第02讲 一元微分学及应用

合集下载

一元函数微分学及其应用

一元函数微分学及其应用

下面的关键是求出dy=A x ∆中的A.若函数在一点0x 处可微时,则有(x)(x),y dy A x οο∆=+∆=∆+∆(x)(x),y A x A x x x xοο∆∆∆∆=+=+∆∆∆∆000(x )(x )l i m l i m l i m .x x x y A A A x x x οο∆→∆→∆→∆∆∆⎡⎤=+=+=⎢⎥∆∆∆⎣⎦ 即 '0(x ).A f =反之,若()f x 在0x 处可导,有'00l i m (x ),x y f x∆→∆=∆ 由函数极限与无穷小的关系可得:'0(x ),y f xα∆=+∆其中α是当0x ∆→时的无穷小,所以 因为(x),x αο∆=∆而(),0f x 与x ∆无关,由微分定义可知,函数在0x 处可微,且(),0.f x A = 定理 ()y f x =在0x 处可微的充分必要条件是函数()y fx =在0x 处可导,且()f x 在可 导点0x 处的微分为,(x).dy f x =∆ (2)若()y f x =在区间I 内每一点处都可微,称()y f x =在I 内可微,其微分为,(x).dy f dx = 当(x)f x =时,(x)(x),df dx x x ==∆=∆所以.dx x =∆因此,可以定义自变量x 的微分dx 为其增量x ∆,即.dx x =∆这样便有,(x)dy f dx =或,(x),dy f dx= 可见,导数就是函数的微分dy 与自变量的微分dx 之商,因此,导数也成为“微商”. 2.4.2 微分的几何意义如图2—7所示,设点00(x ,y )M 是曲线y (x)f =上一点,当自变量在0x 处有微小增量x ∆时,得到曲线上另一点00(x ,y ),N x y +∆+∆其中MQ ,x =∆QN =过点M 作曲线的切线MT,它的倾角为α,则QP='0tan (x ),MQ f x α=∆即.dy QP =所以,当自变量有改变量x ∆时,y ∆是曲线y=(x)f 上的对应点的纵坐标的增量,dy 则是曲线的切线上对应点的纵坐标的增量.当||x ∆很小的时候,0.y dy x∆-→∆因此在点M 邻近,可以用切线段来近高等数学 62似代替曲线段.2.4.3 微分公式和法则由可导与可微之间的关系'dy (x)dx,f =参照2.2.4中的公式立即可得微分公式和微分 运算法则.下面将函数和、差、商的微分法则和复合函数的微分法则列出来:1) 函数和、差、积、商的求导法则,由函数的和、差、积、商的求导法则,可推得相应的微分法则.设函数u u(x)=、v v(x)=都可导,则:①d(u v)du dv;±=± ②d(Cu)Cdu =(C 是常数);③(uv)udv vdu;d =+ ④2d()(v 0).u vdu udv v v -=≠ 2) 复合函数的微分法则设y (u),f =u (x)ϕ=都是可导函数,则复合函数[(x)]y f ϕ=的微分应为'''dy {f[(x)]}()dx (u)(x)dx,dy du dx f du dxϕϕ=== 因为'(x)dx du ϕ=,上式可写成'dy (u)f du = (2)(3)式说明,无论函数(u)y f =中的u 是自变量还是中间变量,它的微分表达形式都是dy='(u)f du ,这称作微分形式的不变性.例1 求函数ln tan 5x y =的微分.解:方法一: ln tan 'ln tan '(5)5ln5(lntanx)x x dy dx dx ==2ln tan ln tan sec ln 55ln 55.tan sin cos x x x dx dx x x x== 方法二:由微分形式不变性,可得ln tan ln tan 15ln 5(lntanx)5ln 5(tanx)tan x x dy d d x ==ln tan 2ln tan ln 5ln 55sec 5tan sin cos x xxdx dx x x x==2. 4. 4 利用微分进行近似计算对可导函数(x),f 当自变量在x 处产生微小该变量x ∆,对应的y 有改变,y ∆由微分与倒数的关系可知,'(x)x,y dy f ∆≈=∆即'(x)x,y f ∆≈∆第2章 一元函数微分学及其应用 63或 '(x x)(x)(x)x.f f f +∆≈+∆(4)式和(5)式称为微分近似计算公式.特别地,当x=0时,在(5)式中用x 代替x,∆得当x 较小时,利用(6)式可得几个函数的近似计算公式:①sinx ;x ≈ ②tan ;x x ≈ ③arcsin ;x x ≈ ④arctan ;x x ≈⑤1;x e x ≈+ ⑥ln(x 1);x +≈ ⑦ 1.x n≈+ 下面证明⑦.证:设(x)f =则11'1(x)(1),n f x n -=+ (0)1,f ='1(0),f n = 由公式(6)得 (x)1.x f n≈+ 上面七个公式的几何意义是:在点x=0的较小邻域内,等式两边的两个函数的图像是“吻合”的.例2 计算(1)ln 0.98; (2 (3)'sin 2930;的近似值. 解:(1)设(x)ln(1x),f =+相当于求自变量x=0.02时,函数(x)f 的函数值.由前面结论④可得ln 0.98ln(10.02)0.02.=-≈-(2)设(x)f 相当于求自变量x=0.02时,函数(x)f 的函数值.由前面结论⑤可得0.021 1.0067.3=≈+= (3)设(x)sin(x),f ='(x)cosx,f =由微分近似公式(5)式,可知'sin 2930sin()sin cos ()636066360o πππππ=-≈+- 0.50000.00760.4924.≈-=习题2—41. 求下列各函数的微分:(1) 3y x 3;x =+ (2) 1y x=- (3) y =(4) 2cos ;1x y x =- (5) 1arcsin(2x);2y = (6) arctan(e ).x y =2.求函数y tanx =在x 4π=处,对应0.05x ∆=的微分值.3.利用微分近似公式,求(1) 0cos29; (2) .4.若方程1x y xe =+确定函数(x),y y =求在x 0=处函数的微分.5.设函数(x)f 可导,求函数2y (x )f =的函数的微分dy.高等数学 642. 5 中值定理在本节,我们学习一元函数微分学的三个基本定理:Rolle 定理、Lagrange 中值定理、 Cauchy 中值定理,它们是导数应用的理论基础.2.5.1 Rolle 定理定理1 如果函数(x)f 满足:(1) 在闭区间[a,b]上连续;(2) 在开区间(a,b)内可导;(3) (a)(b);f f =则至少存在点(a,b),ξ∈使'()0f ξ=(见图2—8).证:若(x)f 在[a,b]上恒为常数,显然定理成立.假设(x)f 在闭区间[a,b]上的最大值为M,最小值为m,且M>m,则M 、m 中至少有一个不等于(a)f .不妨设(a),M f ≠由于(a)(b),f f =这说明最大值M 是在区间(a,b)内取得,由介值定理知道存在(a,b)ξ∈使()M.f ξ=分析该点的导数:'0(x)()()lim 0,x f f f x ξξξξ+→+-=≤- '0(x )()()l i m 0,x f f f x ξξξξ-→--=≥- 而(x)f 在ξ可导,应有'''()()(),f f f ξξξ+-==故只有'()0.f ξ=注:(1)定理表明函数图像在开区间(a,b)内至少存在一条水平切线;(2)定理说明在定理条件下方程'(x)0f =在(a,b)内至善有一个根,因此定理也叫做导数方程根的存在定理;(3)定理的三个条件中若有一个不满足,结论就不一定成立.图2—9给出了不满足其中一个条件时定理不存在的情况.例1 对函数32(x)x 4710f x x =+--在[-1,2]上验证Rolle 定理的正确性.解:(1)(2)0f f -==且(x)f 在[-1,2]上连续,在(-1,2)内可导,满足Rolle 定理的三 个条件.计算导数: '2(x)3x 87,f x =+-由于'(1)12,f -=-'(2)21,f =从而''(1)(2)0.f f -<由零点定理知存在(1,2)ξ∈-使'()0.f ξ=第2章 一元函数微分学及其应用 65例2 已知(x)(x 1)(x 2)(x 3)(x 4),f =----利用Rolle 定理讨论'(x)0f =根的 情况.解:(x)f 为多项式函数,在(,)-∞+∞内连续、可导.因为(1)(2)(3)(4)0,f f f f ====由Rolle 定理知'(x)0f =有分别位于区间(1,2)、(2,3)、(3,4)内的三个实根.又由于'(x)f 是一个三个多项式,最多有三个实根,所以它只有这三个根.2.5.2 Lagrange 中值定理Rolle 定理中(a)(b)f f =这个条件是比较特殊的,如果取消这个条件,则由下面的 Lagrange 中值定理.定理2 如果函数(x)f 满足:(1) 在闭区间[a,b]上连续;(2) 在开区间(a,b)内可导,则至少存在一点ξ∈(a,b),使'(b)(a)().f f f b aξ-=-先看一下定理2的几何含义(见图2—10),过连续曲线弧段的两端点(a,f(a)),B(b,f(b))A 作弦AB,其斜率(b)(a),f f k b a-=- 则在(a,b)内至少有一点ξ,过点(,f())ξξ的切线与弦AB 平行.证:引进辅助函数(b)(a)F(x)(x)(x),f f f kx f x b a-=-=-- 则(a)af(b)(a)(b),bf F F b a-==-且(x)F 满足Rolle 定理的另外两个条件,所以至少存在一点 ξ∈(a,b),使''(b)(a)()()0,f f F f b aξξ-=-=-即 '(b)(a)().f f f b aξ-=-注:在Lagrange 中值定理中,若(a)(b),f f =则得Rolle 定理的结论,所以Rolle 定理是Lagrange 中值定理的特殊情况.推论1 若(x)f 在区间I 上可导, '(x)0,f ≡则在I 上(x)f C ≡(C 为常数). 证:在区间I 上任取两点12,,x x 且12x x <,在区间12[,x ]x 上应用Lagrange 中值定理得: 存在12[,x ]x ξ∈使'2121(x )f(x )(),f f x x ξ-=-,但'(x)0,f ≡故12(x )(x ).f f =由12(,)x x 的任意性,可知(x)f 在区间I 上式一个常值函数.推论2 若函数(x),g(x)f 在(a,b)内可导,且对任意(a,b),x ∈有''(x)(x),f g =则。

第二章 一元函数微分学及其应用

第二章  一元函数微分学及其应用
lim
x 0 x
x 0
x
L( x) lim
L( x) R( x) C ( x),
4、边际需求(书本65页)
4.2 弹性与弹性分析
弹性函数(书本66页)
若函数
y f (x)在
(a, b)可导,且对
x (a, b), f ( x) 0
则称
dy
Ey
x
边际函数
|Δx|要小得多,因此在点M附近,我们可以用切线段来近似
代替曲线段
书本p73
3.基本微分公式
由函数微分表达式 dy =f'(x)dx
可知
计算导数的微分,就是计算函数的导数,再
乘以自变量的微分。
4.微分四则运算
• = ,=()都可导,C为常数
• 书本p74
个极大值;如果对此领域内任一点x (x不等
于x。),都有f(x)>f(x。),则称f(x。)是函数
f(x)的一个极小值.
定理2.7(可导函数存在的必要条件)
• 设函数f(x)在点x。处导数存在,且在x。处取得极
值,则f'(x。)=0.
定理2.8 (函数极值存在的第一充分条件)
如果函数y= f(x)在x。连续,在x。的两侧附近可导,
• (1)如果f′(x)>0,x∈(a,b),则函数在[a,
b]内单调增加;
• (2)如果f′(x)< 0,x∈(a,b),则函数在[a,
b]内单调减少;
• (3)如果f′(x)=0,x∈(a,b),则函数在[a,
b]内恒为常数,即f(x)=C(C为常数).
• 导数值的大小及f(x)变化率的大小.如果f′(x)大,那么函数值

第二章 一元函数微分学及其应用

第二章   一元函数微分学及其应用

第二章 一元函数微分学及其应用知识点拔2.1 导数的概念一、导数的概念1、函数)(x f 在点0x 导数的定义设函数)(x f y =在0x 的某个邻域内有定义,给自变量0x 以增量x ∆,而相应的函数增量为y ∆,若极限x x f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim0000(或写成000)()(limlim 0x x x f x f x y x x x --=∆∆→→∆)存在,则称函数)(x f y =在点0x 可导,并称此极限值为函数)(x f 在0x 点的导数.记作:000),(x x dxdyx x y x f ==''或,且有x x f x x f x f x ∆-∆+='→∆)()(lim )(0000 注释:① 函数在点0x 可导必须满足两个条件:a 、)(x f 必须在点0x 的某个邻域),(00δδ+-x x 内有定义,如:x y =在0=x 不可导,因在0<x 时无定义;b 、极限x yx ∆∆→∆lim必须存在,如:x y =,由于极限xy x ∆∆→∆0lim 不存在,所以x y =在0=x 不可导.② 函数在点0x 可导,不能保证函数在点0x 的邻域内可导.如:⎩⎨⎧=,x x x x f 为无理数为有理数,0,,)(2 在点0=x 处可导,且0)0(='f ,但在0≠x 时它不可导,也就是说,或函数)(x f 的0x 可导,则一定有xx x f x x f x ∆∆--∆+→∆)()(lim000存在,但是若极限xx x f x x f x ∆∆--∆+→∆)()(lim000存在,也不能说)(x f 在0x 点可导,因为它不能保证)(x f 在0x 点有定义.③ 几个常用导数定义的等价形式h x f h x f x f h )()(lim)(0000-+='→;h x f h x f x f h ---='→)()(lim )(0000;h h x f x f x f h )()(lim)(0000--='→;hx f h x f x f h 2)()2(lim )(0000-+='→;h h x f x f x f h 2)2()(lim)(0000-+-='→,一般地有h a x f h a x f x f h ⋅-⋅+='→)()(lim )(0000,ha h a x f x f x f h ⋅-⋅+-='→)()(lim)(0000(a 为常数);其通式为)()())((lim)(0000x u x f x u x f x f h -+='→,其中)(x u 为奇函数.2、函数)(x f 在区间上的导数定义如果函数)(x f y =在区间),(b a 内的某一点都可导,则称函数)(x f y =在区间),(b a 内可导,那么对于区间),(b a 内的任一点x ,都对应于一个确定的函数值)(x f ',这个新的函数称为函数)(x f y =的导函数,简称:导数,记作:)(x f '、y '、dx dy 、dxx df )(, 即xx f x x f x y x f x x ∆-∆+=∆∆='→∆→∆)()(lim lim)(00,其中),(b a x ∈.注释:函数)(x f y =在点0x 处的导数)(0x f '是导函数)(x f '在点0x x =处的函数值,即)()(0x x x f x f ='=',但])([)(00'≠'x f x f .二、导数的几何意义 1、几何意义可导函数)(x f y =在0x 点的导数)(0x f '是曲线)(x f y =在点)(,(00x f x 处的切线斜率. 2、切线方程与法线方程曲线)(x f y =在点)(,(00x f x 处的切线方程为:))((000x x x f y y -'=-; 曲线)(x f y =在点)(,(00x f x 处的法线方程:)()(1000x x x f y y -'-=-.三、左右导数的概念 1、左右导数的定义右导数:000000)()(lim )()(lim )(0x x x f x f x x f x x f x f x x x --=∆-∆+='++→→∆+; 左导数;000000)()(lim )()(lim )(0x x x f x f x x f x x f x f x x x --=∆-∆+='--→→∆-; 2、可导的充要条件定理 )(x f 在0x 可导)()(00x f x f -+'='⇔,即左、右导数存在且相等. 注释:该定理主要用于讨论分段函数在分段点处的导数是否存在. 四、可导与连续的关系定理 如果函数)(x f 在点0x 处可导,则)(x f 在点0x 处连续,反之不成立.注释:① 若函数在某一点连续,但函数在该点不一定可导,如x y =在0=x 连续,但在0=x 不可导,即函数在某点连续是它在该点可导的必要条件.② 函数在点0x 可导,不能得到它在点0x 的某个邻域内连续,如:⎩⎨⎧=,x x x x f 为无理数为有理数,0,,)(2在0=x 可导,且在0=x 连续,但在0≠x 的任何点都不连续.③ 函数在0x 处可导,不能得到它的导函数在0x 点连续,如:⎪⎩⎪⎨⎧=≠=0,0,0,1cos )(2x x xx x f 在0=x 可导,但⎪⎩⎪⎨⎧=≠+='0,00,1sin cos 2)(x x xx x x f 在0=x 不连续. 2.2 一元函数的求导法则一、基本初等函数的求导公式(略)二、导数的四则运算法则定理 设函数)(x u 与)(x v 在点x 处都可导,则(1)v u v u '±'='±)(;(2)v u v u v u '±'='⋅)(,特别地u C Cu '=')(,C 为常数;(3)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛,特别地2v v C v C '-='⎪⎭⎫⎝⎛,其中0≠v . 三、复合函数的求导法则定理 若函数)(x u ϕ=在x 点可导,而)(u f y =在对应的点u 处可导,则复合函数)]([x f y ϕ=在点x 可导,且有dxdudu dy dx dy ⋅= 或 )()]([)(x x f u u f y x x ϕϕ'⋅'='⋅'='. 四、反函数的求导法则定理 若函数)(y x ϕ=在某一区间内单调且可导,且0)(≠'y ϕ,则它的反函数)(x f y =在对应的区间上也可导,且有)(1)(y x f ϕ'=' 或dydx dx dy 1=. 注释:① 只有满足求导法则的条件时,才能使用求导法则.② 函数的和、差、积、商、复合函数是可导的,不能保证各自是可导的. 如:⎩⎨⎧=为无理数为有理数x x x f ,1,0)(,⎩⎨⎧=为无理数为有理数x x x g ,0,1)(,因1)()(=+x g x f ,0)()(=⋅x g x f ,0)]([=x g f ,1)]([=x f g 在任意点都是可导的,但)(x f 及)(x g 在任一点都不可导.2.3 高阶导数一、高阶导数的概念 1、二阶导数的定义若函数)(x f y =的导数)(x f '对自变量x 仍可导,则称)(x f '对x 的导数为函数)(x f y =的二阶导数,记作:)(x f ''、y ''、22dx y d 或22xfd .2、高阶导数定义二阶及其以上阶的导数叫高阶导数,一般地)()1(x fn -的导数,称为)(x f 的n 阶导数,记作:)()(x fn 、)(n y、nn dxy d 或n n dx f d ,即[]'=-)()()1()(x f x f n n (4≥n ). 3、高阶导数的运算法则 (1))()()()(n n n u u υυ±=± (2)莱布尼兹公式)0()()1(1)()0(0)(0)()()(v u C v u C v u C v u C uv n n n n n n n k n nk k k n n ⋅++⋅'+⋅==--=∑ ,其中u u =)0(,v v =)0(.二、几个常用函数的高阶导数!)()(n x n n =,)()1()1()()(n m x n m m m x n m n m ≥+--=- ,0)()(=n m x (正整数n m <), n x n x a a a )(ln )()(=,ax n n ax e a e =)()(,x n n x e e ---=)1()()(,x n x e e =)()(,)2sin()(sin )(πn x x n +=,)2cos()(cos )(πn x x n +=,nn n xn x )!1()1()(ln 1)(--=-, 1)()(!)1(1++-=⎪⎭⎫⎝⎛+n n n n b ax a n b ax ,1)()(!)1(1++-=⎪⎭⎫⎝⎛+n n n a x n b x ,1)(!)1(!+-=⎪⎭⎫⎝⎛n n n xn x .2.4 隐函数及由参数方程所确定的函数的导数一、隐函数的导数求隐函数的导数一般有以下三种方法: 1、公式法设方程0),(=y x F 决定了y 是x 的函数,则),(),(y x F y x F dx dyy x-=. 2、利用一阶微分形式的不变性方程两边同时微分,可得含有dx 、dy 的一个方程,从中求出微商dxdy即可. 3、利用复合函数的求导法则第一步:方程两边同时对x 求导,当遇到y 的表达式时,把y 看成是x 的函数(即先对y 求导,再乘以y 对x 的导数y '),可得到一个含有x 、y 、y '的方程;第二步:从上述方程中解出y '即可. 二、由参数方程所确定的函数的导数 1、一阶导数 设⎩⎨⎧==)()(t y t x ψϕ(βα≤≤t ),)(t ϕ和)(t ψ都可导且0)(≠'t ϕ,则)()(t t dx dy ϕψ''=. 2、高阶导数:)(1][)1(t y dxy d t n n n ϕ'⋅'=-(2≥n ). 三、幂指函数的导数设幂指函数)()]([x v x u y =(其中0)(>x u ,1)(≠x u ),则幂指函数的求导公式为]ln [)]()()()(ln )([)(][])([)()(ln )()(u uvu v u x u x u x v x u x v x u e x u y v x v x u x v x v ⋅+'⋅='⋅+'⋅='=='. 2.5 函数的微分一、微分的概念 1、微分的定义设函数)(x f y =在0x 点的某个邻域内有定义,若函数的改变量y ∆可以表示为自变量增量x ∆的线性函数x ∆⋅A (其中A 是与0x 有关,而与x ∆无关的常数)与一个比x ∆高阶无穷小)(x o ∆之和,即)(x o x y ∆+∆⋅A =∆,则称函数)(x f 在0x 处可微,其中x ∆⋅A 称为函数)(x f 在0x 处的微分,记作:x A dyx x ∆⋅==0.注释:(1)函数)(x f 在点0x 可微必须满足两个条件:a 、函数)(x f 在0x 的某个邻域内必须有定义;b 、等式)(x o x y ∆+∆⋅A =∆成立.(2)若函数)(x f 在点0x 处可微,则dx x f dy x x )(00'==(由于x x x dx ∆=∆⋅'=)().2、可微的充要条件定理 )(x f 在0x 点可微⇔)(x f 在0x 可导.3、若函数)(x f 在区间I 上的任一点x 都可微,则称函数)(x f 为I 上的可微函数且有dx x f dy )('=.二、复合函数的微分法则定理 如果函数)(u f y =可微,函数)(x u u =也可微,则复合函数)]([x u f y =的微分为dx x u u f dy )()('⋅'=,也可以写成du u f dy )('=.2.6 微分中值定理一、罗尔(Rolle )中值定理定理(罗尔(Rolle )定理) 设函数)(x f 满足条件: (1)函数)(x f 在闭区间[]b a ,上连续; (2)函数)(x f 在开区间),(b a 内可导; (3))()(b f a f =,则至少存在一点),(b a ∈ξ,使得0)(='ξf .注释:罗尔中值定理可用来证明方程在某个范围内至有一个实根. 二、拉格朗日(Lagrange )中值定理定理(拉格朗日(Lagrange )定理) 设函数)(x f 满足条件: (1)函数)(x f 在[]b a ,上连续; (2)函数)(x f 在),(b a 内可导, 则至少存在一点),(b a ∈ξ,使得()ab a f b f f --=')()(ξ或())()()(a b f a f b f -'=-ξ.推论1 如果函数)(x f y =在区间),(b a 内的导数恒等于零,即0)(≡'x f ,则C x f ≡)((常数).推论2 如果函数)(x f 与)(x g 在区间),(b a 上的导数恒相等,即)()(x g x f '≡',则)(x f 与)(x g 只相差一个常数C ,即C x g x f +=)()((C 为常数).三、柯西中值定理定理(柯西(Cauchy )中值定理) 设函数)(x f 和)(x g 满足 (1)函数)(x f ,)(x g 在闭区间[]b a ,上连续;(2)函数)(x f ,)(x g 在开区间),(b a 内可导,且0)(≠'x g ,)()(b g a g ≠, 则至少存在一点),(b a ∈ξ,使得)()()()()()(ξξg f a g b g a f b f ''=--. 注释:① 柯西中值定理是拉格朗日中值定理的推广,即当x x g =)(时,Cauchy 中值定理就变成了拉格朗日中值定理.②Lagrange 中值定理是Rolle 中值定理的推广,即当)()(b f a f =时,Lagrange 中值定理就成了Rolle 中值定理.③在数学理论上Lagrange 中值定理最重要,有时也称为微分学基本定理,而Rolle 中值定理也看作是Lagrange 中值定理的预备定理,Cauchy 中值定理虽然更广,但使用不多,在实际应用中,使用Rolle 中值定理的最多,其次是Lagrange 定理,而使用Cauchy 中值定理的较少.2.7 函数的单调性与极值一、函数单调性的判定方法设函数)(x f 在[]b a ,上连续,在),(b a 内可导,如果在),(b a 内有0)(>'x f (或0)(<'x f ),则称)(x f 在[]b a ,上是严格单调增加的(或严格单调减少的).注释:① 若在),(b a 内有0)(>'x f (或0)(<'x f ),它是)(x f 在[]b a ,上严格单调增加(或严格单调减少)的充分条件,而不是必要条件,如:3x y =在(+∞∞-,)上单调增加,但032≥='x y .② 对于函数)(x f ,若0)(0>'x f (或0)(0<'x f ),不能得到)(x f 在0x 点的某邻域内单调增加(或单调减少).如:⎪⎩⎪⎨⎧=≠+=0,00,1cos )(2x x xx x x f 01)0(>='f ,但)(x f 在0=x 的任一邻域内不单调.③在满足判别法的条件时,函数不仅在开区间),(b a 内单调,而且在闭区间[]b a ,上也单调. 二、函数的极值 1、函数极值的概念定义 设函数)(x f 在点0x 的某个邻域内有定义,若对于该邻域内任何异于0x 的x 都有)()(0x f x f <(或)()(0x f x f >),则称)(0x f 是)(x f 的一个极大值(或极小值),而称0x 为极大值(极小值)点,极大值与极小值统称为极值,极大值点与极小值点统称极值点.注释:① 函数的极大(小)值只是局部性的概念,它不一定是全局性的最大(小)值. ② 根据极值的定义知,函数在所定义的区间端点处一定不取得极值,即极值点一定在区间的内部取得.2、极值存在的必要条件定理 若函数)(x f 在点),(0b a x ∈取得极值,则0)(0='x f 或)(x f 在0x 点不可导. 注释:① 使0)(0='x f 的点称为)(x f 的驻点.② 极值点不一定是驻点,如:x y =,0=x 是它的极小值点,但不是驻点,如果函数是可导的,则极值点一定是驻点.③ 驻点也不一定是极值点,如:3x y =,0=x 是它的驻点,但函数在0=x 不取得极值.3、极值存在的充分条件 (1)极值存在的第一充分条件定理 设)(x f 在0x 的某去心邻域内可导,且0)(0='x f 或)(0x f '不存在,但)(x f 在点0x 处连续,如果在该邻域内(1)当0x x <时,有0)(>'x f ,而当0x x >时,有0)(<'x f ,则)(x f 在0x x =点取得极大值;(2)当0x x <时,有0)(<'x f ,而当0x x >时,有0)(>'x f ,则)(x f 在0x x =点取得极小值;(3)若当0x x <或0x x >时,)(x f '不改变符号,则)(x f 在0x 点不取得极值. 注释:求连续函数极值的步骤为 (1)确定函数的定义域;(2)求)(x f '并令0)(='x f ,进而求出函数)(x f 的所有驻点和)(x f '不存在的点; (3)然后判定)(x f '在上述各点左右两侧的符号,若左正右负,则该点是极大值点,若左负右正,则该点是极小值点,若两侧)(x f '的符号相同,则该点不是极值点.(2)极值存在的第二充分条件定理 设函数)(x f 在点0x 具有二阶导数,且0)(0='x f ,0)(0≠''x f ,若0)(0<''x f ,则)(x f 在0x 点取极大值;若0)(0>''x f ,则)(x f 在0x 取极小值.(3)极值存在的第三充分条件定理 设)(x f 在点0x 的某邻域内存在直到1-n 阶导函数,而在点0x 存在n 阶导数,且0)(0)(=x f k (1,,2,1-=n k ),0)(0)(≠x f n ,则 (1)当n 为偶数时,)(x f 在点0x 取得极值,且当0)(0)(<x f n 时取极大值;当0)(0)(>x f n 时取最小值.(2)当n 为奇数时,)(x f 在点0x 不取得极值.注释:① 若)(x f 在点0x 的某邻域内连续,且在0x 的左侧单调增加,右侧单调减少,则它在0x 点必取得极大值,但反之不一定成立.如:⎪⎩⎪⎨⎧=≠+-=0,20),1sin 1(2)(22x x xx x f 在0=x 取得极大值,但它在0=x 的任一邻域内不单调. ② 若0)(0='x f ,0)(0≠''x f ,则)(x f 在0x 点必取得极值,但0)(0=''x f 时,函数)(x f在0x 处不一定取得极值,如:4x y =在0=x 处取极小值,而5x y =在0=x 不取极值.三、函数最值的求法(1)闭区间上连续函数的最值求法比较函数在该区间内的驻点、导数不存在的点以及区间端点处的函数值的大小,即可求出函数的最大值与最小值.(2)开区间上连续函数的最值求法若函数在开区间内连续、可导且有唯一驻点或不可导点,并在该点处取得极大(小)值,则此极大(小)值就是函数在该区间内的最大(小)值.(3)实际问题中的最值求法先建立目标函数)(x f y =并确定其定义域,如果函数在定义域内只有一个驻点或不可导点,并且知道该问题一定有最值,则函数在该点一定取得最值.注释:函数的最大(小)值,不一定是它的极大(小)值. 如:⎪⎩⎪⎨⎧≤≤-<<≤≤=32,321,110,)(x x x x x x f 在区间[]3,0上的最大值为1,但它不是函数的极大值.2.8 曲线的凹凸性及曲线的渐近线一、曲线凹凸性的概念及判别法 1、曲线凹凸性的定义设)(x f 在区间I 上连续,若对I 上的任意两点1x ,2x ,恒有2)()(22121x f x f x x f +≤⎪⎭⎫⎝⎛+ (或2)()(22121x f x f x x f +≥⎪⎭⎫⎝⎛+),则称曲线)(x f y =在区间I 上是凹(凸)的. 2、曲线凹凸性的判别法定理 设函数)(x f 在[]b a ,上连续,在),(b a 上二阶可导,若在),(b a 内有0)(<''x f (或0)(>''x f ),则称曲线)(x f y =在[]b a ,上是凸(凹)的.注释:此方法是判定曲线)(x f y =严格凸(或严格凹)的充分而非必要条件,即当曲线在区间I 上是严格凸(或严格凹)时,不一定有0)(<''x f (或0)(>''x f ). 如:4x y =在(+∞∞-,)上的图形是凹的,但0122≥=''x y .3、拐点的概念及其求法 (1)定义连续曲线上凹弧与凸弧的分界点叫曲线的拐点. (2)拐点的求法方法一:设)(x f 在0x 点连续,若0)(=''x f 或)(x f ''不存在的点0x ,则当)(x f ''在点0x 的两侧异号时,称点))(,(00x f x 是曲线)(x f y =的拐点;而当)(x f ''在点0x 的两侧同号时,点))(,(00x f x 不是曲线的拐点.方法二:设)(x f 在点0x 的邻域内二阶可导,在点0x 处三阶可导,且0)(0=''x f ,0)(0≠'''x f ,则0x 为曲线的拐点.二、曲线渐近线的求法水平渐近线:若b x f x =∞→)(lim (或b x f x =+∞→)(lim 或b x f x =-∞→)(lim )时,则直线b y =是曲线)(x f y =的一条水平渐近线;垂直渐近线:若∞=→)(lim 0x f x x (或∞=+→)(lim 0x f x x 或∞=-→)(lim 0x f x x ),则直线0x x =是曲线)(x f y =的垂直渐近线;斜渐近线:若k xx f x =∞→)(lim,且[]b kx x f x =-∞→)(lim ,则直线b kx y +=是曲线的一条斜渐近线.注释:① 当∞=∞=∞=-∞→+∞→∞→)(lim ,)(lim ,)(lim x f x f x f x x x 至少有一个成立时,曲线)(x f y =才可能有斜渐近线.② 一般情况下,当)(lim x f x ∞→是常数或无穷大之一时,水平渐近线与斜渐近线在同一图象中不能共存.2.9 函数不等式的证明方法、方程根的判定方法和辅助函数的构造方法一、函数不等式的常用证明方法函数不等式的证明,可以利用函数的单调性、微分中值定理、最值、凸凹性、导数定义等方法证明不等式.二、方程根的存在性判定方法讨论方程0)(=x f 根的存在性与根的个数问题,主要依据函数的性态(连续性、单调性、极值、凸凹性等)来解决.1、证明方程0)(=x f 至少有一个(或几个)实根的方法 方法一:利用零点定理证明;方法二:利用罗尔定理证明,这时方程0)(=x f 应改写为0)(='x F ;方法三:当证明方程0)(=x f 在某个区间内至少有n 个根时,需证明在该区间内的n 个子区间上分别至少有一个实根.2、证明方程0)(=x f 仅有一个(或n 个)实根的方法 (1)证明方程0)(=x f 仅有一个实根的方法首先根据零点定理或罗尔定理证明方程存在实根,然后利用)(x f 的单调性证明最多有一个实根,从而仅有一个实根.(2)证明方程仅有n 个根的方法首先求)(x f ',从而求得驻点和不可导的点,这些点把定义域为n 个子区间;然后讨论函数)(x f 在各个子区间上的单调性,并求出)(x f 的极值或最值;然后根据极值点与x 轴的相对位置,以及函数伸向无穷远处的情况,借助零点定理可得n 个根的存在性;最后结合各子区间上的单调性,说明方程仅有n 个根.三、构造辅助函数的重要方法——凑导法先将中值等式中的ξ变为x ,得0)(=x G ,再将)(x G 凑成某个函数)(x F 的导数,即)()(x F x G '=,则函数)(x F 就是要构造的辅助函数,现列表如下:。

第2章 一元函数微分学

第2章 一元函数微分学

第二章一元函数微分学110拐点判断定理:若曲线)(x f y =,0连续在点x 0)(0=′′x f 或不存在,但)(x f ′′在两侧异号,0x 则点))(,(00x f x 是曲线)(x f y =的一个拐点.曲线的渐近线(1)水平渐近线.)(),()(lim )(lim 的一条水平渐近线就是那么为常数或如果x f y b y b b x f b x f x x ====−∞→+∞→考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日(Lagrange)中值定理.了解泰勒(Taylor)定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.136.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线.9.会描述简单函数的图形.1419设||3)(23x x x x f +=,则)(x f 在0=x 处可求导的最高阶数为( ). (A) 0 (B) 1 (C) 2 (D) 3 只要考虑||2x x 的可导性,)(x g ′′在0=x 处的左、右导数分别为6和6−,故不可导,故)(x f 在0=x 处可求导的最高阶数为2阶,本题应选C.例5解⎪⎩⎪⎨⎧<−=>=,0,,0,0,0,)(33x x x x x x g ⎪⎩⎪⎨⎧<−=>=′,0,3,0,0,0,3)(22x x x x x x g ⎪⎩⎪⎨⎧<−=>=′′.0,6,0,0,0,6)(x x x x x x g21设)(x y y =是由方程y x xy+=e 所确定的隐函数,求:)0(),0(y y ′′′.方程两边关于x 求导,得)1(,1)( y y x y xye ′+=′+,11)0(0式带入及将)(==y x .0)0(=′∴y (1)式两边再关于x 求导,得,)2()(2y y x y y x y xyxy ′′=′′+′+′+e e ,代入及将0)0(1)0(,0=′==y y x .1)0(=′′y 得例7解33。

一元函数微分学的基本原理与应用

一元函数微分学的基本原理与应用

一元函数微分学的基本原理与应用微分学是数学中的一个分支,主要研究函数的变化率、极值和曲线的切线等问题。

在微分学中,一元函数是指只有一个自变量的函数。

本文将介绍一元函数微分学的基本原理和其应用。

一、微分的定义和基本原理微分学的基本概念之一是微分的定义。

对于一元函数 f(x),在某一点 x0 处的微分表示为 df(x0) 或简写为 dy,可以定义为 dx 的一个无穷小变化量,即:dy = f'(x0)dx其中,f'(x0) 表示在 x0 处的导数,表示函数在该点的斜率或变化率,dx 表示自变量 x 的无穷小变化量。

微分学的基本原理包括导数和微分的性质。

导数的定义如下:f'(x) = lim [f(x+Δx) - f(x)] / Δx (当Δx 趋近于 0 时)导数可以用来描述函数的斜率,即切线的倾斜程度。

在微分学中,常用的导数表示方式有函数的导函数、差商和极限等形式。

微分的基本性质包括线性性质、乘积法则、商法则和链式法则等。

根据这些性质,可以对各种类型的函数进行微分运算,进而得到函数的导数和微分。

二、应用举例:极值问题和曲线的切线微分学的应用非常广泛,以下是两个常见的应用例子:极值问题和曲线的切线。

1. 极值问题:求解一个函数的最大值和最小值。

通过对函数的微分,可以得到导数为零的点或导数不存在的点,并进行求解。

对于一元函数 f(x),当导数 f'(x) 的值为零或不存在时,函数在该点可能取得极值。

举例来说,若给定函数 f(x) = x^2 - 4x + 3,我们可以求解 f'(x) = 2x - 4,令导数等于零得到 2x - 4 = 0,解得 x = 2。

然后,通过二阶导数的符号判断该点是否是极值点。

若 f''(x) > 0,则 x = 2 是函数的极小值点;若 f''(x) < 0,则 x = 2 是函数的极大值点。

第二章-一元函数微分学.docx

第二章-一元函数微分学.docx

第二章一元函数微分学导数的概念定义设函数y=f(x)在点x 0的某一邻域内有定义,若自变量x 在点X 。

处的改变 量为△ x(x 0+Ax 仍在该邻域内).函数y 二f(x)相应地有改变量△『= f(xo+Z\x)・f(xo),若果极限点Xo 处的导数,记作 ____ 或 _________ f '(Xo),即f(x 0)= ___________________ . 此时称函数y 二f(x)在点Xo 处可导.如果上述极限不存在,则称函数y 二f(x)在点 X 。

处不可导.下面是两种等价形式:f'(Xo)= __________________ = ___________________ •当 Xo =0,W: r (0)= _____________ ,如果y 二f(x)在开区间(a,b)内每一点都可导,则称函数f(x)在开区间(a,b)内可导, 由于对于(a,b)内每一点x,都对应一个导数值F(x),因此又称此F(x)为函数f(x) 在(a,b)内的 __简称为 _____ ,记作 __ 或一—.f(x)在点x 0的导数f'(xo)可以看做是导数f'(x)在点x=x 0处的函数值,即 f(x 0)= • 注意:f'(xo)工[f(x°)y■.・ /(兀0 +山)一/(旺)如果y=f(x)在点X 。

及其左侧邻域内有定义,当hm —T —存在时,则称该极值为f(x)在点X 。

处的 ______ 记为—.同理,定义右导数性质 函数y=f(x)在点x 0处可导<・・> ________左导数与右导数常用于判定分段函数在其分段点处的导数. 导数的几何意义 如果函数y 二f(x)在点X 。

处的导数F(x°)存在,则在几何上表明曲线尸f(x)在点 (xo, f(x 0))处存在切线,且切线斜率为_•可导函数与连续性的关系函数y 二f(x)在点xo 处可导,是函数y 二f(x)在点xo 处连续的 _______ 条件. 如u 二u(x),v=v(x)都在x 处可导,由导数的定义可以推得u±v 在x 处也可导,且 (u±vf= ________ (导数的和差运算公式).导数的运算3.1基本初等函数的导数公式c'=_(c 为常数)(兀")‘二 ________ ( n G R) (a x y= ________________(e x y = _________ (logx) = ------------------------------ (In xY = ____________(sin x)f = _________ (cos xY = ______________ (tan x)z = _____________(cot x)f = _________ (arcsin x)f - ____________ (arccos x)z = ____________存在,则称此极限值为函数沪f(x)在2.(arctan x\ = _________ {arc cot xY = ______________________________3.2导数的四则运算法则设u二u(x),v=v(x)都在X处可导侧(cuf= ___ (c 为常数) (u±vf= ___________ (uvf= ________________(;)z= _______ (vHO) (^= ___________ ( vHO ,c 为常数)3.3反函数的求导法则设函数x=(p(y)在某个区间内单调町导,且啓(y)H0,则其反函数y二f(x)在其对应区间内也可导,且有f(x)= ____ •3.4复合函数的求导法则设y = f(u)z u = g(x)复合成y =f[g(x)],若u二g(x)在点x处可导"二f(u)在相应点u = g(x)可导,则复合函数y =f[g(x)]在点x可导,且有链式法则旷 -------- = ---------3.5隐函数的求导法则设y=f(x)是由方程F(x,y) = 0确定的.求V只须直接由方程F(x’y) = 0关于x求导,将y看做是______ 依复合函数链式法则求之.3.6由参数方稈确定的函数的求导法则设y二y(x)是由{ 所确定的.其中(p⑴,叭t)为可导函数,且卩⑴H O,则空_ 一一------ 一--------3.7对数求导法对于幕函数y = 或y由若干个函数连乘、除、开方所构成,通常可以先用—改变函数类型.如y = u:两端取对数:___________ ,化幕指函数为隐函数,如y =N),两端取对数:化为隐函数,然后利用隐函数的求导法则求导.3.8高阶导数二阶及二阶以上的导数统称为高阶导数,对于求n阶导数,需要注意从屮找出规律,以便得到n阶导数的________ .常见n阶导数公式:(a x)(n) = _______ (e x)(n) = ______________ (x n)(n) = ______________(x w )(fl ) = ____ (正整数 m<n )(sin 工)(")= _____ _______(cos x )(n ) = ________ _______4. 洛必达法则 4.1未定型〃訂的极限⑴设函数f(x)与F(x)满足以下条件:① 在点X 。

最新文档-第二章一元函数微分学及其应用(2)-PPT精品文档

最新文档-第二章一元函数微分学及其应用(2)-PPT精品文档

推论 1 若函数 f ( x) 在区间 I 上导数恒为零,则
f ( x) 在区间 I 上是一个常数.
推论 2 如果函数 f ( x) 与 g ( x) 在区间 I 上恒有
f ( x) g ( x),则在区间 I 上
f ( x) g ( x) C ,
其中 C 为常数.
3. 柯西中值定理
f (0) 2 f ( x) f (0) f (0) x x 2! f ( n ) (0) n x Rn ( x) , n!

f (0) 2 f ( x) f (0) f (0) x x 2!
f ( n1) ( ) n 1 其中 Rn ( x) (n 1)! x .
第二节
一、微分中值定理
导数的应用
二、洛必达法则
三、函数的单调性、极值与最值
四、曲线的凹凸性、拐点以及函数图形的描 绘 五、导数在工程技术中的简单应用
一、微分中值定理
1. 罗尔定理
引理 设f(x)在 x 0 处可导,且在 x 0 的某邻域内恒有
f ( x ) f ( x )( 或 f ( x ) f ( x )), ( x ) 0 则有 f . 0 0 0
( 介于 x0 与 x 之间).
该公式称为 n 阶泰勒公式, 余项 Rn ( x) 称为拉格朗日型余项.
当 n 0 时, 泰勒公式变成
f ( x) f ( x0 ) f ' ( )( x x0 ) ( 介于 x0 与 x 之间),
因此泰勒中值定理是拉格朗日中值定理的推广. 在不需要余项的精确表达式时, n 阶泰勒公式也 可写成
何一个条件,定理将不成立.
罗尔定理几何意义:·
如果 AB 是一条连续的曲线弧,除端点外处处有不 垂直于 x 轴的切线,且两个端点的纵坐标相等,那么 在曲线弧 AB 上至少存在一点 C ,在该点处曲线的切线 平行于 x 轴.

高等数学讲义-- 一元函数微分学

高等数学讲义-- 一元函数微分学

第二章 一元函数微分学§ 导数与微分(甲)内容要点 一、导数与微分概念 1、导数的定义设函数)(x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ∆,相应地函数增量)()(00x f x x f y -∆+=∆。

如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000存在,则称此极限值为函数)(x f 在0x 处的导数(也称微商),记作0()f x ',或0x x y =',x x dxdy=,)(x x dxx df =等,并称函数)(x f y =在点0x 处可导。

如果上面的极限不存在,则称函数)(x f y =在点0x 处不可导。

、导数定义的另一等价形式,令x x x ∆+=0,0x x x -=∆,则000()()()limx x f x f x f x x x →-'=-我们也引进单侧导数概念。

右导数:0000000()()()()()lim lim x x x f x f x f x x f x f x x x x +++→∆→-+∆-'==-∆ 左导数:0000000()()()()()lim lim x x x f x f x f x x f x f x x x x---→∆→-+∆-'==-∆ 则有)(x f 在点0x 处可导)(x f ⇔在点0x 处左、右导数皆存在且相等。

2.导数的几何意义与物理意义如果函数)(x f y =在点0x 处导数0()f x '存在,则在几何上0()f x '表示曲线)(x f y =在点()(,00x f x )处的切线的斜率。

切线方程:000()()()y f x f x x x '-=-法线方程:00001()()(()0)()y f x x x f x f x '-=--≠' <设物体作直线运动时路程S 与时间t 的函数关系为)(t f S =,如果0()f t '存在,则0()f t '表示物体在时刻0t 时的瞬时速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f −′ (1) = lim−
例2.3. 设 f ( x) 在 N ( x0 ) 有定义,则与 f ′( x0 ) 存在不等价的是 (A) ∃k ≠ 0 , lim
x →0
(B)
f ( x0 + kx) − f ( x0 ) 存在 x
x →0 x →0
(B) ∃α ( x) > 0, lim α ( x) = 0 , lim
Δy = f ( x0 + Δx) − f ( x0 ) = f ′( x 0 )Δx + o(Δx ) ;
特别是,当 f ′( x0 ) ≠ 0 时, Δy ~ f ′( x0 )Δx . (C) 可导与连续的关系:
y = f ( x) 在 x0 点可导 ⇒ y = f ( x) 在 x0 点连续
由可导的充要条件, x = ±1 处均不可导, 由初等函数的性质,在 x ≠ ±1 的任意点都可导。 例2.5.
f ( x) = ( x 2 − x − 2) x 3 − x 有几个不可导的点?( 0,1 )
2 3
2
解: f ( x) = ( x − x − 2) x − x = ( x − 2)( x + 1) x − 1 x
⎧1 − cos x ⎪ 例2.4. (1) 设 f ( x) = ⎨ x ⎪ x 2 g ( x) ⎩
则 f ( x) 在 x = 0 处( D ) 。 (A) 极限不存在; (C) 连续,但不可导;
x>0 x≤0
,其中 g ( x) 是有界函数,
(B)极限存在,但不连续 (D) 可导
解:首先考查 x = 0 处的左右极限。
x≠0 在 ( −∞, ∞ ) 连续且可导, x=0
⎧2 x sin(1/ x) − cos(1/ x) x ≠ 0 f 2′( x) = ⎨ , 在 x = 0 不连续。 0 x=0 ⎩
例2.2.
⎧ln(a + x 2 ) f ( x) = ⎨ ⎩ x+b
x >1 x ≤1
a = ?, b = ? 在 x = 1 可导。
1
2.1 一元函数导数和微分的概念
(1) 导数 z 导数的定义:设 f ( x) 在 N ( x0 , δ ) 有定义,若极限
Δx → 0
lim
f ( x0 + Δx) − f ( x0 ) 存在,则称 f ( x) 在 x0 点可导, Δx
称该极限值为 f ( x) 在 x0 点的导数值,该值记作:
y′( x0 ) , 或 f ′( x0 ) ,
d y ( x) d f ( x) , d x x=x d x x= x
0
0
导数的其他形式: f ′( x0 ) = lim z 左导数与右导数的定义。
Δx → 0
Δf ( x0 ) f ( x) − f ( x0 ) . = lim x → x Δx x − x0
(B) 可微与连续的关系:
f ( x) 在 x0 点可微 ⇒ f ( x) 在 x0 点连续
(C) 微分与增量的关系:
f ′( x0 ) ≠ 0 ⇒ Δf ( x0 ) ~ d f ( x0 ) ; f ′( x0 ) = 0 ⇔ Δf ( x0 ) = o(Δx) .
(D) 微分的几何意义: 微分三角形 在 x0 点,以 dy ( x0 ) 和 Δx 为直角边, 切线为斜边的直角三角形 MTN , 称为微分三角形, dy ( x0 ) 是曲线
3
解:(1) f ( x) 在 x = 1 点连续
⇔ lim f ( x) = 1 + b = lim f ( x) = ln(1 + a) ⇒ b + 1 = ln(a + 1) .
x →1−
x →1+
(2) f ( x) 在 x = 1 可导 ⇔
f −′(1) = f +′(1) :
f (1 + Δx) − f (1) =1; Δx → 0 Δx f (1 + Δx) − f (1) 2 f +′ (1) = lim+ . = Δx → 0 Δx 1+ a 2 f ( x) 在 x = 1 点可导 ⇒ 1 = ⇒ a = 1, b = ln 2 − 1 . 1+ a
′ = u′( x)v( x) + u ( x)v′( x) ; d [u ⋅ v ] = vdu + udv . ⎛ u ( x) ⎞′ u′( x)v( x) − u ( x)v′( x) ⎛ u ⎞ vdu − udv ;d ⎜ ⎟ = . ⎜ ⎟ = 2 v2 ⎝v⎠ ( v( x) ) ⎝ v( x) ⎠
(B) 恰有一个不可导点. (D) 至少有三个不可导点.
3n
[C]
= 1,
3
当 x > 1 时, lim n 1 + x
n →∞
3n
= x lim(
n →∞
1 x
3n
1
+ 1) n = x ,因此
3
f ( x) = lim n 1 + x
n →∞
3n
⎧ ⎪1, =⎨ 3 ⎪ ⎩x ,
x ≤1 x >1
x →0
4
其次再考查 x = 0 处的左右导数是否存在。
x →0
lim −
lim+
f ( x) − f (0) = lim xg ( x) = 0 x →0 − x
f ( x ) − f ( 0) x2 1 − cos x = lim+ = lim+ 3 / 2 = 0 , x →0 x →0 2 x x x⋅ x
5
(sin x)′ = cos x , (tan x)′ = sec 2 x , (cot x)′ = − csc 2 x ,
(sec x)′ = sec x tan x , (csc x)′ = − csc x cot x
( xα )′ = α xα −1 ( x > 0, α 为任意实数); (a x )′ = a x ln a (a > 0) ; (e x )′ = e x (log a x)′ = 1 1 (a > 0) , (ln x )′ = x ln a x
N
y = f ( x) 在 x0 点处切线的纵坐标的增量,而函数在 x0 点处的增量
Δf ( x0 ) 则是曲线纵坐标的增量。
例2.1.
⎧ x sin(1/ x) x ≠ 0 f1 ( x) = ⎨ 0 x=0 ⎩
在 x = 0 连续但不可导;
⎧ x 2 sin(1/ x) f 2 ( x) = ⎨ 0 ⎩
,考虑 x = ±1 处的可导性。
f −′ (−1) = lim−
x→−1
− x3 − 1 1−1 = −3 , f +′ (−1) = lim+ =0 x → −1 x − 1 x −1
f −′(1) = lim −
x→1
x3 −1 1−1 = 0 , f +′ (1) = lim = 3, x →1+ x − 1 x −1
x →0
lim f ( x) = lim + +
x →0
1 − cos x x
= lim +
x →0
x2 2 x
=0
x →0
lim f ( x) = lim x 2 g ( x) = 0 (因为 g ( x) 有界) − −
x →0
因此 lim f ( x) = f (0) = 0 ,故 f ( x) 在 x = 0 处连续。
0
右导数
f +′( x0 ) = lim+
Δx → 0
f ( x) − f ( x0 ) ; x − x0 f ( x) − f ( x0 ) . x − x0
左导数
f −′( x0 ) = lim−
Δx → 0
z
导数的性质: 若 y = f ( x) 在 x0 点可导,则
(A) 可导的充要条件:在 x0 点, 左导数与右导数相等 (B) 导数与增量的关系:
d sec x = sec x tan xdx , d csc x = − csc x cot xdx
dxα = α xα −1dx, ( x > 0, α 为任意实数); da x = a x ln adx, (a > 0) ; de x = e x dx d log a x = dx , (a > 0) , x ln a dx 1 − x2 dx 1 + x2 d ln x = 1 dx x
其中 A 与 Δx 无关, 则称 y = f ( x) 在 x0 点可微,其线性主部 A Δx 称 为 y = f ( x) 在 x0 点的微分,记作: dy ( x0 ) = A Δx 或 df ( x0 ) = A Δx . z 微分的性质
(A) 可微与可导的关系:
f ′( x0 ) 存在 ⇔ f ( x) 在 x0 点可微, 且 dy ( x0 ) = f ′( x0 ) Δx
= ( x − 2)( x + 1) x + 1 ⋅ x − 1 ⋅ x x − 1 ⋅ x 在 x = 1, x = 0 不可导 ⇒ f ( x) 在 x = 1, x = 0 不可导.
2.2 函数的导数与微分公式, 微分法
(1) 初等函数的导数和微分公式
(c)′ = 0(c 为常数); (cos x)′ = − sin x ,
x →0
f ′(0 + ) 与 f ′(0 − ) 均存在,且相等。答案为(D)
例 2.4 (2)设函数 f ( x) = lim n 1 + x
n →∞ 3n
相关文档
最新文档