f x ∴-=+()()()()612,12f x f x f x f x ∴-+=+∴=+, 所以()f x 是12T =的周期函数,()()()()()202312168776112022.f f f f f =⨯+==+=-=- 故答案为:2022-16.已知抛物线2:4C y x =,点()1,2P ,,,,A B M N 是抛物线C 上的四个动点,过点P 作分别作AB ,MN 的垂线,垂足分别为E ,F ,2PA PB PM PN k k k k +=+= ,则点E F 、距离的最大值为__________.【答案】【分析】设直线AB ,MN 的方程,与抛物线方程联立,运用韦达定理证明直线AB ,MN 是过定点的,运用几何意义即可求解.【详解】设直线AB 的方程为221212,,,,44y y x my n A y B y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,将x my n =+代入24y x =中有2440y my n --= ,故12124,4y y m y y n +==-,又1244,22PA PB k k y y ==++, 所以()()()121212124441442224212PA PB y y m k k y y y y y y m n++++=+===++++++-,解得1n =-, 故直线AB 过定点()1,0Q -.因此点E 在以PQ 为直径的圆上, 同理点F 在以PQ 为直径的圆上.PQ =; 故点E F 、距离的最大值为圆的直径故答案为:四、解答题17.记ABC 的内角,,A B C 的对边分别为,,a b c ,2sin sin sin()A C B A =+-. (1)证明:cos a A b=; (2)若2b ac =,求cos B . 【答案】(1)证明见解析..【分析】(1)将2sin sin sin()A C B A =+-化为2sin sin()sin()A B A B A =++-,利用两角和的正弦公式化简,结合正弦定理角化边,即可证明结论;(2)利用(1)的结论和题设,结合余弦定理可推出a c =,再用222cos 2a c b B ac +-=化简求值,可得答案.【详解】(1)由题意知,2sin sin()sin()A B A B A =++-, 所以2sin sin cos cos sin sin cos cos sin A B A B A B A B A =++-, 所以2sin 2sin cos A B A =,而(0,π),sin 0B B ∈≠ ,结合正弦定理,所以sin cos sin A aA B b==. (2)由(1)知:222cos 2a b c a A b bc+-==, 所以222ac ac c a =+-,即220a c ac -+=,所以2210a ac c+-=解得a c =(舍),所以2222211cos 11)2222a c b a c ac a c B ac ac c a +-+-⎛⎫===+-== ⎪⎝⎭. 18.已知数列{}n a 满足113(1)1(1)1,22n nn n a a a +--+-==+. (1)设21n n b a -=,求数列{}n b 的通项公式; (2)求数列{}n a 的前2n 项和2n S .【答案】(1)21nn b =-(2)123236n n S n +=⋅--【分析】(1)先化简()()1311122n nn n a a +--+-=+,再推导出111n n b b +++等于一个常数,即可求解;(2)结合第一问,先求出数列{}n a 的满足的规律,然后再求和.【详解】(1)由已知有:12=21,3(1)1(1)12,22n n n n n n a n k k Za a a n k k Z ++∈⎧--+-=+=⎨+=∈⎩,, 所以21+1+1n n b a -=,()1212212121111=2222222(1)2(1)n n n n n n n b a a a a a b ++---++=++=+=+=+=+, 其中11+1+12b a ==,所以数列{}1n b +为以2为首项,公比为2的等比数列. 所以11222n n n b -+=⨯=,得21n n b =-.(2)由(1)知:2121nn n b a -==-,22122(21)n n n a a -==-,所以1231232(21)(21)(21)(21)2[(21)(21)(21)(21)]n n n S =-+-+-++-+-+-+-++-1233[(21)(21)(21)(21)]n =-+-+-++-1233(2222)3n n =++++-2(12)3312n n -=⨯--13236n n +=⋅--.19.如图,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,//AD BC ,AB AD ⊥.24AB BC ==,E 是棱PD 上的动点(除端点外),,F M 分别为,AB CE 的中点.(1)求证://FM 平面PAD ;(2)若直线EF 与平面PAD 所成的最大角为30°,求平面CEF 与平面PAD 所成锐二面角的余弦值.【答案】(1)证明见解析 (2)9331【分析】(1)取CD 中点N ,连接,MN NF ,先明平面//MNF 平面PAD ,再证明结论;(2)先根据题意,建立空间直角坐标系,利用用向量数量积计算直线与平面成角正弦值,列方程求最值解,再用向量数量积求二面角的余弦值. 【详解】(1)证明:证明:取CD 中点N ,连接,MN NF , 因为M 为CE 中点,所以//MN DE , 因为MN ⊄平面PAD ,DE ⊂平面PAD 所以//MN 平面PAD ,又因为//AD BC ,F 为AB 中点, 所以//FN AD ,因为FN ⊄平面PAD ,AD ⊂平面PAD 所以//FN 平面PAD ,因为MN FN N ⋂=,MN 、FN ⊂平面MNF , 所以平面//MNF 平面PAD , 又因为MF ⊂平面MNF , 所以//MF 平面PAD .(2)解:建立如图所示的空间直角坐标系, 设4AD a =,()0,43E a t t -,()0,2t a ∈,则()0,0,0A ,()2,0,0F ,()4,2,0C , ()2,2,0FC →=,()2,4FE a t →=--,平面PAD 的法向量为()1,0,0m →=,直线EF 与平面PAD 所成的正弦值为FE mFE m→→→→⋅==⋅,当ta =1sin302=︒=, 解得1a =,(FE →=-, 设平面CEF 的法向量为(),,n x y z →=, 220230FC n x y FE n x y ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,令y=)n →=,3cos ,311n m n m n m⋅===⋅⋅ 所以平面CEF 与平面PAD20.某中学在一次考试后,对本年级学生物理成绩进行分析,随机抽取了300名同学的物理成绩(均在50~100分之间),将抽取的成绩分组为[)5060,,[)6070,,[)7080,,[)8090,,[]90100,,得到如图所示的频率分布直方图.(1)求这300名同学物理平均成绩x 与第三四分位数的估计值;(结果精确到1)(2)已知全年级同学的物理成绩服从正态分布()2N μσ,,其中μ取(1)中的x ,经计算,σ=11,现从全年级随机选取一名同学的物理成绩,求该成绩在区间()6295,的概率(结果精确到0.1);(3)根据(2)的条件,用频率估计概率,现从全年级随机选取n 名同学的物理成绩,若他们的成绩都在()6295,的概率不低于1%,求n 的最大值(n 为整数). 附:lg20.301≈,若()2~N ξμσ,,则()0.68P μσξμσ-<<+≈,()220.96P μσξμσ-<<+≈. 【答案】(1)73;79 (2)0.8 (3)20【分析】(1)利用题给条件和平均数与第三四分位数的定义即可求得这300名同学物理平均成绩x 与第三四分位数的估计值;(2)利用正态分布的性质即可求得该成绩在区间()6295,的概率; (3)利用独立事件同时发生的概率列出关于n 的不等式,解之即可求得n 的最大值. 【详解】(1)550.1650.3750.4850.1950.173x =⨯+⨯+⨯+⨯+⨯=. 35701078.7540+⨯=, 则这300名同学物理平均成绩x 与第三四分位数的估计值分别为73,79 (2)()()11629520.680.960.820.822P P ξμσξμσ<<=-<<+≈⨯+⨯=≈,(3)()0.80.01n≥,即0.8lg0.012log 0.0120.62lg0.83lg21n -≤==≈-, 故n 的最大值为20.21.已知椭圆()2222:10x y E a b a b +=>>过坐标原点O 的直线交椭圆E 于,P A两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC .当C 为椭圆的右焦点时,PAC △(1)求椭圆E 的方程;(2)若B 为AC 的延长线与椭圆E 的交点,试问:APB ∠是否为定值,若是,求出这个定值;若不是,说明理由. 【答案】(1)22142x y += (2)APB ∠为定值90【分析】(1)由离心率可得,,a b c 之间关系,根据通径长可得2b PC a=,由2PACPOCS S=可构造方程求得22,a b ,由此可得椭圆方程;(2)设直线():0AP y kx k =>,结合斜率公式可求得2AC kk =,由此可得直线AC 方程,将其与椭圆方程联立,结合韦达定理可求得B 点坐标,利用向量数量积的坐标运算可求得0PA PB ⋅=,由此可得结论. 【详解】(1)椭圆离心率22c e a ==,2212c a ∴=,则222212b a c a =-=, 当C 为椭圆右焦点时,212b PC a a ==; 211122222224PACPOCSSc a ac a ==⨯⋅===,解得:24a =,22b ∴=,∴椭圆E 的方程为:22142x y +=.(2)由题意可设直线():0AP y kx k =>,()00,P x kx ,()11,B x y , 则()00,A x kx --,()0,0C x ,0002AC kx kk x x ∴==+,∴直线()0:2k AC y x x =-; 由()0222142k y x x x y ⎧=-⎪⎪⎨⎪+=⎪⎩得:()22222002280k x k x x k x +-+-=, 2001222k x x x k ∴-+=+,则2010222k x x x k =++, ()2300110002222222k x k x k k y x x x x k k ⎛⎫∴=-=+-= ⎪++⎝⎭,23000222,22k x k x B x k k ⎛⎫∴+ ⎪++⎝⎭;2002222,22k x kx PB k k ⎛⎫∴=- ⎪++⎝⎭,又()002,2PA x kx =--,()20000222222022k x kx PA PB x kx k k ⎛⎫∴⋅=-⋅+-⋅-= ⎪++⎝⎭,则PA PB ⊥,APB ∴∠为定值90.【点睛】思路点睛:本题考查直线与椭圆综合应用中的定值问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式; ②利用0∆>求得变量的取值范围,得到韦达定理的形式; ③结合韦达定理的结论表示出所求量; ④化简整理可得定值.22.某大学有A ,B 两个餐厅为学生提供午餐与晚餐服务,甲、乙两位学生每天午餐和晚餐都在学校就餐,近100天选择餐厅就餐情况统计如下:假设甲、乙选择餐厅相互独立,用频率估计概率.(1)分别估计一天中甲午餐和晚餐都选择A 餐厅就餐的概率,乙午餐和晚餐都选择B 餐厅就餐的概率;(2)记X 为甲、乙在一天中就餐餐厅的个数,求X 的分布列和数学期望()E X ;(3)假设M 表示事件“A 餐厅推出优惠套餐”,N 表示事件“某学生去A 餐厅就餐”,()0P M >,一般来说在推出优惠套餐的情况下学生去该餐厅就餐的概率会比不推出优惠套餐的情况下去该餐厅就餐的概率要大,证明:()()P M N P M N >. 【答案】(1)0.3,0.4; (2)分布列见解析,1.9; (3)证明见解析.【分析】(1)由统计表确定甲午餐和晚餐都选择A 餐厅就餐频率和乙午餐和晚餐都选择B 餐厅就餐的频率,由频率估计概率即可;(2)由条件确定随机变量X 的可能取值,再求取各值的概率,根据期望的定义求期望;(3)由条件结合条件概率公式证明()()()P NM P N P M >⋅,由此证明()()P M N P M N >.【详解】(1)设事件C 为“一天中甲员工午餐和晚餐都选择A 餐厅就餐”, 事件D 为“乙员工午餐和晚餐都选择B 餐厅就餐”,因为100个工作日中甲员工午餐和晚餐都选择A 餐厅就餐的天数为30, 乙员工午餐和晚餐都选择B 餐厅就餐的天数为40, 所以()300.3100P C ==,()400.4100P D ==. (2)由题意知,甲员工午餐和晚餐都选择B 餐厅就餐的概率为0.1, 乙员工午餐和晚餐都选择A 餐厅就餐的概率为0.2,记X 为甲、乙两员工在一天中就餐餐厅的个数,则X 的所有可能取值为1、2, 所以()10.30.20.10.40.1P X ==⨯+⨯=,()()2110.9P X P X ==-==, 所以X 的分布列为:所以X 的数学期望()10.120.9 1.9E X =⨯+⨯=. (3)由题知()()P N M P N M >,即()()()()()()()1P NM P NM P N P NM P M P M P M ->=-,即()()()P NM P N P M >⋅,即()()()()()()()P NM P N P NM P N P M P N P NM ->⋅-, 即()()()()P NM P N P N P NM ⋅>⋅,即()()()()P NM P NM P N P N >,即()()P M N P M N >.。
高一月考政治试题及答案
高一月考政治试题及答案一、选择题(每题2分,共40分)1. 社会主义核心价值观中,属于个人层面的价值准则是()。
A. 富强、民主、文明、和谐B. 自由、平等、公正、法治C. 爱国、敬业、诚信、友善D. 创新、协调、绿色、开放、共享2. 我国坚持和完善社会主义基本经济制度,其根本目的是()。
A. 促进社会公平正义B. 保障人民民主权利C. 促进经济持续健康发展D. 保障和改善民生3. 我国社会主义民主政治的特有形式和独特优势是()。
A. 人民代表大会制度B. 民族区域自治制度C. 基层群众自治制度D. 多党合作和政治协商制度4. 我国社会主义市场经济体制的基本特征是()。
A. 公有制为主体,多种所有制经济共同发展B. 按劳分配为主体,多种分配方式并存C. 社会主义市场经济与社会主义基本制度相结合D. 宏观调控与市场调节相结合5. 我国宪法规定,公民的基本义务包括()。
A. 维护国家统一和民族团结B. 遵守宪法和法律C. 保守国家秘密D. 以上都是6. 我国社会主义法治建设的基本要求是()。
A. 有法可依、有法必依、执法必严、违法必究B. 法律面前人人平等C. 法律的普遍适用性D. 法律的稳定性和连续性7. 我国社会主义文化建设的根本任务是()。
A. 培育和践行社会主义核心价值观B. 弘扬中华优秀传统文化C. 增强国家文化软实力D. 推动文化创新8. 我国社会主义生态文明建设的核心是()。
A. 绿色发展B. 循环发展C. 低碳发展D. 可持续发展9. 我国社会主义现代化建设的总体布局是()。
A. 五位一体B. 四个全面C. 四个自信D. 三大攻坚战10. 我国社会主义核心价值观的基本内容是()。
A. 富强、民主、文明、和谐B. 自由、平等、公正、法治C. 爱国、敬业、诚信、友善D. 以上都是二、简答题(每题10分,共20分)1. 简述我国社会主义核心价值观的内涵及其在国家发展中的作用。
2. 阐述我国社会主义市场经济体制的基本特征及其对经济发展的意义。
月考试卷(试题)(含答案)2024-2025学年人教版数学六年级上册
月考试卷(1-2单元)2024-2025学年人教版数学六年级上册姓名:班级:一、单选题1.一堆化肥15吨,用去23,用去( )A.35吨B.10吨C.15吨D.23吨2.一个平行四边形,底长24米,高是底的58,这个平行四边形的面积是( )A.15平方米B.360平方米C.39平方米D.306平方米3.一根绳子,第一次用去37米,第二次用去37,如果第一次用去的比第二次长,那么原来这根绳子( )。
A.大于1米B.小于1米C.等于1米D.无法确定4.修一条1000米长的公路,甲队修了全长的25,余下的由乙队修完。
甲队比乙队少修了多少米?正确的列式是( )。
A.1000× 25B.1000×(1- 25- 25)C.1000×(1- 25)D.1000×(1- 25+ 25)5.养鸡场养公鸡400只,养的母鸡比公鸡的只数多58,母鸡比公鸡多( )只。
A.400×(1- 58)B.400× 58C.400×(1+ 58)D.400×(1+1+ 58)二、判断题6.1米的45等于4米的15。
( )7.89减去8个19等于0。
( )8.4吨的12和4个12吨一样重。
( )9.整数乘法的运算定律对于分数乘法同样适用。
( )10.一根绳子长2米,用去12后,还剩12米。
( )三、填空题11.甲数是78,乙数是甲数的37,乙数是 ;丙数是甲、乙两数积的倒数,丙数是 。
12.六(1)班有56人,美术小组人数占全班人数的18,美术小组有多少人?单位“1”的量是 ,求美术小组人数就是求 的 (几分之几),列式计算: .13.一本连环画有96页,优优第一天看了全书的14,第二天看了全书的38,优优第三天应该从第 页看起。
14.小华从家出发,向 走 m到达养鱼塘,再向 偏 ( )度走 m到达广播站,再向 走 m到达学校。
四、计算题15.计算下面各题。
初一月考试题及答案
初一月考试题及答案一、选择题(每题2分,共20分)1. 下列哪项不是地球的自然特征?A. 地球的形状B. 地球的颜色C. 地球的自转D. 地球的公转答案:B2. 以下哪个国家不属于G7集团?A. 美国B. 德国C. 印度D. 法国答案:C3. 光年是用来表示什么的长度单位?A. 时间B. 距离C. 质量D. 速度答案:B4. 以下哪种植物不属于被子植物?A. 玫瑰B. 松树C. 菊花D. 百合5. 人体最大的器官是什么?A. 心脏B. 肝脏C. 皮肤D. 肺答案:C6. 以下哪种元素是人体必需的微量元素?A. 铁B. 氧C. 碳D. 氢答案:A7. 以下哪个城市不是中国的直辖市?A. 北京B. 上海C. 重庆D. 杭州答案:D8. 以下哪种动物不是哺乳动物?A. 狗B. 猫C. 鸟D. 马答案:C9. 以下哪个国家位于非洲?B. 埃及C. 印度D. 澳大利亚答案:B10. 以下哪种物质不是化石燃料?A. 煤B. 石油C. 天然气D. 太阳能答案:D二、填空题(每题2分,共20分)1. 地球的自转周期是________小时。
答案:242. 世界上最大的沙漠是________。
答案:撒哈拉沙漠3. 人体中含量最多的元素是________。
答案:氧4. 世界上最高的山峰是________。
答案:珠穆朗玛峰5. 世界上最大的海洋是________。
答案:太平洋6. 人体中含量最多的金属元素是________。
答案:钙7. 世界上最大的淡水湖是________。
答案:苏必利尔湖8. 人体中含量最多的无机盐是________。
答案:氯化钠9. 世界上最大的河流是________。
答案:亚马逊河10. 人体中含量最多的维生素是________。
答案:维生素C三、简答题(每题10分,共30分)1. 简述地球的公转周期及其对气候的影响。
答案:地球的公转周期是一年,即地球绕太阳转一圈的时间。
地球公转导致季节的变化,因为地球在公转过程中,不同地区接收到的太阳辐射量不同,从而形成四季。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津蓟县一中2013-2014学年度第一学期第二次月考生物试卷一、单项选择题1、下列叙述中不是RNA 功能的是A .作为某些病毒的遗传物质B .作为某些原核生物的遗传物质C .催化某些代谢反应D .作为基因表达的媒介 2、下列关于孟德尔研究过程的分析正确的是 ( )A. 提出问题是建立在豌豆纯合亲本杂交和F 1自交遗传实验的基础上B. 孟德尔所作假设的核心内容是“生物体能产生数量相等的雌雄配子”C. 为了验证作出的假设是否正确,孟德尔设计并完成了正、反交实验 D .孟德尔发现的遗传规律可以解释所有有性生殖生物的遗传现象 3、下列关于细胞结构和功能的叙述中,正确的( )①蓝藻、霉菌、水绵的细胞不是都含有核糖体、DNA 和RNA②人和动物细胞在无氧条件下也能分解有机物,释放能量并产生二氧化碳 ③能进行光合作用的细胞不一定有叶绿体;无线粒体的细胞不能进行有氧呼吸 ④抑制细胞膜上载体活性或影响线粒体功能的毒素,会阻碍根细胞吸收无机盐离子 ⑤性激素的合成与内质网有关 ⑥基因重组导致Aa 自交后代发生性状分离 ⑦单倍体细胞内一定不存在等位基因A.一个 B .二个 C .三个 D .四个4、一个基因型为AaBb(两对基因独立遗传)的精原细胞,在减数分裂过程中发生基因突变,其中一条染色单体上的A 突变为a,该细胞以后的减数分裂正常进行,可产生多少种配子( ) A.1种B.2种C.3种D.4种5、关于人体细胞分化、衰老、凋亡的叙述,正确的是 A .细胞分化导致基因选择性表达,细胞种类增多 B .细胞衰老表现为酶活性降低,细胞核体积减小 C .用小鼠不同器官和组织构建的cDNA 文库不同 D .胚胎发育过程中不存在细胞衰老或凋亡的现象6、下列物质或结构在元素组成上最相似的一组是( )A .ATP 、DNA 、细胞膜B .甲状腺激素、生长激素、性激素C .核糖、核糖核酸、核糖体D .淀粉、淀粉酶、控制淀粉酶合成的基因 7、下列有关实验的表述正确的是A .在观察洋葱鳞片叶内表皮细胞的DNA 和RNA 分布时,盐酸的作用是对该细胞进行解离B .经健那绿染液处理的口腔上皮细胞中的线粒体依然保持生活状态C .用于观察质壁分离与复原的紫色洋葱表皮细胞同样可用来观察植物细胞有丝分裂D .低温诱导染色体数目加倍实验中用卡诺试液后不必再解离8、通过对胎儿或新生儿的体细胞进行显微镜观察,难以发现的遗传病是( )A .先天愚型B .红绿色盲C .猫叫综合征D .镰刀型细胞贫血症 9、下列操作中,不可能导致淀粉酶活性发生变化的是A.淀粉酶溶液中加入强酸B.淀粉酶溶液中加入蛋白酶C.淀粉酶溶液中加入淀粉溶液D.淀粉酶经高温烘干制成粉剂10、下表为甲同学用某浓度KNO 3溶液进行质壁分离实验时所测得的数据,下图为乙同学用另一浓度的KNO 3溶液进行质壁分离实验时所绘制的曲线图,下列分析正确的是A .甲同学所用溶液浓度要大于乙同学B .甲同学实验进行到8分钟时质壁分离达到平衡,滴加清水后发生质壁分离复原C .乙同学在实验进行到T 1时可观察到质壁分离现象,此时细胞液浓度一定小于外界溶液浓度D .乙同学在实验进行到T 2时观察不到质壁分离现象,此时细胞液浓度一定等于外界溶液浓度11、已知玉米的某两对基因按照自由组合定律遗传,子代的基因型及比值如图所示,则双亲的基因型是( ) A.DDSS ×DDSs B.DdSs ×DdSs C.DdSs ×DDSs D.DdSS ×DDSs12、下列各项中,说明目的基因完成了表达的是A 、棉珠中含有杀虫蛋白基因B 、大肠杆菌中具有胰岛素基因C 、酵母菌中产生了干扰素D 、抗病毒基因导入土豆细胞中13、生产上培育无子番茄、青霉素高产菌株、杂交培育矮秆抗锈病小麦、抗虫棉的培育原理依次是①生长素促进果实发育 ②染色体变异 ③基因重组 ④基因突变 ⑤基因工程 A .①②③④ B .①④③⑤C .①④②⑤D .①④③③14、人体甲状腺滤泡上皮细胞具有很强的摄碘能力。
临床上常用小剂量的放射性同位素131I治疗某些甲状腺疾病,但大剂量的131I对人体会产生有害影响。
积聚在细胞内的131I可能直接A.插入DNA分子引起插入点后的碱基引起基因突变B.替换DNA分子中的某一碱基引起基因突变C.造成染色体断裂、缺失或易位等染色体结构变异D.诱发甲状腺滤泡上皮细胞基因突变并遗传给下一代15、基因是有遗传效应的DNA片段,与此片段相关的叙述正确的是 ( )。
A.此片段能指导蛋白质的合成,其内含64种密码子,对应决定相应的20种氨基酸B.此片段的不正常复制常发生于细胞分裂间期,一旦复制差错,则表达的蛋白质就一定改变 C.此片段在原核细胞中连续,而真核细胞中不连续,但二者的转录与翻译均同时同部位进行D.在细胞正常分裂过程中,相同的此片段在减数第一次分裂过程中也可能有分离现象16、培育草莓脱毒苗所采用的主要技术是 ( )A.组织培养 B.转基因 C.显微注射 D.核移植17、如图是胚胎干细胞分离途径示意图。
下列说法正确的是A.图中A所示细胞将来能够发育成胎膜和胎盘B.胚胎干细胞的体积和细胞核都较小C.胚胎干细胞可以增殖而不发生分化D.利用胚胎干细胞培育人造器官正在大规模应用18、放射性同位素示踪法是生物学研究过程中常采用的技术手段,下面是几个放射性同位素示踪实验, 对其结果的叙述不正确的是A.小白鼠吸入18O2后呼出的二氧化碳会含有18O,尿液中也会含有少量的H218OB.用含有3H标记的胸腺嘧啶脱氧核苷酸的营养液培养洋葱的根尖,可以在细胞核和线粒体处检测到较强的放射性,而在核糖体处则检测不到C.要得到含32P的噬菌体,必须先用含32P的培养基培养细菌D.卡尔文循环是通过追踪检测14C标记的有机物,最终探明了有机物中的碳通过呼吸作用转化成CO2 中碳的途径19、将某种二倍体植物①、②两个植株杂交,得到③,将③再做进一步处理,如下图所示。
下列分析不正确的是 A.由③到④的育种过程依据的主要原理是基因突变,它可丰富种群的基因库B.由⑤×⑥过程形成的⑧植株过程中,发生了染色体变异C.若③的基因型为AaBbdd,则⑩植株中能稳定遗传的个体占总数的1/4D.由⑦到⑨的过程会发生突变和重组,可为生物进化提供原材料20、用纯合子果蝇作为亲本研究两对相对性状的遗传实验,结果如下,下列说法不正确的是A.实验中属于显性性状的是灰身、红眼B.体色和眼色的遗传符合自由组合定律C.若组①的F1随机交配,则F2雄果蝇中灰身白眼的概率为3/4D.若组②的F1随机交配,则F2中黑身白眼的概率为1/821、图1表示b基因正常转录过程中的局部分子状态图,图2表示该生物正常个体的体细胞基因和染色体的关系,该生物的黑色素产生需要如图3所示的3类基因参与控制,三类基因的控制均表现为完全显性,下列说法正确的是()A.图2所示的基因型可以推知:该生物体不能合成黑色素PF1①♀灰身红眼×♂黑身白眼♀灰身红眼、♂灰身红眼②♀黑身白眼×♂灰身红眼♀灰身红眼、♂灰身白眼B.若b1链的(A+T+C)/ b2链的(A+T+G)=0.3,则b2为RNA链C.该生物自交后代约有1/2能合成黑色素D.若该生物体中存在某细胞含有4个b基因,则该细胞肯定发生了染色体变异22、下列有关S型肺炎双球菌叙述正确的是A.加热杀死的S型菌与R型菌混合使R型菌转化成S型菌属于基因突变B.S型菌与R型菌的结构不同是由于遗传物质有差异的缘故C.肺炎双球菌利用人体细胞的核糖体合成蛋白质D.高温处理过的S型菌蛋白质变性不能与双缩脲试剂发生紫色反应23、miRNA是一类在人体内广泛分布的内源性非编码RNA,长度为19 -25个核苷酸,不同 miRNA在个体发育的不同阶段产生。
miRNA通过与靶mRNA结合或引起靶mRNA的降解,进而特异性的影响相应基因的表达。
请根据材料判断下列相关说法正确的是A.miRNA指导合成的肽链最多含有8个氨基酸B.miRNA是在转录水平上特异性的影响基因的表达过程C.不同miRNA在个体发育的不同阶段产生,与细胞分化有关D.不同miRNA的区别在于脱氧核苷酸的排列顺序不同24、人类单眼皮与双眼皮的遗传规律如表所示(A、a表示相关基因)。
一对单眼皮的夫妇生了一个双眼皮的孩子甲(不考虑基因突变),则( )AA Aa aa男性双眼皮单眼皮单眼皮女性双眼皮双眼皮单眼皮A. 甲是男性,基因型为AaB.甲是女性,基因型为AaC.甲是男性,基因型为aaD.甲是女性,基因型为aa25、鸡的性别决定方式属于ZW型,母鸡的性染色体组成是ZW,公鸡是ZZ。
现有一只纯种雌性芦花鸡与一只纯种雄性非芦花鸡交配多次,F1中雄鸡均为芦花鸡,雌鸡均为非芦花鸡。
据此推测错误的是A.控制芦花和非芦花性状的基因在Z染色体上,而不可能在W染色体上B.雄鸡中芦花鸡所占的比例比雌鸡中的相应比例大C.让F1中的雌雄鸡自由交配,产生的F2中雄鸡表现型有一种,雌鸡有两种D.让F2中的雌雄芦花鸡交配,产生的F3中芦花鸡占3/426、如图表示某哺乳动物一个正在进行分裂的细胞,下列有关叙述不正确的是( )A.该细胞存在于动物卵巢中B.在分裂间期发生过基因突变C.该细胞在图示的分裂过程中染色体数目最多有4条D.该细胞含有2个染色体组,分裂产生的卵细胞的基因型有3种27、如图表示在不同生命活动过程中,某二倍体生物细胞内染色体数的变化曲线,据图分析,下列叙述正确的是( )A.自然状况下该生物体内基因重组只发生在a、c段B.从a段的起点开始,到b段的终点为止,是一个完整的细胞周期C.b段细胞内不存在同源染色体D.b、c、d段染色体数目加倍的原因相同28、某基因的一个片段在解旋时,a链发生差错,碱基C变为G,该基因复制3次后,发生突变的基因占全部基因的( )A. 100%B. 50%C. 25%D. 12.5%29、某女子是色盲基因携带者,下列有关叙述正确的是()A.若该女子与正常男性婚配,其子女的色觉表现都正常B.该女子携带的色盲基因最可能来自她的基因突变C.该女子的次级卵母细胞和卵细胞中可能不含有色盲基因D.该女子所携带的色盲基因最可能传给她的儿子30、如图表示某生物细胞中两条染色体及其部分基因。
下列四种情况的产生不属于细胞染色体结构变异的是31、如果在一个种群中,基因型AA的比例占25%,Aa的比例占50%,aa的比例占25%。
已知基因型aa的个体失去求偶繁殖能力,则随机交配一代后,子代中基因型aa的个体所占的比例为( ) A.1/61 B.1/9 C.1/8 D.1/432、下列关于生物工程技术的研究成果及运用,正确的是()A.用纤维素酶和果胶酶处理使动物组织分散成单个细胞B.单倍体育种和多倍体育种过程都需经过植物组织培养技术C.杂交瘤细胞具有特异性强、灵敏度高并可能大量制备的特点D.植物组织培养是培育“番茄—马铃薯”的技术基础33、下列为减少实验误差而采取的措施,不合理...的是()选项实验内容减少实验误差采取的措施A 探索影响淀粉酶的最适温度设置多组梯度较小的温度条件B 性状分离比模拟实验重复多次抓取小球后再统计结果C 调查人群中红绿色盲发病率在足够多的患病家族中调查并统计D 比较有丝分裂细胞周期不同时期的时间长短观察多个视野的细胞并统计34、以下关于基因、染色体和性状的说法正确的是A.基因在染色体上呈线性排列,基因的前端有起始密码子,末端有终止密码子B.非等位基因都位于非同源染色体上C.通过控制酶的合成从而直接控制性状,是基因控制性状的途径之一D.位于X或Y染色体上的基因,其相应的性状表现总与性别相关联35、下列关于叶绿体和线粒体的比较的叙述,正确的是()A.叶绿体中可发生CO2→C3→C6H12O6,在线粒体中则会发生C6H12O6→C3→CO2B.ATP和[H]在叶绿体中随水的分解而产生,在线粒体中随水的生成而产生C.光能转变成化学能发生在叶绿体中,化学能转变成光能发生在线粒体中D.都具有较大膜面积和复杂的酶系统,有利于新陈代谢高效而有序地进行36、南瓜果实的颜色是由一对等位基因(A和a)控制的,用一株黄色果实南瓜和一株白色果实南瓜杂交,子代(F1)既有黄色果实南瓜也有白色果实南瓜,让F1自交产生的F2的表现型如图甲所示;为研究豌豆的高茎与矮茎和花的顶生与腋生性状的遗传规律,设计了两组纯种豌豆杂交实验,如图乙所示。