初中数学基础计算题训练(方程)
初中数学一元二次方程练习题(附答案)
初中数学一元二次方程练习题一、单选题1.为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为210m 提高到212.1m 若每年的年增长率相同,则年增长率为( )A.9%B.10%C.11%D.12.1%2.设一元二次方程2230x x --=的两个实数根为12x x ,,则1122x x x x ++等于( ).A.1B.-1C.0D.33.若方程240x x m +=-有两个相等的实数根,则m 的值是( ).A.4B.-4C.14D.14- 4.方程22x x =的解是( ).A.2x =B.1x =,20x =C.120,2x x ==D.0x =5.下列方程中,是关于x 的一元二次方程的是( ).A.20ax bx c ++=B.()20x x -=C.2110x x ++=D.21x x =-6.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x ,则下面所列方程正确的是( )A.250(1)182x +=B.25050(1)182x ++=C.5050(1)50(12)182x x ++++=D.25050(1)50(1)182x x ++++= 7.用配方法解方程2250x x --=时,原方程应变形为( )A. 2(1)6x +=B. 2(2)9x +=C. 2(1)6x -=D. 2(2)9x -=8.已知关于x 的一元二次方程280x mx +-=的一个实数根为2,则另一实数根及m 的值分别为( )A.4,2-B.4,2--C.4,2D.4,2-9.若关于x 的一元二次方程()21220k x x -+-=有不相等实数根,则k 的取值范围是( ) A. 12k > B. 12k ≥ C. 12k >且1k ≠ D. 12k ≥且1k ≠ 10.方程24x x =的解是( )A.4x =B.120,4x x ==C.0x =D.122,2x x ==-11.一元二次方程240x -=的根为( )A.2x =B.2x =-C.122,2x x ==-D.4x =12.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是( )A .22500(1)9100x =+B .22500(1%)9100x +=C .22500(1)2500(1)9100x x =+++D .225002500(1)2500(1)9100x x ++++=13.国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由500亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x .则可列方程为( )A.()500127500x +=B.()500217500x ⨯+=C.()2500017500x +=D.()()2 50005001500017500x x ++++= 14.关于x 的一元二次方程220x kx +-=(k 为实数)根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定15.用配方法解方程26110x x ++=,下面配方正确的是( )A .232x +=()B .232x +=-()C .232x =(﹣)D .232x =-(﹣)16.下列方程是一元二次方程的是( )A. 2230x y +-=B. 230x -=C. 22(3)9x +=D. 2214x x += 17.下列方程中,关于x 的一元二次方程是( )A. 20ax bx c +=+B. 222x x =+C.22 21x x x =++D. 220x +=18.用配方法方程2650x x +-=时,变形正确的方程为( )A .()2314x +=B .()2314x -=C .()264x +=D .()264x -= 19.把二次函数2134y x x =--+用配方法化成2()y a x h k =-+的形式( ) A.21224()y x =--+ B .2)14(24y x =-+ C.21244()y x =-++ D.211322y x ⎛⎫=-+ ⎪⎝⎭ 20.今年某市的房价不断上涨,6月份平均每平方米约10362元,到8月份,平均每平方米就涨到约11438,设每个月房价的平均增长率为x ,则下列方程正确的是( )A .21036211438x =B .()103621211438x +=C .()210362111438x +=D .()()210362110362111438x x +++=21.已知关于x 的一元二次方程23450x x +-=,下列说法正确的是( )A .方程有两个相等的实数根B .方程有两个不相等的实数根C .没有实数根D .无法确定22.下列方程是一元二次方程的是( )A .20ax bx c ++=B .22323()2x x x -=-C .3240x x --=D .()2110x -+= 二、解答题23.解方程(1)2120x x -=+(2)2320x x -+=24.某商场将进货单价为40元的商品按50元售出时能卖出500个,经过市场调查发现,这种商品最多只能卖500个.若每个售价提高1元,其销售量就会减少10个,商场为了保证经营该商品赚得8 000元的利润而又尽量兼顾顾客的利益,售价应定为多少?这时应进货多少个?25.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完.礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?26.国美商场销售某种冰箱,每台进货价为2500元.调查发现,当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.(1)如果设每台冰箱降价x 元,平均每天销售冰箱的数量为y ,请直接表示出y 与x 的函数关系式;(2)如果商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?27.某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过30%.(1)根据物价局规定,此商品每件售价最高可定为多少元?(2)若每件商品售价定为x 元,则每天可卖出(1705)x -件,商店预期每天要盈利280元,那么每件商品的售价应定为多少元?28.诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元.那么平均可多售出2件.(1)设每件童装降价x 元时,每天可销售 件,每件盈利 元;(用x 的代数式表示)(2)每件童装降价多少元时,平均每天赢利1 200元;(3)要想平均每天赢利2000元.可能吗?请说明理由.29.某商场将原来每件进价80元的某种商品按每件100元出售,一天可出售100件,后来经过市场调查.发现这种商品单价每降低2元,其销量可增加20件.(1)商场经营该商品原来一天可获利 元;(2)若商场经营该商品一天要获得利润2160元,则每件商品应降价多少元?三、计算题30.用适当的方法解下列方程(1)26160x x --= (2)23222x x (﹣)=(﹣). 31.用适当的方法解下列方程(1)()25410x x x -=-(2)22510x x ++=(3)25736x x x ++=+四、填空题32.方程2x x =的解是________.33.关于x 的一元二次方程220x x m ++=有两个相等的实数根,则m 的值是___________.参考答案1.答案:B解析:2.答案:B解析:3.答案:A解析:4.答案:C解析:5.答案:B解析:6.答案:D解析:7.答案:C解析:方程常数项移到右边,两边加上1变形即可得到结果.方程移项得: 225x x -=,配方得: 2216x x -+=,即()216x -=.8.答案:D解析:把2x =代入280x mx +-=,得4280m +-=,解得2m =,2280x x ∴+-=解2280x x +-=得124,2x x =-=,故选D.9.答案:C解析:因为关于x 的一元二次方程()21220k x x -+-=有两个不相等的实数根,所以0∆>,所以()22810k +->,解得12k >,而作为一元二次方程还要考虑到二次项的系数不能等于0,所以10k -≠,所以1k ≠.故选C.10.答案:B解析:移项得:240x x -=,()40x x -=,0x =,40x -=,10x =,24x =.故选B .11.答案:C解析:移项,得24x =,开放,得2x =±,即122,2x x ==-.12.答案:D解析:设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程得:225002500(1)2500(1)9100x x ++++=.故选:D .13.答案:C解析:14.答案:A解析:由根的判别式得,22480b ac k ∆=+-=>故有两个不相等的实数根故选:A .15.答案:B解析: 26110x x ++=,2611x x +=-,269119x x ++=-+,232x +=-(),故选B.16.答案:B解析:A 含x y 、两个未知数,B 是,C 整理后x 的最高次项是4次,D 不是整式方程.故答案为:B17.答案:D解析:A 、20ax bx c +=+ ,当0a =时,不是一元二次方程,A 错误;B 、222x x =+是分式方程,B 错误; C 、22 21x x x =++,化简得210x -=, 是一元一次方程,C 错误;D 、220x +=即220x +=,D 正确.18.答案:A解析:方程移项得:265x x +=,配方得:26914x x ++=,即()2314x +=19.答案:C解析:20.答案:C解析:21.答案:B解析:22.答案:D解析: 23.答案:(1)124,3x x =-=(2)122,1x x ==解析:24.答案:解1:设提高x 元,则售价应定为(50)x +元,销售量为)500(10x -个,依题意可得: 504050010800()0)(x x +--=即:2403000x x -+=解得:1210,30x x ==兼顾顾客的利益 30x ∴=不合舍去。
初中数学方程与不等式之一元二次方程专项训练及答案
初中数学方程与不等式之一元二次方程专项训练及答案一、选择题1.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( ) A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=【答案】D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.【详解】x 1、x 2是一元二次方程x 2-2x=0的两个实数根,这里a=1,b=-2,c=0,b 2-4ac=(-2)2-4×1×0=4>0,所以方程有两个不相等的实数根,即12x x ≠,故A 选项正确,不符合题意; 21120x x -=,故B 选项正确,不符合题意;12221b x x a -+=-=-=,故C 选项正确,不符合题意; 120c x x a⋅==,故D 选项错误,符合题意, 故选D.【点睛】 本题考查了一元二次方程的根的判别式,根的意义,根与系数的关系等,熟练掌握相关知识是解题的关键.2.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22240x a x a --+=有实数解.且关于y 的分式方程1311y a y y+-=--有整数解,则符合条件的a 的值的和是( ) A .6-B .4-C .2-D .2【答案】C【解析】【分析】由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y+-=--有整数解,确定a 的值即可判断. 【详解】方程()22240x a x a --+=有实数解, ∴△=4(a −4)2−4a 2⩾0,解得a ⩽2∴满足条件的a 的值为−4,−2,−1,0,1,2 方程1311y a y y+-=-- 解得y=2a +2 ∵y 有整数解∴a=−4,0,2,4,6综上所述,满足条件的a 的值为−4,0,2,符合条件的a 的值的和是−2故选:C【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.3.将方程()22230x x x m n --=-=化为的形式,指出,m n 分别是( )A .1和3B .-1和3C .1和4D .-1和4 【答案】C【解析】【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【详解】移项得x 2-2x=3,配方得x 2-2x+1=4,即(x-1)2=4,∴m=1,n=4.故选C .【点睛】用配方法解一元二次方程的步骤:(1)形如x 2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx+c=0型,方程两边同时除以二次项系数,即化成x 2+px+q=0,然后配方.4.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-【答案】D【解析】【分析】 由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∴不论a 取何值,x ≤﹣3.故选D .【点睛】本题考查了配方法的应用,熟练运用配方法解答本题的关键.5.八年级()1班部分学生去春游时,每人都和同行的其他每一人合照一张双人照,共照了双人照片36张,则同去春游的人数是( )A .9B .8C .7D .6 【答案】A【解析】【分析】设同去春游的人数是x 人,由每人都和同行的其他每一人合照一张双人照且共照了双人照片36张,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设同去春游的人数是x 人, 依题意,得:1(1)362x x -=, 解得:19x =,28x =-(舍去).故选:A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6.方程250x x -=的解是( )A .5x =-B .5x =C .10x =,25x =-D .10x =,25x =【答案】D【解析】【分析】提取公因式x 进行计算.【详解】提取公因式x 得:x·(x −5)=0,所以10x =,25x =. 故本题答案选D .【点睛】本题考查了一元二次方程的计算,掌握提取公因式这一知识点是解题的关键.7.如图,AC ⊥BC ,:3:4AC BC =,D 是AC 上一点,连接BD ,与∠ACB 的平分线交于点E ,连接AE ,若83ADE S ∆=,323BCE S ∆=,则BC =( )A .3B .8C .3D .10【答案】B【解析】【分析】 过E 作,,EF BC EG AC ⊥⊥垂足分别为,,F G 由角平分线的性质可得:,EF EG =利用83ADE S ∆=,323BCE S ∆=可以求得,AD BC进而求得,CDE BCD S S ∆∆的面积,利用面积公式列方程求解即可.【详解】解:如图,过E 作,,EF BC EG AC ⊥⊥垂足分别为,.F GCE Q 平分,ACB ∠,EF EG ∴=:3:4AC BC =Q ,设3,4,AC x BC x == Q 83ADE S ∆=,323BCE S ∆=, 18132,,2323AD EG BC EF ∴•=•= 1,,4AD AD x BC ∴=∴= 2,CD AC AD x ∴=-=162,3CDE ADE S S ∆∆∴==163216.33BCD S ∆∴=+= 12416,2x x ∴••= 2,x ∴= (负根舍去)48.BC x ∴==故选B .【点睛】本题考查的是三角形的平分线的性质,等高的两个三角形的面积与底边之间的关系,一元二次方程的解法,掌握相关知识点是解题关键.8.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.9.下列方程中,有实数根的是( )A 0=B 1+=C 10=D x - 【答案】D【解析】【分析】根据二次根式的性质逐项分析即可.【详解】A .∵x 2+2≥2, 0≥≠,故不正确;B .∵x-2≥0且2-x≥0,∴x=20=,故不正确;C 0≥110≥≠,故不正确;D .∵x+1≥0,-x≥0,∴-1≤x ≤0.x -,∴x+1=x 2,∴x 2-x-1=0,∵∆=1+4=5>0,∴x 1=12-,x 2=12+(舍去),x -有实数根,符合题意.故选D .【点睛】本题考查了二次根式的性质,无理方程的解法,以及一元二次方程的解法,熟练掌握各知识点是解答本题的关键.10.在解方程(x+2)(x ﹣2)=5时,甲同学说:由于5=1×5,可令x+2=1,x ﹣2=5,得方程的根x 1=﹣1,x 2=7;乙同学说:应把方程右边化为0,得x 2﹣9=0,再分解因式,即(x+3)(x ﹣3)=0,得方程的根x 1=﹣3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是..( )A.甲错误,乙正确 B.甲正确,乙错误C.甲、乙都正确 D.甲、乙都错误【答案】A【解析】(x+2)(x﹣2)=5,x2-4=5,x2-9=0,(x+3)(x-3)=0,x+3=0或x-3=0,x1=-3,x2=3,所以甲错误,乙正确,故选A.11.某商品原售价225元,经过连续两次降价后售价为196元,设平均每次降价的百分率为x,则下面所列方程中正确的是()A.2(﹣)=B.22251196x(﹣)=1961225xC.2x(﹣)=1961225(﹣)=D.22251196x【答案】A【解析】【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=225,把相应数值代入即可求解.【详解】第一次降价后的价格为225×(1﹣x),第二次降价后的价格为225×(1﹣x)×(1﹣x),则225(1﹣x)2=196.故选A.【点睛】本题考查了一元二次方程的应用-增长率问题.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.12.徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元.则平均每次降低成本的百分率是()A.8.5%B.9%C.9.5%D.10%【答案】D【解析】【分析】设平均每次降低成本的百分率为x的话,经过第一次下降,成本变为100(1-x)元,再经过一次下降后成本变为100(1-x)(1-x)元,根据两次降低后的成本是81元列方程求解即可.【详解】解:设平均每次降低成本的百分率为x,根据题意得100(1-x)(1-x)=81,解得x=0.1或1.9(不合题意,舍去)即x=10%故选D.13.若关于x的方程2230x x m-+=有两个不相等的实数根,则实数m的取值范围是()A.98m≤B.98m<C.98m>D.98m=【答案】B【解析】【分析】若一元二次方程有两不等根,则根的判别式△=b2-4ac>0,建立关于m的不等式,求出m 的取值范围.【详解】∵方程有两个不相等的实数根,a=2,b=-3,c=m,∴△=b2-4ac=(-3)2-4×2×m>0,解得98m<.故选:B.【点睛】此题考查根的判别式,解题关键在于掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)=438 D.438(1+2x)=389【答案】B【解析】【分析】【详解】解:因为每半年发放的资助金额的平均增长率为x,去年上半年发放给每个经济困难学生389元,去年下半年发放给每个经济困难学生389 (1+x) 元,则今年上半年发放给每个经济困难学生389 (1+x) (1+x) =389(1+x)2元.据此,由题设今年上半年发放了438元,列出方程:389(1+x )2=438.故选B .15.已知关于x 的一元二次方程mx 2﹣(m+2)x+4m =0有两个不相等的实数根x 1,x 2.若11x +21x =4m ,则m 的值是( ) A .2B .﹣1C .2或﹣1D .不存在【答案】A【解析】【分析】先由二次项系数非零及根的判别式△>0,得出关于m 的不等式组,解之得出m 的取值范围,再根据根与系数的关系可得出x 1+x 2=2m m +,x 1x 2=14,结合1211+x x =4m ,即可求出m 的值.【详解】∵关于x 的一元二次方程mx 2﹣(m+2)x+4m =0有两个不相等的实数根x 1、x 2, ∴()202404m m m m ≠⎧⎪⎨∆=+-⋅>⎪⎩, 解得:m >﹣1且m≠0,∵x 1、x 2是方程mx 2﹣(m+2)x+4m =0的两个实数根, ∴x 1+x 2=2m m +,x 1x 2=14, ∵1211+x x =4m , ∴214m m +=4m , ∴m=2或﹣1,∵m >﹣1,∴m=2,故选A .【点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:根据二次项系数非零及根的判别式△>0,找出关于m 的不等式组;牢记两根之和等于﹣b a、两根之积等于c a. 16.已知24b ac -是一元二次方程()200++=≠ax bx c a 的一个实数根,则ab 的取值范围为( )A .18ab ≥ B .18ab ≤ C .14ab ≥ D .14ab ≤ 【答案】B【解析】【分析】设u 的两个一元二次方程,并且这两个方程都有实根,所以由判别式大于或等于0即可得到ab≤18. 【详解】因为方程有实数解,故b 2-4ac≥0.24b ac =-24b ac =-,设 则有2au 2-u+b=0或2au 2+u+b=0,(a≠0),因为以上关于u 的两个一元二次方程有实数解,所以两个方程的判别式都大于或等于0,即得到1-8ab≥0,所以ab≤18. 故选B .【点睛】 本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的求根公式:(b 2-4ac≥0).17.关于x 的方程(2-a)x 2+5x-3=0有实数解,则整数a 的最大值是( )A .1B .2C .3D .4 【答案】D【解析】【分析】由于关于x 的方程(2-a )x 2+5x-3=0有实数根,分情况讨论:①当2-a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2-a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,由此可以确定整数a 的最大值.【详解】解:∵关于x 的方程(2−a )x 2+5x−3=0有实数根,∴①当2−a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2−a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,∴△=25+12(2−a)≥0,解之得a≤4912, ∴整数a 的最大值是4.故选D.【点睛】本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握一元二次方程的性质与根的判别式.18.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( ) A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 【答案】D【解析】【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】(k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k V -≠⎧⎨=----⎩…, 解得:32k ≥且k≠2. 故选D .【点睛】本题考查了一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键.19.若关于x 的一元二次方程ax 2+bx+6=0的一个根为x=﹣2,则代数式6a ﹣3b+6的值为( )A .9B .3C .0D .﹣3【答案】D【解析】分析:根据关于x 的一元二次方程260ax bx ++=的一个根为2x =-,可以求得2a b -的值,从而可以求得636a b -+的值.详解:∵关于x 的一元二次方程260ax bx ++=的一个根为x =−2,∴()()22260a b ,⨯-+⨯-+= 化简,得2a −b +3=0,∴2a −b =−3,∴6a −3b =−9,∴6a −3b +6=−9+6=−3,故选D.点睛:考查一元二次方程的解,解题的关键是明确题意,建立所求式子与已知方程之间的关系.20.某厂四月份生产零件100万个,第二季度共生产零件282万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .100(1+x )2=282B .100+100(1+x )+100(1+x )2=282C .100(1+2x )=282D .100+100(1+x )+100(1+2x )=282【答案】B【解析】【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,然后根据题意可得出方程.【详解】五月份的产量=100(1+x ),六月份的产量=1002(1)x +, 根据题意可得:100+100(1+x )+1002(1)x +=282.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为2(1)a x b +=,a 为起始时间的有关数量,b 为终止时间的有关数量.。
初中数学一元一次方程基础训练3含答案
一元一次方程基础训练3一.选择题(共34小题)1.下列各式中,是一元一次方程的是()A.2x+5y=6B.3x﹣2C.x2=1D.3x+5=8 2.若(m﹣2)x|2m﹣3|=6是一元一次方程,则m等于()A.1B.2C.1或2D.任何数3.下列结论不成立的是()A.若x=y,则5﹣x=5﹣y B.若x=y,则mx=myC.若,则a=b D.若a=b,则4.设x,y,c是有理数,下列选项错误的是()A.若x=y,则x+c=y+c B.若x=y,则xc=ycC.若x=y,则=D.若=,则3x=2y5.下列结论错误的是()A.若a=b,则am=bm B.若a+m=b+m,则a=bC.若a=b,则a﹣m=b﹣m D.若am=bm,则a=b6.下列方程的变形符合等式性质的是()A.由2x﹣3=7,得2x=﹣3B.由﹣2x=5,得x=5+2C.由3x﹣2=x+1,得3x﹣x=1﹣2D.由﹣x=1,得x=﹣37.将方程x﹣3(4﹣3x)=5去括号正确的是()A.x﹣12﹣6x=5B.x﹣12﹣2x=5C.x﹣12+9x=5D.x﹣3+6x=5 8.下列说法正确的是()A.若a=b,则a+c=b﹣c B.a=b则3a=﹣3bC.若a=b,则=D.若a=b,则ad=bd9.设a,b,c表示任意有理数,下列结论不一定成立的是()A.若a=b,则a+c=b+c B.若a=b,则ac=bcC.若ac=bc,则a=b D.若,则a=b10.根据等式的性质,下列变形正确的是()A.如果2x=3,那么x=B.如果x=y,那么x﹣5=5﹣yC.如果x=y,那么﹣2x=﹣2y D.如果x=6,那么x=311.下列方程的变形,符合等式性质的是()A.由﹣5x=,得x=﹣B.x+2=6,得x=6+2C.由x=0,得x=3D.由x﹣2=4,得x=4﹣212.解方程时,去分母正确的是()A.2x+1﹣(10x+1)=1B.4x+1﹣10x+1=6C.4x+2﹣10x﹣1=6D.2(2x+1)﹣(10x+1)=113.关于x的方程3x+5=0与3x+3k=1的解相同,则k=()A.﹣2B.C.2D.﹣14.若k是方程2x﹣1=3的解,则4k﹣2的值是()A.2B.4C.6D.815.已知3是关于x的方程2x+a=1的解,则a的值是()A.﹣5B.5C.7D.216.制作一件手工制品,如果由一个人完成需10小时,现在由一部分人先做1小时,再增加1人和他们一起做2小时,完成这项工作的,假设每个人的工作效率相同,具体先安排x人工作,则下列方程正确的是()A.+=1B.+=C.﹣=D.+=17.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程()A.240x=150x+12B.240x=150x﹣12C.240x=150(x+12)D.240x=150(x﹣12)18.一件标价为1088元的上衣,按9折销售仍可获利100元,设这件上衣的成本价为x元,列方程()A.1088×0.9﹣x=100B.1088×9﹣x=100C.1088×0.9=x﹣100D.1088×9=x﹣10019.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是()A.不赚不亏B.赚8元C.亏8元D.赚15元20.已知光在空气中的传播速度约为3×105km/s,声音在空气中传播速度约为340m/s.下雨天的时候,若我们看到闪电后,过2s才听到雷声,则我们离打雷的地方有多少米?设我们离打雷的地方有x米.下列所列出的方程中正确的是()A.=2B.=2C.=2D.21.一件夹克衫先按成本价提高70%标价,再将标价打7折出售,结果获利38元.设这件夹克衫的成本价是x元,那么依题意所列方程正确的是()A.70%(1+70%)x=x+38B.70%(1+70%)x=x﹣38C.70%(1+70%x)=x﹣38D.70%(1+70%x)=x+3822.某人工作一年的报酬是年终给他一件衣服和10枚银币,但他干满8个月就决定不再继续干了,结账时,老板给了他一件衣服和2枚银币.设这件衣服值x枚银币,依题意列方程为()A.12(x+2)=x+10B.8(x+2)=x+10C.D.23.某校组建了66人的合唱队和14人的舞蹈队,根据实际需要,从合唱队中抽调了部分同学参加舞蹈队,使合唱队的人数恰好是舞蹈队人数的3倍,设从合唱队中抽调了x人参加舞蹈队,则可列方程为()A.3(66﹣x)=14+x B.66﹣x=3(14+x)C.66﹣3x=14+x D.66+x=3(14﹣x)24.某试卷由26道题组成,答对一题得8分,答错一题倒扣5分.今有一考生虽然做了全部的26道题,但所得总分为零,他做对的题有()A.10道B.15道C.20道D.8道25.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60B.﹣=10C.12(x+10)=13x+60D.﹣=1026.某商品进价200元,标价300元,打n折(十分之n)销售时利润率是5%,则n的值是()A.5B.6C.7D.827.在排成每行七天的月历表中取下一个3×3方块(如图所示),若所有日期数之和为99,则n的值为()A.21B.11C.15D.928.某新华书店暑假期间推出售书优惠方案:①一次性购书不超过200元,不享受优惠:②一次性购书超过200元但不超过400元一律打九折:③一次性购书超过400元一律打八折.如果黄聪同学一次性购书共付款324元,那么黄聪所购书的原价是()A.360元B.405元C.324元或360元D.360元或405元29.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,则该电器的标价为()A.3750元B.4000元C.4250元D.3500元30.一种商品,原价600元,现按九折出售,现在的价格比原来便宜()A.540元B.40元C.60元D.100元31.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,可列方程为()A.40x﹣8x=3.6B.=40﹣8C.﹣=3.6D.﹣=3.6 32.某地为了打造千年古镇旅游景点,将修建一条长为3600m的旅游大道.此项工程由A、B两个工程队接力完成,共用时20天.若A、B两个工程队每天分别能修建240m、160m,设A工程队修建此项工程xm,则可列方程为()A.+=20B.+=20C.﹣=20D.﹣=2033.为纪念中华人民共和国成立70周年,实验中学特组织七年级学生参观胡风纪念馆,对学生进行爱国主义教育.若租用30座客车x辆,则有5人没座位;若租用38座客车,则可少租2辆,且有一辆车空7个座位,根据题意,可列方程为()A.30x+5=38(x﹣2)+7B.30x+5=38(x﹣2)﹣7C.30x﹣5=38(x﹣2)+7D.30x﹣5=38(x﹣2)﹣734.一种商品原价400元,现按九折出售,现在的价格比原来便宜()A.350元B.360元C.370元D.40元二.填空题(共3小题)35.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某同学做了全部试题共得85分,他做对了_____道题.36.若(a﹣2)x a+3+2=0是关于x的一元一次方程,则a=_____,方程的解是_____.37.某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是_____.三.解答题(共3小题)38.甲、乙两工程队开挖一条水渠各需10天、15天,两队合作2天后,甲有其他任务,剩下的工作由乙队单独做,还需多少天能完成任务?39.王老师想为梦想班的同学们购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)王老师计划用900元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下的钱最少为多少元?此时购买书包和词典的方案是什么?40.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?一元一次方程基础训练3参考答案与试题解析一.选择题(共34小题)1.解:A、含有2个未知数,故选项错误;B、不是等式,故选项错误;C、是2次方程,故选项错误;D、正确.故选:D.2.解:根据一元一次方程的特点可得,解得m=1.故选:A.3.解:A、等式两边都乘以﹣1,且等式都加上5,等式仍成立,故A不符合题意;B、等式两边都乘以m,等式仍成立,故B不符合题意;C、等式两边都乘以c,等式仍成立,故C不符合题意;D、当c=0时,两边都除以c无意义,等式不成立,故D符合题意;故选:D.4.解:A、等式两边都加上c,等式仍成立,故这个选项不符合题意;B、等式两边都乘以c,等式仍成立,故这个选项不符合题意;C、c=0时,等式两边都除以c没有意义,等式不成立,故这个选项符合题意;D、等式两边都乘以6c,等式仍成立,故这个选项不符合题意.故选:C.5.解:A、a=b,两边都乘以m,得ma=bm,原变形正确,故这个选项不符合题意;B、a+m=b+m,两边都减去m,得a=b,原变形正确,故这个选项不符合题意;C、a=b,两边都减去m,得a﹣m=b﹣m,原变形正确,故这个选项不符合题意;D、m=0时,两边都除以0无意义,原变形错误,故这个选项符合题意;故选:D.6.解:A、等式的两边都加上3,得2x=10,故A不符合题意;B、等式两边同时除以﹣2,得x=﹣,故B不符合题意;C、由3x﹣2=x+1,得3x﹣x=1+2,故C不符合题意;D、等式的两边同时乘以﹣3,得x=﹣3,故D符合题意;故选:D.7.解:方程x﹣3(4﹣3x)=5,去括号得:x﹣12+9x=5,故选:C.8.解:A、一边加c,一边减c,所得等式不成立,故这个选项不符合题意;B、一边乘以3,一边乘以﹣3,所得等式不成立,故这个选项不符合题意;C、c=0时,两边都除以c无意义,所得等式不成立,故这个选项不符合题意;D、两边都乘以d,所得等式成立,故这个选项符合题意;故选:D.9.解:A、等式的两边都加c,等式仍成立,故这个选项不符合题意;B、等式的两边都乘以c,等式仍成立,故这个选项不符合题意;C、当c=0时,等式的两边都除以c无意义,等式不一定成立,故这个选项符合题意;D、等式的两边都乘以c,等式仍成立,故这个选项不符合题意;故选:C.10.解:A、根据等式的性质得到x=,故本选项不符合题意.B、根据等式的性质得到x﹣5=y﹣5,故本选项不符合题意.C、根据等式的性质得到﹣2x=﹣2y,故本选项符合题意.D、根据等式的性质得到x=12,故本选项不符合题意.故选:C.11.解:A、由﹣5x=,得x=﹣,所以A选项正确;B、x+2=6,得x=6﹣2,所以B选项错误;C、由x=0,得x=0,所以C选项错误;D、由x﹣2=4,得x=4+2,所以D选项错误.故选:A.12.解:方程两边同时乘以6得:4x+2﹣(10x+1)=6,去括号得:4x+2﹣10x﹣1=6.故选:C.13.解:解第一个方程得:x=﹣,解第二个方程得:x=∴=﹣解得:k=2故选:C.14.解:把x=k代入方程2x﹣1=3得:2k﹣1=3,解得:k=2,即4k﹣2=8﹣2=6,故选:C.15.解:把x=3代入方程2x+a=1得:6+a=1,解得:a=﹣5,故选:A.16.解:设先安排x人工作,依题意,得:+=.故选:B.17.解:设快马x天可以追上慢马,依题意,得:240x=150(x+12).故选:C.18.解:设这件上衣的成本价为x元,依题意,得:1088×0.9﹣x=100.故选:A.19.解:设盈利的进价是x元,则x+25%x=60,x=48.设亏损的进价是y元,则y﹣25%y=60,60+60﹣48﹣80=﹣8,∴亏了8元.故选:C.20.解:设我们离打雷的地方有x米,依题意,得:﹣=2.故选:C.21.解:设这件夹克衫的成本价是x元,依题意,得:70%(1+70%)x=x+38.故选:A.22.解:设这件衣服值x枚银币,依题意,得:=.故选:D.23.解:设从合唱队中抽调了x人参加舞蹈队,依题意,得:66﹣x=3(14+x).故选:B.24.解:设他作对了x道题,则:8x﹣5(26﹣x)=0,解得:x=10.故选:A.25.解:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选:C.26.解:商品是按标价的n折销售的,根据题意列方程得:(300×0.1n﹣200)÷200=0.05,解得:n=7.则此商品是按标价的7折销售的.故选:C.27.解:由题意可得,n+(n﹣1)+(n+1)+(n﹣7)+(n+7)+(n﹣1﹣7)+(n﹣1+7)+(n+1﹣7)+(n+1+7)解得,n=11,故选:B.28.解:设黄聪购书的原价是x元,当200<x≤400元时,0.9x=324,解得x=360,当x>400时,0.8x=324,解得,x=405,由上可得,黄聪所购书的原价是360元或405元,故选:D.29.解:设该电器的成本价为x元,依题意,得:500=20%x,解得:x=2500,∴该电器的标价为(2500+500)÷0.8=3750(元).故选:A.30.解:设现在的价格比原来便宜x元,根据题意,得600﹣x=600×0.9解得x=60.故选:C.31.解:设甲乙两地相距x千米,先利用路程公式分别求得步行和乘公交车所用的时间,再根据等量关系列方程得:﹣=3.6.故选:C.32.解:设A工程队修建此项工程xm,则可列方程为:+=20.故选:A.33.解:由题意知,30x+5=38(x﹣2)﹣7.故选:B.34.解:设现在的价格比原来便宜x元,依题意,得:400﹣x=400×0.9,解得:x=40.故选:D.二.填空题(共3小题)35.解:设他做对了x道题,则做错了(25﹣x)道题,依题意得:4x﹣(25﹣x)=85,解得x=22.故答案是:22.36.解:∵(a﹣2)x a+3+2=0是关于x的一元一次方程,∴a+3=1,且a﹣2≠0,解得:a=﹣2,方程为﹣4x+2=0,解得:x=,故答案为:﹣2;x=.37.解:设每台彩电成本价是x元,依题意得:(50%•x+x)×0.8﹣x=270,解得:x=1350.故答案是:1350元.三.解答题(共3小题)38.解:设还需x天能完成任务,根据题意可得方程:×2+=1.解得x=10.答:还需10天能完成任务.39.解:(1)设每个书包价格为x元,则每本词典价格为(x﹣8)元,根据题意得:3x+2(x﹣8)=124解得:x=28所以28﹣8=20(元)答:每个书包价格为28元,每本词典价格为20元.(2)设购买书包y个,则购买词典(40﹣y)个,余下的钱为:900﹣[28y+20(40﹣y)]=100﹣8y,由题意,当y=12时,100﹣8y为最小的正数4.答:购买方案为购买书包12个,词典28本.40.解:设应分配x人生产甲种零件,12x×2=23(62﹣x)×3,解得x=46,62﹣46=16(人).故应分配46人应分配46人生产甲种零件,16人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.。
初中数学分式方程的应用基础训练2(附答案详解)
(1)求N95口罩进价每只多少元?
(2)国家规定:N95口罩销售价不得高于30元/只.根据市场调研:N95口罩每天的销量y(只)与销售单价x(元/只)之间的函数关系式为y=-10x+500,该药店决定对一次性医用口罩按进价销售,但又想销售口罩每天获利2400元,该药店需将N95口罩的销售价格定为每只多少元?
26.商合杭高铁是国内高速铁路网“八纵八横”主通道的重要组成部分,预计于2020年6月建成通车,建成之后相比普通列车,芜湖到合肥的时间将缩短1个小时,已知芜湖与合肥相距约 ,普通列车速度为 ,则商合杭高铁设计时速为多少?
27.一艘轮船在静水中的最大航速为35千米/时,当江水匀速流动时,这艘轮船以最大航速沿江顺流航行120千米所用时间,与以最大航速沿江逆流航行90千米所用时间相同,求江水的流速.
23.为厉行节能减排,倡导绿色出行,我市推行“共享单车”公益活动.某公司在小区分别投放A、B两种不同款型的共享单车,其中A型车的投放量是B型车的投放量的 倍,B型车的成本单价比A型车高20元,A型、B型单车投放总成本分别为30000元和26400元,求A型共享单车的成本单价是多少元?
24.2019年10月17日是我国第6个扶贫日,也是第27个国际消除贫困日.为组织开展好铜陵市2019年扶贫日系列活动,促进我市贫困地区农产品销售,增加贫困群众收入,加快脱贫攻坚步伐.我市决定将一批铜陵生姜送往外地销售.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱生姜,且甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等.
初中数学分式方程的应用基础训练3(附答案详解)
初中数学分式方程的应用基础训练3(附答案详解)1.今年上海市政府计划年内改造1.8万个分类垃圾箱房,把原有的分类垃圾箱房改造成可以投放“干垃圾、湿垃圾、可回收垃圾、有害垃圾”四类垃圾的新型环保垃圾箱房.环卫局原定每月改造相同数量的分类垃圾箱房,为确保在年底前顺利完成改造任务,环卫局决定每月多改造250个分类垃圾箱房,提前一个月完成任务.求环卫局每个月实际改造分类垃圾箱房的数量.2.某店准备购进A,B 两种口罩,A 种口罩毎盒的进价比B 种口罩每盒的进价多10 元,用2000 元购进A种口罩和用1500 元购进B 种口罩的数量相同.(1)A 种口罩每盒的进价和B 种口罩每盒的进价各是多少元?(2)商店计划用不超过1770 元的资金购进A,B 两种口罩共50 盒,其中A 种口罩的数量应多于B 种口罩数量,该商店有几种进货方案?3.在“情系灾区”捐款活动中,某同学对甲、乙两班情况进行统计,得到三条信息:①甲班共捐款300元,乙班共捐232元;②甲班比乙班多2人;③乙班平均每人捐款数是甲班平均每人捐款数的45;请你根据以上信息,求出甲班平均每人捐款多少元?4.李叔叔和张阿姨栽树.李叔叔栽6棵树所用的时间与张阿姨栽5棵树所用的时间相同,已知李叔叔比张阿姨平均每天多栽20棵树.(1)求李叔叔平均每天栽树的棵数;(2)由李叔叔和张阿姨同时栽树1540棵,要几天完成?5.甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工300个零件所用的时间与乙加工250个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?6.某服装店用960元购进一批服装,并以每件46元的价格全部售完,由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售,卖了部分后,为了加快资金周转,•服装店将剩余的20件以售价的九折全部出售.问:(1)该服装店第一次购买了此种服装多少件?(2)两次出售服装共盈利多少元?7.在渡江战役胜利70周年之际,合肥市某中学组织九年级学生参观位于市郊的渡江战役纪念馆,全年级从学校同时出发,男生步行,女生骑车,已知骑行的平均速度是步行平均速度的2.5倍,该中学到纪念馆的路程为8千米,结果女生比男生提前40分钟到达,求男生步行的速度.8.某学校举行“青春心向党建功新时代”演讲比赛活动,准备购买甲、乙两种奖品,小昆发现用480元购买甲种奖品的数目恰好与用360元购买乙种奖品的数目相等,已知甲种奖品的单价比乙种奖品的单价多10元.(1)求甲、乙两种奖品的单价各是多少元?(2)如果需要购买甲乙两种奖品共100个,且甲种奖品的数目不低于乙种奖品数目的2倍,问购买多少个甲种奖品,才使得总购买费用最少?9.文昌西路改建工程指挥部要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断,并说明理由.10.某工程队承接一铁路工程,在挖掘一条500米长的隧道时,为了尽快完成,实际施工时每天挖掘的长度是原计划的1.5倍,结果提前了25天完成了其中300米的隧道挖掘任务.(1)求实际每天挖掘多少米?(2)由于气候等原因,需要进一步缩短工期,要求完成整条隧道不超过70天,那么为了完成剩下的任务,在实际每天挖掘长度的基础上,至少每天还应多挖掘多少米?11.“江畔”礼品店在十一月份从厂家购进甲、乙两种不同礼品.购进甲种礼品共花费1500元,购进乙种礼品共花费1050元,购进甲种礼品数量是购进乙种礼品数量的2倍,且购进一件乙种礼品比购进一件甲种礼品多花20元.⑴求购进一件甲种礼品、一件乙种礼品各需多少元;⑵元旦前夕,礼品店决定再次购进甲、乙两种礼品共50个.恰逢该厂家对两种礼品的价格进行调整,一件甲种礼品价格比第一次购进时提高了20%,一件乙种礼品价格比第一次购进时降低了5元.如果此次购进甲、乙两种礼品的总费用不超过3100元,那么这家礼品店最少可购进多少件甲种礼品?12.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程刚好如期完成;②乙队单独完成这项工程要比规定日期多用5天;③若甲乙两队合作4天,余下的工程由乙队单独也正好如期完成.(1)甲、乙单独完成各需要多少天?(2)在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?13.“村村通公路政策,是近年来国家构建和谐社会,支持新农村建设的一项重大公共决策,是一项民心工程,惠民工程某镇政府准备向甲、乙两个工程队发包一段“村村通”工程建设项目,经调查:甲、乙两队单独完成该工程,乙队所需时间是甲队的2倍;甲、乙两队共同完成该工程需30天;若甲队每天所需劳务费用为2400元,乙队每天所需劳务费用为1500元,从节约资金的角度考虑,应选择哪个工程队更合算?14.某市为了美化环境,计划在一定的时间内完成绿化面积40万亩的任务.后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加20%,而且要提前2年完成任务.经测算,要完成新的计划,平均每年的绿化面积必须比原计划多3万亩,求原计划平均每年的绿化面积.15.在创建文明城市的进程中.某市为美化城市环境,计划种植树木6000棵,由于志愿者的加入,实际每天植树的棵数比原计划多20%,结果提前5天完成任务,求原计划每天植树的棵数.16.为迎接2019年中、日、韩三国青少年橄榄球比赛,南雅中学计划对面积为22400m 运动场进行塑胶改造.经投标,由甲、乙两个工程队来完成,已知甲队每天能改造的面400m的改造时,甲队比乙积是乙队每天能改造面积的2倍,并且在独立完成面积为2队少用4天.(1)求甲、乙两工程队每天能完成塑胶改造的面积;(2)设甲工程队施工x天,乙工程队施工y天,刚好完成改造任务,求y与x的函数解析式;(3)若甲队每天改造费用是0.55万元,乙队每天改造费用是0.2万元,且甲、乙两队施工的总天数不超过30天,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低的费用.17.A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?18.徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐徐州号高铁A与复兴号高铁B前往北京.已知A车的平均速度比B车的平均速度慢70km/n,A车的行驶时间比B车的行驶时间多25%,两车的行驶时间分别为多少?19.某服装厂接到一份加工3000件校服的订单.在实际生产之前,接到学校要求需提前供货.该服装厂决定提高加工效率,实际每天加工的件数是原计划的1.2倍,结果提前5天完工,求原计划每天加工校服的件数.20.为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生已知用300元购买甲种文具的个数是用50元购买乙种文具个数的2倍,购买1个甲种文具比购买1个乙种文具多花费10元.(1)求购买一个甲种文具、一个乙种文具各需多少元;(2)若学校计划购买这两种文具共120个,投入资金不多于1000元,且甲种文具至少购买36个,求有多少种购买方案.21.2018年,某县为改善环境,方便居民出行,进行了路面硬化,计划经过几个月使城区路面硬化面积新增400万平方米.工程开始后,实际每个月路面硬化面积是原计划的2倍,这样可提前5个月完成任务.(1) 求实际每个月路面硬化面积为多少万平方米?(2) 工程开始2个月后,随着冬季来临,气温下降,县委、县政府决定继续加快路面硬化速度,要求余下工程不超过2个月完成,那么实际平均每个月路面硬化面积至少还要增加多少万平方米?22.为了加快城镇化建设,某镇对一条道路进行改造,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a天后,再由甲、乙两工程队合作施工y天,完成此项工程,试用含a的代数式表示y;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?23.合肥市拟将徽州大道南延至庐江县庐城镇,庐江段的一段土方工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该土方工程分成两部分,甲队做完其中一部分工程用了x天,乙队做完另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,请用含x的式子表示y,并求出两队实际各做了多少天?24.某商厦进货员预测一种应季衬衫能畅销市场,试用10000元购进这种衬衫,面市后果然供不应求.于是,商厦又用22000元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了4元.求这种衬衫原进价为每件多少元?25.我市为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作8天后,余下的工程由甲工程队单独来做还需3天完成.(1)问我市要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资2万元.两个工程队在完成这项工程后,共获得工程工资款总额65万元,请问该工程甲、乙两工程队各做了多少天?26.列方程解应用题.2019年9月25日,被誉为“世界新七大奇迹”之首的北京大兴国际机场正式投运.某校组织初二年级同学到距学校30公里的北京大兴国际机场进行参观.同学们乘坐大巴车前往,张老师因学校有事晚出发了5分钟,开私家车沿相同路线行进,结果和同学们同时到达.已知私家车的速度是大巴车速度的1.2倍.求大巴车的速度是多少?27.书店老板去图书批发市场购买某种图书,第一次用1200 元购买若干本,按每本10 元出售,很快售完.第二次购买时,每本书的进价比第一次提高了20%,他用1500 元所购买的数量比第一次多10 本.(1)求第一次购买的图书,每本进价多少元?(2)第二次购买的图书,按每本10 元售出200 本时,出现滞销,剩下的图书降价后全部售出,要使这两次销售的总利润不低于2100 元,每本至多降价多少元?(利润=销售收入一进价)28.4月23日是“世界读书日”,某校在“世界读书日”活动中,购买甲、乙两种图书共150本作为活动奖品,已知乙种图书的单价是甲种图书单价的1.5倍.若用180元购买乙种图书比要购买甲种图书少2本.(1)求甲、乙两种图书的单价各是多少元?(2)如果购买图书的总费用不超过5000元,那么乙种图书最多能买多少本?29.六•一前夕某幼儿园园长到厂家选购A、B两种品牌的儿童服装每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍,求A、B两种品牌服装每套进价分别为多少元?30.为支援困山区,某学校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品与用120元购买A型学习用品的件数相同.(1)求A,B两种学习用品的单价各是多少元;(2)若购买A、B两种学习用品共1000件,且总费用不超过28000元,则最多购买B 型学习用品多少件?31.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?32.学校广播站要招聘一名播音员,擅长诵读的小龙想去应聘,但是不知道是否符合应聘条件,于是在微信上向好朋友亮亮倾诉,如图所示的是他们的部分对话内容,面对小龙的问题,亮亮也犯了难.(1)请聪明的你用所学的方程知识帮小龙计算一下,他是否符合学校广播站的应聘条件?(2)小龙和奶奶各读一篇文章,已知奶奶所读文章比小龙所读文章至少多了3200个字,但奶奶所用的时间是小龙的2倍,则小龙至少读了多少分钟?33.某县冬季流感严重,学生感染较多,造成不少学校放假,为了预防流感,县教体局要求各校进行防控.某学校计划利用周末将教室及公共环境进行“喷药消毒”,现有甲、乙两位老师主动承接该工作,若甲、乙两老师合作6小时可以完成全部工作;若甲老师单独做4小时后,剩下的乙老师单独做还需9小时完成.求甲、乙两老师单独完成该工作各需多少小时?34.某列车平均提速vkm/h,用相同的时间,列车提速前行驶150km,提速后比提速前多行驶50km,提速前列车的平均速度为多少?(用含v的式子表示)35.为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A 种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本.(1)求A和B两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A 种图书20本和B种图书25本,共花费多少元?36.(列分式方程解应用题)为加快西部大开发,某自治区决定新修一条公路,甲.乙两工程队承包此项工程,若甲工程队单独施工,则刚好如期完成;若乙工程队单独施工就要超过3个月才能完成,现甲乙两队先共同施工2个月,剩下的由乙队单独施工,则刚好如期完成.问:原来规定修好这条公路需多长时间?解:设原来规定修好这条公路需要x个月,设工程总量为1.37.某中学为了创建书香校园,去年购买了一批图书,其中科普书的单价比文学书的单价多4元,用1200元购买的科普书与用800元购买的文学书数量相等.(1)求去年购买的文学书和科普书的单价各是多少元?(2)若今年文学书的单价比去年提高了25%,科普书的单价与去年相同,这所中学今年计划再购买文学书和科普书共200本,且购买文学书和科普书的总费用不超过2135元,这所中学今年至少要购买多少本文学书?38.为响应低碳号召,张老师上班的交通工具由自驾车改为骑自行车,张老师家距学校15千米,因为自驾车的速度是自行车速度的3倍,所以张老师每天比原来早出发23小时,才能按原来时间到校,张老师骑自行车每小时走多少千米?39.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.我市某汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?40.制文中学2019年秋季在政大商场购进了A、B两种品牌的冰鞋,购买A品牌冰鞋花费了8000元,购买B品牌冰鞋花费了6000元,且购买A品牌冰鞋的数量是购买B品牌冰鞋数量的2倍,已知购买一双B品牌冰鞋比购买一双A品牌冰鞋多花100元.(1)求购买一双A品牌,一双B品牌的冰鞋各需多少元?(2)为开展好“冰雪进校园”活动,制文中学决定再次购买两种品牌冰鞋共50双,如果这所中学这次购买A、B两种品牌冰鞋的总费用不超过13100元,那么制文中学最多购买多少双B品牌冰鞋?参考答案1.环卫局每个月实际改造类垃圾箱房2250个.【解析】【分析】设原计划每个月改造垃圾房x 万个,然后根据题意列出分式方程,解方程即可得出答案.【详解】设原计划每个月改造垃圾房x 万个,则实际每月改造()0.025x +万个.1.8 1.810.025x x -=+. 化简得:2200590x x +-=. 解得:115x =,2940x =-. 经检验:115x =,2940x =-是原方程的解. 其中115x =符合题意,2940x =-不符合题意舍去. 10.0250.2255+=万个,即2250个. 答:环卫局每个月实际改造类垃圾箱房2250个.【点睛】本题主要考查分式方程的应用,能够根据题意列出分式方程是解题的关键.2.(1)A 种口罩每盒的进价为40元,B 种口罩每盒的进价是30元;(2)该商店有2种进货方案【解析】【分析】(1)设A 种口罩每盒的进价为x 元,则B 种口罩每盒的进价是(10x -)元,由题意得出关于x 的分式方程,求解并检验,然后作答即可;(2)设购进A 种口罩a 盒,则购进B 种口罩(50a -)盒,由题意得关于a 的不等式组,解得a 的取值范围,再取整数解,则方案数可得.【详解】 (1)设A 种口罩每盒的进价为x 元,则B 种口罩每盒的进价是(10x -)元,由题意得:2000150010x x =-, 解得:40x =,经检验,40x =是原方程的解,且符合实际意义,401030-=(元),答:A 种口罩每盒的进价为40元,B 种口罩每盒的进价是30元;(2)设购进A 种口罩a 盒,则购进B 种口罩(50a -)盒,由题意得:()403050177050a a a a ⎧+-≤⎨>-⎩, 解得:2527a <≤,∵a 取整数,∴a 可为26,27,答:该商店有2种进货方案.【点睛】本题考查了分式方程和一元一次不等式组在实际问题中的应用,理清题中的数量关系是解题的关键.3.甲班平均每人捐款5元.【解析】【分析】设甲班有x 人,根据乙班平均每人捐款数是甲班平均每人捐款数的45列出方程求解. 【详解】解:设甲班有x 人,由题意得,,解得,x =60, 经检验x =60是原方程的解,∴x =60.∴甲班平均每人捐款数为元.答:甲班平均每人捐款5元.【点睛】本题考查了分式方程的应用,仔细审题,找出列方程所需的等量关系是解答本题的关键,解分式方程要注意验根.4.(1)李叔叔平均每天栽树120棵;(2)由李叔叔和张阿姨同时栽树1540棵,要7天完成.【解析】【分析】(1)设李叔叔平均每天栽树x 棵,则张阿姨平均每天栽树(20x -)棵,根据题意列出方程,求出方程的解即可得到结果;(2)由第一问求出的李叔叔平均每天栽树的棵数,得到张阿姨平均每天栽树的棵数,根据工作总量除以工作效率=工作时间,求出即可.【详解】(1)设李叔叔平均每天栽树x 棵,则张阿姨平均每天栽树(20x ﹣)棵, 根据题意得:6520x x =-, 解得:x =120,经检验,x =120是原分式方程的解.答:李叔叔平均每天栽树120棵;(2)1540÷(120+100)=7(天).答:由李叔叔和张阿姨同时栽树1540棵,要7天完成.【点睛】本题考查了分式方程的应用,弄清题意是解本题的关键.5.甲每小时加工60个零件,乙每小时加工50个零件.【解析】【分析】甲加工300个零件所用的时间与乙加工250个零件所用时间相等”可得出相等关系,从而只需表示出他们各自的时间就可以了.【详解】解:设乙每小时加工机器零件x 个,则甲每小时加工机器零件()10x +个, 根据题意得:30025010x x=+, 解得50x =,经检验,50x=是原方程的解.10501060x+=+=.答:甲每小时加工60个零件,乙每小时加工50个零件.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系列出方程是解决问题的关键.6.(1)该服装店第一次购买了此种服装30件;(2)868元【解析】【分析】(1)设该服装店第一次购买了此种服装x件,根据“第二次比第一次进价多5元的价格购进服装”列出分式方程即可求出结论;(2)根据“总利润=总售价-总成本”即可求出结论.【详解】解:(1)设该服装店第一次购买了此种服装x件,则第二次购买了此种服装2x件根据题意可得22209605 2-= x x解得:x=30经检验:x=30是原方程的解答:该服装店第一次购买了此种服装30件.(2)第二次购买了此种服装30×2=60件46×(30+60-20)+46×90%×20-960-2220=868(元)答:两次出售服装共盈利868元.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.7.男生步行的平均速度为7.2千米/小时.【解析】【分析】设男生步行的速度为x千米/小时,则女生骑车的速度为2.5x千米/小时,根据时间=路程÷速度结合女生比男生提前40分钟到达,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设男生步行的平均速度为x 千米/小时,则女生骑行的平均速度为2.5x 千米/小时 由题意得,8822.53x x -= 解得,7.2x =经检验,7.2x =是原方程的根,并且符合题意答:男生步行的平均速度为7.2千米/小时【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.8.(1) 甲种奖品的单价为40元,乙种奖品的单价为30元;(2)购买甲种奖品67个时,总费用最少【解析】【分析】(1)设甲种奖品的单价为x 元,则乙种奖品的单价为()10x -元,利用“480元购买甲种奖品的数目恰好与用360元购买乙种奖品的数目相等”为等量关系列方程求解即可;(2)设购买甲种奖品m 个,则购买乙种奖品()100m -个,购买奖品的总费用为w 元,由甲种奖品的数目不低于乙种奖品数目的2倍可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,根据总价=单价×数量可得出w 关于m 的一次函数关系式,再利用一次函数的性质即可解决最值问题.【详解】(1)设甲种奖品的单价为x 元,则乙种奖品的单价为()10x -元. 由题意得48036010x x =-, 解得40x =,经检验得40x =是原方程的解,∴1030x -=,答:甲种奖品的单价为40元,乙种奖品的单价为30元;(2)设购买甲种奖品m 个,则购买乙种奖品()100m -个,。
初中数学一元二次方程的根与系数关系基础过关专项训练题(精选100道习题 附答案详解)
初中数学一元二次方程的根与系数关系基础过关专项训练题(精选100道习题 附答案详解)1.已知x 1,x 2是一元二次方程x 2-6x- 15=0的两个根,则x 1+x 2等于( )A .-6B .6C .-15D .152.关于的方程220x ax a -+=的两根的平方和是5,则a 的值是( )A .-1或5B .1C .5D .-13.已知一元二次方程20(a 0)++=≠ax bx c 中,其中真命题有( )①若a+b+c=0,则240b ac -≥;②若方程20ax bx c ++=两根为−1和2,则2a+c=0;③若方程20ax c +=有两个不相等的实根,则方程20ax bx c ++=必有两个不相等的实根.A .1个B .2个C .3个D .0个 4.一元二次方程x 2+x ﹣1=0的两根分别为x 1,x 2,则1211x x +=( ) A .12 B .1 CD5.若α,β是方程x 2﹣2x ﹣2=0的两个实数根,则α2+β2的值为( ) A .10 B .9 C .8 D .76.若m 、n 是一元二次方程x 2-5x-2=0的两个实数根,则m+n-mn 的值是( ) A .-7 B .7 C .3 D .-37.若方程224()0x m x m +-+=的两个根互为相反数,则m 等于( ) A . 2- B .2 C .2± D .48.已知m 、n是方程210++=x 的两根,( ) A .9 B .3± C .3 D .59.定义运算:a ⋆b=2ab .若a ,b 是方程x 2+x-m=0(m >0)的两个根,则(a+1)⋆a -(b+1)⋆b 的值为( )A .0B .2C .4mD .-4m10.关于x 的一元二次方程()22a 1x 2x 30--+=有两个不相等的实数根,则a 的取值范围是( )A .2a 3>B .2a 3>且1a 2≠C .2a 3<D .2a 3<且1a 2≠ 11.若x x的方程20x m -+=的一个根,则方程的另一个根是( )A .9B .4C .D .12.下列方程中,满足两个实数根的和等于3的方程是( )A .2x 2+6x ﹣5=0B .2x 2﹣3x ﹣5=0C .2x 2﹣6x+5=0D .2x 2﹣6x ﹣5=0 13.设α、β是方程 220120x x ++=的两个实数根,则 22ααβ++的值为( ) A .-2014 B .2014 C .2013 D .-2013 14.已知α、β满足5αβ+=,且6αβ=,则以α、β为两根的一元二次方程是( )A .x 2+5x+6=0B .x 2-5x+6=0C .x 2-5x-6=0D .x 2+5x-6=0 15.如果a ,b 是两个不相等的实数,且满足220151a a -=,220151b b -=,那么ab 等于( )A .2015B .-2015C .1D .-116.若a 2+1=5a ,b 2+1=5b ,且a ≠b ,则a +b 的值为( )A .﹣1B .1C .﹣5D .517.已知一元二次方程x 2+6x +c =0有一个根为﹣2,则另一个根为( )A .﹣2B .﹣3C .﹣4D .﹣818.若关于x 的方程x 2-bx +6=0的一根是x =2,则另一根是( )A .x =-3B .x =-2C .x =2D .x =319.关于x 的一元二次方程(m ﹣2)x 2+(2m ﹣1)x +m ﹣2=0有两个不相等的正实数根,则m 的取值范围是( )A .m >34B .m >34且m ≠2C .﹣12<m <2D .54<m <2 20.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( )A .-2B .2C .-3D .321.若x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两个根,则x 12﹣x 1+x 2的值为( ) A .﹣1 B .0 C .2 D .322.已知关于x 的方程x 2+3x +a =0有一个根为﹣2,则另一个根为( )A .5B .﹣1C .2D .﹣523.方程(m ﹣2)x 2+mx ﹣1=0是关于x 的一元二次方程,则m 的值为( ) A .任何实数. B .m≠0 C .m≠2 D .m≠﹣2 24.关于x 的一元二次方程x 2+2x+k+1=0的两个实根x 1,x 2,满足x 1+x 2﹣x 1x 2<﹣1,则k 的取值范围在数轴上表示为( )A .B .C .D .25.若12x x 、是一元二次方程2320x x ++=的两个实数根,则2212x x +的值为( )A .13-B .1-C .5D .1326.已知x 1,x 2是关于x 的方程x 2+ax -2b =0的两个实数根,且x 1+x 2=-2,x 1·x 2=1,则b a 的值是( )A .B .-C .4D .-127.若关于x 的一元二次方程22120x x m ++-=有两个实数根,且这两个实数根之积为负数,则实数m 的取值范围是( )A .0m ≥B .12m >C .102m <<D .102m ≤< 28.若1x 、2x 是一元二次方程2750x x -+=的两根,则1211+x x 的值是( ) A .75 B .75- C .57 D .57- 29.一元二次方程x 2-2x-3=0的根为( )A .x 1=1,x 2=3B .x 1=-1,x 2=3C .x 1=-1,x 2=-3D .x 1=1,x 2=-330.已知1x 、2x 是关于x 的一元二次方程()22230x m x m +++=的两个不相等的实数根,且满足12111x x +=-,则m 的值是( ) A .3 B .3或-1 C .1 D .-3或1 31.已知a 2﹣6a ﹣5=0和b 2﹣6b ﹣5=0中,a ≠b ,则11a b+的值是__. 32.已知一元二次方程x 2-4x -3=0的两根为m ,n ,则2m -mn +2n = . 33.已知一元二次方程x 2﹣3x ﹣2=0的两个实数根为x 1,x 2,则(x 1+1)(x 2+1)的值是_____.34.关于x 的230x ax a --=的一个根是2x =-,则它的另一个根是___.35.关于x 一元二次方程240x mx +-=的一个根为1x =-,则另一个根为x =__________.36.若1x ,2x 是一元二次方程220x x +-=的两个实数根,则1211x x ⋅=__________. 37.一元二次方程2420x x -+=的两根为1x ,2x ,则2111242x x x x -+的值为____________ .38.设a 、b 是方程220190x x +-=的两个实数根,则()()11a b --的值为_____. 39.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于______. 40.如图,直线y =34-x +6与反比例函数y =k x(k >0)的图象交于点M 、N ,与x 轴、y 轴分别交于点B 、A ,作ME ⊥x 轴于点E ,NF ⊥x 轴于点F ,过点E 、F 分别作EG ∥AB ,FH ∥AB ,分别交y 轴于点G 、H ,ME 交HF 于点K ,若四边形MKFN 和四边形HGEK 的面积和为12,则k 的值为_____.41.已知关于x 方程x 2﹣3x+a=0有一个根为1,则方程的另一个根为_____. 42.方程22430x x +-=和2230x x -+=的所有的根的和等于____.43.设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为______.44.若方程2x 2-x =1的两个实数根为12,x x ,则2212x x +=_______________45.若x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两个根,则x 12﹣x 1+x 2的值为_____. 46.若一元二次方程x (x ﹣2)=6的两个实数根分别为m ,n ,则m 2n+mn 2的值为_____. 47.方程(2y +1)2+3(2y +1)+2=0的两个根的乘积为___________.48.若菱形的两条对角线长分别是方程210240x x -+=的两实根,则菱形的面积为_____.49.已知方程22430x x +-=的两根分别为1x 和2x ,则2212x x +的值等于___________________50.已知关于x 的方程x 2+(m +1)x +m 2=0的两根互为倒数,则m =__________.51.一元二次方程x 2-4x -3=0的两个根之和为________.52.已知一元二次方程x 2﹣6x +9=0的两根为x 1、x 2,则x 1•x 2=_______.53.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.54.已知直角三角形的两条直角边的长恰好是方程2x 2-8x+7=0的两个根,则这个直角三角形的斜边长是______.55.已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且2212x x -=10,则a =__________56.一元二次方程250x x c -+=有两个不相等的实数根且两根之积为正数,若c 是整数,则c=_____.(只需填一个).57.若关于x 的方程2x 2+mx +n =0的两个根是-2和1,则n m 的值为_____.58.方程 22()60x m x m ++=-有两个相等的实数根,且满足1212x x x x +=,则 m 的值是_________.59.已知关于的方程两个根是互为相反数,则的值为________.60.已知a ,b 是方程x 2+2017x +2=0的两个根,则(2+2019a +a 2)(2+2019b +b 2)的值为______.61.设m ,n 分别为一元二次方程x 2+2x ﹣2018=0的两个实数根,则m 2+3m+n=______. 62.已知关于x 的方程x 2﹣2x ﹣6=0的两个根为x 1,x 2,则x 1+x 2=_____.63.若方程x 2﹣4x ﹣1=0的两根为x 1,x 2,则x 1•x 2﹣x 1﹣x 2=_____.64.若一元二次方程x 2+px ﹣2=0的一个根为2,则p =_____,另一个根是_____. 65.若1x 、2x 是方程22x 2mx m m 10-+--=的两个实数根,且x 1+x 2=1-x 1⋅x 2,则 m 的值为________. 66.若α、β是一元二次方程x 2+2x ﹣3=0的两个不相等的根,则α2﹣2β的值是_____. 67.若方程22310x x --=的两根为1x 、2x ,则1211+x x 的值为_______________ 68.关于x 的方程2x 2+(m 2-9)x +m +1=0两根互为相反数,则m =_____. 69.设m ,n 是一元二次方程x 2+2x -7=0的两个根,则m 2+3m +n =_______. 70.若方程x 2﹣2x ﹣4=0的两个实数根为α,β,则α2+β2的值为___.71.已知关于x 的方程()222100()x m x m a +-+=≠有两个根12,x x . (1)求m 的取值范围;(2)当21120x x x +=时,求m 的值. 72.关于x 的一元二次方程()22x 2m 1x m 10+-+-=有两个不相等的实数根1x ,2x . ()1求实数m 的取值范围;()2是否存在实数m ,使得12x x 0=成立?如果存在,求出m 的值,如果不存在,请说明理由.73.已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若x 1,x 2是原方程的两根,且1222x x -=,求m 的值,并求出此时方程的两根. 74.关于x 的一元二次方程x 2+kx ﹣6=0的一个根是3,求它的另一个根和k 的值. 75.已知关于x 的一元二次方程()22110x m x m +++-=,若方程的一个根为2,求m 的值和方程的另一个根.76.已知关于的一元二次方程:. (1)求证:对于任意实数,方程都有实数根;(2)当为何值时,方程的两个根互为相反数?请说明理由.77.用一根长22cm 的铁丝,(1)能否围成面积是30cm 2的矩形?如果能,求出矩形的边长,如果不能说明理由; (2)能否围成面积是32cm 2的矩形?如果能,求出矩形的边长,如果不能说明理由; (3)请探索能围成的矩形面积的最大值是多少 cm 2?78.已知1x 、2x 是方程22510x x -+=的两个实数根,求下列各式的值:(1)221212x x x x +;(2)2212x x +. 79.已知关于x 的一元二次方程x 2﹣2x +k +1=0.(1)若方程没有实数根,求k 的取值范围;(2)若方程有两实数根为x 1和x 2,且x 12﹣x 1x 2=0,求k 的值.80.阅读理解,并回答问题:若 12,x x 是方程20ax bx c ++=的两个实数根,则有()()212++=--ax bx c a x x x x .即221212()ax bx c ax a x x x ax x ++=-++,于是12()b a x x =-+,12c ax x =,由此可得一元二次方程的根与系数关系:12b x x a+=-,12c x x a=,这就是我们众所周知的韦达定理. (1)已知 m , n 是方程21000x x --=的两个实数根,不解方程求22m n +的值;(2)若123,,x x x 是关于 x 的方程2(2)x x t -=的三个实数根,且123x x x <<. ① 122331x x x x x x ++的值;②求31x x -的最大值.81.已知关于x 的一元二次方程x 2-2kx+12k 2-2=0. (1)求证:不论k 为何值,方程总有两不相等实数根.(2)设x 1,x 2是方程的根,且 x 12-2kx 1+2x 1x 2=5,求k 的值.82.当k 为何值时,方程x 2﹣6x+k ﹣1=0,(1)两根相等;(2)有一根为0.83.关于x 的一元二次方程()21210m x mx m --++= (1)求证:方程总有两个不相等的实数根。
初中数学分式方程精选试题(含答案和解析)
初中数学分式方程精选试题一.选择题1. (2018·湖南怀化·4分)一艘轮船在静水中的最大航速为30km/h.它以最大航速沿江顺流航行100km所用时间.与以最大航速逆流航行80km所用时间相等.设江水的流速为v km/h.则可列方程为()A.=B.=C.=D.=【分析】根据“以最大航速沿江顺流航行100km所用时间.与以最大航速逆流航行80km所用时间相等.”建立方程即可得出结论.【解答】解:江水的流速为v km/h.则以最大航速沿江顺流航行的速度为(30+v)km/h.以最大航速逆流航行的速度为(30﹣v)km/h. 根据题意得..故选:C.【点评】此题是由实际问题抽象出分式方程.主要考查了水流问题.找到相等关系是解本题的关键.2.(2018•临安•3分)下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【分析】此类题目难度不大.可用验算法解答.【解答】解:A.a12÷a6是同底数幂的除法.指数相减而不是相除.所以a12÷a6=a6.错误;B.(x+y)2为完全平方公式.应该等于x2+y2+2xy.错误;C.===﹣.错误;D.正确.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n.②÷=(a≥0.b>0).3.(2018•金华、丽水•3分)若分式的值为0.则x的值是()A. 3B.C. 3或D. 0【解析】【解答】解:若分式的值为0.则.解得.故答案为:A.【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时.则分子为零.分母不能为0.5.(2018·黑龙江哈尔滨·3分)方程=的解为()A.x=﹣1 B.x=0 C.x=D.x=1【分析】分式方程去分母转化为整式方程.求出整式方程的解得到x 的值.经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x.解得:x=1.经检验x=1是分式方程的解.故选:D.【点评】此题考查了解分式方程.利用了转化的思想.解分式方程注意要检验.6.(2018·黑龙江龙东地区·3分)已知关于x的分式方程=1的解是负数.则m的取值范围是()A.m≤3B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零.再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3.∵关于x的分式方程=1的解是负数.∴m﹣3<0.解得:m<3.当x=m﹣3=﹣1时.方程无解.则m≠2.故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解.正确得出分母不为零是解题关键.7.(2018•贵州黔西南州•4分)施工队要铺设1000米的管道.因在中考期间需停工2天.每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米.所列方程正确的是()A.=2 B.=2C.=2 D.=2【分析】设原计划每天施工x米.则实际每天施工(x+30)米.根据:原计划所用时间﹣实际所用时间=2.列出方程即可.【解答】解:设原计划每天施工x米.则实际每天施工(x+30)米. 根据题意.可列方程:﹣=2.故选:A.【点评】本题考查了由实际问题抽象出分式方程.关键是读懂题意.找出合适的等量关系.列出方程.8.(2018•海南•3分)分式方程=0的解是()A.﹣1 B.1 C.±1D.无解【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x+1.得:x2﹣1=0.解得:x=1或x=﹣1.当x=1时.x+1≠0.是方程的解;当x=﹣1时.x+1=0.是方程的增根.舍去;所以原分式方程的解为x=1.故选:B.【点评】本题主要考查分式方程的解.解题的关键是熟练掌握解分式方程的步骤.9.(2018湖南张家界3.00分)若关于x的分式方程=1的解为x=2.则m的值为()A.5 B.4 C.3 D.2【分析】直接解分式方程进而得出答案.【解答】解:∵关于x的分式方程=1的解为x=2.∴x=m﹣2=2.解得:m=4.故选:B.【点评】此题主要考查了分式方程的解.正确解方程是解题关键.二.填空题1. (2018·湖北襄阳·3分)计算﹣的结果是.【分析】根据同分母分式加减运算法则计算即可.最后要注意将结果化为最简分式.【解答】解:原式===.故答案为:.【点评】本题考查了分式的加减.归纳提炼:分式的加减运算中.如果是同分母分式.那么分母不变.把分子直接相加减即可;如果是异分母分式.则必须先通分.把异分母分式化为同分母分式.然后再相加减.2. (2018•达州•3分)若关于x的分式方程=2a无解.则a 的值为.【分析】直接解分式方程.再利用当1﹣2a=0时.当1﹣2a≠0时.分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3).整理得:(1﹣2a)x=﹣3a.当1﹣2a=0时.方程无解.故a=;当1﹣2a≠0时.x==3时.分式方程无解.则a=1.故关于x的分式方程=2a无解.则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.3. (2018•遂宁•4分)A.B两市相距200千米.甲车从A市到B市.乙车从B市到A市.两车同时出发.已知甲车速度比乙车速度快15千米/小时.且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时.则根据题意.可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时.则根据题意.可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程.正确表示出两车所用时间是解题关键.4. (2018•湖州•4分)当x=1时.分式的值是.【分析】将x=1代入分式.按照分式要求的运算顺序计算可得.【解答】解:当x=1时.原式==.故答案为:.【点评】本题主要考查分式的值.在解答时应从已知条件和所求问题的特点出发.通过适当的变形、转化.才能发现解题的捷径.5. (2018•嘉兴•4分.)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%.若设甲每小时检测个.则根据题意,可列出方程:________.【答案】【解析】【分析】若设甲每小时检测个.检测时间为.乙每小时检测个.检测时间为.根据甲检测300个比乙检测200个所用的时间少.列出方程即可.【解答】若设甲每小时检测个.检测时间为.乙每小时检测个.检测时间为.根据题意有:.故答案为:【点评】考查分式方程的应用.解题的关键是找出题目中的等量关系.7.(2018·黑龙江哈尔滨·3分)函数y=中.自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式.解不等式即可.【解答】解:由题意得.x﹣4≠0.解得.x≠4.故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围.掌握分式分母不为0是解题的关键.8.(2018·黑龙江齐齐哈尔·3分)若关于x的方程+=无解.则m的值为﹣1或5或﹣.【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解答】解:去分母得:x+4+m(x﹣4)=m+3.可得:(m+1)x=5m﹣1.当m+1=0时.一元一次方程无解.此时m=﹣1.当m+1≠0时.则x==±4.解得:m=5或﹣.综上所述:m=﹣1或5或﹣.故答案为:﹣1或5或﹣.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.9.(2018•广西贵港•3分)若分式的值不存在.则x的值为﹣1 .【分析】直接利用分是有意义的条件得出x的值.进而得出答案.【解答】解:若分式的值不存在.则x+1=0.解得:x=﹣1.故答案为:﹣1.【点评】此题主要考查了分式有意义的条件.正确把握分式有意义的条件:分式有意义的条件是分母不等于零是解题关键.11.(2018•贵州铜仁•4分)分式方程=4的解是x= ﹣9 .【分析】分式方程去分母转化为整式方程.求出整式方程的解得到x 的值.经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8.解得:x=﹣9.经检验x=﹣9是分式方程的解.故答案为:﹣912. (2018湖南长沙3.00分)化简:= 1 .【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减.分母不变.把分子相加减计算即可.【解答】解:原式==1.故答案为:1.【点评】本题考查了分式的加减法法则.解题时牢记定义是关键.13.(2018湖南湘西州4.00分)要使分式有意义.则x的取值范围为x≠﹣2 .【分析】根据根式有意义的条件即可求出答案.【解答】解:由题意可知:x+2≠0.∴x≠﹣2故答案为:x≠﹣2【点评】本题考查分式有意义的条件.解题的关键是正确理解分式有意义的条件.本题属于基础题型.14. (2018•达州•3分)若关于x的分式方程=2a无解.则a 的值为.【分析】直接解分式方程.再利用当1﹣2a=0时.当1﹣2a≠0时.分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3).整理得:(1﹣2a)x=﹣3a.当1﹣2a=0时.方程无解.故a=;当1﹣2a≠0时.x==3时.分式方程无解.则a=1.故关于x的分式方程=2a无解.则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.15. (2018•遂宁•4分)A.B两市相距200千米.甲车从A市到B市.乙车从B市到A市.两车同时出发.已知甲车速度比乙车速度快15千米/小时.且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时.则根据题意.可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时.则根据题意.可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程.正确表示出两车所用时间是解题关键.三.解答题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·5分)化简:•.【分析】先将分子、分母因式分解.再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法.解题的关键是掌握分式乘除运算顺序和运算法则.2. (2018·湖北随州·6分)先化简.再求值:.其中x为整数且满足不等式组.【分析】根据分式的除法和加法可以化简题目中的式子.由x为整数且满足不等式组可以求得x的值.从而可以解答本题.【解答】解:===.由得.2<x≤3.∵x是整数.∴x=3.∴原式=.【点评】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解.解答本题的关键是明确分式的化简求值的计算方法.3. (2018·湖北襄阳·6分)正在建设的“汉十高铁”竣工通车后.若襄阳至武汉段路程与当前动车行驶的路程相等.约为325千米.且高铁行驶的速度是当前动车行驶速度的2.5倍.则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.【分析】设高铁的速度为x千米/小时.则动车速度为0.4x千米/小时.根据题意列出方程.求出方程的解即可.【解答】解:设高铁的速度为x千米/小时.则动车速度为0.4x千米/小时.根据题意得:﹣=1.5.解得:x=325.经检验x=325是分式方程的解.且符合题意.则高铁的速度是325千米/小时.【点评】此题考查了分式方程的应用.弄清题中的等量关系是解本题的关键.4.(2018•内蒙古包头市•3分)化简;÷(﹣1)= ﹣.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=÷(﹣)=÷=•=﹣.故答案为:﹣.【点评】本题主要考查分式的混合运算.解题的关键是掌握分式混合运算顺序和运算法则.2.(2018•内蒙古包头市•10分)某商店以固定进价一次性购进一种商品.3月份按一定售价销售.销售额为2400元.为扩大销量.减少库存.4月份在3月份售价基础上打9折销售.结果销售量增加30件.销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元.那么该商店4月份销售这种商品的利润是多少元?【分析】(1)设该商店3月份这种商品的售价为x元.则4月份这种商品的售价为0.9x元.根据数量=总价÷单价结合4月份比3月份多销售30件.即可得出关于x的分式方程.解之经检验即可得出结论;(2)设该商品的进价为y元.根据销售利润=每件的利润×销售数量.即可得出关于y的一元一次方程.解之即可得出该商品的进价.再利用4月份的利润=每件的利润×销售数量.即可求出结论.【解答】解:(1)设该商店3月份这种商品的售价为x元.则4月份这种商品的售价为0.9x元.根据题意得:=﹣30.解得:x=40.经检验.x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元.根据题意得:(40﹣a)×=900.解得:a=25.∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.6.(2018•山东烟台市•6分)先化简.再求值:(1+)÷.其中x满足x2﹣2x﹣5=0.【分析】原式括号中两项通分并利用同分母分式的加法法则计算.同时利用除法法则变形.约分得到最简结果.把已知等式变形后代入计算即可求出值.【解答】解:原式=•=•=x(x﹣2)=x2﹣2x.由x2﹣2x﹣5=0.得到x2﹣2x=5.则原式=5.【点评】此题考查了分式的化简求值.熟练掌握运算法则是解本题的关键.7.(2018•山东东营市•8分)小明和小刚相约周末到雪莲大剧院看演出.他们的家分别距离剧院1200m和2000m.两人分别从家中同时出发.已知小明和小刚的速度比是3:4.结果小明比小刚提前4min到达剧院.求两人的速度.【分析】设小明的速度为3x米/分.则小刚的速度为4x米/分.根据时间=路程÷速度结合小明比小刚提前4min到达剧院.即可得出关于x 的分式方程.解之经检验后即可得出结论.【解答】解:设小明的速度为3x米/分.则小刚的速度为4x米/分. 根据题意得:﹣=4.解得:x=25.经检验.x=25是分式方程的根.且符合题意.∴3x=75.4x=100.答:小明的速度是75米/分.小刚的速度是100米/分.【点评】本题考查了分式方程的应用.找准等量关系.正确列出分式方程是解题的关键.8.(2018•山东济宁市•7分)先化简.再求值:﹣÷(﹣).其中a=﹣.【分析】首先计算括号里面的减法.然后再计算除法.最后再计算减法.化简后.再代入a的值可得答案.【解答】解:原式=﹣÷[﹣].=﹣÷[﹣].=﹣÷.=﹣•.=﹣.=﹣.当a=﹣时.原式=﹣=﹣4.【点评】此题主要考查了分式的化简求值.关键是掌握化简求值.一般是先化简为最简分式或整式.再代入求值.9. (2018•达州•6分)化简代数式:.再从不等式组的解集中取一个合适的整数值代入.求出代数式的值.【分析】直接将=去括号利用分式混合运算法则化简.再解不等式组.进而得出x的值.即可计算得出答案.【解答】解:原式=×﹣×=3(x+1)﹣(x﹣1)=2x+4..解①得:x≤1.解②得:x>﹣3.故不等式组的解集为:﹣3<x≤1.把x=﹣2代入得:原式=0.【点评】此题主要考查了分式的化简求值以及不等式组解法.正确掌握分式的混合运算法则是解题关键.10. (2018•遂宁•8分)先化简.再求值•+.(其中x=1.y=2)【分析】根据分式的运算法则即可求出答案.【解答】解:当x=1.y=2时.原式=•+=+==﹣3【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.11.(2018•资阳•7分)先化简.再求值:÷(﹣a).其中a=﹣1.b=1.【分析】先根据分式混合运算顺序和运算法则化简原式.再将A.b的值代入计算可得.【解答】解:原式=÷=•=.当a=﹣1.b=1时.原式====2+.【点评】本题主要考查分式的化简求值.解题的关键是掌握分式混合运算顺序和运算法则.12.(2018•乌鲁木齐•10分)某校组织学生去9km外的郊区游玩.一部分学生骑自行车先走.半小时后.其他学生乘公共汽车出发.结果他们同时到达.己知公共汽车的速度是自行车速度的3倍.求自行车的速度和公共汽车的速度分别是多少?【分析】设自行车的速度为xkm/h.则公共汽车的速度为3xkm/h.根据时间=路程÷速度结合乘公共汽车比骑自行车少用小时.即可得出关于x的分式方程.解之经检验即可得出结论.【解答】解:设自行车的速度为xkm/h.则公共汽车的速度为3xkm/h. 根据题意得:﹣=.解得:x=12.经检验.x=12是原分式方程的解.∴3x=36.答:自行车的速度是12km/h.公共汽车的速度是36km/h.【点评】本题考查了分式方程的应用.找准等量关系.正确列出分式方程是解题的关键.13.(2018•临安•6分)(1)化简÷(x﹣).(2)解方程:+=3.【分析】(1)先计算括号内分式的减法.再计算除法即可得;(2)先去分母化分式方程为整式方程.解整式方程求解的x值.检验即可得.【解答】解:(1)原式=÷(﹣)=÷=•=;(2)两边都乘以2x﹣1.得:2x﹣5=3(2x﹣1).解得:x=﹣.检验:当x=﹣时.2x﹣1=﹣2≠0.所以分式方程的解为x=﹣.【点评】本题主要考查分式的混合运算与解分式方程.解题的关键是掌握解分式方程和分式混合运算的步骤.14.(2018•嘉兴•4分)化简并求值()•.其中a=1.b=2.【答案】原式= =a-b当a=1.b=2时.原式=1-2=-1【考点】利用分式运算化简求值【解析】分式的化简当中.可先运算括号里的.或都运用乘法分配律计算都可16. (2018•贵州安顺•10分)先化简.再求值:.其中.【答案】..【解析】分析:先化简括号内的式子.再根据分式的除法进行计算即可化简原式.然后将x=-2代入化简后的式子即可解答本题.详解:原式=.∵.∴.舍.当时.原式.点睛:本题考查分式的化简求值.解题的关键是明确分式化简求值的方法.17.(2018•广西桂林•8分)某校利用暑假进行田径场的改造维修.项目承包单位派遣一号施工队进场施工.计划用40天时间完成整个工程:当一号施工队工作5天后.承包单位接到通知.有一大型活动要在该田径场举行.要求比原计划提前14天完成整个工程.于是承包单位派遣二号与一号施工队共同完成剩余工程.结果按通知要求如期完成整个工程.(1)若二号施工队单独施工.完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工.完成整个工程需要多少天?【答案】(1)60天;(2)24天.【解析】分析:(1)设二号施工队单独施工需要x天.根据题意可知一号施工队5天工作总量与一号施工队和二号施工队合作工作总量之和=1列出方程求解即可;(2)根据工作总量÷工作效率=工作时间求解即可.详解:(1)设二号施工队单独施工需要x天.依题可得解得x=60.经检验.x=60是原分式方程的解.∴由二号施工队单独施工.完成整个工期需要60天.(2)由题可得(天).∴若由一、二号施工队同时进场施工.完成整个工程需要24天.点睛:本题考查了列分式方程解应用题.灵活运用和掌握工作总量÷工作效率=工作时间是解题关键.18.(2018•广西南宁•6分)解分式方程:﹣1=.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论依次计算可得.【解答】解:两边都乘以3(x﹣1).得:3x﹣3(x﹣1)=2x.解得:x=1.5.检验:x=1.5时.3(x﹣1)=1.5≠0.所以分式方程的解为x=1.5.【点评】本题主要考查解分式方程.解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.19. 2018·黑龙江大庆·4分)解方程:﹣=1.【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2.求出方程的解.再代入x(x+3)进行检验即可.【解答】解:两边都乘以x(x+3).得:x2﹣(x+3)=x(x+3).解得:x=﹣.检验:当x=﹣时.x(x+3)=﹣≠0.所以分式方程的解为x=﹣.20. (2018·黑龙江哈尔滨·7分)先化简.再求代数式(1﹣)÷的值.其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=4cos30°+3tan45°时.所以a=2+3原式=•=【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.21(2018·黑龙江龙东地区·5分)先化简.再求值:(1﹣)÷.其中a=sin30°.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=sin30°时.所以a=原式=•=•==﹣1【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.22..(2018·湖北省恩施·8分)先化简.再求值:•(1+)÷.其中x=2﹣1.【分析】直接分解因式.再利用分式的混合运算法则计算得出答案.【解答】解:•(1+)÷=••把x=2﹣1代入得.原式===.【点评】此题主要考查了分式的化简求值.正确进行分式的混合运算是解题关键.23.(2018•福建A卷•8分)先化简.再求值:(﹣1)÷.其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子.然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===.当m=+1时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.24.(2018•福建B卷•8分)先化简.再求值:(﹣1)÷.其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子.然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===.当m=+1时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.25.(2018•广东•6分)先化简.再求值:•.其中a=.【分析】原式先因式分解.再约分即可化简.继而将a的值代入计算.【解答】解:原式=•=2a.当a=时.原式=2×=.【点评】本题主要考查分式的化简求值.解题的关键是熟练掌握分式混合运算顺序和运算法则.26.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.27.(2018•广西北海•6分)解分式方程:【答案】 x = 1.5【考点】解分式方程【解答】解:方程左右两边同乘3(x -1).得3x - 3(x -1) = 2x3x - 3x + 3 = 2x2x = 3x = 1.5检验:当x = 1.5时 . 3(x -1) ≠ 0所以.原分式方程的解为 x = 1.5 .【点评】根据解分式的一般步骤进行去分母.然后解一元一次方程,最后记得检验即可.28.(2018•广西贵港•10分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、代入三角函数值.再计算加减可得;(2)分式方程去分母转化为整式方程.求出整式方程的解得到x的值.经检验即可得到分式方程的解.【解答】解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2).得:4+(x+2)(x﹣2)=x+2. 整理.得:x2﹣x﹣2=0.解得:x1=﹣1.x2=2.检验:当x=﹣1时.(x+2)(x﹣2)=﹣3≠0.当x=2时.(x+2)(x﹣2)=0.所以分式方程的解为x=﹣1.【点评】此题考查了实数的运算与解分式方程.解分式方程的基本思想是“转化思想”.把分式方程转化为整式方程求解.解分式方程一定注意要验根.29.(2018•贵州黔西南州•12分)(2)先化简(1﹣)•.再在1.2.3中选取一个适当的数代入求值.【分析】(2)根据分式的减法和乘法可以化简题目中的式子.再从1.2.3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(2)(1﹣)•===. 当x=2时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确它们各自的计算方法.31.(2018年湖南省娄底市)先化简.再求值:( +)÷.其中x=.【分析】原式括号中两项通分并利用同分母分式的加法法则计算.同时利用除法法则变形.约分得到最简结果.把x的值代入计算即可求出值.【解答】解:原式=•=.当x=时.原式==3+2.【点评】此题考查了分式的化简求值.熟练掌握运算法则是解本题的关键.31.(2018湖南省邵阳市)(8分)某公司计划购买A.B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料.且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A.B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A.B两种型号的机器人共20台.要求每小时搬运材料不得少于2800kg.则至少购进A型机器人多少台?【分析】(1)设B型机器人每小时搬运x千克材料.则A型机器人每小时搬运(x+30)千克材料.根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解就可以得出结论.(2)设购进A型机器人a台.根据每小时搬运材料不得少于2800kg 列出不等式并解答.【解答】解:(1)设B型机器人每小时搬运x千克材料.则A型机器人每小时搬运(x+30)千克材料.根据题意.得=.解得x=120.经检验.x=120是所列方程的解.当x=120时.x+30=150.答:A型机器人每小时搬运150千克材料.B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台.则购进B型机器人(20﹣a)台.根据题意.得150a+120(20﹣a)≥2800.解得a≥.∵a是整数.∴a≥14.答:至少购进A型机器人14台.【点评】本题考查了分式方程的运用.一元一次不等式的运用.解决问题的关键是读懂题意.找到关键描述语.进而找到所求的量的数量关。
七年级数学下册 专题 解二元一次方程组(计算题50题)(解析版)
七年级下册数学《第八章二元一次方程组》专题解二元一次方程组(计算题50题)1.用代入法解下列方程组:(1)−=4,3+=16;(2)−=2,3+5=14.【分析】(1)−=4①3+=16②,由①得:x=y+4,代入②得:3(y+4)+y=16,即可求出y的值,则x的值也就迎刃而解了;(2)−=4①3+5=14②,由①得:y=x﹣2,代入②得:3x+5(x﹣2)=14,即可求出x的值,则y的值也就可以求出了.【解答】解:(1)−=4①3+=16②,由①得:x=y+4,代入②得:3(y+4)+y=16,解得y=1.将y=1代入x=y+4中得x=5,故方程组的解为:=5=1;(2)−=4①3+5=14②,由①得:y=x﹣2,代入②得:3x+5(x﹣2)=14,解得x=3.将x=3代入y=x﹣2,得y=1.故方程组的解为:=3=1.【点评】本题主要考查了二元一次方程组的解法,解题的关键是掌握代入法解方程.2.用代入法解下列方程组:(1)2−=33+2=8;(2)+=103−2=5.【分析】两方程组利用代入消元法求出解即可.【解答】解:(1)2−=3①3+2=8②,由①得:y=2x﹣3③,把③代入②得:3x+2(2x﹣3)=8,解得:x=2,把x=2代入③得:y=4﹣3=1,则方程组的解为=2=1;(2)+=10①3−2=5②,由①得:u=10﹣v③,把③代入②得:3(10﹣v)﹣2v=5,解得:v=5,把v=5代入①得:5+u=10,解得:u=5,则方程组的解为=5=5.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.用代入法解下列方程组:(1)3−=2,9+8=17;(2)3−4=10+3=12.【分析】(1)由①得出y =3x ﹣2③,把③代入②得出9x +8(3x ﹣2)=17,求出x ,再把x =1代入③求出y 即可;(2)由②得出x =12﹣3y ③,把③代入①得出3(12﹣3y )﹣4y =10,求出y ,再把y =2代入③求出x 即可.【解答】解:(1)3−=2①9+8=17②,由①,得y =3x ﹣2③,把③代入②,得9x +8(3x ﹣2)=17,解得:x =1,把x =1代入③,得y =3×1﹣2,即y =1,所以原方程组的解是=1=1;(2)3−4=10①+3=12②,由②,得x =12﹣3y ③,把③代入①,得3(12﹣3y )﹣4y =10,解得:y =2,把y =2代入③,得x =12﹣3×2,即x =6,所以原方程组的解是=6=2.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.4.用代入法解下列方程组.(1)+2=4=2−3;(2)−=44+2=−2.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)+2=4①=2−3②,把②代入①得:x +2(2x ﹣3)=4,解得:x =2,把x =2代入②得:y =4﹣3=1,则方程组的解为=2=1;(2)方程组整理得:−=4①2+=−1②,①+②得:3x =3,解得:x =1,把x =1代入①得:1﹣y =4,解得:y =﹣3,则方程组的解为=1=−3.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.用代入法解下列方程组:(1)5+4=−1.52−3=4(2)4−3−10=03−2=0【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用代入消元法求出解即可.【解答】解:(1)5+4=−1.5①2−3=4②,由②得:x =3r42③,把③代入①得:15r202+4y =﹣1.5,去分母得:15y +20+8y =﹣3,移项合并得:23y =﹣23,解得:y =﹣1,把y =﹣1代入③得:x =12,则方程组的解为=12=−1;(2)方程组整理得:4−3−10=0①=23t ,把②代入①得:83y ﹣3y ﹣10=0,去分母得:8y ﹣9y ﹣30=0,解得:y=﹣30,把y=﹣30代入②得:x=﹣20,则方程组的解为=−20=−30.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.用代入法解下列方程组:(1)−=42+=5;(2)3−=29+8=17;(3)3+2=−86−3=−9.【分析】各方程组利用代入消元法求出解即可.【解答】解:(1)−=4①2+=5②,由①得:x=y+4③,把③代入②得:2(y+4)+y=5,解得:y=﹣1,把y=﹣1代入③得:x=﹣1+4=3,则方程组的解为=3=−1;(2)3−=2①9+8=17②,由①得:y=3x﹣2③,把③代入②得:9x+8(3x﹣2)=17,解得:33x=33,解得:x=1,把x=1代入③得:y=3﹣2=1,则方程组的解为=1=1;(3)3+2=−8①2−=−3②,由②得:y=2x+3③,把③代入①得:3x+2(2x+3)=﹣8,解得:x=﹣2,把x=﹣2代入②得:﹣4﹣y=﹣3,解得:y=﹣1,则方程组的解为=−2=−1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.用代入法解下列方程组:(1)3+2=11,①=+3,②(2)4−3=36,①+5=7,②(3)2−3=1,①3+2=8,②【分析】(1)将方程②代入方程①进行求解;(2)将方程②变形为y=﹣5x+7,再代入方程①进行求解;(3)将方程①变形为y=2K13,再代入方程②进行求解.【解答】解:(1)将方程②代入方程①得,3(y+3)+2y=11,解得y=25,把y=25代入②得,x=175,∴该方程组的解为=175=25;(2)将方程②变形为y=﹣5x+7③,把③代入①得,4x﹣3(﹣5x+7)=36,解得x=3,将x=3代入③得,y=﹣5×3+7,解得y=﹣8,∴该方程组的解为=3=−8;(3)将方程①变形为y=2K13③,把③代入②得,3x+2×2K13=8,解得x=2,将x =2代入③得,y =2×2−13,解得y =1,∴该方程组的解为=2=1.【点评】此题考查了利用代入法解二元一次方程组的能力,关键是能直接或将某方程变式后进行代入消元求解.8.用代入法解下列方程组:(1)5+2=15①8+3=−1②;(2)3(−2)=−172(−1)=5−8.【分析】(1)用代入消元法解二元一次方程组即可;(2)用代入消元法解二元一次方程组即可.【解答】解:(1)5+2=15①8+3=−1②,由①得,y =15−52③,将③代入②得,8x +15−52×3=﹣1,解得,x =﹣47,将x =﹣47代入①得,y =125,∴方程组的解为=−47=125;(2)3(−2)=−172(−1)=5−8,整理得,3−=−11①2−5=−6②,由①得,x =3y +11③,将③代入②得,y =﹣28,将y =﹣28代入①得,x =﹣73,∴方程组的解为=−73=−28.【点评】本题考查二元一次方程组的解,熟练掌握代入消元法和加减消元法解二元一次方程组是解题的关键.9.用代入法解下列方程组:(1)=6−53−6=4(2)5+2=15+=6(3)3+4=22−=5(4)2+3=73−5=1【分析】(1)用代入消元法解方程组即可.(2)用代入消元法解方程组即可.(3)用代入消元法解方程组即可.(4)用代入消元法解方程组即可.【解答】解:(1)=6−5s3−6=4②,把①代入②得3(6﹣5y)﹣6y=4,解得y=23,∴x=6−5×23=83,所以方程组的解为=83=23;(2)5+2=15①+=6②,由②得x=6﹣y③,把③代入①,得y=5,∴x=6﹣5=1,所以原方程组的解为=1=5;(3)3+4=2①2−=5②,由②得y=2x﹣5③,把③代入①得,解得x=2,∴y=2×2﹣5=﹣1,所以原方程组的解为=2=−1;(4)2+3=7①3−5=1②,由①得x=7−32③,把③代入②得解得y=1,∴x=7−3×12=2,所以原方程组的解为=2=1.【点评】本题考查二元一次方程组的解法,解题关键是熟知代入消元法解方程组的步骤.10.用代入法解下列方程组:(1)2+=3+2=−6;(2)+5=43−6=5;(3)2−=63+2=2;(4)5+2=113−=−9;【分析】(1)用代入消元法解方程组即可.(2)用代入消元法解方程组即可.(3)用代入消元法解方程组即可.(4)用代入消元法解方程组即可.【解答】解:(1)2+=3①+2=−6②,由①得y=3﹣2x,把y=3﹣2x代入②得x+2(3﹣2x)=﹣6,解得x=4,∴y=3﹣2×4=﹣5.∴方程组的解为=4=−5.(2)+5=4①3−6=5②,由①得x=4﹣5y,把x=4﹣5y代入②得3(4﹣5y)﹣6y=5,解得y=13,∴x=4﹣5×13=73.∴方程组的解为=73=13.(3)2−=6①3+2=2②,由①得y=2x﹣6,把y=2x﹣6代入②得3x+2(2x﹣6)=2,解得x=2,∴y=2x﹣6=2×2﹣6=﹣2.方程组的解为=2=−2.(4)5+2=11①3−=−9②,由②得x=3y+9,把x=3y+9代入①得5(3y+9)+2y=11,解得y=﹣2,∴x=3×(﹣2)+9=3.∴方程组的解为=3=−2.【点评】本题考查二元一次方程组的解法,解题关键是熟知代入消元法解方程组的步骤.1.用加减法解下列方程组:(1)4−=143+=7(2−2=7−3=−8【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)4−=14①3+=7②,①+②得:7x=21,解得:x=3,把x=3代入②得:y=﹣2,则方程组的解为=3=−2;(2−2=7①−3=−8②,①﹣②得:y=15,把y=15代入①得:x=74,则方程组的解为=74=15.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.用加减法解下列方程组:(1)2+7=53+=−2(2)5=123=−2(37=127=13【分析】(1)由②得出n=﹣2﹣3m③,把③代入①得出2m+7(﹣2﹣3m)=5,求出m,把m=﹣1代入③求出n即可;(2)②﹣①×2得出13v=﹣26,求出v,把v=﹣2代入①求出u即可;(3)整理后①+②得出28x=35,求出x,②﹣①求出y即可.【解答】解:(1)2+7=5①3+=−2②由②得:n=﹣2﹣3m③,把③代入①得:2m+7(﹣2﹣3m)=5,解得:m=﹣1,把m=﹣1代入③得:n=1,所以原方程组的解是:=−1=1;(2)2−5=12①4+3=−2②②﹣①×2得:13v=﹣26,解得:v=﹣2,把v=﹣2代入①得:2u+10=12,解得:u=1,所以原方程组的解是:=1=−2;(3)整理得:14−6=21①14+6=14②,①+②得:28x=35,解得:x=54,②﹣①得:12y=﹣7,解得:y=−712,所以原方程组的解是:=54=−712.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.3.用加减法解下列方程组:(1)−=53+4=−1.2+=4;(2)−2=3【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)−=5①2+=4②,①+②得:3x =9,解得:x =3,把x =3代入①得:3﹣y =5,解得:y =﹣2,则方程组的解为=3=−2;(2)−2=3①3+4=−1②,①×2+②得:5x =5,解得:x =1,把x =1代入①得:1﹣2y =3,解得:y =﹣1,则方程组的解为=1=−1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.用加减法解下列方程组:(1)4−3=11,2+=13;(2)−=3,2+3(−p =11【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)4−3=11①2+=13②,①+②×3得:10x =50,解得:x =5,把x =5代入①得:20﹣3y =11,解得:y =3,所以方程组的解为=5=3;(2)方程组整理得:−=3①3−=11②,②﹣①得:2x =8,解得:x =4,把x=4代入①得:4﹣y=3,解得:y=1,所以方程组的解为=4=1.【点评】此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.用加减法解下列方程组:(1)3+2=76−2=11(2)2+=33+=4.【分析】各个方程组利用加减消元法求出解即可.【解答】解:(1)3+2=7①6−2=11②,①+②得:9μ=18,即μ=2,把μ=2代入①得:6+2t=7,解得:t=12,则方程组的解为=2=12;(2)2+=3①3+=4②,②﹣①得:a=1,把a=1代入①得:2+b=3,解得:b=1,则方程组的解为=1=1.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.6.(2023•市北区校级开学)用加减法解下列方程组:(1)3−4=04+=8;(2+=3−32=−1.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3−4=0①4+=8②,①+②得:4y=8,解得:y=2,把y=2代入②得:4x+2=8,解得:x=32,则方程组的解为=32=2;(2)方程组整理得:2+=3①−3=−2②,①×3+②得:7x=7,解得:x=1,把x=1代入①得:2+y=3,解得:y=1,则方程组的解为=1=1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法是代入消元法与加减消元法.7.(2022秋•陕西期末)用加减法解下列方程组:(1)−=33−8=14;(2+2=10=1+r13.【分析】(1)根据加减消元法解二元一次方程组即可求解;(2)将第二个方程去分母化简,然后根据加减消元法解二元一次方程组即可求解.【解答】解:(1)−=3①3−8=14②,①×3﹣②得:﹣3y+8y=9﹣14,解得:y=﹣1,将y=﹣1代入①得:x+1=3,解得:x=2,∴原方程组的解为:=2=−1;(2+2=10①=1+r13②,由②得3x=6+2(y+1),即3x﹣2y③,①﹣③得:4y=2,解得:=12,①+③得:6x=18,解得:x=3,∴原方程组的解为:=3=12.【点评】本题考查了加减消元法解二元一次方程组,掌握解二元一次方程组的方法是解题的关键.8.用加减法解下列方程组:(1)+3=,2(+1)−=6;(2)+=2800,96%+64%=2800×92%.【分析】(1)先用第二个方程减去第一个方程即可得到x 的值,然后将x 的值代入任意一个方程,解方程即可得到y 的值;(2)先对方程组进行化简可得+=2800①3+2=8050②,易得两个方程中y 的系数存在2倍关系,故只需用方程②减去方程①乘2的积即可得到关于x 的方程,解方程即可.【解答】解:(1)+3=,①2(+1)−=6.②②﹣①,得x ﹣1=6,∴x =7,x =7代入①得y =10,所以原方程组的解为=7=10.(2)原方程化简得+=2800,①3+2=8050.②②﹣①×2,得﹣x =﹣2450,∴x =2450,将x =2450代入①得:y =350,∴原方程组的解为:=2450=350.【点评】本题考查二元一次方程组的解法,利用正确的方法求解是本题的关键.9.用加减法解下列方程组:(1)−=5,①2+=4;②(2)−2=1,①+3=6;②(3)2−=5,①−1=12(2−1).②【分析】(1)利用加减消元法解答即可;(2)利用加减消元法解答即可;(3)利用加减消元法解答即可.【解答】解:(1)−=5①2+=4②,①+②得:3x=9,解得:x=3,把x=3代入①得:3﹣y=5,解得:y=﹣2,所以方程组的解为:=3=−2;(2)−2=1①+3=6②,②﹣①得:5y=5,解得:y=1,把y=1代入①得:x﹣2=1,解得:x=3,所以方程组的解为:=3=1;(3)2−=5①−1=12(2−1)②,由②得:2x﹣2y=1③,①﹣③得:y=4,把y=4代入①得:2x﹣4=5,解得:x=92,所以方程组的解为:=92=4.【点评】此题考查了解二元一次方程组,以及解一元一次方程,熟练掌握运算法则是解本题的关键.10.用加减法解下列方程组:(1)+3=62−3=3(2)7+8=−57−=4(3)−1=3(−2)+4=2(+1)(4+4=1−3=−1.【分析】各方程组整理后,利用加减消元法求出解即可.【解答】解:(1)+3=6①2−3=3②,①+②得:3x=9,即x=3,把x=3代入①得:y=1,则方程组的解为=3=1;(2)7+8=−5①7−=4②,①﹣②得:9y=﹣9,即y=﹣1,把y=﹣1代入①得:x=37,则方程组的解为=37=−1;(3)方程组整理得:3−=5①2−=2②,①﹣②得:x=3,把x=3代入①得:y=4,则方程组的解为=3=4;(4)方程组整理得:4+3=12①3−2=−6②,①×2+②×3得:17x=6,即x=617,①×3﹣②×4得:17y=60,即y=6017,则方程组的解为=617=6017.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1.(2022春•新田县期中)用指定的方法解下列方程组:(1)2−5=14①3+5=16②(加减法).=−t(代入法);(2)2+3=9①【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)把②代入①得:2x+5x=14,解得:x=2,把x=2代入②,得:y=﹣2,则原方程组的解是=2=−2;(2)①×3得:6x+9y=27③,②×2得:6x+10y=32④,④﹣③得:y=5,把y=5代入①得:2x+15=9,解得:x=﹣3,则原方程组的解是=−3=5.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.(2022春•安岳县校级月考)解下列方程组:(1)3−=75+2=8(用代入法);(23=104=5(用加减法).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)3−=7①5+2=8②,由①得:y=3x﹣7③,把③代入②得:5x+2(3x﹣7)=22,解得:x=2,把x=2代入①得:6﹣y=7,解得:y=﹣1,则方程组的解为=2=−1;(2)方程组整理得:3+4=120①4−3=60②,①×3+②×4得:25m=600,解得:m=24,把m=24代入①得:72+4n=120,解得:n=12,则方程组的解为=24=12.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.(2022春•大连期中)用指定的方法解下列方程组:(1)−3=42+=13(代入法);(2)5+2=4+4=−6(加减法).【分析】(1)利用代入法解方程组;(2)利用加减消元法解方程组.【解答】解:(1)−3=4①2+=13②,由①得x =3y +4③,把③代入②,得2(3y +4)+y =13,解得y =57,∴x =3×57+4=617,∴方程组的解为=617=57;(2)5+2=4①+4=−6②,①×2﹣②,得9x =14,解得x =149,把x =149代入②,得149+4y =﹣6,解得y =−179.∴方程组的解为=149=−179.【点评】本题考查了解二元一次方程组,做题的关键是掌握加减消元法,和代入消元法解二元一次方程组.4.(2022春•宁远县月考)请用指定的方法解下列方程组(1)5−=113+=7(代入消元法);(2)2−5=245+2=31(加减消元法).【分析】(1)由方程①,得b =5a ﹣11,再代入方程②求出未知数a ,进而得出未知数b ;(2)用方程①×2﹣②×5,可消去未知数y ,求出未知数x ,进而得出y 的值.【解答】解:(1)5−=11①3+=7②,由①,得b =5a ﹣11③,把③代入②,得3a +5a ﹣11=7,解得a =94,把a=94代入③,得b=14,故方程组的解为=94=14;(2)2−5=24①5+2=31②,①×2﹣②×5,得29x=203,解得x=7,把x=7代入①,得y=﹣2,故方程组的解为=7=−2.【点评】本题考查了解二元一次方程组,掌握加减消元法和代入消元法是解答本题的关键.5.(2021秋•蒲城县期末)请用指定的方法解下列方程组:(1)2+3=11①=+3②(代入消元法);(2)3−2=2①4+=10②(加减消元法).【分析】(1)利用代入消元法进行求解即可;(2)利用加减消元法进行求解即可.【解答】解:(1)2+3=11①=+3②,把②代入①得:2(y+3)+3y=11,解得y=1,把y=1代入②得:x=1+3=4,故原方程组的解是:=4=1;(2)3−2=2①4+=10②,②×2得:8x+2y=20③,①+③得:11x=22,解得x=2,把x=2代入②得:8+y=10,解得y=2,故原方程组的解是:=2=2.【点评】本题主要考查解二元一次方程组,解答的关键是对解二元一次方程组的方法的掌握.6.(2022秋•历下区期中)请用指定的方法解下列方程组:(1)−2=22+3=12(代入法);(2)6−5=36+=−15(加减法).【分析】(1)整理后由①得出n =2m ﹣4③,把③代入②得出2m +3(2m ﹣4)=12,求出m ,再把m =3代入③求出n 即可;(2)②﹣①得出6t =﹣18,求出t ,再把t =﹣3代入①求出s 即可.【解答】解:(1)整理得:2−=4①2+3=12②,由①,得n =2m ﹣4③,把③代入②,得2m +3(2m ﹣4)=12,解得:m =3,把m =3代入③,得n =2×3﹣4=6﹣4=2,所以原方程组的解是=3=2;(2)6−5=3①6+=−15②,②﹣①,得6t =﹣18,解得:t =﹣3,把t =﹣3代入①,得6s +15=3,解得:s =﹣2,所以原方程组的解是=−2=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键,解二元一次方程组的方法有代入消元法和加减消元法两种.7.(2022春•泰安期中)用指定的方法解下列方程组(1)3+4=19−=4(代入消元法);(2)2+3=−53−2=12(加减消元法);(3−9)=6(−2)r13=2.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可;(3)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3+4=19①−=4②,由②得:x =y +4③,把③代入①得:3(y +4)+4y =19,解得:y=1,把y=1代入③得:x=1+4=5,则方程组的解为=5=1;(2)2+3=−5①3−2=12②,①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=﹣5,解得:y=﹣3,则方程组的解为=2=−3;(3)方程组整理得:5−6=33①3−4=28②,①×2﹣②×3得:x=﹣18,把x=﹣18代入①得:﹣90﹣6y=33,解得:y=−412,则方程组的解为=−18=−412.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(2021秋•历下区期中)请用指定的方法解下列方程组:(1)3+2=143+4=17.(加减法)=+3;(代入法)(2)2+3=12【分析】(1)用代入消元法解方程组即可;(2)用加减消元法解方程组即可.【解答】解:(1)3+2=14①=+3②,将②代入①,得3y+9+2y=14,解得y=1,将y=1代入②得x=4,∴方程组的解为=4=1;(2)2+3=12①3+4=17②,①×3得,6x+9y=36③,②×2得,6x+8y=34④,③﹣④,得y=2,将y=2代入①得,x=3,∴方程组的解为=3=2.【点评】本题考查二元一次方程组的解,熟练掌握代入消元法和加减消元法解二元一次方程组的方法是解题的关键.9.(2021春•沙河口区期末)用指定的方法解下列方程组:(1)=2−33+2=8(代入法);(2)3+4=165−6=33(加减法).【分析】(1)把①代入②得出x的值,再把x的值代入①求出y的值,从而得出方程组的解;(2)①×3+②×2得出19x=114,求出x,把x=6代入①求出y即可.【解答】解:(1)=2−3①3+2=8②,把①代入②得:3x+2(2x﹣3)=8,解得:x=2,把x=2代入①得:y=1,则原方程组的解是:=2=1.(2)3+4=16①5−6=33②,①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:18+4y=16,解得:y=−12,所以方程组的解=6=−12.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.10.用指定的方法解下列方程组:(1)3+4=19−=4(代入法);(2)2+3=−53−2=12(加减法).【分析】(1)由②得出x=4+y③,把③代入①得出3(4+y)+4y=19,求出y,把y =1代入③求出x即可;(2)①×2+②×3得出13x=26,求出x,把x=2代入①求出y即可.【解答】解:(1)3+4=19①−=4②,由②得:x=4+y③,把③代入①得:3(4+y)+4y=19,解得:y=1,把y=1代入③得:x=4+1=5,所以方程组的解是=5=1;(2)2+3=−5①3−2=12②,①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=﹣5,解得:y=﹣3,所以方程组的解=2=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.1.(2022•苏州模拟)用适当的方法解下列方程组.(1)+2=9−3=1;(2−34=1−p−(−4p=4.【分析】(1)利用加减消元法,方程组可化为:7y=28,解得:y=4,将y=4代入①得:x=1;(2)先将方程组化为:8−9=12①8−5=4②,利用加减消元法解得:y=﹣2,将y=﹣2代入①得:=−34.【解答】解:(1)+2=9①−3=1②①×3+②得:7y=28,解得:y=4,将y=4代入①得:x=1,即方程的解为:=1=4;(2)原方程组可化为:8−9=12①8−5=4②,①﹣②得:﹣4y=8,解得:y=﹣2,将y=﹣2代入①得:=−34,即方程的解为:=−34=−2.【点评】本题主要考查的是二元一次方程组的解法,利用合适的方法解方程组即可.2.(2022秋•锦江区校级期末)用适当的方法解下列方程组.(1)=2−14+3=7;(2)3+2=22+3=28,.【分析】(1)方程组利用代入消元法求解即可;(2)用方程①×3﹣②×2,可消去未知数y,求出未知数x,进而得出y的值.【解答】解:(1)=2−1①4+3=7②,把①代入②,得4(2y﹣1)+3y=7,解得y=1,把y=1代入①,得x=1,故原方程组的解为=1=1;(2)3+2=2①2+3=28②,①×3﹣②×2,得5x=﹣50,解得x=﹣10,把x=﹣10代入①,得y=16,故原方程组的解为=−10=16.【点评】本题考查了解二元一次方程组,掌握加减消元法和代入消元法是解答本题的关键.3.用适当的方法解下列方程组:(1)+2=0,3+4=6;(2=21)−=11(3)+0.4=40,0.5+0.7=35;(4K4=−14,5(r1)12=2.【分析】(1)由x+2y=0可用y表示x,利用代入消元法求第一个方程组的解.同理解(2)(3)利用加减消元法求方程组的解.(4)对于关于m、n的方程,将其化为整系数方程时,给第一个方程两边同时乘12,给第二个方程两边同时乘12.利用加减消元法求方程组的解.【解答】解:(1)+2=0,①3+4=6;②由①,得x=﹣2y,③把③代入②,得﹣6y+4y=6,解得y=﹣3,把y=﹣3代入①,得x=6.∴原方程组的解为=6=−3;(2=2s1)−=11②由①,得x+1=6y,③把③代入②,得12y﹣y=11,解得y=1.把y=1代入③,得x+1=6,解得x=5.∴原方程组的解为=5=1;(3)+0.4=40,①0.5+0.7=35;②②×2,得x+1.4y=70,③③﹣①,得y=30.把y=30代入①,得x+0.4×30=40,解得x=28.∴原方程组的解为=28=30;(4K4=−14,5(r1)12=2,原方程组化为:+7=−3,①2−5=13,②,①×2﹣②,得19n=﹣19,解得n=﹣1.把n=﹣1代入①,得m﹣7=﹣3,解得m=4.∴原方程组的解为=4=−1.【点评】此题主要考查了解二元一次方程组的方法,灵活运用代入消元法和加减消元法是解题的关键.4.(2022•天津模拟)用适当的方法解下列方程组:(1)+=52−=4;(2=r24−K33=112.【分析】(1)应用代入消元法,求出方程组的解即可.(2)应用加减消元法,求出方程组的解即可.【解答】解:(1)+=5①2−=4②,由①,可得:x=5﹣y③,③代入②,可得:2(5﹣y)﹣y=4,解得y=2,把y=2代入③,可得:x=5﹣2=3,∴原方程组的解是=3=2.(2=r24①−K33=112②,由①,可得:4x﹣3y=2③,由②,可得:3x﹣4y=﹣2④,③×4﹣④×3,可得7x=14,解得x=2,把x=2代入③,可得:4×2﹣3y=2,解得y=2,∴原方程组的解是=2=2.【点评】此题主要考查了解二元一次方程组的方法,注意代入消元法和加减消元法的应用.5.(2021•越城区校级开学)用适当的方法解下列方程组:(1)2−3=7−3=7.(2)0.3+0.4=40.2+2=0.9.【分析】(1)利用加减法消元法解二元一次方程组即可;(2)先整理方程,再利用加减消元法解二元一次方程组即可.【解答】解:(1)2−3=7①−3=7②,①﹣②得x =0,把x =0代入②得0﹣3y =7,解得y =−73,∴方程组的解为=0=−73;(2)整理原方程组得3+4=40①2−9=−20②,①×2﹣②×3得35q =140,q =4,把q =4代入②得2p ﹣36=﹣20,解得p =8,∴方程组的解为=8=4.【点评】本题考查了解二元一次方程组,做题关键是掌握加减消元法和代入消元法解二元一次方程组.6.(2022春•东城区校级月考)用适当的方法解下列方程组(1)+=52+=8;(2)2+3=73−2=4.【分析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【解答】解:(1)+=5①2+=8②,由①,可得:x =5﹣y ③,③代入②,可得:2(5﹣y )+y =8,解得y =2,把y =2代入③,解得x =3,∴原方程组的解是=3=2.(2)2+3=7①3−2=4②,①×2+②×3,可得13x=26,解得x=2,把x=2代入①,解得y=1,∴原方程组的解是=2=1.【点评】此题主要考查了解二元一次方程组的方法,注意代入消元法和加减消元法的应用.7.(2021春•哈尔滨期末)用适当的方法解下列方程组(1)+2=93−2=−1(2)2−=53+4=2【分析】(1)利用加减消元法进行求解即可;(2)利用加减消元法进行求解即可.【解答】解:(1)+2=9①3−2=−1②,①+②得:4x=8,解得:x=2,把x=2代入①得:2+2y=9,解得:y=72,故原方程组的解是:=2=72;(2)2−=5①3+4=2②,①×4得:8x﹣4y=20③,②+③得:11x=22,解得:x=2,把x=2代入①得:4﹣y=5,解得:y=﹣1,故原方程组的解是:=2=−1.【点评】本题主要考查解二元一次方程组,解答的关键是熟练掌握解二元一次方程组的方法.8.(2022春•椒江区校级期中)用适当的方法解下列方程组:(1)2+3=16①+4=13②;(2)2r3=3K28=3.【分析】(1)②×2﹣①得出5y=10,求出y,再把y=2代入②求出x即可;(2)整理后得出得2+=9①3−2=24②,①×2+②得出7s=42,求出s,再把s=6代入①求出t即可.【解答】解:(1)2+3=16①+4=13②,②×2﹣①,得5y=10,解得:y=2,把y=2代入②,得x+8=13,解得:x=5,所以方程组的解为=5=2;(2)整理方程组,得2+=9①3−2=24②,①×2+②,得7s=42,解得:s=6,把s=6代入①,得12+t=9,解得:t=﹣3,所以方程组的解为=6=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.9.(2022春•诸暨市期中)用适当的方法解下列方程组:(1)=2−1+2=−7(2+3=7+2=8【分析】(1)用代入消元解二元一次方程组即可;(2)用加减消元解二元一次方程组即可;【解答】解:(1)=2−1①+2=−7②,把①代入②得,x+2(2x﹣1)=﹣7,解得x=﹣1,将x=﹣1代入①得y=﹣3,∴方程组的解为=−1=−3.(2)整理得3+4=84①2+3=48②,①×2﹣②×3得,﹣y=24,解得y=﹣24,将y=﹣24代入②得x=60,∴方程组的解为=60=−24.【点评】本题考查二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.10.(2021春•南湖区校级期中)用适当的方法解下列方程组:(1)3+2=9−=8;(2=r25=7.【分析】(1)由②可得x=8+y③,再把③代入①,可得y的值,然后把y的值代入③求出x的值即可;(2)方程组整理后可得+5=0①2−5=7②,利用①+②可得x的值,然后把x的值代入①求出y的值即可.【解答】解:(1)3+2=9①−=8②,由②得,x=8+y③,将③代入①得,3(8+y)+2y=9,解得,y=﹣3,把y=﹣3代入③得,x=5,则方程组的解为=5=−3;(2)方程组整理得:+5=0①2−5=7②,①+②得:3x=7,解得:x=73,把x=73代入①得:y=−715,则方程组的解为=73=−715.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1.先阅读材料,然后解方程组:材料:解方程组+=4①3(+p+=14②在本题中,先将x+y看作一个整体,将①整体代入②,得3×4+y=14,解得y=2.把y=2代入①得x=2,所以=2=2这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此法解答,请用这种方法解方程组−−1=0①4(−p−=5②.【分析】根据阅读材料中的方法求出方程组的解即可.【解答】解:由①得:x﹣y=1③,把③代入②得:4﹣y=5,即y=﹣1,把y=﹣1代入③得:x=0,则方程组的解为=0=−1.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2.(2021秋•乐平市期末)解方程组3−2=8⋯⋯⋯①3(3−2p+4=20⋯.②时,可把①代入②得:3×8+4y=20,求得y=﹣1,从而进一步求得=2=−1这种解法为“整体代入法“,请用这样的方法解下列方程组2−3=123(2−3p+5=26.【分析】利用整体代入法的求解方法进行解答即可.【解答】解:2−3=12①3(2−3p+5=26②,把①代入②得:3×12+5y=26,解得y=﹣2,把y=﹣2代入①得:2x+6=12,解得x =3,故原方程组的解是:=3=−2.【点评】本题主要考查解二元一次方程组,解答的关键是对解二元一次方程组的方法的掌握与运用.3.先阅读,然后解方程组.解方程组−−1=0①4(−p −=5②时,可由①得x ﹣y =1.③,然后再将③代入②得4×1﹣y =5,求得y =﹣1,从而进一步求得=0=−1这种方法被称为“整体代入法”,请用这5=0=2+1.【分析】利用整体代入法解方程组即可.5=0①=2+1②,由①得,2x ﹣3y =﹣5,③,把③代入②得,10+37=2y +1,解得,y =37,把y =37代入③得,x =−137,则方程组的解为:=−137=37.【点评】本题考查的是二元一次方程组的解法,掌握整体代入法解方程组的一般步骤是解题的关键.4.(2022春•太和县期末)先阅读,然后解方程组.解方程组−−1=0①4(−p −=5②时,可由①得x ﹣y =1,③然后再将③代入②得4×1﹣y =5,求得y =﹣1,从而进一步求得=0①=−1②这种方法被称为“整体代入法”,2=02=9.【分析】仿照所给的题例先把①变形,再代入②中求出y 的值,进一步求出方程组的解即可.2=0①+2=9②,由①得,2x﹣3y=2③,代入②得2+57+2y=9,解得y=4,把y=4代入③得,2x﹣3×4=2,解得x=7.故原方程组的解为=7=4.【点评】本题考查的是在解二元一次方程组时整体思想的应用,利用整体思想可简化计算.5.先阅读,然后解方程组.解方程组−−1=0①4(−p−=5②时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x这种方法被称为“整体代入法”,请用这样的方法解下列方程组:2−3−2=03(2−3p+=7.【分析】把2x﹣3y看作一个整体,代入第二个方程求出y的值,进而求出x的值即可.【解答】解:2−3−2=0①3(2−3p+=7②,把①变形得:2x﹣3y=2③,③代入②得:6+y=7,即y=1,把y=1代入③得:x=2.5,则方程组的解为=2.5=1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元方法与加减消元法.1.用换元法解下列方程组+2=12−1=34【分析】方程组利用换元法求出解即可.【解答】解:设1=a,1=b,方程组变形为2+2=12①5−=34②,①+②×2得:12a=2,解得:a=16,把a=16代入②得:b=112,则方程组的解为=16=112,即=6=12.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2.用换元法解下列方程组:(1)3(p+2(−p=36(−4(−p=−16(2+r53=2−(+5p=5.【分析】(1)令x+y=m、x﹣y=n得关于m、n的方程组,解得m、n的值,从而可得关于x、y的方程组,求解可得;(2)令x﹣4y=a、x+5y=b得关于a、b的方程组,解该方程组可得a、b的值,从而可得关于x、y的方程组,求解可得.【解答】解:(1)令x+y=m,x﹣y=n,则原方程组可化为:3+2=36−4=−16,解得:=8=6,即+=8−=6,解得:=7=1;(2)令x﹣4y=a,x+5y=b,+3=2−=5,解得:=6=−3,即:−4=6+5=−3,解得:=2=−1.【点评】本题主要考查换元法解方程组的能力,熟练而准确地解方程组是基础,正确找到共同的整体加以换元是关键.3.(2022春•云阳县期中)阅读探索:解方程组(−1)+2(+2)=62(−1)+(+2)=6解:设a﹣1=x,b+2=y原方程组可以化为+2=62+=6,解得=2=2,即:−1=2+2=2∴=3=0,此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组(4−1)+2(5+2)=102(4−1)+(5+2)=11;(2)能力运用已知关于x,y的方程组1+1=12+2=2的解为=6=7,求关于m、n的方程组1(−2)+1(+3)=12(−2)+2(+3)=2的解.【分析】(1)仿照“阅读探索“的思路,利用换元法进行计算即可解答;(2)仿照“阅读探索“的思路,利用换元法进行计算即可解答.【解答】解:(1)设4−1=x,5+2=y,∴原方程组可变为:+2=102+=11,解这个方程组得:=4=3,−1=45+2=3,所以:=20=5;(2)设−2=+3=,可得:−2=6+3=7,解得:=8=4.【点评】本题考查了解二元一次方程组,二元一次方程组的解,理解并掌握例题的换元法是解题的关键.4.在学过了二元一次方程组的解法后,+K10=3①−K10=−1②,你会解这个方程组吗?小明、小刚、小芳争论了一会儿,他们分别写出了一种方法:小明:把原方程组整理得8+2=90③2+8=−30④④×4﹣③得30y=﹣210,所以y=﹣7把y=﹣7代入③得8x=104,所以x=13,即=13=−7小刚:设r6=m,K10=n,则+=3③−=−1④③+④得m=1,③﹣④得m=2,=1=2,所以+=6−=20,所以=13=−7.小芳:①+②得2(rp6=2,即x+y=6.③①﹣②得2(Kp10=4,即x﹣y=20.④③④组成方程组得x=13③﹣④得y=﹣7,即=13=−7.老师看过后,非常高兴,特别是小刚的方法独特,像小刚的这种方法叫做换元法,你能用换元法解下列方程组吗?+2r37=1−2r37=5.【分析】设3K26=m,2r37=n,方程组整理后求出m与n的值,即可确定出x与y 的值.【解答】解:设3K26=m,2r37=n,方程组整理得:+=1①−=5②,①+②得:2m=6,即m=3,①﹣②得:2n=﹣4,即n=﹣2,=32r3=−2,整理得:3−2=182+3=−14,解得:=2=−6.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.(2022春•卧龙区校级月考)阅读探索(1)知识积累解方程组(−1)+2(+2)=62(−1)+(+2)=6.解:设a﹣1=x,b+2=y.原方程组可变为+2=62+=6,解这个方程组得=2=2,即−1=2+2=2,所以=3=0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(3−1)+2(5+2)=43(3−1)−(5+2)=5.(3)能力运用已知关于x,y的方程组1+1=12+2=2的解为=3=4,请直接写出关于m、n的方程组1(+2)−1=12(+2)−2=2的解是.【分析】(2)仿照(1)的思路,利用换元法进行计算即可解答;(3)仿照前两个题的思路,利用换元法进行计算即可解答.【解答】解:(2)设3−1=x,5+2=y,∴原方程组可变为:+2=43−=5,解这个方程组得:=2=1,−1=25+2=1,所以:=9=−5;(3)设+2=−=,可得:+2=3−=4,解得:=1=−4.。
初中数学-解分式方程100题
(2)去分母得:1+3y﹣6=y﹣1, 解得:y=2, 经检验 y=2 是增根,分式无解.
20.解方程: (1) ﹣ =0
(2)
.
【解答】解:(1)去分母得:2x﹣x+2=0, 解得:x=﹣2, 经检验 x=﹣2 是原方程的根; (2)去分母得:x2﹣4x+4﹣16=x2﹣4, 解得:x=﹣2, 经检验 x=﹣2 是增根,分式方程无解.
3.解分式方程: (1) = ;
(2) + = .
4.解方程: (1) +3=
(2) ﹣ =1.
5.解方程 (1) + =2
(2) =1﹣ .
6.解分式方程:
(1)
=8.
第 1 页(共 30 页)
(2)
.
7.解方程
(1)
=1
(2) =2﹣ .
8.解方程: (1) + =1
(2) + = .
9.解方程: (1)
50.解方程: (1) ﹣1= .
(2) + =2.
第 7 页(共 30 页)
解分式方程 100 题
参考答案与试题解析
一.解答题(共 40 小题)
1.解方程:
(1) ﹣1=
;
(2) =1﹣ .
【解答】解:(1)去分母得:x(x+2)﹣(x﹣1)(x+2)=3, 去括号得:2x﹣2x+x+2=3, 解得:x=1, 经检验 x=1 时,分母为 0,方程无解; (2)去分母得:2x=x﹣2+1, 解得:x=﹣1, 经检验 x=﹣1 是分式方程的解.
(2)
.
38.解方程求 x: (1) ﹣ =1
解一元二次方程100题(提升练)--初中数学专项训练
解一元二次方程100题(提升练)1解方程:(1)3x-1.2=22-x 2=6(2)3x-22解下列一元二次方程:(1)x2-16=0(直接开平方法);(2)x2-4x+7=10(配方法).(3)2x2-3x-5=0(公式法);(4)3x2+5x-2=0(因式分解法).3解方程:(1)x2-2x-3=0.(2)x x-2=x-2.4解下列一元二次方程:(1)x2-3x=4;(2)2x-1.2=3x-15解方程:(1)x2-2x-1=0(2)x5x+2=65x+2(3)(2x-1)2-3=0(4)2x2+x-6=0.6解方程.(1)3x x+1;(2)2x2-3x-5=0. =2x+17解下列方程:(1)用配方法解方程:3x2-2x-1=0;(2)2y-1+4(因式分解法).2=31-2y8选择合适的方法解下列方程:(1)x2-4x-2=0;(2)2x x+3.=6x+39解下列方程:(1)x x+1(2)2x2-3x-1=0.=x+110解方程:(1)x x-2+x-2=0;(2)4x2-8x+1=0.11请选择适当的方法解下列一元二次方程:(1)(x-2)2-9=0(2)x2+2x=3(3)2x 2+4x -1=0(4)x -5 2=2x -1 5-x12解方程:(1)2x 2+4x -1=0;(2)2x x -1 =2x -1.13解方程:(1)x -2 2=1.(2)x x -3 +x =3.14用适当的方法解下列方程:(1)7x 2=21x ;(2)x 2-6x =-8:(3)2x 2-6x -1=0;(4)9x -2 2=4x +1 2.15解下列一元二次方程:(1)x 2-4x =1;(2)x -5 2-2x x -5 =0.16解方程:(1)(x -5)(3x -2)=10;(2)x 2+3x +1=0.17解方程:(1)3x2-2=4x(2)4x-32+x x-3=0 (3)x x-3=6-2x(4)2x2-7x+3=0 18解方程(1)x2-5x-1=0(2)xx-3-4x=119解下列方程:(1)3x-12=x+12(2)3x-52=10-2x (3)x-2x+5=18(4)-3x2-4x+4=020解下列方程:(1)3x2-7x=0(2)x2+3x-4=0(3)x-52=2x-5(4)(3-x)2+x2=521计算:(1)x2+2x+1=9;(2)2x2-x-6=0.22解分式方程:(1)2xx+3+1=72x+6(2)6x+1x-1-3x-1=123解方程(1)x2-2x-5=0(用配方法解)(2)2x x+1=x+124用适当的方法解下列一元二次方程(1)3x-12-27=0;(2)x2-8x-9=0(配方法).25解方程:(1)4x2=12x;(2)34x2-2x-12=026解方程:(1)3x2-5x-2=0;(2)x+42=5x+4.27用恰当的方法解方程.(1)-x2+3x+4=0;(2)3x2x-1=4x-2.28解下列方程:(1)(x+5)2=2x+34;(2)3t2-2t-1=0(用配方法).29用适当的方法解下列方程:(1)x x-1=x(2)x2+2x-2=030用适当的方法解下列方程:(1)x2+5x-1=0;(2)7x5x+2;=65x+2(3)3x2+2x=0;(4)x2-2x-8=0.31解方程:(1)x2-4x+3=0;(2)x-3+8=0.2-6x-332解方程:(1)x-52=16;(2)x2-4x+1=0.33解方程:(1)x2-2x-3=0.(2)(x+2)(3x-1)=10.34解方程(1)x(x-1)=2(x-1);(2)x2+4x+2=035用指定的方法解方程:(1)1x2-2x-5=0(用配方法)(2)x2=8x+20(用公式法)2(3)x-3=10(用适当的方法)3x-12+4x x-3=0(用因式分解法)(4)x+236用适当的方法解方程.(1)2x2+1=3x(2)x-322=3x-137解方程:(1)x x-2=x-2.(2)x2-2x-5=0;38解方程:(1)x2-8x=0.(2)2x-32+x2-9=0.(3)x+1=4x-10. 2=2x-1.(4)x2x-539用适当的方法解方程.(1)2x2+4x-3=0;(2)x x-2=4-x240用适当的方法解方程:(1)x2+x-6=0;(2)m2+5m+7=3m+11.41解方程:(1)x-3=x x-3(2)2x2-4x-5=042解方程:(1)x2+x-12=0;(2)x-1-6=0.2-5x-143用适当的方法解下列方程:(1)2x-2. 2-4=0.(2)x-32=2x3-x 44(1)解方程(用公式法):x+2=3x+2.2x-3(2)解方程(用因式分解法):2x-22=x-245解方程:(1)x2+3x-1=0;(2)3(x-1)2=x(x-1)46解方程(1)x2-2x-24=0(2)2x-3=3x x-3 47(1)x-3=0 (2)2x2+4x-6=0;(用配方法)2+4x x-348解下列一元二次方程:(1)x2+5x-24=0(2)3x2=22-x49解方程:(1)x2-4x=4;(2)x+2=12.x+150解方程:(1)x2+8x-1=0(2)x x-2+x-2=051用合适的方法解一元二次方程;(1)x2+8x=9(2)2x+6=(x+3)2=0(4)x2-22x+2=0(3)2x2-7x-1252解下列方程.(1)x(x+4)=-3(x+4)(2)2x2-5x+2=0(公式法)53解方程:(1)x2-4x-3=0;(2)3x x-2=0.-x-254用适当的方法解一元二次方程:(1)x2-2x-8=0;(2)3x x-2.=22-x 55(1)解方程:x2-6x+8=0.(2)解方程:3x2-5x+1=056(1)用配方法解方程:-x2+4x=3(2)解方程:4x2=9x57解方程:(1)2x2-3x+1=0;(2)2x-3+3x+3=6x2-9.58解下列方程:(1)(x-2)2=16;(2)y2-3y+2=0;(3)-2x2+4x+12=0;(4)3x2+6x+15=0.59按要求解下列方程:(1)x-62=16(直接开平方法);(2)x2-4x+2=0(配方法);(3)x2+3x-4=0(公式法);(4)2x+4=x+22(因式分解法).60解下列一元二次方程:(1)x2-2x-3=0;(2)x x+2=x+2.61用适当的方法解下列方程:(1)4x2x+3=82x+3(2)x2-2x-5=0(3)3x2+x-5=0(4)x2+6x+1-13=062解方程:(1)x²-2x-5=0;(2)x+4;2=2x+4 (3)x-1=6. 2-9=0;(4)x x+563计算(1)x-52=16(2)2x2-7x+6=064解方程:(1)x2-4x-4=0(2)x(x+4)=-3(x+4)65解下列方程:(1)x2-3x=0(2)x2+2x-1=066解方程:(1)x-12-25=0;(2)x2-4x-1=0.67解方程:(1)x2-2x+1=0;(2)x2-7x-8=0﹒68解方程(1)x2-1=0(2)2x2-5x+3=069用适当的方法解下列方程(1)x2-2x=2x+1;(2)x2x+3=2x+3.70(1)解方程2x x+1=0(2)解方程:3x2-2x-4=0+3x+171计算:(1)5x2-3x=0;(2)x2-4x+1=0.72解方程:(1)2x2-4x+1=0;(2)x2+2x-3=0.73用适当的方法解方程(1)72x-32=28(2)2x2-x-15=0(3)2x2+4x-5=0(4)2x+12+32x+1+2=074解方程(1)2x+12=121;(2)x2-12x+27=0;(3)2x+12=x2+2;(4)4x2-4=1x-2-1.75用适当的方法解下列方程.(1)x2-4x-1=0;(2)x-32=53-x.76解方程:(1)3x-52=x2-25;(2)x2-1=3x.77解方程:(1)y y-2=3y-2(2)x2+8x-9=078解方程:(1)x2-4x+1=0(用配方法)(2)3(x-2)2=x(x-2)(3)2x2-22x-5=0(4)(y+2)2=(3y-1)279解方程:(1)2x2-4x=1(配方法);(2)x x+4=3x+12.80解方程(1)x-2=82-5=0(2)x x+4(3)2x2-7x=4(4)2x-32=02-x+181解方程:(1)x+82-5x+8+6=0(2)3x(2x+1)=4x+2 82(1)x2-6x+5=0;(2)3x2-2x-1=0.83请选择适当的方法解下列一元二次方程:(1)2x2x+5;(2)x2+2x-5=0. 2x+5=x-1(1)2x+32-25=0.(2)2x2-7x-2=0.(3)x+2.(4)x2-2x-3=0. 2=3x+285解方程(1)x2-4x+1=0(2)5x-32+23-5x=086选择适当的方法解下列一元二次方程:(1)3x-4;(2)2x2+4x-3=0. 2=54-x87用配方法解下列方程(1)3x2-4x-2=0;(2)6x2-2x-1=0;(3)2x2+1=3x;(4)x-3=-5.2x+188解下列方程:(1)x2+25x+10=0(2)42y-522=93y-1(1)x2-4x=0;(2)x2+4x-4=0.90解下列分式方程.(1)x+14x2-4-xx-2=1-2xx+2.(2)13x-4-10x-3=4x-5-1x-1.91解方程:(1)x2-4x-7=0;(2)3x x-1=2x-2.92用适当的方法解下列方程:(1)x2-2x+1=0(2)x2-3x+2=093用适当的方法解下列方程:(1)3x2-2x=0;(2)x2-x-1=0.94解方程:(1)4x-32=x-3(2)2x2-4x-1=095解下列方程:(1)x2+2x-3=0(用配方法)(2)2x2+5x-1=0(用公式法)(3)2x-3=12 2=x2-9(4)x+1x-396用适当的方法解下列方程:(1)x x-2=2-x(2)2x2+3x-1=097解方程:(1)x2-5x-6=0;(2)3x x-1=4x-4.98解方程(1)x2-3x-9=0(2)x x+4=2x+899解方程:(1)x+22-4=0;(2)x2+5x+6=0.100解方程(1)x2-2x+2=0;(2)x2-3x-4=0.参考答案1(1)x 1=1+63,x 2=1-63;(2)x 1=43,x 2=2【分析】(1)利用直接开平方法解方程即可;(2)先移项,然后利用因式分解法解方程即可.(1)解:∵3x -1 2=6,∴3x -1=±6,解得x 1=1+63,x 2=1-63;(2)解:∵3x -2 2=22-x ,∴3x -2 2+2x -2 =0,∴3x -2 +2 x -2 =0,即3x -4 x -2 =0,∴3x -4=0或x -2=0,解得x 1=43,x 2=2.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.2(1)x 1=4,x 2=-4;(2)x 1=2+7,x 2=2-7;(3)x 1=52,x 2=-1;(4)x 1=13,x 2=-2【分析】按要求解一元二次方程即可.(1)解:x 2-16=0,x 2=16,解得x 1=4,x 2=-4;(2)解:x 2-4x +7=10,x 2-4x =3,x 2-4x +4=7,x -22=7,解得x 1=2+7,x 2=2-7;(3)解:2x 2-3x -5=0,a =2,b =-3,c =-5,∴x 1,2=--3 ±-32-4×2×-52×2,解得x 1=52,x 2=-1;(4)解:3x 2+5x -2=0,3x -1 x +2 =0,解得x 1=13,x 2=-2.【点拨】本题考查了解一元二次方程.解题的关键在于正确的运算.3(1)x 1=-1,x 2=3;(2)x 1=1,x 2=2【分析】(1)先把方程的左边分解因式,即可得出两个一元一次方程,再求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,再求出方程的解即可(1)解:x2-2x-3=0,x+1x-3=0,x+1=0,x-3=0,∴x1=-1,x2=3;(2)解:x x-2=x-2,x x-2-x-2=0,x-1x-2=0,x-1=0,x-2=0,x1=1,x2=2.【点拨】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,解一元二次方程的方法有直接开平方法,公式法,配方法,因式分解法等.4(1)x1=4,x2=-1;(2)x1=1,x2=2+3 2【分析】(1)采用因式分解法解此方程,即可求解;(2)采用因式分解法解此方程,即可求解.(1)解:由原方程得:x2-3x-4=0,得x-4x+1=0,故x-4=0或x+1=0,解得x1=4,x2=-1,所以,原方程的解为x1=4,x2=-1;(2)解:由原方程得:2x-12-3x-1=0,得x-12x-1-3=0,故x-1=0或2x-2-3=0,解得x1=1,x2=2+3 2,所以,原方程的解为x1=1,x2=2+3 2.【点拨】本题考查了解一元二次方程,熟练掌握和运用解一元二次方程的方法是解决本题的关键.5(1)x1=1+2,x2=1-2;(2)x1=6,x2=-25;(3)x1=1+32,x2=1-32;(4)x1=32,x2=-2【分析】(1)方程运用配方法求解即可;(2)方程移项后运用因式分解法求解即可;(3)方程移项后运用直接开平方法求解即可;(4)方程运用因式分解法求解即可.解:(1)x2-2x-1=0x2-2x=1,x2-2x+1=2,x-12=2,x-1=±2,∴x1=1+2,x2=1-2;(2)x5x+2=65x+2x5x+2-65x+2=0,x-65x+2=0,x-6=0,5x+2=0,∴x1=6,x2=-25;(3)(2x-1)2-3=0 (2x-1)2=3,2x-1=±3,2x=1±3,∴x1=1+32,x2=1-32;(4)2x2+x-6=02x-3x+2=0,2x-3=0,x+2=0,x1=32,x2=-2.【点拨】本题主要考查了一元二次方程的解法,熟练掌握因式分解法,配方法和直接开平方法是解答本题的关键.6(1)x1=-1,x2=23;(2)x1=-1,x2=52【分析】(1)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可;(2)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.(1)解:∵3x x+1=2x+1,∴3x x+1-2x+1=0,则x+13x-2=0,∴x+1=0或3x-2=0,解得x1=-1,x2=2 3;(2)解:∵2x2-3x-5=0,∴x+12x-5=0,∴x+1=0或2x-5=0,解得x1=-1,x2=5 2.【点拨】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.7(1)x1=1,x2=-13;(2)y1=-32,y2=1【分析】(1)直接利用配方法解方程得出答案;(2)直接利用十字相乘法解方程得出答案.(1)解:∵3x2-2x-1=0,∴x2-23x-13=0,∴x2-23x=13,∴x2-23x+19=49,∴x-132=49,∴x -13=±23,解得x 1=1,x 2=-13;(2)解:∵2y -1 2=31-2y +4,∴2y -1 2+32y -1 -4=0,∴2y -1 -1 2y -1 +4 =0,∴2y -1 -1=0或2y -1 +4=0,解得y 1=-32,y 2=1.【点拨】此题主要考查了一元二次方程的解法,正确掌握相关解一元二次方程的解法是解题关键.8(1)x 1=2+6,x 2=2-6;(2)x 1=-3,x 2=3【分析】(1)利用配方法得到(x -2)2=6,然后用直接开平方法解方程;(2)先移项,再利用因式分解法把方程转化为x +3=0或2x -6=0,然后解两个一次方程即可.解:(1)x 2-4x -2=0,x 2-4x =2,x 2-4x +4=6,(x -2)2=6,x -2=±6,所以x 1=2+6,x 2=2-6;(2)2x x +3 =6x +3 ,2x x +3 -6x +3 =0,x +3 2x -6 =0,x +3=0或2x -6=0,所以x 1=-3,x 2=3.【点拨】本题考查了配方法和因式分解法解一元二次方程,熟练掌握其方法步骤是解决此题的关键,因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.9(1)x 1=-1,x 2=1;(2)x 1=3+174,x 2=3-174【分析】(1)移项后,利用因式分解法求解即可;(2)直接利用公式法求解即可.(1)解:x x +1 =x +1 ,x x +1 -x +1 =0,∴x +1 x -1 =0,∴x +1=0或x -1=0,解得:x 1=-1,x 2=1;(2)解:2x 2-3x -1=0,∴a =2,b =-3,c =-1,∴x =-b ±b 2-4ac 2a =--3 ±-3 2-4×2×-1 2×2=3±174,∴x 1=3+174,x 2=3-174.【点拨】本题考查了因式分解法和求根公式法解一元二次方程,熟练掌握因式分解的方法及求根公式是解题的关键.10(1)x 1=2,x 2=-1;(2)x 1=2+32,x 2=2-32【分析】(1)采用因式分解法解此方程,即可求解;(2)采用公式法解此方程,即可求解.(1)解:由原方程得:x -2 x +1 =0,∴x -2=0或x +1=0,解得x 1=2,x 2=-1,所以,原方程的解为x 1=2,x 2=-1;(2)解:∵a =4,b =-8,c =1,∴Δ=-8 2-4×4×1=64-16=48>0,∴x =8±432×4=2±32,解得x 1=2+32,x 2=2-32,所以,原方程的解为x 1=2+32,x 2=2-32.【点拨】本题考查了一元二次方程的解法,熟练掌握和运用一元二次方程的解法是解决本题的关键.11(1)x 1=5,x 2=-1;(2)x 1=-3,x 2=1;(3)x 1=-2+62,x 2=-2-62;(4)x 1=5,x 2=2【分析】(1)利用直接开方法求解即可;(2)利用因式分解法求解即可;(3)利用公式法求解求解即可;(4)利用因式分解法求解即可.(1)解:(x -2)2-9=0∴(x -2)2=9直接开方得:x -2=3或x -2=-3,解得:x 1=5,x 2=-1;(2)x 2+2x =3x 2+2x -3=0,∴x +3 x -1 =0,解得:x 1=-3,x 2=1;(3)2x 2+4x -1=0,其中a =2,b =4,c =-1,∴Δ=b 2-4ac =24>0,∴x =-4±242×2=-2±62,,∴x 1=-2+62,x 2=-2-62;(4)x -5 2=2x -1 5-x移项得:x -5 2+2x -1 x -5 =0,∴x -5 (x -5+2x -1)=0,整理得:x -5 (3x -6)=0,解得:x 1=5,x 2=2.【点拨】题目主要考查解一元二次方程,熟练掌握解一元二次方程的方法步骤是解题关键.12(1)x1=-1+62,x2=-1-62;(2)x1=1+22,x2=1-22【分析】(1)利用配方法解一元二次方程即可得;(2)先去括号,再利用配方法解一元二次方程即可得.(1)解:2x2+4x-1=0,2x2+4x=1,x2+2x=12,x2+2x+1=12+1,即x+12=32,x+1=±62,x=-1±62,所以方程的解为x1=-1+62,x2=-1-62.(2)解:2x x-1=2x-1,2x2-2x=2x-1,2x2-4x=-1,x2-2x=-12,x2-2x+1=-12+1,即x-12=12,x-1=±22,x=1±22,所以方程的解为x1=1+22,x2=1-22.【点拨】本题考查了解一元二次方程,熟练掌握一元二次方程的常用方法(直接开平方法、配方法、公式法、因式分解法、换元法等)是解题关键.13(1)x1=3,x2=1;(2)x1=3,x2=-1【分析】(1)利用直接开平方法解方程即可;(2)先移项,再利用因式分解法解方程即可.(1)解:x-22=1∴x-2=±1,当x-2=1时,x=3,当x-2=-1时,x=1,∴x1=3,x2=1;(2)解:x x-3+x=3移项得:x x-3+x-3=0,∴x-3x+1=0,∴x-3=0,x+1=0,∴x1=3,x2=-1.【点拨】本题考查解一元二次方程,熟练掌握直接开平方法和因式分解法是解题的关键.14(1)x1=0,x2=3;(2)x1=2,x2=4;(3)x1=3+112,x2=3-112;(4)x1=8,x2=45【分析】(1)将原方程转化为7x 2-21x =0,再利用因式分解法求解即可;(2)将原方程转化为x 2-6x +8=0,再利用因式分解法求解即可;(3)直接利用公式法求解即可;(4)两边开方,得到两个一元一次方程,再求出方程的解即可.(1)解:将原方程转化为7x 2-21x =0,∴7x x -3 =0,∴7x =0或x -3=0,解得:x 1=0,x 2=3;(2)解:将原方程转化为x 2-6x +8=0,∴x -2 x -4 =0,∴x -2=0或x -4=0,解得:x 1=2,x 2=4;(3)解:∵a =2,b =-6,c =-1,∴b 2-4ac =-6 2-4×2×-1 =36+8=44,∴x =-b ±b 2-4ac 2a =--6 ±442×2=6±2114,∴x 1=3+112,x 2=3-112;(4)解:将方程转化为3x -2 =±2x +1 ,∴3x -2 =2x +1 或3x -2 =-2x +1 ,解得:x 1=8,x 2=45.【点拨】本题考查了解一元二次方程,解题的关键是熟练掌握解一元二次方程的方法,常用的方法有:直接开平方法、配方法、公式法、因式分解法.15(1)x 1=2+5,x 2=2-5;(2)x 1=5,x 2=-5【分析】(1)用配方法求解即可;(2)用因式分解法求解即可.(1)解:x 2-4x =1,x 2-4x +4=1+4,x -2 2=5,x -2=±5,∴x 1=2+5,x 2=2-5;(2)解:x -5 2-2x x -5 =0,x -5 x -5-2x =0,x -5=0或x -5-2x =0,x 1=5,x 2=-5.【点拨】本题考查解一元二次方程,熟练掌握一元二次方程的解法:直接开方法、配方法、公式法、因式分解法是解题的关键.16(1)x 1=0,x 2=173;(2)x 1=-3+52,x 2=-3-52【分析】(1)先化成一元二次方程的一般形式,再用因式分解法求解即可;(2)用公式法求解即可.(1)解:(x -5)(3x -2)=10,去括号得:3x2-2x-15x+10=10移项合并同类项得:3x2-17x=0,分解因式得:x(3x-17)=0,∴x=0或3x-17=0,解得:x1=0x2=17 3;(2)解:x2+3x+1=0,a=1,b=3,c=1,解得x=-3±32-42,∴x1=-3+52,x2=-3-52;【点拨】本题考查了因式分解法、公式法解一元二次方程.解题的关键在于对解一元二次方程方法的熟练掌握.17(1)x1=2+103,x2=2-103;(2)x1=125,x2=3;(3)x1=-2,x2=3;(4)x1=12,x2=3.【分析】(1)根据公式法求解即可;(2)根据因式分解法求解即可;(3)根据因式分解法求解即可;(4)根据因式分解法求解即可;(1)解:3x2-2=4x,3x2-4x-2=0,∴a=3,b=-4,c=-2,∴Δ=b2-4ac=-42-4×3×-2=40,∴x=-b±Δ2a =--4±402×3=2±103,∴x1=2+103,x2=2-103;(2)解:4x-32+x x-3=0,4x-3+xx-3=0,5x-12x-3=0,∴5x-12=0或x-3=0,∴x1=125,x2=3;(3)解:x x-3=6-2x,x x-3=-2x-3,x x-3+2x-3=0,x+2x-3=0,∴x+2=0或x-3=0,∴x1=-2,x2=3;(4)解:2x2-7x+3=0,2x-1x-3=0,∴2x-1=0或x-3=0,∴x1=12,x2=3.【点拨】本题考查解一元二次方程.根据方程的特点选择合适的方法解方程是解题关键.18(1)x 1=5+292,x 2=5-292;(2)x =12【分析】(1)公式法解一元二次方程;(2)将分式方程化为整式方程,再进行验根,即可得解.(1)解:∵x 2-5x -1=0,∴a =1,b =-5,c =-1,∴△=b 2-4ac =25+4=29>0,∴x =5±292,∴x 1=5+292,x 2=5-292;(2)解:去分母,得:x 2-4x -3 =x x -3 ,去括号,得:x 2-4x +12=x 2-3x ,移项,合并得:-x =-12,系数化1:x =12;检验:把x =12代入x x -3 ≠0,∴x =12是原方程的解.【点拨】本题考查解一元二次方程和分式方程.熟练掌握公式法解一元二次方程,以及解分式方程的步骤,是解题的关键.19(1)x 1=0,x 2=12;(2)x 1=5,x 2=133;(3)x 1=-7,x 2=4;(4)x 1=23,x 2=-2【分析】(1)利用直接开平方法求解即可;(2)移项后利用分解因式法求解即可;(3)原方程化为一般形式后再利用分解因式法求解;(4)原方程化为一般形式后再利用分解因式法求解.(1)解:∵3x -1 2=x +1 2,∴3x -1=±x -1 ,∴3x -1=x -1或3x -1=-x -1 ,解得x 1=0,x 2=12;(2)解:移项,得3x -5 2-10-2x =0,即3x -5 2+2x -5 =0,进一步可变形为x -5 3x -5 +2 =0,∴x -5=0或3x -5 +2=0,解得:x 1=5,x 2=133;(3)解:原方程可变形为x 2+3x -28=0,即为x +7 x -4 =0,∴x +7=0或x -4=0,解得:x 1=-7,x 2=4;(4)解:原方程即为3x 2+4x -4=0,∴3x -2 x +2 =0,∴3x -2=0或x +2=0,解得:x1=23,x2=-2.【点拨】本题考查了一元二次方程的求解,属于基本题目,熟练掌握一元二次方程的解法是解题的关键.20(1)x1=0,x2=73;(2)x1=1,x2=-4;(3)x1=5,x2=7;(4)x1=1,x2=2【分析】(1)提公因式因式分解,解方程即可;(2)因式分解法解方程即可;(3)先移项然后提公因式解方程即可;(4)先化成一元二次方程的一般式,然后进行因式分解,计算求解即可.(1)解:3x2-7x=0,x3x-7=0,解得,x1=0,x2=7 3;(2)解:x2+3x-4=0,x-1x+4=0,解得,x1=1,x2=-4;(3)解:x-52=2x-5,x-5x-5-2=0,解得,x1=5,x2=7;(4)解:(3-x)2+x2=5,9-6x+x2+x2=5,x2-3x+2=0,x-1x-2=0,解得,x1=1,x2=2;【点拨】本题考查了解一元二次方程.解题的关键在于选用合适的方法解方程.21(1)x1=2,x2=-4;(2)x1=2,x2=-3 2【分析】(1)用配方法解方程即可;(2)利用因式分解法解方程即可.(1)解:x2+2x+1=9x+12=9,x+1=±3∴x1=2,x2=-4;(2)解:2x2-x-6=0,2x+3x-2=0∴x1=2,x2=-32.【点拨】此题考查解一元二次方程,掌握解方程的步骤与方法,根据方程的特点,选择合适的方法解方程是解决问题的关键.22(1)x=16;(2)x=-4【分析】先把分式方程化为整式方程求解,然后检验即可.(1)解:2xx+3+1=72x+6去分母得:4x+2x+6=7,去括号得;4x+2x+6=7,移项得:4x+2x=7-6,合并同类项得:6x=1,系数化为1得:x=1 6,经检验,x=16是原方程的解,∴原方程的解为x=16;(2)解:6x+1x-1-3x-1=1去分母得:6-3x+1=x+1x-1,去括号得;6-3x-3=x2-1,移项,合并同类项得:x2+3x-4=0,解得x=1或x=-4,经检验,x=-4是原方程的解,x=1不是原方程的解,∴原方程的解为x=-4.【点拨】本题主要考查了解分式方程,解一元二次方程,熟知解分式方程的方法是解题的关键.23(1)x1=1+6,x2=1-6;(2)x1=-1,x2=1 2【分析】(1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程即可.(1)解:∵x2-2x-5=0,∴x2-2x=5,∴x2-2x+1=6,即x-12=6,∴x-1=±6,解得x1=1+6,x2=1-6;(2)解:∵2x x+1=x+1,∴2x x+1-x+1=0,∴2x-1x+1=0,∴2x-1=0或x+1=0,解得x1=-1,x2=1 2.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.24(1)x1=4,x2=-2;(2)x1=9,x2=-1【分析】(1)利用直接开平方的方法解方程即可;(2)利用配方法解方程即可.(1)解:∵3x-12-27=0,∴3x-12=27,∴x-12=9,∴x-1=±3,解得x1=4,x2=-2;(2)解:∵x2-8x-9=0,∴x2-8x=9,∴x2-8x+16=25,即x-42=25,∴x-4=±5,解得x1=9,x2=-1.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.25(1)x1=0,x2=3;(2)x1=4+223,x2=4-223【分析】(1)移项后提公因式求解即可;(2)去分母后用求根公式计算求解即可.(1)解:4x2=12x,4x x-3=0令x=0,x-3=0,解得x1=0,x2=3;(2)解:34x2-2x-12=0,3x2-8x-2=0,解得x=8±-82-4×3×-22×3=4±223,∴x1=4+223,x2=4-223【点拨】本题考查了因式分解法、公式法解一元二次方程.解题的关键在于掌握解一元二次方程的解法.26(1)x1=2,x2=-13;(2)x1=-4,x2=1【分析】(1)用公式法解一元二次方程即可;(2)先移项,然后再用因式分解法解一元二次方程即可.(1)解:由题意得,a=3,b=-5,c=-2,Δ=b2-4ac=-52-4×3×-2=49,∴x=5±72×3,∴x1=2,x2=-13;(2)解:移项得:x+42-5x+4=0,提公因式得:x+4x+4-5=0,∴x+4x-1=0,∴x+4=0或x-1=0,∴x1=-4,x2=1.【点拨】本题主要考查了解一元二次方程,解题的关键是熟练掌握解一元二次方程的一般方法,准确计算.27(1)x1=4,x2=-1;(2)x1=23,x2=12【分析】(1)利用因式分解法解一元二次方程即可得;(2)利用因式分解法解一元二次方程即可得.(1)解:-x2+3x+4=0,即x2-3x-4=0,x-4x+1=0,x-4=0或x+1=0,x=4或x=-1,故方程的解为x1=4,x2=-1.(2)解:3x2x-1=4x-2,3x2x-1-22x-1=0,3x-22x-1=0,3x-2=0或2x-1=0,x=23或x=1 2,故方程的解为x1=23,x2=12.【点拨】本题考查了解一元二次方程,熟练掌握解一元二次方程的常用方法(直接开平方法、配方法、因式分解法、公式法、换元法等)是解题关键.28(1)x1=-9,x2=1;(2)t1=1,t2=-1 3【分析】(1)整理后,利用因式分解法求解即可;(2)利用配方法求解即可.(1)解:(x+5)2=2x+34x2+8x-9=0,(x+9)(x-1)=0,∴x1=-9,x2=1;(2)3t2-2t-1=0,t2-23t=13,t2-23t+19=13+19,即t-132=49,∴t-13=±23,∴t1=1,t2=-13.【点拨】本题考查了解一元二次方程-因式分解法,配方法,熟练掌握解一元二次方程的方法是解题的关键.29(1)x1=0,x2=2;(2)x1=-1+3,x2=-1-3【分析】(1)方程移项后,利用因式分解法求出解即可;(2)方程运用配方支求解即可解:(1)x x-1=xx x-1-x=0x x-1-1=0x=0,x-1-1=0∴x1=0,x2=2(2)x2+2x-2=0x2+2x=2x2+2x+1=2+1x+12=3x+1=±3x1=-1+3,x2=-1-3【点拨】此题考查了解一元二次方程-因式分解法和配方法,熟练掌握运算法则是解本题的关键.30(1)x1=-5+292,x2=-5-292;(2)x1=-25,x2=67;(3)x1=-23,x2=0;(4)x1=-2,x2=4【分析】(1)利用公式法解方程即可;(2)先移项,然后利用因式分解法解方程即可;(3)利用因式分解法解方程即可;(4)利用因式分解法解方程即可.(1)解:∵x2+5x-1=0,∴a=1,b=5,c=-1,∴Δ=b2-4ac=52-4×1×-1=29>0,∴x=-b±b2-4ac2a =-5±292,解得x1=-5+292,x2=-5-292;(2)解:∵7x5x+2=65x+2,∴7x5x+2-65x+2=0,∴7x-65x+2=0,∴7x-6=0或5x+2=0,解得x1=-25,x2=67;(3)解:∵3x2+2x=0,∴x3x+2=0,∴x=0或3x+2=0,解得x1=-23,x2=0;(4)解:∵x2-2x-8=0,∴x-4x+2=0,∴x+2=0或x-4=0,解得x1=-2,x2=4.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.31(1)x1=1,x2=3;(2)x1=5,x2=7【分析】(1)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可;(2)将x-3看做整体,利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.(1)解:∵x2-4x+3=0,∴x-1x-3=0,∴x-1=0或x-3=0,解得x1=1,x2=3;(2)解:∵x-32-6x-3+8=0,∴x-3-2x-3-4=0,即x-5x-7=0,∴x-5=0或x-7=0,解得x1=5,x2=7.【点拨】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.32(1)x1=9,x2=1;(2)x1=2+3,x2=2-3【分析】(1)利用一元二次方程直接开平方法即可求解.(2)利用一元二次方程公式法x=-b±b2-4ac2a即可求解.(1)解:x-52=16x-5=±4x=5±4∴x1=9,x2=1.(2)解:x2-4x+1=0x=--4±-42-4×1×12×1=2±3∴x1=2+3,x2=2-3.【点拨】此题考查了一元二次方程的解法,熟练掌握直接开平方法、公式法是解题的关键.33(1)x1=-1,x2=3;(2)x1=43,x2=-3【分析】(1)直接因式分解解方程即可;(2)先化成一般式的形式,然后因式分解解方程即可.(1)解:x2-2x-3=0,x+1x-3=0,x+1=0,x-3=0,解得,x1=-1,x2=3;(2)解:x+23x-1=10,3x2+5x-12=0,3x-4x+3=0,3x-4=0,x+3=0,解得,x1=43,x2=-3.【点拨】本题考查了因式分解法解一元二次方程.解题的关键在于正确的进行因式分解.34(1)x1=1,x2=2;(2)x1=-2+2,x2=-2-2【分析】(1)先移项得到x(x-1)-2(x-1)=0,利用因式分解法把方程转化为x-2=0或x-1=0,然后解两个一次方程即可.(2)原方程运用配方法求解即可.解:(1)x(x-1)=2(x-1),x(x-1)-2(x-1)=0,(x-1)(x-2)=0,x-2=0或x-1=0,∴x1=1,x2=2(2)x2+4x+2=0x2+4x+4=2x+22=2x +2=±2∴x 1=-2+2,x 2=-2-2【点拨】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了用配方法解一元二次方程.35(1)x 1=2+14,x 2=2-14;(2)x 1=10,x 2=-2;(3)x 1=3,x 2=0.6;(4)x 1=-3,x 2=43【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)利用因式分解法解方程即可;(4)先将给出的方程进行变形,然后利用因式分解法解方程即可.解:(1)移项,得:12x 2-2x =5,系数化1,得:x 2-4x =10,配方,得:x 2-4x +4=14,(x -2)2=14,x -2=±14,∴x 1=2+14,x 2=2-14;(2)原方程可变形为x 2-8x -20=0,a =1,b =-8,c =-20,Δ=-8 2-4×1×-20 =64+80=144>0,原方程有两个不相等的实数根,∴x =-b ±b 2-4ac 2a =8±1442=8±122,∴x 1=10,x 2=-2;(3)原方程可变形为:x -3 x -3+4x =0,整理得:x -3 5x -3 =0,解得x 1=3,x 2=0.6;(4)原方程可变形为:3x 2+5x -2-10=0,整理得:3x 2+5x -12=0,3x -4 x +3 =0,∴x 1=-3,x 2=43【点拨】本题主要考查的是配方法,公式法,因式分解法解一元二次方程的有关知识,掌握配方法的基本步骤,一元二次方程的求根公式是解题关键.36(1)x 1=1,x 2=12;(2)x 1=-1,x 2=1【分析】(1)利用求根公式直接求解即可;(2)先移项,然后利用平方差公式分解因式求解即可;(1)解:原方程可化为:2x 2-3x +1=0∴a =2,b =-3,c =1∴△=b 2-4ac =-3 2-4×2×1=1>0方程有两个不相等的实数根x =-b ±b 2-4ac 2a =3±12×2=3±14 ∴x 1=1,x 2=12(2)解:原方程移项,得x-32-3x-12=0因式分解,得-2x-24x-4=0于是得-2x-2=0或4x-4=0∴x1=-1,x2=1【点拨】本题考查了解一元二次方程,熟练掌握公式法、因式分解法解一元二次方程是解题的关键.37(1)x1=1,x2=2;(2)x1=1+6,x2=1-6;【分析】(1)移项,因式分解即可得到答案;(2)移项,配方,直接开平方即可得到答案;(1)解:移项得,x(x-2)-(x-2)=0,因式分解得,(x-2)(x-1)=0,∴x-1=0或x-2=0,解得:x1=1,x2=2,∴原方程的解是:x1=1,x2=2;(2)解:移项得,x2-2x=5,配方得,x2-2x+1=5+1,即(x-1)2=6,x-1=±6,∴x1=1+6,x2=1-6;【点拨】本题考查因式分解法解一元二次方程及配方法解一元二次方程,解题的关键是熟练掌握各种解法,选择适当的方法求解.38(1)x1=0,x2=8;(2)x1=3,x2=1;(3)方程无实数根;(4)x1=52,x2=2.【分析】(1)利用因式分解法即可解方程;(2)利用因式分解法即可解方程;(3)依次去括号,移项,合并同类项,得到x2=-2,根据平方的非负性可知,方程无解;(4)利用因式分解法即可解方程.(1)解:x2-8x=0,x x-8=0,令x=0或x-8=0,解得:x1=0,x2=8;(2)解:2x-32+x2-9=0,2x-32+x+3x-3=0,x-32x-3+x+3=0,x-33x-3=0,令x-3=0或3x-3=0,解得:x1=3,x2=1;(3)解:x+12=2x-1,x2+2x+1=2x-1,x2+2x+1-2x+1=0,x2+2=0,x2=-2,∵x2≥0,故原方程无实数根;(4)解:x2x-5=4x-10,x2x-5=22x-5,x2x-5-22x-5=0,2x-5x-2=0,令2x-5=0或x-2=0,解得:x1=52,x2=2.【点拨】本题考查的是解一元二次方程,熟练掌握一元二次方程的解法和步骤是解题关键.39(1)x1=-2+102,x2=-2-102;(2)x1=-1,x2=2【分析】(1)利用公式法解方程即可;(2)先移项,然后利用因式分解法解方程即可.(1)解:∵2x2+4x-3=0,∴a=2,b=4,c=-3,∴Δ=b2-4ac=42-4×2×-3=40>0,∴x=-b±b2-4ac2a =-4±2104=-2±102,解得x1=-2+102,x2=-2-102;(2)解:∵x x-2=4-x2,∴x x-2=x+22-x,∴x x-2+x+2x-2=0∴x+x+2x-2=0,∴x+x+2=0或x-2=0,解得x1=-1,x2=2.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.40(1)x1=2,x2=-3;(2)m1=5-1,m2=-5-1【分析】(1)利用因式分解法解方程即可;(2)先把方程化为一般式,然后利用公式法解方程即可.(1)解:∵x2+x-6=0,∴x+3x-2=0,∴x+3=0或x-2=0,解得x1=2,x2=-3;(2)解:∵m2+5m+7=3m+11,∴m2+2m-4=0,∴a=1,b=2,c=-4,∴Δ=b2-4ac=22-4×1×-4=20>0,∴m=-b±b2-4ac2a =-2±252,解得m1=5-1,m2=-5-1.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.41(1)x1=3,x2=1;(2)x1=2+142,x2=2-142【分析】(1)先移项,再把方程的左边提公因式分解因式,化为两个一次方程,解一次方程即可;(2)先求出根的判别式的值,再代入求根公式,用公式法解答.(1)解:∵x-3=x x-3,移项得:x-3-x x-3=0,∴x-31-x=0,∴x-3=0或1-x=0,解得:x1=3,x2=1;(2)解:∵2x2-4x-5=0,∴Δ=-42-4×2×-5=56,∴x=--4±562×2=2±142,x1=2+142,x2=2-142.【点拨】本题主要考查了解一元二次方程,熟练掌握利用因式分解法解一元二次方程和运用公式法解一元二次方程,是解本题的关键.42(1)x1=3,x2=-4;(2)x1=0,x2=7【分析】(1)利用十字相乘因式分解法直接求解即可得到答案;(2)先换元,令m=x-1,将x-12-5x-1-6=0转化为m2-5m-6=0,利用十字相乘因式分解法直接求解即可得到答案.(1)解:x2+x-12=0,∴x+4x-3=0,解得x1=3,x2=-4;(2)解:x-12-5x-1-6=0,令m=x-1,则m2-5m-6=0,∴m-6m+1=0,解得m=6或m=-1,∴x-1=-1或x-1=6,解得x1=0,x2=7.【点拨】本题考查解一元二次方程,根据具体的方程结构特征熟练运用一元二次方程的解法求解是解决问题的关键.43(1)x1=2+2,x2=-2+2;(2)x1=1,x2=3【分析】(1)利用直接开平方法求解即可.(2)利用因式分解法求解即可.(1)解:∵2x-22-4=0,∴x-22=2,即:x-2=±2解得:x1=2+2,x2=-2+2.(2)∵x-32=2x3-x,∴x-32+2x3-x=0,∴x-3+2xx-3=0,即3x-3x-3=0,【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.44(1)x1=1+172,x2=1-172;(2)x1=2,x2=52【分析】(1)先整理成一般式,再利用公式求解即可;(2)先整理成一般式,再利用因式分解求解即可.解:(1)整理,得:x2-x-4=0,∵a=1,b=-1,c=-4,∴Δ=-12-4×1×-4=17>0,则x=-b±b2-4ac2a=1±172,∴x1=1+172,x2=1-172.(2)方程化为:2x2-9x+10=0因式分解得,x-22x-5=0于是得2x-5=0或x-2=0即x1=2或x2=5 2.【点拨】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的方法,如公式法、因式分解法,是解题的关键.45(1)x1=-3+132,x2=-3-132;(2)x1=1或x2=32【分析】(1)原方程已经是一般形式,利用根的判别式判断根的情况,再利用求根公式求解即可;(2)找出公因式,利用提取公因式法分解因式,降次后再分别求解即可.解:(1)x2+3x-1=0解:由题意的:a=1,b=3,c=-1∵Δ=b2-4ac=32-4×1×-1=9+4=13∴x1=-b+b2-4ac2a =-3+132,x2=-b-b2-4ac2a=-3-132(2)3(x-1)2=x(x-1)解:移项因式分解得:x-13x-1-x=0化简得:x-12x-3=0∴x-1=0或2x-3=0∴x=1或x=32【点拨】本题主要考查一元二次方程的解法,熟练掌握求根公式和因式分解法解一元二次方程是解决本题的关键.46(1)x1=-4,x2=6;(2)x1=3,x2=2 3【分析】(1)利用十字相乘法将原方程化为两个一元一次方程求解即可解方程;(2)利用因式分解法求解即可解方程.(1)解:x2-2x-24=0,x+4x-6=0,x+4=0或x-6=0,(2)解:2x-3-3x x-3=0,x-32-3x=0,x-3=0或2-3x=0,解得:x1=3,x2=2 3.【点拨】本题考查了解一元二次方程,正确掌握一元二次方程的解法是解题关键.47(1)x1=3,x2=35;(2)x1=1,x2=-3.【分析】(1)利用提公因式法解方程;(2)利用配方法解方程.解:(1)(x-3)2+4x(x-3)=0,(x-3)(x-3+4x)=0,∴x-3=0或5x-3=0,∴x1=3,x2=35;(2)2x2+4x-6=0,x2+2x=3,x2+2x+1=3+1,即(x+1)2=4,∴x+1=±2,∴x1=1,x2=-3.【点拨】本题考查的是一元二次方程的解法,掌握配方法、因式分解法解一元二次方程的一般步骤是解题的关键.48(1)x1=-8,x2=3;(2)x1=-1+133,x2=-1-133.【分析】(1)利用因式分解法求解即可得到答案;(2)将原方程化为一般式根据求根公式求解即可得到答案;(1)解:因式分解可得,(x+8)(x-3)=0,即x-3=0或x+8=0,解得:x1=-8,x2=3;(2)解:原方程变形得,3x2+2x-4=0,即a=3,b=2,c=-4,∴Δ=b2-4ac=22-4×3×(-4)=52>0∴原方程有两个不相等的实数根,∴x=-b±Δ2a =-2±522×3=-2±2136,∴x1=-1+133,x2=-1-133.【点拨】本题考查解一元二次方程,解题的关键是熟练掌握各种解法及选择适当的方法.49(1)x1=2+22,x2=2-22;(2)x1=2,x2=-5【分析】(1)配方法解方程;(2)因式分解法解方程.∴x2-4x+4=4+4,∴x-22=8,∴x-2=±22,解得:x1=2+22,x2=2-22;(2)解:x+2x+1=12,整理的:x2+3x-10=0,∴x-2x+5=0,解得:x1=2,x2=-5.【点拨】本题考查解一元二次方程.熟练掌握解一元二次方程的方法,是解题的关键.50(1)x1=-4+17,x2=-4-17;(2)x1=2,x2=-1【分析】(1)先利用配方法得到x+42=17,然后利用直接开平方法解方程.(2)利用因式分解法把原方程转化为x-2=0或x+1=0,然后解两个一次方程即可.(1)解:x2+8x-1=0,x2+8x=1,x2+8x+16=1+16,x+42=17,x+4=±17,x1=-4+17,x2=-4-17;(2)解:x x-2+x-2=0,x-2x+1=0,x-2=0或x+1=0,x1=2,x2=-1.【点拨】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法.51(1)x1=-9或x2=1;(2)x1=-3或x2=-1;;(3)x1=7+534或x2=7-534;(4)x=2【分析】(1)先将原方程整理成一元二次方程的一般形式,然后再利用解一元二次方程一因式分解法,进行计算即可解答;(2)利用解一元二次方程一因式分解法,进行计算即可解答;(3)利用解一元二次方程一公式法,进行计算即可解答;(4)利用解一元二次方程一因式分解法,进行计算即可解答.(1)解:x2+8x=9x2+8x-9=0x+9x-1=0x+9=0或x-1=0x1=-9或x2=1;(2)解:2x+6=(x+3)22x+6-(x+3)2=02x+3-(x+3)2=0x+32-x-3=0x+3-1-x=0x+3=0或-x-1=0x 1=-3或x 2=-1;(3)解:2x 2-7x -12=0∵Δ=-7 2-4×2×-12 =49+4=53>0,∴x =7±534,∴x 1=7+534或x 2=7-534;(4)解:x 2-22x +2=0x -2 2=0x -2=0x =2.【点拨】本题考查了解一元二次方程一因式分解法,公式法,熟练掌握解一元二次方程一因式分解法是解题的关键.52(1)x 1=-3,x 2=-4;(2)x 1=12,x 2=2【分析】(1)原方程整理后,利用因式分解法解该一元二次方程即可;(2)直接用公式法解该一元二次方程即可.(1)解:x (x +4)=-3(x +4),x (x +4)+3(x +4)=0,(x +3)(x +4)=0,∴x 1=-3,x 2=-4;(2)解:2x 2-5x +2=0,∵a =2,b =-5,c =2,∴Δ=b 2-4ac =(-5)2-4×2×2=9>0,∴x =-b ±b 2-4ac 2a =-(-5)±92×2=5±34,∴x 1=12,x 2=2.【点拨】本题主要考查了因式分解法和公式法解一元二次方程,熟练掌握因式分解的方法及求根公式是解题的关键.53(1)x 1=2+7,x 1=2-7;(2)x 1=2,x 2=13【分析】(1)采用公式法解此方程,即可求解;(2)采用因式分解法解此方程,即可求解.(1)解:x 2-4x -3=0,∵a =1,b =-4,c =-3,∴Δ=b 2-4ac =16-4×1×-3 =16+12=28,∴x =-b ±b 2-4ac 2a =4±272=2±7,∴x 1=2+7,x 1=2-7,所以,原方程的解为x 1=2+7,x 1=2-7;(2)解:由原方程得:x -2 3x -1 =0,故x -2=0或3x -1=0,。
新初一分班考计算题特训:解方程(专项训练)-小学数学六年级下册苏教版
新初一分班考计算题特训:解方程(专项训练) 1解方程。
3 4x÷65=3518x+12x=40 75%x-14=1112 2解方程。
70%x+95=200 25x-17x=36 79%x-24%x=1103解方程。
x+14x=20 x-20%x=5.6 110%x+x=63 4解方程。
90%x=360 2x-23x=89 48%x+132%x=5405解方程。
1 4x÷12=3567x-914x=37 x÷18=15×23 6解方程。
x÷67=1734x-25=35 x-1140x=5807解方程。
3x-16=56 x+17x=102157x÷514=788解方程。
x+40%x=3.5 x÷18=18×239解方程。
1-34x×815=845 59x+x=14 512x-5=30 10解方程。
x÷37=21 38x=43 x-23x=1611求未知数x。
40%x+x=0.42 x:45=5414+74x=112我能解方程。
①56÷x=724 ②34x+37=58 ③40%x-38×23=712 13解方程。
0.6x=49 x-60%=160 12x+34x=950×514解方程。
3.6x+0.8=1.52 50%x-13x=120 2x-14×60=15015解下列方程。
1 2x÷15=10 x-12=4×23 5.2x-92x=6.44 16解方程。
①67x=38 ②58x+12=57 ③20÷x=52 17解方程。
28%x-0.21x=147 x÷18=15×2318解方程。
60%x=8 x-35%x=6.5 0.8x+4.2=17.8 19解方程。
7 10x=1425 x-40%x=120 20解下列方程。
初一数学解方程计算题及答案(100道)
初一数学解方程计算题及答案(100道)一、一元一次方程1. 2x + 3 = 5x - 7,x = 102. 6a - 8 = 10 + 2a,a = 33. 3b - 5 = 7 - 2b,b = 24. 4x + 9 = 25,x = 45. 5a - 7 = 23,a = 66. 7 - 3b = 22,b = -57. 2x - 8 = 14,x = 118. 4a + 12 = 36,a = 69. 5b - 3 = 22,b = 510. 3x - 4 = 17,x = 7二、一元二次方程11. x^2 + 4x + 3 = 0,x = -1 or -312. 3x^2 - 10x + 3 = 0,x = 1/3 or 313. 2x^2 + 7x + 3 = 0,x = -1/2 or -314. x^2 - 6x + 8 = 0,x = 2 or 415. 2x^2 - 11x + 5 = 0,x = 1/2 or 5/216. 3x^2 - 14x + 5 = 0,x = 1 or 5/317. x^2 + 5x + 4 = 0,x = -1 or -418. 2x^2 + 5x - 3 = 0,x = -1/2 or 3/219. x^2 - 2x + 1 = 0,x = 120. 4x^2 - 4x - 3 = 0,x = (2 + √7)/2 or (2 - √7)/2三、分式方程21. (x + 3)/5 - 3/4 = (x - 1)/10,x = -3/222. (2x + 3)/(x - 1) + 1/(x + 1) = 2,x = 223. (x + 2)/(x - 1) - (x - 1)/(x + 2) = (2x - 3)/(x^2 - 4),x = 1/2 or 7/324. 1/(x - 3) - 3/(2x + 1) = 1/(2x - 1),x = -5 or 7/425. (5x + 3)/(9x - 5) - (3x - 4)/(3 - x) = (4x^2 - 40)/(x^2 - 9x + 15),x = -2 or 2/3四、绝对值方程26. |x + 5| = 8,x = -13 or 327. |2x - 1| = 7,x = -3 or 428. |x - 2| = 1,x = 1 or 329. |3x + 4| = 13,x = -17/3 or 330. |x - 3| - 2 = 3x – 2,x = -1 or 13/7五、分段函数方程31. -3x + 2,x < 2;x + 1,x ≥ 2;x = 232. x + 2,x ≤ -2;-x + 7,-2 < x ≤ 3;-x + 4,x > 3;x = -2 or 333. 2x + 1,x < -2;x^2 + 2,-2 ≤ x < 1;-5x + 9,x ≥ 1;x = -2, -1/2, 134. -3,x ≤ -3;x + 2,-3 < x ≤ 0;-x^2 + 6x - 7,x > 0;x = -3 or 1, 535. -1,x ≤ -4;4 - x,-4 < x ≤ -1;-x^2 + 10x - 21,x > -1;x = -4 or 3, 7六、组合方程36. 3x - 5 = x + 7,x = 6;2x + 1 = 5,x = 2;x = 637. 4x - 7y = 10,y = (-4x + 10)/7;x + y = 4,x = 4 - y; y = (-4(4 - y) + 10)/7 = (18 - 4y)/7;y = 2,x = 238. x + y = 3,y = 3 - x;x^2 + y^2 = 13,x^2 + (3 - x)^2 = 13;2x^2 - 6x + 4 = 0;x = 1 or 2,y = 2 or 139. 3x - y = 7,y = 3x - 7;x^2 + y^2 = 50,x^2 + (3x - 7)^2 = 50;10x^2- 42x + 24 = 0;x = 1, 4,y = -4 or 540. 2x + 3y = 5,y = (5 - 2x)/3;x^2 + y^2 = 26,x^2 + (5 - 2x)^2/9 = 26;5x^2 - 30x + 32 = 0;x = 8/5 or 2,y = -1 or 3七、面积和周长方程41. 矩形的周长为20,面积为24,长和宽分别为6和4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1) 66x+17y=3967 25x+y=1200答案:x=48 y=47 (2) 18x+23y=2303 74x-y=1998答案:x=27 y=79 (3) 44x+90y=7796 44x+y=3476答案:x=79 y=48 (4) 76x-66y=4082 30x-y=2940答案:x=98 y=51 (5) 67x+54y=8546 71x-y=5680答案:x=80 y=59 (6) 42x-95y=-1410 21x-y=1575答案:x=75 y=48 (7) 47x-40y=853 34x-y=2006答案:x=59 y=48 (8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95 (9) 97x+24y=7202 58x-y=2900答案:x=50 y=98 (10) 42x+85y=6362 63x-y=1638答案:x=26 y=62 (11) 85x-92y=-2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880答案:x=40 y=12 (14) 32x+62y=5134 57x+y=2850答案:x=50 y=57 (15) 83x-49y=82 59x+y=2183答案:x=37 y=61 (16) 91x+70y=5845 95x-y=4275答案:x=45 y=25 (17) 29x+44y=5281 88x-y=3608答案:x=41 y=93 (18) 25x-95y=-4355 40x-y=2000答案:x=50 y=59 (19) 54x+68y=3284 78x+y=1404答案:x=18 y=34 (20) 70x+13y=3520 52x+y=2132答案:x=41 y=50 (21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=7619 47x-y=799答案:x=17 y=91 (23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 (25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54 (26) 79x-76y=-4388 26x-y=832答案:x=32 y=91 (27) 63x-40y=-821 42x-y=546答案:x=13 y=41 (28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78 (29) 85x+67y=7338 11x+y=308答案:x=28 y=74 (30) 78x+74y=1292814x+y=1218答案:x=87 y=83 (31) 39x+42y=5331 59x-y=5841答案:x=99 y=35 (32) 29x+18y=1916 58x+y=2320答案:x=40 y=42 (33) 40x+31y=6043 45x-y=3555答案:x=79 y=93 (34) 47x+50y=8598 45x+y=3780答案:x=84 y=93 (35) 45x-30y=-1455 29x-y=725答案:x=25 y=86 (36) 11x-43y=-1361 47x+y=799答案:x=17 y=36 (37) 33x+59y=3254 94x+y=1034答案:x=11 y=49 (38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55 (39) 94x+71y=7517 78x+y=3822答案:x=49 y=41 (40) 28x-62y=-4934 46x+y=552答案:x=12 y=85 (41) 75x+43y=8472 17x-y=1394答案:x=82 y=54 (42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530答案:x=17 y=36(45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=8420x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92(51) 17x+62y=3216 75x-y=7350答案:x=98 y=25 (52) 77x+67y=2739 14x-y=364答案:x=26 y=11 (53) 20x-68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=4110 83x-y=5727答案:x=69 y=29 (55) 22x-38y=804 86x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84 (57) 46x+37y=7085 61x-y=4636答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=45 (59) 51x-61y=-190789x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46 (64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46 (66) 43x+50y=7064 85x+y=8330答案:x=98 y=57 (67) 58x-77y=1170 38x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=10524 84x-y=7812答案:x=93 y=27 (73) 65x-79y=-5815 89x+y=2314答案:x=26 y=95(74) 96x+54y=6216 63x-y=1953答案:x=31 y=60 (75) 60x-44y=-352 33x-y=1452答案:x=44 y=68 (76) 79x-45y=510 14x-y=840答案:x=60 y=94 (77) 29x-35y=-218 59x-y=4897答案:x=83 y=75 (78) 33x-24y=1905 30x+y=2670答案:x=89 y=43 (79) 61x+94y=11800 93x+y=5952答案:x=64 y=84 (80) 61x+90y=5001 48x+y=2448答案:x=51 y=21 (81) 93x-19y=286x-y=1548答案:x=18 y=88 (82) 19x-96y=-5910 30x-y=2340答案:x=78 y=77 (83) 80x+74y=8088 96x-y=8640答案:x=90 y=12 (84) 53x-94y=1946 45x+y=2610答案:x=58 y=12 (85) 93x+12y=9117 28x-y=2492答案:x=89 y=70 (86) 66x-71y=-1673 99x-y=7821答案:x=79 y=97 (87) 43x-52y=-1742 76x+y=1976答案:x=26 y=55 (88) 70x+35y=8295 40x+y=2920答案:x=73 y=91 (89) 43x+82y=4757 11x+y=231答案:x=21 y=47 (90) 12x-19y=236 95x-y=7885答案:x=83 y=40 (91) 51x+99y=8031 71x-y=2911答案:x=41 y=60 (92) 37x+74y=4403 69x-y=6003答案:x=87 y=16 (93) 46x+34y=4820 71x-y=5183答案:x=73 y=43 (94) 47x+98y=5861 55x-y=4565答案:x=83 y=20 (95) 30x-17y=239 28x+y=1064答案:x=38 y=53 (96) 55x-12y=4112 79x-y=7268答案:x=92 y=79 (97) 27x-24y=-450 67x-y=3886答案:x=58 y=84 (98) 97x+23y=8119 14x+y=966答案:x=69 y=62 (99) 84x+53y=11275 70x+y=6790答案:x=97 y=59 (100) 51x-97y=297 19x-y=1520答案:x=80 y=39。