2010年中考数学专题复习——函数型问题
2010中考数学专题复习——反比例函数试卷
中考数学专题复习——反比例函数一、选择题1. (08浙江温州)已知反比例函数k y x=的图象经过点(32)-,,则k 的值是( ) A .6- B .6 C .23D .23-2.(2008山东烟台)在反比例函数12m y x -=的图象上有两点A ()11,x y ,B ()22,x y ,当120x x <<时,有12y y <,则m 的取值范围是( )A 、0m <B 、0m >C 、12m < D 、12m >3.(2008浙江宁波)如图,正方形ABOC 的边长为2,反比例函数k y x=过点A ,则k 的值是( )A .2B .2-C .4D .4-6.(2008年沈阳市)下列各点中,在反比例函数2y x=-图象上的是( )A .(21),B .233⎛⎫ ⎪⎝⎭,C .(21)--,D .(12)-,7.(2008年湖南省邵阳市)若反比例函数k y x=的图象经过点(12)-,,则这个函数的图象一定经过点( )A .(12),B .(21),C .(12)-,D .(12)--,8.(2008湖北黄冈)已知反比例函数2y x=,下列结论中,不正确...的是( ) A .图象必经过点(12), B .y 随x 的增大而减少 C .图象在第一、三象限内D .若1x >,则2y <9.(2008湖南株洲)已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( )A .1y <-B .1y ≤-C .1y ≤- 或0y >D .1y <-或0y ≥10.(2008黑龙江哈尔滨)已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <211.(2008年山东省青岛市)如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数k y x=的图象大致是( )-1-1yxO12.(2008年江苏省连云港市)已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,13.(2008年云南省双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )14.(2008新疆乌鲁木齐市)反比例函数6y x=-的图象位于( )A .第一、三象限B .第二、四象限C .第二、三象限D .第一、二象限15.(2008浙江温州)已知反比例函数k y x=的图象经过点(32)-,,则k 的值是( ) A .6- B .6 C .23D .23-16.(2008宁夏)反比例函数xk y =(k >0)的部分图象如图所示,A 、B 是图象上两点,AC ⊥x轴于点C ,BD ⊥x 轴于点D ,若△AOC 的面积为S 1,△BOD 的面积为S 2,则S 1和S 2 的大小关系为( )A . S 1> S 2B . S 1= S 2C . S 1 <S 2D . 无法确定xxxxA . D .v /(km/h)v/(km/h)v /(km/h)A .B .C ..17.(2008湖南益阳市)物理学知识告诉我们,一个物体所受到的压强P 与所受压力F 及受力面积S 之间的计算公式为SF P=. 当一个物体所受压力为定值时,那么该物体所受压强P 与受力面积S 之间的关系用图象表示大致为( )18.(2008湖南常德市)下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+=C . 2x y = D .xy 2=19.(2008年浙江省嘉兴市)某反比例函数的图象经过点(23)-,,则此函数图象也经过点( )A .(23)-,B .(33)--,C .(23),D .(46)-,20。
中考数学压轴题二次函数问题解答题解析版
27.在平面直角坐标系xOy中,已知抛物线(k为常数).(1)若抛物线经过点(1,k2),求k的值;(2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k的取值范围;(3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值,求k的值.【答案】(1);(2)k>1;(3)1或3.(2)把点代入抛物线,得把点代入抛物线,得解得当时,对应的抛物线部分位于对称轴左侧,随的增大而减小,时,,解得,(舍去)综上,或3.【关键点拨】本题考査的知识点是二次函数的代入点求值、二次函数的最值、二次函数与一元二次不等式、方程的关系以及函数平移的问题,解题关键是熟练掌握二次函数的相关知识.28.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【答案】(1) 50千克(2) 12.529.随着人们生活水平的提高,短途旅行日趋火爆.我市某旅行社推出“辽阳—葫芦岛海滨观光一日游”项目,团队人均报名费用y(元)与团队报名人数x(人)之间的函数关系如图所示,旅行社规定团队人均报名费用不能低于88元.旅行社收到的团队总报名费用为w(元). (1)直接写出当x≥20时,y与x之间的函数关系式及自变量x的取值范围;(2)儿童节当天旅行社收到某个团队的总报名费为3000元,报名旅游的人数是多少?(3)当一个团队有多少人报名时,旅行社收到的总报名费最多?最多总报名费是多少元?【答案】(1);(2)30;(3)36人,3168元.(2)20×120=2400<3000,由题意得:w=xy=x(-2x+160)=3000,-2x2+160x-3000=0,x2-80x+1500=0,(x-50)(x-30)=0,x=50或30,当x=50时,y==60,不符合题意,舍去,当x=30时,y==100>88,符合题意,答:报名旅游的人数是30人;(3)w=xy=x(-2x+160)=-2x2+160x=-2(x2-80x+1600-1600)=-2(x-40)2+3200,∵-2<0,∴x<40,w随x的增大而增大,∵x=36时,w有最大值为:-2(36-40)2+3200=3168,∴当一个团队有36人报名时,旅行社收到的总报名费最多,最多总报名费是3168元.【关键点拨】本题考查了一次函数的应用以及二次函数的应用,正确得出y与x的函数关系式是解题的关键.30.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.(1)求与之间的函数关系式,并写出自变量的取值范围;(2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?【答案】(1)(2),,144元(2)根据题意知,,,当时,随的增大而增大,,当时,取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【关键点拨】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.31.综合与探究如图1所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N.①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为()【答案】(1)y=-x2-3x+4;(2)5;(3)①或4;②存在,D点坐标为(,)或(-1+,)或(-1-,-)或(-4,3).【解析】(1)将代入将和代入抛物线解析式为(3)①当时,,则关于抛物线对称轴对称的面积为当时由已知为等腰直角三角形,过点作于点,设点坐标为,则为,代入解得的面积为4故答案为:或4【关键点拨】本题考查了直角坐标系下抛物线的综合运用与图形变换,能够综合应用相似形和分类讨论是解答本题的关键.32.如图,抛物线与轴交于,,两点(点在点的左侧),与轴交于点,且,的平分线交轴于点,过点且垂直于的直线交轴于点,点是轴下方抛物线上的一个动点,过点作轴,垂足为,交直线于点.(1)求抛物线的解析式;(2)设点的横坐标为,当时,求的值;(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点为上的一个动点,求的最小值.【答案】(1)y x2x﹣3;(2);(3).(3)如图,∵PF是对称轴,∴F(,0),H(,﹣2).∵AH⊥AE,∴∠EAO=60°,∴EO OA=3,∴E(0,3).∵C(0,﹣3),∴HC2,AH=2FH=4,∴QH CH=1,在HA上取一点K,使得HK,此时K().∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,∴.∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴,∴KQ AQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值.【关键点拨】本题考查了相似三角形对应边成比例、两边成比例且夹角相等的两个三角形相似、待定系数法求二次函数的表达式、二次函数的图象与性质、数轴上两点间的距离公式,熟练掌握该知识点是本题解题的关键.33.知识背景当a>0且x>0时,因为(﹣)2≥0,所以x﹣2+≥0,从而x+(当x=时取等号).设函数y=x+(a>0,x>0),由上述结论可知:当x=时,该函数有最小值为2.应用举例已知函数为y1=x(x>0)与函数y2=(x>0),则当x==2时,y1+y2=x+有最小值为2 =4.解决问题(1)已知函数为y1=x+3(x>﹣3)与函数y2=(x+3)2+9(x>﹣3),当x取何值时,有最小值?最小值是多少?(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租货使用成本最低?最低是多少元?【答案】(1)6;(2)w有最小值,最小值=201.4元.【关键点拨】本题考查二次函数的应用,反比例函数的应用,函数的最值问题,完全平方公式等知识,解题的关键是学会构建函数解决问题,属于中考常考题型.34.如图,已知二次函数的图象经过点A(4,0),与y轴交于点B.在x 轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m 的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱周长取最大值时,求点G的坐标.【答案】(1),;(2);(3)或.(2)由已知,点坐标为点坐标为轴(3)如图,过点做于点由(2)同理四边形是平行四边形整理得:,即由已知周长时,最大.点坐标为,,此时点坐标为,当点、位置对调时,依然满足条件点坐标为,或,【关键点拨】本题考查一次函数与二次函数的综合运用,解题的关键是能够根据题意找到有限条件列出解析式或表示出相关坐标.35.如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.【答案】(1);(2)△BCD为直角三角形,理由见解析;(3)当△AMN为直角三角形时,t的值为1或4.【解析】(1)将、代入,得:,解得:,此二次函数解析式为.(3)设直线的解析式为,将,代入,得:,解得:,直线的解析式为,将直线向上平移个单位得到的直线的解析式为.联立新直线与抛物线的解析式成方程组,得:,解得:,,点的坐标为,,点的坐标为,.点的坐标为,,,.为直角三角形,分三种情况考虑:①当时,有,即,整理,得:,解得:,(不合题意,舍去);②当时,有,即,整理,得:,解得:,(不合题意,舍去);③当时,有,即,整理,得:.,该方程无解(或解均为增解).[来源:Z&xx&]综上所述:当为直角三角形时,的值为1或4.【关键点拨】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC2+BD2=CD2;(3)分∠MAN=90°、∠AMN=90°及∠ANM=90°三种情况考虑.36.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)①Q(2,3);②Q2(,),Q3(,);(3)存在点M,N使四边形MNED为正方形,MN=9或.理由见解析.(2)由B(3,0),C(0,3),得到直线BC解析式为y=﹣x+3,∵S△OBC=S△QBC,∴PQ∥BC,①过P作PQ∥BC,交抛物线于点Q,如图1所示,∵P(1,4),∴直线PQ解析式为y=﹣x+5,联立得:,解得:或,即Q(2,3);②设G(1,2),∴PG=GH=2,过H作直线Q2Q3∥BC,交x轴于点H,则直线Q2Q3解析式为y=﹣x+1,联立得:,解得:或,∴Q2(,),Q3(,);(3)存在点M,N使四边形MNED为正方形,∵NH2=(b﹣3)2,∴NF2=(b﹣3)2,若四边形MNED为正方形,则有NE2=MN2,∴42﹣8b=(b2﹣6b+9),整理得:b2+10b﹣75=0,解得:b=﹣15或b=5,∵正方形边长为MN=,∴MN=9或.【关键点拨】此题属于二次函数综合题,涉及的知识有:待定系数法确定函数解析式,根与系数的关系,等腰直角三角形的性质,正方形的性质,勾股定理,以及一次函数与二次函数的性质,熟练掌握待定系数法是解本题的关键.37.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,求抛物线顶点D的坐标,OE等于多少;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.【答案】(1)(﹣1,4),3;(2)结论:OE的长与a值无关.理由见解析;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,PM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,当顶点D在x轴上时,P(1,﹣2),此时m的值1,∵抛物线的顶点在第二象限,∴m<1.∴n=﹣m﹣1(m<1).故答案为:(1)(﹣1,4),3;(2)OE的长与a值无关;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).[来源]【关键点拨】本题是二次函数综合题,考查了二次函数的图象与性质.38.如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.【答案】(1)y=﹣x2+2x+3;(2)①S四边形ACFD= 4;②Q点坐标为(1,4)或(,)或(,).∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);【关键点拨】此题重点考察学生对于抛物线的综合应用能力,熟练抛物线的图像和性质,四边形面积的计算方法,点坐标的求解方式是解答本题的关键.39.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(,0).(1)求抛物线F的解析式;(2)如图1,直线l:y x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)y=x2x;(2)y2﹣y1=(m>0);(3)①等边三角形;②点P的坐标为(2)、()和(,﹣2).∴y1m,y2m,∴y2﹣y1=(m)﹣(m)(m>0);②∵△AA′B为等边三角形,∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).(i)当A′B为对角线时,有,解得:,∴点P的坐标为(2);(ii)当AB为对角线时,有,解得:,∴点P的坐标为();(iii)当AA′为对角线时,有,解得:,∴点P的坐标为(,﹣2).综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(2)、()和(,﹣2).【关键点拨】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质等,熟练掌握待定系数法是解(1)的关键,将一次函数解析式代入二次函数解析式是解(2)的关键,分别求出AB、AA′、A′B的值以及分情况讨论是解(3)的关键.40.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【答案】(1)E(3,1);(2)S最大=,M坐标为(,3);(3)F坐标为(0,﹣).(2)如图①,过M作MH∥y轴,交CE于点H,设M(m,﹣m2+m+2),则H(m,﹣m+2),∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,S四边形COEM=S△OCE+S△CME=×2×3+MH•3=﹣m2+3m+3,当m=﹣=时,S最大=,此时M坐标为(,3);(3)连接BF,如图②所示,当﹣x2+x+20=0时,x1=,x2=,∴OA=,OB=,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴,即,解得:OF=,则F坐标为(0,﹣).【关键点拨】此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,相似三角形的判定与性质,三角形的面积,二次函数图象与性质,以及图形与坐标性质,熟练掌握各自的性质是解本题的关键.41.如图,已知抛物线过点A(,-3) 和B(3,0),过点A作直线AC//x轴,交y轴与点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D,连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1);(2)P点坐标为(4,6)或(,- );(3)Q点坐标(3,0)或(-2,15)则抛物线解析式为;(2)当在直线上方时,设坐标为,则有,,当时,,即,整理得:,即,解得:,即或(舍去),此时,;当时,,即,整理得:,即,解得:,即或(舍去),此时,;当点时,也满足;当在直线下方时,同理可得:的坐标为,,综上,的坐标为,或,或,或;过作,截取,过作,交轴于点,如图所示:【关键点拨】二次函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,点到直线的距离公式,熟练掌握待定系数法是解本题的关键.42.已知抛物线的图象如图所示:(1)将该抛物线向上平移2个单位,分别交x轴于A、B两点,交y轴于点C,则平移后的解析式为.(2)判断△ABC的形状,并说明理由.(3)在抛物线对称轴上是否存在一点P,使得以A、C、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1);(2)△ABC是直角三角形;(3)存在,、、.(3)y x2x+2的对称轴是x,设P(,n),AP2=(1)2+n2n2,CP2(2﹣n)2,AC2=12+22=5.分三种情况讨论:①当AP=AC时,AP2=AC2,n2=5,方程无解;②当AP=CP时,AP2=CP2,n2(2﹣n)2,解得:n=0,即P1(,0);③当AC=CP时,AC2=CP2,(2﹣n)2=5,解得:n1=2,n2=2,P2(,2),P3(,2).综上所述:在抛物线对称轴上存在一点P,使得以A、C、P为顶点的三角形是等腰三角形,点P的坐标(,0),(,2),(,2).【关键点拨】本题考查了二次函数综合题.解(1)的关键是二次函数图象的平移,解(2)的关键是利用勾股定理及逆定理;解(3)的关键是利用等腰三角形的定义得出关于n的方程,要分类讨论,以防遗漏.43.空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园A BCD的面积最大,并求面积的最大值.【答案】(1)利用旧墙AD的长为10米.(2)见解析.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<a<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a-a2②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=,当25+≤a,即≤a<50时,S随x的增大而减小[来源:Zxx∴x=a时,S最大==,【关键点拨】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.44.如图,已知顶点为的抛物线与轴交于,两点,直线过顶点和点.(1)求的值;(2)求函数的解析式;(3)抛物线上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y x2﹣3;(3)M的坐标为(3,6)或(,﹣2).(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°,设DC为y=kx﹣3,代入(,0),可得:k,联立两个方程可得:,解得:,所以M1(3,6);【关键点拨】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.45.如图,已知抛物线的对称轴是直线x=3,且与x轴相交于A,B两点(B 点在A点右侧)与y轴交于C点.(1)求抛物线的解析式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.【答案】(1),点A的坐标为(-2,0),点B的坐标为(8,0);(2)存在点P,使△PBC的面积最大,最大面积是16,理由见解析;(3)点M的坐标为(4-2,)、(2,6)、(6,4)或(4+2,-).(2)当时,,点的坐标为.设直线的解析式为.将、代入,,解得:,直线的解析式为.假设存在,设点的坐标为,过点作轴,交直线于点,则点的坐标为,如图所示.,.,当时,的面积最大,最大面积是16 .,存在点,使的面积最大,最大面积是16 .【关键点拨】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用二次函数的性质求出a的值;(2)根据三角形的面积公式找出关于x的函数关系式;(3)根据MN的长度,找出关于m的含绝对值符号的一元二次方程.。
中考数学复习指导:如何求解二次函数最值不在顶点处的问题
如何求解二次函数最值不在顶点处的问题如何求解二次函数最值不在顶点处的问题有一类二次函数的最值问题,它的自变量x 的取值范围为全体实数中的“某一段”,欲解x 的这段范围内的函数最值问题,应视情况而定:当x 的“某一段”范围分布在对称轴的两侧时,函数最值就是二次函数的最值;当x 的“某一段”范围分布在对称轴的左侧或右侧时,要根据对称轴两侧二次函数的增减性来确定最值,常常在“端点”处的纵坐标值就是此段范围内的函数的最大值或最小值.例1 当-2≤x ≤1时,二次函数y =-(x -m )2 + m 2 + 1有最大值4,则实数m 的值为( )(A) -74 (B)(C) 2 或-74分析 这里,二次函数中自变量x 的范围不是一切实数,而是实数范围中的“某一段”.x 的“某一段”有可能在对称轴x = m 的左侧,也有可能在直线x = m 的右侧,也有可能在直线x = m 的两侧.此三种情况均可画出对应的“草图”以增强问题分析的直观性. 解 抛物线开口向上,对称轴为直线x = m .① x 的“某一段”分布在对称轴的右侧即m <-2,如图1,函数值y 随x 的增大而减小,所以当x =-2时函数值最大,即 -(-2-m )2 + m 2 + 1=4.解得m =-74,这与m <-2相矛盾,故此种情形不存在. ② x 的“某一段”分布在对称轴的两侧即-2≤m ≤1,如图2,当x = m 时函数值最大,即为二次函数的最大值,即 m 2 + 1=4.解得m =,但m 舍去.③ x 的“某一段”分布在对称轴的左侧即m >1,如图3,函数值y 随x 的增大而增大,所以当x = 1时函数值最大,即-(1-m )2 + m 2 + 1=4,解得m =2.综上,m 的值为2.故选C .评注 情况①③的对称轴都没有在指定的x 的取值范围内,所以两种情况下的最值求解,依据的是二次函数对称轴一侧的增减性,而不是利用的最值公式;情况②的对称轴在指定的x 的范围内,最值为二次函数在全体实数范围内的最值.例2 已知二次函数y = x 2 + bx + c (b ,c 为常数).(1) 当b =2,c =-3时,求二次函数的最小值;(2) 当c =5时,若在函数值y =1的情况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式;(3) 当c =b 2时,若在自变量x 的值满足b ≤x ≤b +3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.分析 第(1) 问求二次函数在全体实数范围内的最值,利用的是最值公式.第(2) 问根据已知条件,可得关于x 的方程x 2 + bx + 4=0,利用判别式=0,得b =±4. 第(3) 问抛物线开口方向向上,与y 轴的交点 (0,c 2) 在y 轴的正半轴上,据此画出“草图”.抛物线与x 轴的交点有可能都落在x 轴的正半轴上,也有可能都落在x 轴的负半轴上;又因函数的最小值是指定自变量x 范围内的最小值,应从自变量x 的指定范围与对称轴x =-2b 的位置关系的三种情况出发逐一分析. 解 (1) y 最小=241(3)241××−−×=-4.(2) 由题意,得x 2 + bx + 4=0,方程有两个相等的实数根,故△=b 2-4×1×4=0,解得b =±4.所以二次函数的解析式为y = x 2 + 4x + 5,或y = x 2-4x + 5.(3) y =x 2 + bx + b 2,对称轴x =-2b 与x 指定范围的位置关系有三种情况: (i) 当b ≤x ≤b +3分布在对称轴x =-2b 的右侧时,则 -2b <b ,得b >0. 对称轴右侧的函数值y 随x 值的增大而增大,当x =b 时函数值最小,即b 2+b 2+b 2=21,解得b=但b=b(ii) 当b ≤x ≤b + 3分布在对称轴x =-2b 的左侧时,有 -2b>b + 3,得b <-2.对称轴左侧的函数值y 随x 值的增大而减小,当x =b +3时函数值最小,即 (b + 3)2 + b (b + 3) + b 2=21,解得b =-4,b =1.但b=1舍去,所以b =-4.(iii) 当b ≤x ≤b + 3分布在对称轴x =-2b 的两侧时,有 6<-2b <b +3,得-2<b <0. 此时,抛物线顶点纵坐标的值即为最小值,即2244b b −=21整理,得b 2=28,解得b =±但b=±综上,得y = x 2 x + 7,或y = x 2-4x +16.总之,求二次函数的最值,必须根据其自变量的取值范围进行分析和讨论.。
2010年中考数学模拟试题分类汇编——反比例函数
A B C D反比例函数一、选择题1.(2010年广州中考数学模拟试题一)若反比例函数k y x=的图象经过点(-1,2),则这个反比例函数的图象一定经过点( )A 、(2,-1)B 、(12-,2) C 、(-2,-1) D 、(12,2)答:A2.( 2010年山东菏泽全真模拟1)正比例函数kx y 2=与反比例函数xk y 1-=在同一坐标系中的图象不可能...是()答案:D3.(2010年河南中考模拟题1)如图,过反比例函数图象上任意两点A 、B分别作x 轴的垂线,垂足分别为C 、D ,连结OA 、OB ,设AC 与OB 的交点为E , 与梯形ECDB 的面积分别为 ,比较它们的大小,可得( )A.B.C.D. 大小关系不能确定答案:B4.(2010年河南中考模拟题6)如图,直线y=mx 与双曲线k y x=交与A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连接BM ,若S △ABM=2,则k 的值是 ( )A 、2B 、m-2C 、mD 、4 答案:A5.(2010天水模拟)在同一直角坐标系中,函数y=kx+k,与y=xk -(k ≠0)的图像大致( )答案:B6.(2010年杭州月考)如图,点A 在双曲线6y x=上,且OA =4,过A 作AC⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为( )A. B.5 C.答案:C7.(黑龙江一模)在反比例函数xa y =中,当x >0时,y 随x 的增大而减小,则二次函数axaxy -=2的图象大致是下图中的( )答案:A8.(济宁师专附中一模)函数y x m =+与(0)m y m x=≠在同一坐标系内的图象可以是( )xxxx答案:B9.(2010山东新泰)对于函数xy 2=下列说法错误的是( )A .它的图象分布在一、三象限,关于原点中心对称B .它的图象分布在一、三象限,是轴对称图形C .当x >0时,y 的值随x 的增大而增大D .当x <0时,y 的值随x 的增大而减小 答案:C10. (2010三亚市月考).若反比例函数y=k x的图象经过点(-2,1),则此函数的图象一定经过点( )A. (-2,-1)B. (2,-1)C. (12-,2) D. (12,2)答案:B11.(2009年聊城冠县实验中学二模)如下图,是一次函数b kx y +=与反比例函数xy 2=的图像,则关于x 的方程xb kx 2=+的解为( )A .11=x ,22=xB .21-=x ,12-=xC .11=x ,22-=xD .21=x ,12-=x答案:C12.(2010安徽省模拟)函数1k y x-=的图象经过点(1,3)A -,则k 的值为( ) A .4 B .4-C .2D .2-答案:D13.(2010北京市朝阳区模拟)函数6y x =-与函数()40y x x=>的图象交于A 、B 两点,设点A 的坐标为()11,x y ,则边长分别为1x 、1y 的矩形面积和周长分别为( )A. 4,12B. 4,6C. 8,12D. 8,6 答案:A二、填空题1.(2010年广州中考数学模拟试题(四)) 已知点(12)-,在反比例函数k y x=的图象上,则k = .答:-22.(2010年河南省南阳市中考模拟数学试题)如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数k y x=的图象上,若点A 的坐标为(-2,-2),则k 的值为______.答:4 3.(2010年河南中考模拟题6)函数()1240,x x xyy=≥=(x ﹥0),的图像如图所示,则结论:①两函数图像的交点坐标A 的坐标为(2、2);②当x ﹥2时,2y﹥1y;③当x=1时,BC=3;④当x 逐渐增大时,1y 随x 的增大而增大,2y 随x 的增大而减小。
中考数学专题函数图象选择题的几种解法
专题复习一一.专题复习 1. 探索型问题 2. 开放型问题 二. 常见的问题的类型:1. 条件探索型——结论明确,而需探索发现使结论成立的条件的题目。
2. 结论探索型——给定条件,但无明确结论或结论不惟一。
3. 存在探索型——在一定条件下,需探索发现某种数学关系是否存在。
4. 规律探索型——发现数学对象所具有的规律性与不变性的题目。
三. 常用的解题切入点:1. 利用特殊值(特殊点、特殊数量、特殊线段、特殊位置)进行归纳、概括,从而得出规律。
2. 反演推理:根据假设进行推理,看推导出矛盾的结果还是能与已知条件一致。
3. 分类讨论:当命题的题设和结论不惟一确定时,则需对可能出现的情况做到既不重复,也不遗漏,分门别类地加以讨论求解,将不同结论综合归纳得出正确结论。
以上四种常见解题方法在本周的练习提纲中均有体现,同学们在解完本练习后,可细细对照参考答案,用心体会。
一. 填空题(每空4分,共48分)1. 请你写出:(1)一个比-1大的负数:____________;(2)一个二次三项式:____________。
2. 请你写出:(1)经过点(0,2)的一条直线的解析式是________________________;(2)经过点(0,2)的一条抛物线的解析式是________________________。
3. 如果菱形的面积不变,它的两条对角线的长分别是x 和y ,那么y 是x 的____________函数。
(填写函数名称)4. 如图,△ADE 和△ABC 有公共顶点A ,∠1=∠2,请你添加一个条件:___________,使△ADE ∽△ABC 。
ABCE D215. 有一列数:1,2,3,4,5,6,……,当按顺序从第2个数数到第6个数时,共数了_______个数;当按顺序从第m 个数数到第n 个数(n m >)时,共数了_______个数。
6. 请你在“2,-3,4,-5,6”中任意挑选4个数,添加“+,-,×,÷”和括号进行运算,使其计算结果为24,这个算式是_____________________。
中考数学复习:专题3-15 二次函数在经济决策问题中的应用
二次函数在经济决策问题中的应用【专题综述】经济问题是中考中的热点问题,在今年的中考试题中,出现了很多和经济有关的函数型试题.解决此类试题,需要从已知条件中捕捉函数信息,通过函数关系,进一步解决实际问题.本文就二次函数在经济决策问题中的应用举例说明.【方法解读】例1:枇杷是莆田名果之一,某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些 枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克? 解:设增种x 棵树,果园的总产量为y 千克, 依题意得:y =(100 + x )(40 – 0.25x )=4000 – 25x + 40 x – 0,25x 2 = - 0.25 x 2 + 15x + 4000 因为a = - 0.25〈0,所以当1530220.25b x a =-=-=-⨯,y 有最大值 2244(0.25)400015422544(0.25)ac b y a -⨯-⨯-===⨯-最大值答:(略)例2我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销. 经过调查,得到如下数据:(1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能..超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?销售单价x (元∕件) …… 30 40 50 60 …… 每天销售量y (件)……500400300200……解:(1)画图如右图;由图可猜想y与x是一次函数关系,设这个一次函数为y= k x+b(k≠0)∵这个一次函数的图象经过(30,500)(40,400)这两点,∴5003040040k bk b=+⎧⎨=+⎩解得10800kb=-⎧⎨=⎩∴函数关系式是:y=-10x+800(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x-20)(-10x+800)=-10x2+1000x-16000=-10(x-50)2+9000∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数W=-10(x-50)2+9000,当x≤45时,W的值随着x值的增大而增大,∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.例3、某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z (元)会相应降低,且z 与x 之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y 和每亩蔬菜的收益z 与政府补贴数额x 之间的函数关系式; (3)要使全市这种蔬菜的总收益w (元)最大,政府应将每亩补贴数额x 定为多少?并求出总收益w 的最大值.解:(1)政府没出台补贴政策前,这种蔬菜的收益额为30008002400000⨯=(元)(2)由题意可设y 与x 的函数关系为800y kx =+ 将(501200),代入上式得120050800k =+ 得8k =所以种植亩数与政府补贴的函数关系为8800y x =+同理可得每亩蔬菜的收益与政府补贴的函数关系为33000z x =-+ (3)由题意(8800)(33000)u yz x x ==+-+224216002400000x x =-++224(450)7260000x =--+所以当450x =,即政府每亩补贴450元时,全市的总收益额最大,最大为7260000元.例4、 研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式;(2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润? 解:(1)甲地当年的年销售额为211420x x ⎛⎫-+ ⎪⎝⎭万元; 2399020w x x =-+-甲. (2)在乙地区生产并销售时, 年利润222111590(5)9010105w x nx x x x n x ⎛⎫=-+-++=-+-- ⎪⎝⎭乙. 由214(90)(5)535145n ⎛⎫⨯-⨯--- ⎪⎝⎭=⎛⎫⨯- ⎪⎝⎭,解得15n =或5-. 经检验,5n =-不合题意,舍去,15n ∴=. (3)在乙地区生产并销售时,年利润2110905w x x =-+-乙, 将18x =代入上式,得25.2w =乙(万元);将18x =代入2399020w x x =-+-甲, 得23.4w =甲(万元).∵w w >乙甲,∴应选乙地.【强化训练】1. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m ),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m ,则这三间长方形种牛饲养室的总占地面积的最大值为 m 2.2.(2017湖北省荆州市)荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p (元/千克)与时间第t (天)之间的函数关系为:116(140)4146(4180)2t t t p t t t ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩,为整数,为整数 ,日销售量y (千克)与时间第t (天)之间的函数关系如图所示:(1)求日销售量y 与时间t 的函数关系式? (2)哪一天的日销售利润最大?最大利润是多少? (3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m (m <7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求m 的取值范围.3.(2017湖北省荆门市)我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y 1(百件)与时间t (t 为整数,单位:天)的部分对应值如下表所示,网上商店的日销售量y 2(百件)与时间t (t 为整数,单位:天)的部分对应值如图所示.(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y 1与t 的变化规律,并求出y 1与t 的函数关系式及自变量t 的取值范围;(2)求y 2与t 的函数关系式,并写出自变量t 的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与t 的函数关系式;当t 为何值时,日销售总量y 达到最大,并求出此时的最大值.4.(2017湖北省随州市)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <15)之间的函数关系式,并求出第几天时销售利润最大?时间x (天) 1≤x <9 9≤x <15 x ≥15售价(元/斤) 第1次降价后的价格 第2次降价后的价格销量(斤) 80﹣3x 120﹣x 储存和损耗费用(元)40+3x3x 2﹣64x +400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?5.(2017湖北省襄阳市)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m 2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x (m 2),种草所需费用1y (元)与x (m 2)的函数关系式为()()11206006001000k x x y k x b x ≤<⎧⎪=⎨+≤≤⎪⎩,其图象如图所示:栽花所需费用2y (元)与x (m 2)的函数关系式为220.012030000y x x =--+(0≤x ≤1000).(1)请直接写出1k 、2k 和b 的值;(2)设这块1000m 2空地的绿化总费用为W (元),请利用W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700m 2,栽花部分的面积不少于100m 2,请求出绿化总费用W 的最小值.6.(2017湖北省黄石市)小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:①该蔬菜的销售价P (单位:元/千克)与时间x (单位:月份)满足关系:P =9﹣x ;②该蔬菜的平均成本y (单位:元/千克)与时间x (单位:月份)满足二次函数关系210y ax bx =++,已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克. (1)求该二次函数的解析式;(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L (单位:元/千克)最大?最大平均利润是多少?(注:平均利润=销售价﹣平均成本)7.(2017辽宁省锦州市)为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x 元(为便于结算,停车费x 只取整数),此停车场的日净收入为y 元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:(1)①当x ≤10时,y 与x 的关系式为:; ②当x >10时,y 与x 的关系式为:;(2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?8.(2017山东省潍坊市)工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?9.(2017内蒙古包头市)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?10.(2017四川省达州市)宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:()()7.504510414x xyx x⎧≤≤⎪=⎨+<≤⎪⎩.(1)工人甲第几天生产的产品数量为70件?(2)设第x天生产的产品成本为P元/件,P与x的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?。
中考数学二轮专题复习——二次函数(Word版含简答)
二次函数一、选择题(共15题)1.将二次函数的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ) A.B. C.D.2.抛物线的顶点坐标是( ) A.(2,) B.(,3) C.(2,3) D.(,)3.已知A (﹣1,y 1),B y 2),C (2,y 3)三点都在二次函数y=ax 2﹣b (a >0)的图象上,那么y 1,y 2,y 3的大小关系是______.A.y 1<y 2<y 3B.y 2<y 3<y 1C.y 3<y 1<y 2D.y 2<y 1<y 34.下列各式中,y 是x 的二次函数的是( (A. y 1=B.22 y x (x 1)=-+C.21 y x 3x 12=-++D.21 y x 2x=+- 5.在平面直角坐标系中,点M ,N 的坐标分别为()0,4,()3,4,若抛物线()223y a x =-+与线段MN 有且只有一个交点,则a 的值可以是( ) A.16 B.12 C.1 D.326.抛物线2(1)(3)y x x =-+的对称轴是( )A.直线x=-1B.直线x=1C.直线x=2D.直线x=37.如图,是二次函数2y ax bx c =++的图象,其对称轴为1x =,下列结论正确的是( )A.0abc >B.若1228,,,33y y ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭是抛物线上两点,则12y y <C.420a b c ++<D.20a b +=8.二次函数y =ax 2+bx +c 的部分图象如图所示,对称轴是直线x =﹣1.5,与x 轴的一个交点在(﹣4,0)和(﹣3,0)之间,有以下结论:(abc >0;(b 2﹣4ac >0;(3a ﹣b =0;(4b +3c <0.其中正确结论的个数是( )A.1B.2C.3D.49.在平面直角坐标系中,二次函数y =ax 2+bx+c (a≠0)的图象如图所示,现给以下结论:(abc <0;(4ac ﹣b 2<0;(9a ﹣3b+c =0;(a ﹣b≥m (am+b )(m 为实数),其中错误结论的个数有( )A.1个B.2个C.3个D.4个10.已知点(﹣2(y 1((((5.4(y 2(((1.5(y 3)在抛物线y=2x 2(8x+m 2的图象上,则y 1(y 2(y 3大小关系是( )A.y 2(y 1(y 3B.y 2(y 3(y 1C.y 1(y 2(y 3D.y 3(y 2(y 111.已知抛物线()()()12121y x x x x x x =--+<,抛物线与x 轴交于(,0)m ,(,0)n 两点()m n <,则m ,n ,1x ,2x 的大小关系是( )A.12x m n x <<<B.12m x x n <<<C.12m x n x <<<D.12x m x n <<<12.已知抛物线2y ax bx c =++(0a >)过(﹣2,0),(2,3)两点,那么抛物线的对称轴( )A.只能是x=﹣1B.可能是y 轴C.在直线x=2的左侧D.在y 轴左侧且在直线x=﹣2的右侧13.抛物线y=ax 2+bx+c 的部分图象如图所示,则下列结论:(abc(0((3a+c=0((当y(0时,﹣3(x(1((b 2(4ac((当y=3时,x 只能等于0.其中正确结论的个数为( )A.2个B.3个C.4个D.5个14.已知二次函数y=ax 2+bx+c(a≠0)的图象如图所示,下列结论正确的是( )(abc(0((a+c(0((2a+b=0((关于x 的一元二次方程ax 2+bx+c=0的解是x 1=(1(x 2=3(b 2(4acA.(((B.((((C.(((D.(((15.如图,已知函数()2y ax bx c a 0=++≠的图象与x 轴交于()1A x ,0及()2B x ,0两点,与y 轴交于点()C 0,3.5,对称轴为直线x 2=,且12x 1-<<-,则下列结论中错误的是( )A.4a b 0+=B.2b 4ac 0->C.方程2ax bx c 3++=有两个不相等的实数根D.26x 7<<二、综合题(共10题)16.二次函数y= 2ax +bx+c 的图象如图所示,其对称轴与x 轴交于点(-1(0),图象上有三个点分别为(2(1y (((-3( 2y (((0( 3y ),则 1y ( 2y ( 3y 的大小关系是________(用“(”“(”或“=”连接).17.将二次函数2y x 的图象向左平移1个单位,再向上平移2个单位后,所得图象的函数表达式为______. 18.地物线2y ax bx c =++的部分图象如图所示,则当0y >时,x 的取值范围是______.19.已知函数245y x x =+-,当30x -≤≤时,此函数的最大值是____________,最小值是______________. 20.如图所示,设长方体底面是边长为xcm 的正方形,高为20cm ,这个长方体的表面积S =________,它是x 的________函数;这个长方体的体积V =________,它是x 的________函数.21.如图,某农场老板准备建造一个矩形养兔场ABCD ,他打算让矩形养兔场的一边完全靠着墙MN ,墙MN 可利用的长度为24米,另外三边用长度为50米的篱笆围成(篱笆正好要全部用完,且不考虑接头的部分). 若要使矩形养兔场的面积为300平方米,则垂直于墙的一边长AB 为多少米?该矩形养兔场ABCD 的面积有最大值吗?若有最大值,请求出面积最大时AB 的长度;若没有最大值,请说明理由.22.已知二次函数y=ax 2-4x+c 的图象过点(-1, 0)和点(2,-9).求该二次函数的解析式并写出其对称轴;已知点P(2 , -2),连结OP , 在x 轴上找一点M,使(OPM 是等腰三角形,请直接写出点M 的坐标(不写求解过程). 23.如图,直线y =﹣12x +1与x 轴,y 轴分别交于A ,B 两点,抛物线y =ax 2+bx +c 过点B ,并且顶点D 的坐标为(﹣2,﹣1).(1)求该抛物线的解析式;(2)若抛物线与直线AB 的另一个交点为F ,点C 是线段BF 的中点,过点C 作BF 的垂线交抛物线于点P ,Q ,求线段PQ 的长度;(3)在(2)的条件下,点M 是直线AB 上一点,点N 是线段PQ 的中点,若PQ =2MN ,直接写出点M 的坐标.24.如图,已知一次函数122y x =+的图像与x 轴交于点A ,与二次函数的图像交于y 轴上的一点B ,另一交点为D ,二次函数图像的顶点C 在x 轴的正半轴上,且OC=2.(1)求二次函数的表达式;(2)设P 为x 轴上的一个动点,当PBD △为直角三角形,且Rt PBD 面积最小时,求点P 的坐标;(3)当02x ≤≤时,抛物线的一段BC 上是否存在一点Q ,使点Q 到直线AD 求出此时点Q 的坐标;若不存在,请说明理由.25.如图,在矩形ABCD中,点O是边AD的中点,点E是边BC上的一个动点,延长EO到F,使得OE OF=.(1)当点E运动到什么位置时,四边形AEDF是菱形?(直接写出答案)(2)若矩形ABCD的周长为20,求四边形AEDF的面积的最大值;=,且存在点E,使四边形AEDF能成为一个矩形,求BC的取值范围.(3)若AB m参考答案1.A2.D3.A4.C5.B6.A7.D8.D9.A10.A11.A12.D13.C14.B15.D16.3y <2y <1y .17.()212y x =++18.1x <-或3x >19.-5 -920.2280x x + 二次 220x 二次21.(1)15米 (2)有,1322.(1) y=x 2-4x -5,x=2;(2)M 1(4,0);M 2(-0)M 3(0);M 4(2,0). 23.(1)y =12x 2+2x +1;(2);(3)M (52,﹣14)或(﹣152,194) 24.(1)21222y x x =-+;(2)(1,0)P ;(3)存在,Q25.(1)当点E 运动到BC 的中点时,四边形AEDF 是菱形;(2)25;(3)BC ≥2m。
中考数学复习专题——二次函数知识点归纳
中考复习专题——二次函数知识点归纳二次函数知识点总结:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:oo结论:a 的绝对值越大,抛物线的开口越小。
总结:2. 2y ax c =+的性质:结论:上加下减。
a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()00, y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0.0a < 向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.总结:3. ()2y a x h =-的性质:结论:左加右减。
总结:4. ()2y a x h k =-+的性质:总结:a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0c ,y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c .0a < 向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0h , X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0.0a < 向下 ()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.三、二次函数()2y a x h k =-+与2y ax bx c =++的比较请将2245y x x =++利用配方的形式配成顶点式。
中考数学-二次函数题型-对称轴、顶点、最值
二次函数题型-对称轴、顶点、最值
教学目标:
二次函数的对称轴、顶点、最值
二次函数的对称轴、顶点、最值
(技法:如果解析式为顶点式y=a(x-h)2+k,则最值为k;如果解析式为一般式y=ax2+bx+c则最值为
1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。
2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b=,c=.
3.抛物线y=பைடு நூலகம்2+3x的顶点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.若抛物线y=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( )
A. B. C. D.
5.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( )
A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴
10.已知二次函数y=x2-2ax+2a+3,当a=时,该函数y的最小值为0.
11.已知二次函数y=mx2+(m-1)x+m-1有最小值为0,则m=______。
12.已知二次函数y=x2-4x+m-3的最小值为3,则m=。
C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴
6.已知抛物线y=x2+(m-1)x- 的顶点的横坐标是2,则m的值是_.
7.抛物线y=x2+2x-3的对称轴是。
8.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。
9.当n=______,m=______时,函数y=(m+n)xn+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________.
2010年中考数学一轮复习——函数综合应用
函数的综合应用◆ 课前热身1.已知y 关于x 的函数图象如图所示,则当0y <时,自变量x 的取值范围是( )A .0x <B .11x -<<或2x >C .1x >-D .1x <-或12x <<2.在平面直角坐标系中,函数1yx =-+的图象经过( )A .一、二、三象限B .二、三、四象限C .一、三、四象限D .一、二、四象限 3.点(13)P ,在反比例函数k y x=(0k ≠)的图象上,则k 的值是( ).A .13B .3C .13-D .3-4、如图为二次函数2y a x b x c=++的图象,给出下列说法: ①0ab <;②方程20a x b x c ++=的根为1213x x =-=,;③0a b c ++>;④当1x >时,y 随x 值的增大而增大;⑤当0y >时,13x -<<.其中,正确的说法有 .(请写出所有正确说法的序号)【参考答案】1. B2. D3. B4.①②④◆考点聚焦知识点一次函数与反比例函数的综合应用;一次函数与二次函数的综合应用;二次函数与图象信息x类有关的实际应用问题大纲要求灵活运用函数解决实际问题考查重点及常考题型利用函数解决实际问题,常出现在解答题中◆备考兵法1.四种常见函数的图象和性质总结轴交点(-,=注意事项总结:(1)关于点的坐标的求法:方法有两种,一种是直接利用定义,结合几何直观图形,先求出有关垂线段的长,再根据该点的位置,明确其纵、横坐标的符号,并注意线段与坐标的转化,线段转换为坐标看象限加符号,坐标转换为线段加绝对值;另一种是根据该点纵、横坐标满足的条件确定,例如直线y=2x 和y=-x-3的交点坐标,只需解方程组 就可以了。
(2)对解析式中常数的认识:一次函数y=kx+b (k ≠0)、二次函数y=ax2+bx+c(a ≠0)及其它形式、反比例函数y= (k≠0),不同常数对图像位置的影响各不相同,它们所起的作用,一般是按其正、零、负三种情况来考虑的,一定要建立起图像位置和常数的对应关系。
广州中考数学专题复习:函数
初三数学讲义函数知识点一:一次函数1) 一次函数y kx b =+的图象 k 、b 的符号 k >0,b >0 k >0,b <0 k <0,b >0 k <0, b <0 图像的大致位置经过象限 第 象限第 象限第 象限第 象限性质 y 随x 的增大而 y 随x 的增大而 y 随x 的增大而 y 随x 的增大而2)已知直线y =2x +8与x 轴和y 轴的交点的坐标分别是_______、_______;与两条坐标轴围成的三角形的面积是__________.3.当实数x 的取值使得2-x 有意义时,函数y=4x+1中y 的取值范围是( ) A.y ≥-7 B. y ≥9 C. y>9 D. y ≤94.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ .5.如图11,在方格纸上建立平面直角坐标系,线段AB 的两个端点都在格点上,直线MN 经过坐标原点,且点M 的坐标是(1,2)。
(1)写出点A 、B 的坐标;(2)求直线MN 所对应的函数关系式;(3)利用尺规作出线段AB 关于直线MN 的对称图形(保留作图痕迹,不写作法)。
知识点二.:反比例函数1)反比例函数xky =的图像 k 、b 的符号 k >0 k <0 图像的大致位置经过象限 第 象限 第 象限性质 y 随x 的增大而 y 随x 的增大而A.2x y =B. 1-=x yC. x y 43=D. xy 1= 3. 已知函数xy 2=,当x =1时,y 的值是________ 4.如图3,正比例函数x ky 11=和反比例函数xky 22=的图象交于A(-1,2)、(1-2)两点。
若y 1<y 2,则x 的取值范围是( )。
(A )、x <-1或x >-1 (B )、 x <-1或0<x <1(C )、-1<x <0或0<x <1 (D )、-1<x <0或x >15.如图,已知A(-4,2)、B(n ,-4)是一次函数y kx b =+的图象与反比例函数my x=的图象的两个交点.(1) 求此反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围. (3)求△AOB 的面积.6.如图3,正比例函数x ky 11=和反比例函数xky 22=的图象交于A(-1,2)、B (1,-2)两点。
中考数学反比例函数综合经典题及答案
中考数学反比例函数综合经典题及答案一、反比例函数1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.2.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.4.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.5.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,∵直线l经过点C(1,0),∴0=+b,∴b=,∴直线l的解析式为y=x−(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),∵C(1,0),∴AC=,②如图1中,作CE∥OA,∴∠ACE=∠OAC,∵tan∠OAC=,∴∠OAC=30°,∴∠ACE=30°,∴α=30°(3)解:①如图2中,当α=15°时,∵CE∥OD,∴∠ODC=15°,∵∠OAC=30°,∴∠ACD=∠ADC=15°,∴AD=AC=AB,∴△ADB,△ADC是等腰三角形,∵OD垂直平分BC,∴DB=DC,∴△DBC是等腰三角形;②当α=60°时,易知∠DAC=∠DCA=30°,∴DA=DC=DB,∴△ABD、△ACD、△BCD均为等腰三角形;③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;④当α=150°时,易知△BDC是等边三角形,∴AB=BD=DC=AC,∴△ABD、△ACD、△BCD均为等腰三角形,综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.10.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.11.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。
中考数学复习:专题3-16 最大利润问题在中考数学中的体现
最大利润问题在中考数学中的体现【专题综述】利润问题是中考中的热点问题,在今年的中考试题中,出现了很多和利润有关的函数型试题.解决此类试题,需要从已知条件中捕捉函数信息,通过函数关系,进一步解决实际问题.本文最大利润问题在中考数学中的体现举例说明.【方法解读】一、图象型例1. 随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。
某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y 与投资量x 成正比例关系,如图1所示;种植花卉的利润2y 与投资量x 成二次函数关系,如图2所示(注:利润与投资量的单位:万元).(1)分别求出利润1y 与2y 关于投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?分析:本题第(1)个问题是已知一次函数和二次函数的图像,求函数的解析式,观察两个函数的图像可知,前者是正比例函数,后者是二次函数,顶点是(0,0),利用待定系数法,先设两个函数的解析式,再将P (1,2),Q (2,2)代入相应的解析式求出参数即可;第(2)个问题是已知自变量的取值范围求二次函数的最值,属于二次函数的条件最值问题.解:(1)设1y =kx ,由图1所示,函数1y =kx 的图像过(1,2),所以2=1⋅k ,2=k故利润1y 关于投资量x 的函数关系式是1y =x 2;因为该抛物线的顶点是原点,所以设2y =2ax ,由图2所示,函数2y =2ax 的图像过(2,2),所以222⋅=a ,21=a 故利润2y 关于投资量x 的函数关系式是221x y =;(2)设这位专业户投入种植花卉x 万元(80≤≤x ),则投入种植树木(x -8)万元,他获得的利润是z 万元,根据题意,得:z =)8(2x -+221x =162212+-x x =14)2(212+-x 当2=x 时,z 的最小值是14;因为80≤≤x ,所以622≤-≤-x ,所以36)2(2≤-x ,所以18)2(212≤-x ,所以32141814)2(212=+≤+-x ,即32≤z ,此时8=x , 当8=x 时,z 的最大值是32.评注:这类试题一般先将函数解析式配方,将函数解析式变成顶点形式,找出顶点坐标和对称轴方程,结合自变量的取值范围,画出函数图像(抛物线的一部分),根据抛物线的对称性、开口方向,确定函数的最大(或最小)值,不宜直接用最值公式,这种解题方法体现了数学中的数形结合的思想,它的优点是直观形象,避免死记公式.二、表格型例2. 红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m (件)与时间t (天)的关系如下表:时间t (天) 1 36 10 36 … 日销售量m (件) 9490 84 76 24 … 未来40天内,前20天每天的价格y 1(元/件)与时间t (天)的函数关系式为25t 41y 1+=(20t 1≤≤且t 为整数),后20天每天的价格y 2(元/件)与时间t (天)的函数关系式为40t 21y 2+-=(40t 21≤≤且t 为整数)。
2010年中考数学一轮复习——二次函数及其图象
二次函数及其图象◆【课前热身】1.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则再下列哪一个时间的高度是最高的?()A.第8秒 B.第10秒 C.第12秒 D.第15秒2.在平面直角坐标系中,将二次函数22xy=的图象向上平移2个单位,所得图象的解析式为()A.222-=xy B.222+=xy C.2)2(2-=xy D.2)2(2+=xy3.抛物线3)2(2+-=xy的顶点坐标是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)4.二次函数2(1)2y x=++的最小值是().A.2 B.1 C.-3 D.2 35.抛物线y=-2x2-4x-5经过平移得到y=-2x2,平移方法是() A.向左平移1个单位,再向下平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向右平移1个单位,再向上平移3个单位【参考答案】1. B2. B3. A4. A5. D◆【考点聚焦】〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向〖大纲要求〗1.理解二次函数的概念;2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3.会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;4.会用待定系数法求二次函数的解析式;5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系.◆【备考兵法】〖考查重点与常见题型〗1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x为自变量的二次函数y=(m-2)x2+m2-m-2额图象经过原点,则m的值是2.综合考查正比例、反比例、一次函数、二次函数的图象,习题的特点是在同一直角坐标系内考查两个函数的图象,试题类型为选择题,如:如图,如果函数y=kx+b的图象在第一、二、三象限内,那么函数y=kx2+bx-1的图象大致是()A B C D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =53,求这条抛物线的解析式.4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:已知抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点的横坐标是-1、3,与y 轴交点的纵坐标是-32 (1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.5.考查代数与几何的综合能力,常见的作为专项压轴题. 抛物线的平移抛物线的平移主要是移动顶点的位置,将y=ax 2沿着y 轴(上“+”,下“-”)平移k (k>0)个单位得到函数y=ax 2±k ,将y=ax 2沿着x 轴(右“-”,左“+”)平移h (h>0)个单位得到y=a (x ±h )2.•在平移之前先将函数解析式化为顶点式,再来平移,若沿y•轴平移则直接在解析式的常数项后进行加减(上加下减),若沿x 轴平移则直接在含x 的括号内进行加减(右减左加).◆【考点链接】1. 二次函数2()y a x h k =-+的图象和性质a >02. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中h = , k = .3. 二次函数2()y a x h k =-+的图象和2ax y =图象的关系.4. 二次函数c bx ax y ++=2中c b a ,,的符号的确定. ◆【典例精析】例1 已知:二次函数为y=x 2-x+m ,(1)写出它的图象的开口方向,对称轴及顶点坐标;(2)m 为何值时,顶点在x 轴上方,(3)若抛物线与y 轴交于A ,过A 作AB ∥x 轴交抛物线于另一点B ,当S △AOB =4时,求此二次函数的解析式.【分析】(1)用配方法可以达到目的;(2)顶点在x 轴的上方,•即顶点的纵坐标为正;(3)AB ∥x 轴,A ,B 两点的纵坐标是相等的,从而可求出m 的值.【解答】(1)∵由已知y=x 2-x+m 中,二次项系数a=1>0,∴开口向上, 又∵y=x 2-x+m=[x 2-x+(12)2]-14+m=(x -12)2+414m -∴对称轴是直线x=12,顶点坐标为(12,414m -).(2)∵顶点在x 轴上方, ∴顶点的纵坐标大于0,即414m ->0∴m>14∴m>14时,顶点在x 轴上方.(3)令x=0,则y=m .即抛物线y=x 2-x+m 与y 轴交点的坐标是A (0,m ). ∵AB ∥x 轴∴B 点的纵坐标为m .当x 2-x+m=m 时,解得x 1=0,x 2=1. ∴A (0,m ),B (1,m )在Rt △BAO 中,AB=1,OA=│m │. ∵S △AOB =12OA ²AB=4.∴12│m │²1=4,∴m=±8故所求二次函数的解析式为y=x 2-x+8或y=x 2-x -8.【点评】正确理解并掌握二次函数中常数a ,b ,c•的符号与函数性质及位置的关系是解答本题的关键之处.会用待定系数法求二次函数解析式例2(2009年湖北武汉)如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接B D ,点P 为抛物线上一点,且45DBP ∠=°,求点P 的坐标.【分析】(1)中用待定系数法求出抛物线的解析式;(2)中考查象限,点关于直线的对称点求法;(3)中主要是做出正确的辅助线求解,进而求出点的坐标.【答案】解:(1) 抛物线24y ax bx a =+-经过(10)A -,,(04)C ,两点, 404 4.a b a a --=⎧∴⎨-=⎩,解得13.a b =-⎧⎨=⎩,∴抛物线的解析式为234y x x =-++.(2) 点(1)D m m +,在抛物线上,2134m m m ∴+=-++, 即2230m m --=,1m ∴=-或3m =.点D 在第一象限,∴点D 的坐标为(34),.由(1)知45OA OB CBA =∴∠=,°. 设点D 关于直线BC 的对称点为点E .(04)C ,,CD AB ∴∥,且3CD =,45ECB DCB ∴∠=∠=°,E ∴点在y 轴上,且3CE CD ==.1OE ∴=,(01)E ∴,. 即点D 关于直线BC 对称的点的坐标为(0,1).(3)方法一:作PF AB ⊥于F ,DE BC ⊥于E .由(1)有:445OB OC OBC ==∴∠=,°, 45DBP CBD PBA ∠=∴∠=∠ °,.(04)(34)C D ,,,,CD OB ∴∥且3CD =.45DCE CBO ∴∠=∠=°,2D E C E ∴==4OB OC ==,BC ∴=,2B E BC C E ∴=-=,3tan tan 5D E P B F C B D B E∴∠=∠==.设3PF t =,则5BF t =,54OF t ∴=-,(543)P t t ∴-+,. P 点在抛物线上,∴23(54)3(54)4t t t =--++-++,0t ∴=(舍去)或2225t =,266525P ⎛⎫∴-⎪⎝⎭,. 方法二:过点D 作B D 的垂线交直线P B 于点Q ,过点D 作DH x ⊥轴于H .过Q 点作Q G D H ⊥于G .45PBD Q D D B ∠=∴= °,. Q D G BD H ∴∠+∠90=°,又90D Q G Q D G ∠+∠=°,D Q G BD H ∴∠=∠.Q D G D BH ∴△≌△,4Q G D H ∴==,1DG BH ==. 由(2)知(34)D ,,(13)Q ∴-,. (40)B ,,∴直线B P 的解析式为31255y x =-+.解方程组23431255y x x y x ⎧=-++⎪⎨=-+⎪⎩,,得1140x y =⎧⎨=⎩,;222566.25x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴点P 的坐标为266525⎛⎫- ⎪⎝⎭,.◆【迎考精练】 一、选择题1.(2009年上海市)抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( )A .()m n ,B .()m n -,C .()m n -,D .()m n --,2.(2009年陕西省)根据下表中的二次函数cbx axy ++=2的自变量x 与函数y 的对应值,可判断二次函数的图像与x 轴( )A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点3.(2009年湖北荆门)函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )4.(2009年广东深圳)二次函数cbx axy++=2的图象如图2所示,若点A (1,y 1)、B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是()A.21yy <B .21y y =C .21y y >D .不能确定D .5.(2009年湖北孝感)将函数2y x x =+的图象向右平移a (0)a >个单位,得到函数232y x x =-+的图象,则a 的值为A .1B .2C .3D .46.(2009年天津市)在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )A .22y x x =--+ B .22y x x =-+-C.22y x x =-++ D .22y x x =++7.(2009年四川遂宁)把二次函数3412+--=x x y 用配方法化成()kh x a y+-=2的形式A.()22412+--=x y B. ()42412+-=x yC.()42412++-=x y D. 321212+⎪⎭⎫ ⎝⎛-=x y8.(2009年河北)某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x=(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( )A .40 m/sB .20 m/sC .10 m/sD .5 m/s二、填空题1.(2009年北京市)若把代数式223x x --化为()2x m k -+的形式,其中,m k 为常数,则m k += .2.(2009年安徽)已知二次函数的图象经过原点及点(12-,14-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为 3.(2009年湖南郴州)抛物线23(1)5y x =--+的顶点坐标为__________.4.(2009年内蒙古包头)已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.5.(2009年湖北襄樊)抛物线2y x bx c =-++则此抛物线的解析式为 .6.(2009年湖北荆门)函数(2)(3)y x x =--取得最大值时,x =______. 三、解答题1.(2009年湖南衡阳)已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),求这个二次函数的关系式.2.(2009年湖南株洲)已知ABC ∆为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B 坐标为(3,m )(0m >),线段A B 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D . (1)求点A 的坐标(用m 表示); (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结P Q 并延长交BC 于点E ,连结B Q 并延长交AC 于点F ,试证明:(FC AC5题3.(2009年湖南常德)已知二次函数过点A (0,2-),B (1-,0),C (5948,).(1)求此二次函数的解析式; (2)判断点M (1,12)是否在直线AC 上?(3)过点M (1,12)作一条直线l 与二次函数的图象交于E 、F 两点(不同于A ,B ,C三点),请自已给出E 点的坐标,并证明△BEF 是直角三角形.4. (2009年陕西省) 如图,在平面直角坐标系中,OB ⊥OA ,且OB =2OA ,点A 的坐标是(-1,2).(1)求点B 的坐标;(2)求过点A 、O 、B 的抛物线的表达式;(3)连接AB ,在(2)中的抛物线上求出点P ,使得S △ABP =S △ABO .第3题5.(2009年湖北黄冈)新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB 为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线的一部分,且点A,B,C的横坐标分别为4,10,12(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?6.(2009年内蒙古包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.(1)求一次函数的表达式;(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.7.(2009年福建漳州)如图1,已知:抛物线与轴交于两点,与轴交于点C,经过B、C两点的直线是,连结.(1)B、C两点坐标分别为B(_____,_____)、C(_____,_____),抛物线的函数关系式为______________;(2)判断的形状,并说明理由;(3)若内部能否截出面积最大的矩形(顶点在各边上)?若能,求出在边上的矩形顶点的坐标;若不能,请说明理由.[抛物线的顶点坐标是]【参考答案】 选择题 1. B 2. B 3. C【解析】本题考查函数图象与性质,当0a >时,直线从左向右是上升的,抛物线开口向上,D 是错的,函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象必过(0,1),所以C 是正确的,故选C . 4. C 5. B 6. C 7. D 8. C 填空题 1. -32. 2y x x =+,21133y x =-+3. (1,5)4. 4【解析】本题考查二次函数图象的画法、识别理解,方程根与系数的关系筀等知识和数形结合能力.根据题意画大致图象如图所示,由2y ax bx c =++与X 轴的交点坐标为(-2,0)得()()2220a b c ⨯-+⨯-+=,即 420a b c -+=所以①正确;由图象开口向下知0a <,由2y a x b x c =++与X 轴的另一个交点坐标为()1,0x 且112x <<,则该抛物线的对称轴为()121222x b x a-+=-=>-由a<0得b>a,所以结论②正确;由一元二次方程根与系数的关系知12.2c x x a=<-,结合a<0得20a c +>,所以③结论正确;由420a b c -+=得22c a b -=-,而0<c<2,,∴102c -<-< ∴-1<2a-b<0 ∴2a-b+1>0,所以结论④正确.点拨: 420a b c -+=是否成立,也就是判断当2x =-时,2y ax bx c =++的函数值是否为0;判断2y ax bx c =++中a 符号利用抛物线的开口方向来判断,开口向上a>0,开口向下a<0;判断a 、b 的小关系时,可利用对称轴2bx a=-的值的情况来判断;判断a 、c的关系时,可利用由一元二次方程根与系数的关系12.cx x a=的值的范围来判断;2a-b+1的值情况可用420a b c -+=来判断. 5. 223y x x =-++【解析】本题考查二次函数的有关知识,由图象知该抛物线的对称轴是1x =,且过点(3,0),所以12930bb c ⎧-=⎪-⎨⎪-++=⎩,解得23b c =⎧⎨=⎩,所以抛物线的解析式为223y x x =-++,故填223y x x =-++ 6. 52【解析】本题考查二次函数的最值问题,可以用配方法或二次函数顶点坐标公式求出当x 为何值时二次函数取得最大值,下面用配方法,22549(2)(3)5624y x x x x x ⎛⎫=--=-+-=--+⎪⎝⎭,所以当52x =时,函数(2)(3)y x x =--取得最大值,故填52解答题1. 解:设这个二次函数的关系式为得:解得:∴这个二次函数的关系式是,即2. (1)由(3,)B m 可知3OC =,BC m =,又△ABC 为等腰直角三角形,∴AC BC m ==,3OA m =-,所以点A 的坐标是(3,0m -). (2)∵45ODA OAD ∠=∠=︒ ∴3OD OA m ==-,则点D 的坐标是(0,3m -). 又抛物线顶点为(1,0)P ,且过点B 、D ,所以可设抛物线的解析式为:2(1)y a x =-,得:22(31)(01)3a ma m ⎧-=⎪⎨-=-⎪⎩ 解得14a m =⎧⎨=⎩ ∴抛物线的解析式为221y x x =-+ (3)过点Q 作Q M A C ⊥于点M ,过点Q 作Q N BC ⊥于点N ,设点Q 的坐标是2(,21)x x x -+,则2(1)QM CN x ==-,3M C Q N x ==-.∵//Q M C E ∴P Q M ∆∽PEC ∆ ∴Q M P M E C P C=即2(1)12x x EC --=,得2(1)EC x =-∵//Q N FC ∴B Q N ∆∽BFC ∆ ∴Q N B N F CB C=即234(1)4x x FC---=,得41FC x =+又∵4AC = ∴444()[42(1)](22)2(1)8111FC AC EC x x x x x x +=+-=+=⋅+=+++即()FC AC EC +为定值8.3. (1)设二次函数的解析式为c bx ax y ++=2(0a ≠), 把A (0,2-),B (1-,0),C (5948,)代入得2092558164c a b c a b c⎧⎪=-⎪=-+⎨⎪⎪=++⎩解得 a =2 , b =0 , c =-2, ∴222y x =-(2)设直线AC 的解析式为(0)y kx b k =+≠ , 把A (0,-2),C (5948,)代入得29584b k b=-⎧⎪⎨=+⎪⎩, 解得522k b ==-, ,∴522y x =- 当x =1时,511222y =⨯-=∴M (1,12)在直线AC 上(3)设E 点坐标为(1322--,),则直线EM 的解析式为4536y x =-由 2453622y x y x ⎧=-⎪⎨⎪=-⎩化简得2472036x x --=,即17()(2)023x x +-=,∴F 点的坐标为(713618,).过E 点作EH ⊥x 轴于H ,则H 的坐标为(102-,). ∴3122EH BH ==, ∴2223110()()224BE =+=,类似地可得 222131********()()186324162B F =+==,222401025001250()()186324162E F=+==,∴2221084512504162162B E B F E F +=+==,∴△BEF 是直角三角形.4. 解:(1)过点A 作AF ⊥x 轴,垂足为点F ,过点B 作BE ⊥x 轴,垂足为点E ,则AF =2,OF =1.∵OA ⊥OB ,∴∠AOF+∠BOE =90°. 又 ∵∠BOE+∠OBE =90°,∴∠AOF =∠OBE . ∴Rt △AFO ∽Rt △OEB . ∴2===OAOB AFOE OFBE .∴BE =2,OE =4. ∴B(4,2).(2)设过点A(-1,2),B(4,2),O(0,0)的抛物线为y=ax 2+bx+c .∴⎪⎩⎪⎨⎧==++=+-.0,2416,2c c b a c b a 解之,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.0,23,21c b a∴所求抛物线的表达式为xx y 23212-=.(3)由题意,知AB ∥x 轴.设抛物线上符合条件的点P 到AB 的距离为d ,则S △ABP =AFAB d AB ⋅=⋅2121.∴d =2.∴点P 的纵坐标只能是0或4. 令y =0,得23212=-x x,解之,得x =0,或x =3.∴符合条件的点P 1(0,0),P 2(3,0). 令y =4,得423212=-x x,解之,得2413±=x.∴符合条件的点P 3(2413-,4),P 4(2413+,4).∴综上,符合题意的点有四个: P 1(0,0),P 2(3,0),P 3(2413-,4),P 4(2413+,4).(评卷时,无P 1(0,0)不扣分)5.解:(1)当时,线段O A 的函数关系式为;当时,由于曲线AB 所在抛物线的顶点为A (4,-40),设其解析式为在中,令x=10,得;∴B (10,320)∵B (10,320)在该抛物线上 ∴解得∴当时,=综上可知,(2) 当时,当时,当时,(3) 10月份该公司所获得的利润最多,最多利润是110万元.6. 解:(1)根据题意得解得.所求一次函数的表达式为.(2),抛物线的开口向下,当时,随的增大而增大,而,当时,.当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)由,得,整理得,,解得,.由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而,所以,销售单价的范围是.7. (1)(4,0),..(2)是直角三角形.证明:令,则...解法一:..是直角三角形.解法二:,..,.即.是直角三角形.(3)能.当矩形两个顶点在上时,如图1,交于.,..解法一:设,则,,.=.当时,最大..,.,.解法二:设,则..当时,最大..,.,.当矩形一个顶点在上时,与重合,如图2,,..解法一:设,,.=.当时,最大.,.解法二:设,,,,..=∴当时,最大,..∴综上所述:当矩形两个顶点在上时,坐标分别为,(2,0);当矩形一个顶点在上时,坐标为。
函数的实际应用--抛物线型问题(专题训练)(解析版)-中考数学重难点题型专题汇总
函数的实际应用-中考数学重难点题型专题汇总抛物线型问题(专题训练)1.现要修建一条隧道,其截面为抛物线型,如图所示,线段OE 表示水平的路面,以O 为坐标原点,以OE 所在直线为x 轴,以过点O 垂直于x 轴的直线为y 轴,建立平面直角坐标系.根据设计要求:10m OE =,该抛物线的顶点P 到OE 的距离为9m .(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A 、B 处分别安装照明灯.已知点A 、B 到OE 的距离均为6m ,求点A 、B 的坐标.【答案】(1)29(5)925y x =--+(2)(5(5A B +【分析】(1)根据题意,设抛物线的函数表达式为2(5)9y a x =-+,再代入(0,0),求出a 的值即可;(2)根据题意知,A ,B 两点的纵坐标为6,代入函数解析式可求出两点的横坐标,从而可解决问题.(1)依题意,顶点(5,9)P ,设抛物线的函数表达式为2(5)9y a x =-+,将(0,0)代入,得20(05)9a =-+.解之,得925a =-.∴抛物线的函数表达式为29(5)925y x =--+.(2)令6y =,得29(5)9625x --+=.解之,得125,5x x +=+.∴(5(5A B +.【点睛】本题考查了运用待定系数法求二次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出二次函数的解析式是关键.2.甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽8m OA =,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处.有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线()20y ax bx c a =++≠,该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移()0m m >个单位长度,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.【答案】(1)y=14-x 2+2x (0≤x≤8);(2)他的头顶不会触碰到桥拱,理由见详解;(3)【分析】(1)设二次函数的解析式为:y=a(x-8)x ,根据待定系数法,即可求解;(2)把:x =1,代入y=14-x 2+2x ,得到对应的y 值,进而即可得到结论;(3)根据题意得到新函数解析式,并画出函数图像,进而即可得到m 的范围.【详解】(1)根据题意得:A(8,0),B(4,4),设二次函数的解析式为:y=a(x-8)x ,把(4,4)代入上式,得:4=a×(4-8)×4,解得:14a =-,∴二次函数的解析式为:y=14-(x-8)x=14-x 2+2x (0≤x≤8);(2)由题意得:x=0.4+1.2÷2=1,代入y=14-x 2+2x ,得y=14-×12+2×1=74>1.68,答:他的头顶不会触碰到桥拱;(3)由题意得:当0≤x≤8时,新函数表达式为:y=14x 2-2x ,当x <0或x >8时,新函数表达式为:y=-14x 2+2x ,∴新函数表达式为:2212(08)41(08)4x x x y x x x ⎧-≤≤⎪⎪=⎨⎪-+⎪⎩或,∵将新函数图象向右平移()0m m >个单位长度,∴O '(m ,0),A '(m+8,0),B '(m+4,-4),如图所示,根据图像可知:当m+4≥9且m≤8时,即:5≤m≤8时,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小.本题主要考查二次函数的实际应用,掌握二次函数的待定系数法,二次函数的图像和性质,二次函数图像平移和轴对称变换规律,是解题的关键.3.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系.图中的抛物线2117C :1126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.【答案】(1)213482y x x =-++;(2)12米;(3)3524b ≥.【分析】(1)根据题意可知:点A (0,4)点B (4,8),利用待定系数法代入抛物线221:8C y x bx c=-++即可求解;(2)高度差为1米可得21=1C C -可得方程,由此即可求解;(3)由抛物线2117C :1126y x x =-++可知坡顶坐标为61(7,)12,此时即当7x =时,运动员运动到坡顶正上方,若与坡顶距离超过3米,即2161773812y b c =-⨯++≥+,由此即可求出b的取值范围.【详解】解:(1)根据题意可知:点A (0,4),点B (4,8)代入抛物线221:8C y x bx c =-++得,2=4144=88c b c ⎧⎪⎨-⨯++⎪⎩,解得:=43=2c b ⎧⎪⎨⎪⎩,∴抛物线2C 的函数解析式213482y x x =-++;(2)∵运动员与小山坡的竖直距离为1米,∴221317(4)(1)182126x x x x -++--++=,解得:14x =-(不合题意,舍去),212x =,故当运动员运动水平线的水平距离为12米时,运动员与小山坡的竖直距离为1米;(3)∵点A (0,4),∴抛物线221:48C y x bx =-++,∵抛物线2211761C :1=7)12612y x x x =-++-+,∴坡顶坐标为61(7,12,∵当运动员运动到坡顶正上方,且与坡顶距离超过3米时,∴21617743812y b =-⨯++≥+,解得:3524b ≥.【点睛】本题属二次函数应用中的难题.解决函数应用问题的一般步骤为:(1)审题:弄清题意,分清条件和结论,理清数量关系;(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型;(3)求模:求解数学模型,得到数学结论;(4)还原:将用数学方法得到的结论还原为实际问题.4.如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB 在x 轴上,且8AB =dm ,外轮廓线是抛物线的一部分,对称轴为y 轴,高度8OC =dm .现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB 上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB 上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm 的圆,请说明理由.【答案】(1)296-;(2)20dm ;(3)能切得半径为3dm 的圆.【分析】(1)先把二次函数解析式求出来,设正方形的边长为2m ,表示在二次函数上点的坐标,代入即可得到关于m (2)如详解2中图所示,设矩形落在AB 上的边DE=2n ,利用函数解析式求解F 点坐标,进而表示出矩形的周长求最大值即可;(3)为了保证尽可能截取圆,应保证圆心H 坐标为(0,3),表示出圆心H 到二次函数上个点之间的距离与半径3进行比较即可.(1)由题目可知A (-4,0),B (4,0),C (0,8)设二次函数解析式为y=ax²+bx+c ,∵对称轴为y 轴,∴b=0,将A 、C 代入得,a=12-,c=8则二次函数解析式为2182y x =-+,如下图所示,正方形MNPQ 即为符合题意得正方形,设其边长为2m ,则P 点坐标可以表示为(m ,2m )代入二次函数解析式得,21822m m -+=,解得122,2m m =-=-(舍去),∴2m=4,()()222496m =-=-则正方形的面积为296-;(2)如下如所示矩形DEFG ,设DE=2n ,则E (n ,0)将x=n 代入二次函数解析式,得2182y n =-+,则EF=2182n -+,矩形DEFG 的周长为:2(DE+EF )=2(2n+2182n -+)=22416(2)20n n n -++=--+,当n=2时,矩形的周长最大,最大周长为20dm ;(3)如下图所示,为了保证尽可能截取圆,应保证圆心H 坐标为(0,3),则圆心H 到二次函数上个点之间的距离为3≥,∴能切得半径为3dm 的圆.【点睛】本题考查了二次函数与几何结合,熟练掌握各图形的性质,能灵活运用坐标与线段长度之间的转换是解题的关键.5.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA 为66m ,基准点K 到起跳台的水平距离为75m ,高度为m h (h 为定值).设运动员从起跳点A 起跳后的高度(m)y 与水平距离(m)x 之间的函数关系为2(0)y ax bx c a =++.(1)c 的值为__________;(2)①若运动员落地点恰好到达K 点,且此时19,5010a b =-=,求基准点K 的高度h ;②若150a =-时,运动员落地点要超过K 点,则b 的取值范围为__________;(3)若运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,试判断他的落地点能否超过K点,并说明理由.【答案】(1)66(2)①基准点K的高度h为21m;②b>9 10;(3)他的落地点能超过K点,理由见解析.【分析】(1)根据起跳台的高度OA为66m,即可得c=66;(2)①由a=﹣150,b=910,知y=﹣150x2+910x+66,根据基准点K到起跳台的水平距离为75m,即得基准点K的高度h为21m;②运动员落地点要超过K点,即是x=75时,y>21,故﹣150×752+75b+66>21,即可解得答案;(3)运动员飞行的水平距离为25m时,恰好达到最大高度76m,即是抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,可得抛物线解析式为y=﹣2125(x﹣25)2+76,当x=75时,y=36,从而可知他的落地点能超过K点.(1)解:∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,故答案为:66;(2)解:①∵a=﹣150,b=910,∴y=﹣150x2+910x+66,∵基准点K到起跳台的水平距离为75m,∴y=﹣150×752+910×75+66=21,∴基准点K的高度h为21m;②∵a=﹣1 50,∴y=﹣150x2+bx+66,∵运动员落地点要超过K点,∴当x=75时,y>21,即﹣150×752+75b+66>21,解得b>9 10,故答案为:b>9 10;(3)解:他的落地点能超过K点,理由如下:∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,∴抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=﹣2 125,∴抛物线解析式为y=﹣2125(x﹣25)2+76,当x=75时,y=﹣2125×(75﹣)2+76=36,∵36>21,∴他的落地点能超过K点.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,能根据题意把实际问题转化为数学问题.6.根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.素材2为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm 长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m ;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m ;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1确定桥拱形状在图2任务2探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.【答案】任务一:见解析,2120y x =-;任务二:悬挂点的纵坐标的最小值是 1.8-;66x -≤≤;任务三:两种方案,见解析【分析】任务一:根据题意,以拱顶为原点,建立如图1所示的直角坐标系,待定系数法求解析式即可求解;任务二:根据题意,求得悬挂点的纵坐标5 1.810.4 1.8y ≥-+++=-,进而代入函数解析式即可求得横坐标的范围;任务三:有两种设计方案,分情况讨论,方案一:如图2(坐标系的横轴,图3同),从顶点处开始悬挂灯笼;方案二:如图3,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为0.8m ,根据题意求得任意一种方案即可求解.【详解】任务一:以拱顶为原点,建立如图1所示的直角坐标系,则顶点为(0,0),且经过点(10,5)-.设该抛物线函数表达式为2(0)y ax a =≠,则5100a -=,∴120a =-,∴该抛物线的函数表达式是2120y x =-.任务二:∵水位再上涨1.8m 1m ,灯笼长0.4m ,∴悬挂点的纵坐标5 1.810.4 1.8y ≥-+++=-,∴悬挂点的纵坐标的最小值是 1.8-.当 1.8y =-时,211.820x -=-,解得16x =或26x =-,∴悬挂点的横坐标的取值范围是66x -≤≤.任务三:有两种设计方案方案一:如图2(坐标系的横轴,图3同),从顶点处开始悬挂灯笼.∵66x -≤≤,相邻两灯笼悬挂点的水平间距均为1.6m ,∴若顶点一侧挂4盏灯笼,则1.646⨯>,⨯<,若顶点一侧挂3盏灯笼,则1.636∴顶点一侧最多可挂3盏灯笼.∵挂满灯笼后成轴对称分布,∴共可挂7盏灯笼.-.∴最左边一盏灯笼悬挂点的横坐标是 4.8方案二:如图3,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为0.8m,+⨯->,∵若顶点一侧挂5盏灯笼,则0.8 1.6(51)6+⨯-<,若顶点一侧挂4盏灯笼,则0.8 1.6(41)6∴顶点一侧最多可挂4盏灯笼.∵挂满灯笼后成轴对称分布,∴共可挂8盏灯笼.-.∴最左边一盏灯笼悬挂点的横坐标是 5.6【点睛】本题考查了二次函数的应用,根据题意建立坐标系,掌握二次函数的性质是解题的关键.7.公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s时,它行驶的路程是多少?(2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?【答案】(1)87.5m ;(2)6秒时两车相距最近,最近距离是2米【分析】(1)根据图像分别求出一次函数和二次函数解析式,令v=9求出t ,代入求出s 即可;(2)分析得出当v=10m/s 时,两车之间距离最小,代入计算即可.【详解】解:(1)由图可知:二次函数图像经过原点,设二次函数表达式为2s at bt =+,一次函数表达式为v kt c =+,∵一次函数经过(0,16),(8,8),则8816k c c =+⎧⎨=⎩,解得:116k c =-⎧⎨=⎩,∴一次函数表达式为16v t =-+,令v=9,则t=7,∴当t=7时,速度为9m/s ,∵二次函数经过(2,30),(4,56),则423016456a b a b +=⎧⎨+=⎩,解得:1216a b ⎧=-⎪⎨⎪=⎩,∴二次函数表达式为21162s t t =-+,令t=7,则s=491672-+⨯=87.5,∴当甲车减速至9m/s 时,它行驶的路程是87.5m ;(2)∵当t=0时,甲车的速度为16m/s ,∴当10<v <16时,两车之间的距离逐渐变小,当0<v <10时,两车之间的距离逐渐变大,∴当v=10m/s 时,两车之间距离最小,将v=10代入16v t =-+中,得t=6,将t=6代入21162s t t =-+中,得78s =,此时两车之间的距离为:10×6+20-78=2m ,∴6秒时两车相距最近,最近距离是2米.【点睛】本题考查了二次函数与一次函数的实际应用,理解题意,读懂函数图像,求出表达式是解题的基本前提.8.如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.图2(1)直接写出b ,c 的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为3724米的竹竿支架若干,已知大棚内可以根竹竿,则共需要准备多少根竹竿?【答案】(1)76b =,1c =;(2)7324米;(3)352【分析】(1)根据题意,可直接写出点A 点B 坐标,代入216y x bx c =-++,求出b 、c 即可;(2)根据(1)中函数解析式直接求顶点坐标即可;(3根据2173716624y x x =-++=,先求得大棚内可以搭建支架的土地的宽,再求得需搭建支架的面积,最后根据每平方米需要4根竹竿计算即可.【详解】解:(1)由题意知点A 坐标为(0)1,,点B 坐标为(6)2,,将A 、B 坐标代入216y x bx c =-++得:21=12666c b c ⎧⎪⎨=-⨯++⎪⎩解得:761b c ⎧=⎪⎨⎪=⎩,故76b =,1c =;(2)由221717731666224y x x x ⎛⎫=-++=--+ ⎪⎝⎭,可得当72x =时,y 有最大值7324,即大棚最高处到地面的距离为7324米;(3)由2173716624y x x =-++=,解得112x =,2132x =,又因为06x ≤≤,可知大棚内可以搭建支架的土地的宽为111622-=(米),又大棚的长为16米,故需要搭建支架部分的土地面积为1116882⨯=(平方米)共需要884352⨯=(根)竹竿.【点睛】本题主要考查根据待定系数法求函数解析式,根据函数解析式求顶点坐标,以及根据函数值确定自变量取值范围,掌握此题的关键是熟练掌握二次函数图像的性质.9.如图1是一座抛物线型拱桥侧面示意图.水面宽AB 与桥长CD 均为24m ,在距离D 点6米的E 处,测得桥面到桥拱的距离EF 为1.5m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱项部O 离水面的距离.(2)如图2,桥面上方有3根高度均为4m 的支柱CG ,OH ,DI ,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m .①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.【答案】(1)6m ;(2)①21'(6)112y x =++;②2m 【分析】(1)设211y a x =,由题意得(6,1.5)F -,求出抛物线图像解析式,求当x=12或x=-12时y 1的值即可;(2)①由题意得右边的抛物线顶点为(6,1),设222(6)1y a x =-+,将点H 代入求值即可;②设彩带长度为h ,则12h y y =-,代入求值即可.【详解】解(1)设211y a x =,由题意得(6,1.5)F -,11.536a ∴-=,1124a ∴=-,21124y x ∴=-,∴当12x =时,21112624y =-⨯=-,∴桥拱顶部离水面高度为6m .(2)①由题意得右边的抛物线顶点为(6,1),∴设222(6)1y a x =-+,(0,4)H ,224(06)1a ∴=-+,2112a ∴=,221(6)112y x ∴=-+,(左边抛物线表达式:21'(6)112y x =++)②设彩带长度为h ,则22221111(6)1()412248h y y x x x x =-=-+--=-+,∴当4x =时,2min h =,答:彩带长度的最小值是2m .【点睛】本题主要考查待定系数法求二次函数的解析式,以及二次函数最值得求解方法,结合题意根据数形结合的思想设出二次函数的顶点式方程是解题的关键.。
2014中考数学必考题型专题(专讲专练)-函数型综合问题(2份,以2012、2013真题为例)(权威押题+冲刺复习资料)
2
b2 4c - a - a =
参考以上定理和结论,解答下列问题: 2 设二次函数 y=ax +bx+c(a>0)的图象与 x 轴的两个交点 为 A(x1,0)、B(x2,0),抛物线的顶点为 C,显然△ABC 为 等腰三角形. 2 (1)当△ABC 为直角三角形时,求 b -4ac 的值; 2 (2)当△ABC 为等边三角形时,求 b -4ac 的值.
对应训练 1.(2013·牡丹江)快、慢两车分别从相距360千米路 程的甲、乙两地同时出发,匀速行驶,先相向而行,快 车到达乙地后,停留1小时,然后按原路原速返回,快 车比慢车晚1小时到达甲地,快、慢两车距各自出发地 的路程y(千米)与出发后所用的时间x(小时)的关 系如图所示.
请结合图象信息解答下列问题: (1)快、慢两车的速度各是多少? (2)出发多少小时,快、慢两车距各自出发地的路 程相等? (3)直接写出在慢车到达甲地前,快、慢两车相距 的路程为150千米的次数.
对应训练
(1)求点B的坐标,并说明点D在直线l (2)设交点C的横坐标为m. ①交点C的纵坐标可以表示为: 或 ,由此进一步探究m关于h的函数关系 式; ②如图②,若∠ACD=90°,求m的值.
【例 3】 (2012·兰州) 若 x1、x2 是关于一元二次方程 ax + bx+c(a≠0)的两个根,则方程的两个根 x1、x2 和系数 a、 b c b、c 有如下关系:x1+x2=- ,x1·x2= ,把它称为一元 a a 2 二次方程根与系数关系定理.如果设二次函数 y=ax +bx +c(a≠0)的图象与 x 轴的两个交点为 A(x1, 0), B(x2, 0), 利用根与系数关系定理可以得到 A、B 两点间的距离为: AB=|x1-x2|= (x1+x2) -4x1x2= b -4ac b -4ac = . 2 a |a|
最新2010年九年级数学中考一轮复习精品教案(第一讲:实数)
第一讲:实数本期分四个专题复习:有理数及其运算、实数及其运算、二次根式及科学计数法与有效数字中考对这部分内容的考查一般以选择题、填空题及简单的解答题出现,大多都比较简单,但近几年出现了一些设计新颖的创新试题.由于这部分试题的概念较多,且逻辑性较强,命题者又对这部分内容常常设置一些易混、易错的题目,因此同学们在复习这部分知识时,一定要理解有关概念、运算法则及运算律等,着重训练基本运算方法与技能.例3 : 计算:22-5×51+2 . 思路点拨 :本题是有理数的混合运算,除了要熟练掌握有关运算法则,还要注意运算顺序.解:原式=4-1+2 =3+2 =5. 练习:1. 如果向东走80 m 记为80 m ,那么向西走60 m 记为( ) A.-60 m B.︱-60︱m C.60 m D.601m 2. )下面的几个有理数中,最大的数是( )A .2B .13C .-3D .15- 3. 如果2()13⨯-=,则“”内应填的 数是( ) A .32B .23C .23-D .32-4. A 为数轴上表示1-的点,将A 点沿数轴向左移动2个单位长度到B 点,则B 点所表示的数为( ) A .3-B .3C .1D .1或3-5. 一种商品原价120元,按八折(即原价的80%)出售,则现售价应为 _______元.6. 计算:121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭.答案: 1.A 2.A 3.D 提示:1÷(32-)=-234.A 提示:-1-2=-35.96 提示:120×80%=966.解:121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭463=-+1=.最新考题1.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 2.(2009年黄石市)实数a 在数轴上对应的点如图所示,则a ,a -,1-的大小关系是( )A .1a a -<<-B .a a a -<-<C .1a a <-<-D .1a a <-<-3.(2009营口)计算:12345314,3110,3128,3182,31244,+=+=+=+=+=,归纳各计算结果中的个位数字的规律,猜测200931+的个位数字是()A. 0B. 2C. 4D. 84.(2009年浙江省绍兴市)将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm”和“15cm”分别对应数轴上的 3.6-和x ,则( )A .9<x <10B .10<x <11C .11<x <12D .12<x <13 答案:1. A 2. C 3. C 4.C 知识点2:实数及其运算例1: |-9|的平方根是( ) A.81 B.±3 C.3 D.-3思路点拨 :因为|-9|=9,而9的平方根为±3,所以|-9|的平方根是±3,故选B.例31的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间思路点拨:解答有关无理数的估算问题一般有两种途径:直接估算或利用计算器求解.这里用的是直接估算的方法——平方法,只要首先将原数平方,看其在哪两个平方数之间,运用这种方法可以估计一个带根号的数的整数部分,估计其大致范围.解:因为16<17<25,所以4<17<5,所以1<6.故选D.例4_________.思路点拨:实数的运算与有理数的运算一样,要注意运算顺序:先乘方、开方,再乘除,后加减,如果有括号先算括号里面的,能运用运算律的就运用,简化运算,解答实数运算题时,一定要注意把结果化为最简形式.-4×2222+=3.练习1. 4的算术平方根是()A.2±B.2 C.D2. 在实数0,10.1235中,无理数的个数为()A.0个B.1个C.2个D.3个3. 实数a、b在数轴上的位置如图1所示,则a与b的大小关系是()A.ba< B.ba= C.ba> D.无法确定4.2的值( )A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间5.= .6.计算:⎛÷⎝图1答案: 1.B2.B3.C 提示:观察实数a 、b 在数轴上所对应的位置可知b<a.4.C 提示:因为25<27<36,所以5<27<6,所以2<4. 5.3 提示:原式=23-3=36.解:原式⎛=÷ ⎝143==. 最新考题1.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( )A .32B .23C .23-D .32-2.(2009年黄冈市)1.8的立方根为()A .2B .±2C .4D .±43.(2009年湖南长沙)已知实数a 在数轴上的位置如图所示,则化简|1|a -为( )A .1B .1-C .12a -D .21a -4. (2009年义乌)平方根节是数学爱好者的节目,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如2009年的3月3日,2016年的4月4日.请你写出本世纪内你喜欢的一个平方根(题中所举例子除外)._______年_______月_______日.答案:1. D 2. A 3. A 4.答案不唯一,如2025年5月5日.知识点3: 二次根式例1有意义,则实数x 的取值范围是 .思路点拨 :在何种形式中出现二次根式,都要注意被开方数为非负数这一条件,有时它还可能成为隐含的解题的关键条件.解:被开方数x -3≥0,得x≥3. 例2: 若333.3.33.332.3132,022222或的值等于())(则D C B A x x x x x x +--+-=--思路点拨 :认真观察所给条件和所求的代数式的特点才可发现思路,找准解题 的“出发点”。
2010年中考数学试题汇编13——反比例函数
2010年中考数学试题汇编13----反比例函数1.(2010·凉山)已知函数25(1)m y m x -=+是反比例函数,且图像在第二、四象限内,则m的值是A .2B .2-C .2±D .12-2.(2010·兰州) 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数xky 12--=的图像上. 下列结论中正确的是A .321y y y >>B .231y y y >>C .213y y y >>D . 132y y y >> 3.(2010浙江宁波)已知反比例函数1y x=,下列结论不正确...的是 (A) 图象经过点(1,1) (B) 图象在第一、三象限(C) 当1x >时,01y << (D) 当0x <时,y 随着x 的增大而增大 4.(2010·芜湖)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = a x与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是( ) A . B . C . D .5.(2010·青岛)函数y ax a =-与a y x=(a ≠0)在同一直角坐标系中的图象可能是( )6.(2010·贵州)函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( )A .1k >B .1k <C .1k >-D .1k <-7.(2010 ·南充)如图,直线2y x =+与双曲线k y x=相交于点A ,点A 的纵坐标为3,k的值为( ).(A )1 (B )2 (C )3 (D )48.(2010· 嵊州)如图8,直线)0(<=k kx y 与双曲线xy 2-=交于),(),,(2211y x B y x A 两点,则122183y x y x -的值为( )A.-5B.-10C.5D.109.(2010·眉山)如图9,已知双曲线(0)k y k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为 A .12 B .9 C .6 D .410.(2010·荆州)如图,直线l是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC=4,BC=3.将BC 边在直线l 上滑动,使A ,B 在函数xk y =的图象上.那么k 的值是A .3B .6 C.12 D .41511.(2010·十堰)方程x 2+2x -1=0的根可看成函数y =x +2与函数1y x=的图象交点的横坐标,用此方法可推断方程x 3+x -1=0的实根x 所在范围为( ) A . 102x -<< B .102x <<C .112x << D .312x <<12.(2010·恩施)在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函数xk y 2=的图象有公共点,则21k k 0(填“>”、“=”或“<”).13.(2010·内江)如图13,反比例函数y =kx (x >0)的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 相交于点D 、E .若四边形ODBE 的面积为6,则k 的值为14.(2010·盐城)如图,A 、B 是双曲线 y = kx(k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= . 15.(2010·衡阳)如图15,已知双曲线)0k (xk y>=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =____________. 16.(2010·安徽) 点P(1,a )在反比例函数xk y =的图象上,它关于y 轴的对称点在一次函数42+=x y 的图象上,求此反比例函数的解析式。
2010年中考数学模拟试题分类汇编——二次函数
二次函数一、选择题1.(2010年山东宁阳一模)在平面直角坐标系中,先将抛物线22-+=x x y 关于x 轴作轴对称变换,再将所得抛物线关于y 轴作轴对称变换,经过两次变换后所得的新抛物线解析式为( )A .22+--=x x yB .22-+-=x x yC .22++-=x x yD .22++=x x y 答案:C2.(2010年江西省统一考试样卷)若抛物线y =2x 2向左平移1个单位,则所得抛物线是( ) A .y =2x 2+1 B .y =2x 2-1 C .y =2(x +1)2D .y =2(x -1)2答案:C3. (2010年河南中考模拟题1)某校运动会上,某运动员掷铅球时,他所掷的铅球的高与水平的距离,则该运动员的成绩是( )A. 6mB. 10mC. 8mD. 12m答案:D 4.(2010年河南中考模拟题4)二次函数2y ax bx c =++(0a ≠)的图象如图所示,则正确的是( )A .a <0B .b <0C .c >0D .以答案上都不正确 答案:A5.(2010年河南中考模拟题3)已知二次函数y=ax 2+bx+c 的图像如图所示,则下列条件正确的是( ) A .ac <0 B.b 2-4ac <0 C. b >0 D. a >0、b <0、c >0 答案:D6.(2010年江苏省泰州市济川实验初中中考模拟题)抛物线y =ax 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如表所示.x给出下列说法:①抛物线与y 轴的交点为(0,6); ②抛物线的对称轴是在y 轴的右侧; ③抛物线一定经过点(3,0); ④在对称轴左侧,y 随x 增大而减小. 从表中可知,下列说法正确的个数有( ) A .1个B .2个C .3个D .4个7.(2010天水模拟)二次函数y=ax2+bx+c 的图像如图所示,则关于此二次函数的下列四个结论①a<0②a>0③b 2-4ac>0④0<ab中,正确的结论有( ) A.1个 B.2个 C.3个 D.4个 答案:C8.(2010年厦门湖里模拟)抛物线y =322+-x x 与坐标轴交点为 ( ) A .二个交点 B .一个交点 C .无交点 D .三个交点 答案:B9.(2010年厦门湖里模拟)如图,抛物线)0(2>++=a c bx ax y 的P (3,0),则对称轴是直线1=x ,且经过点的值为A. 0B. -1C. 1D. 2 答案:A10.(2010年杭州月考)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论:①0<abc ②当1x =时,函数有最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数型问题
知识点一 利用图表建立一次函数模型解决实际问题
许多实际问题要根据实际情况和题目要求,从题目中得到一次函数模型才可以解决。
例1 (2009·广东省茂名市)茂名石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:
(x 共(∵∵1000-<,∴W 随着x 的增大而减小,∴当300x =时,W 最大=790000(元). 此时,700400x -=(吨).
因此,生产甲、乙塑料分别为300吨和400吨时总利润最大,最大利润为790000元. 同步检测:
(2009·衡阳市)在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后
原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图10中的折线分别表示S 1、S 2与t 之间的函数关系.
(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?
(3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.
解:丙两地之间的距离为2km ;(8100.8
?(h )
(02ìïïíïïî
知识点二 二次函数建模题
例3 (2009·新疆省乌鲁木齐市)有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:
(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?
(2)若此单位恰好花费7 500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?
解:(1)在甲公司购买6台图形计算器需要用6(800206)4080⨯-⨯=(元);在乙公司购买需要用75%80063600⨯⨯=(元)4080<(元).应去乙公司购买;
(2)设该单位买x 台,若在甲公司购买则需要花费(80020)x x -元;若在乙公司购买则需要花费75%800600x x ⨯=元;
①若该单位是在甲公司花费7 500元购买的图形计算器, 则有(80020)x x -7500=,解之得1525x x ==,.
当15x =时,每台单价为8002015500440-⨯=>,符合题意,
当25x =时,每台单价为8002025300440-⨯=<,不符合题意,舍去.
②若该单位是在乙公司花费7 500元购买的图形计算器,则有6007500x =,解之得
12.5x =,不符合题意,舍去.
故该单位是在甲公司购买的图形计算器,买了15台. 同步检测:
(2009年滨州)某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价x 元、每星期售出商品的利润为y 元,请写出y 与x 的函数关系式,并求出自变量x 的取值范围;
(2)当降价多少元时,每星期的利润最大?最大利润是多少? (3)请画出上述函数的大致图象.
解:(1)y=(60-x-40)(300+20x)=(20-x) (300+20x)=-6000100202++x x ,0≤x ≤20;
(2)y=-206135)5.2(2
+-x ,∴当x==2.5元,每星期的利润最大,最大利润是6135元;(3)图像略. 随堂检测:
1.(2009烟台市)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c
y
++=
在同一坐标系内的图象大致为( )
)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶)建立平面直角坐标系,则抛物线的3.(2009年天津市)在平面直角坐标系中,先将抛物线轴作轴对称变2
2y x x =++
单价如下表所示.如果计划一等奖买x 件,买50件奖品的总钱数是w 元.
(2)请你计算一下,如果购买这三种奖品所花的总钱数最少?最少是多少元? 图6(1) 图6(2)
x
5. (2009·深圳市)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。
由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装。
生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车。
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(4分)
(2)如果工厂招聘n (0<n <10)名新工人,使得招聘的新工人和抽调的熟练工刚好..能完成元的工资,给每名使新工人的数量多于熟练工,的图象与反比例函数
y (元)x 之间成(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?
(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了%5.1m .国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴受此政策的影响,今年3月份至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这
种电视机的销售共给予财政补贴936万元,求m 的值(保留一位小数) (参考数据:831.534≈,916.535≈,083.637≈,164.638≈)
8. (2009·江苏)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量) 请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (((三段所表示的销售
4.由[50(210)]05[50(210)] 1.510(210)
x x x x x --->⎪⎪---⨯-⎩≤得1020x <≤
∴自变量的取值范围是1020x <≤,且x 为整数.
(2)∵170k =>,∴ω随x 的增大而增大,当10x =时,有ω最小值. 最小值为1710200370ω=⨯+=.
答:一等奖买10件,二等奖买10件,三等奖买30件时,所花的钱数最少, 最少钱数是370元
5.解:(1)设每名熟练工和新工人每月分别可以安装x,y 辆电动汽车
282314x y x y +=⎧⎨
+=⎩ 解之得4
2x y =⎧⎨=⎩
每名熟练工和新工人每月分别可以安装4辆、2辆电动汽车 (2)设需熟练工m 名,依题意有:2 n ×12+4m ×12=240, n =10-2m ∴(要使新工人的数量多于熟练工,6.点(∴∴1
b ⎪=⎩∴所求的一次函数解析式为1
13
y x =
+. 7. 【解析】(1)先求出销售量与月份之间的函数关系式,再根据“销售金额=每台电视机的售价⨯月销售量”建立销售金额关于月份之间的二次函数关系进行求解;(2)先求出去年12月份人售价与销售量,然后根据国家的财政补贴费建立一元二次方程进行求解.
【答案】:(1)设P =kx +b ,根据题意,得
5+ 3.9.k +b k b =4.3=⎧⎨
⎩,解得 3.8.
k b =0.1=⎧⎨⎩,
∴P =0.1x +3.8
设去年月销往农村的销售金额为W ,则(502600)(0.1+3.8)W x x =-+) 即2570+9880W x x =-+. 当【点评】本题取材于实际生活,能关注生活中的热点问题,体现时代气息,并综合考查了一8.,用待定系数4=(万升). ( 2.
,
∴从15日到31日销售5万升,利润为1 1.54(5.5 4.5) 5.5⨯+⨯-=(万元). ∴本月销售该油品的利润为5.5 5.511+=(万元)
,所以点C 的坐标为(1011),. 设线段BC 所对应的函数关系式为y mx n =+,则 5.551110.m n m n =+⎧⎨=+⎩,解得 1.10.m n =⎧⎨=⎩
,
所以线段BC 所对应的函数关系式为 1.1(510)y x x =≤≤.
(3)线段AB .
解法二:(1)根据题意,线段OA 所对应的函数关系式为(54)y x =-,即(04)y x x =≤≤.
当4y =时,4x =.
答:销售量为4万升时,销售利润为4万元.
(2)根据题意,线段AB 对应的函数关系式为14(5.54)(4)y x =⨯+-⨯-, 即
把y (。