油包水乳化剂一般的HLB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
油包水乳化剂一般的HLB 在3~8的范围内,而目前国内以及国外市场上常见的又以5~6为主,在不同的涂抹感观要求下,HLB可有相应的调整。目前常见的油包水乳化剂大概可分为以下几类:脂肪酸的二价或三价碱土金属盐,聚氧乙烷和聚氧丙烷共聚体,失山梨醇脂肪酸酯,蔗糖脂肪酸酯,聚氧乙烯脂肪醇醚,聚氧乙烯聚脂肪醇醚,聚甘油脂肪酸酯等等。如硬脂酸镁,硬脂酸锌,硬脂酸铝,失水山梨醇棕榈酸酯,失水山梨醇硬脂酸酯,失水山梨醇油酸酯,失水山梨醇倍半油酸酯,失水山梨醇三油酸酯,聚氧乙烯硬脂醇醚,聚氧乙烯油醇醚,聚氧乙烯蜂蜡,聚氧乙烯蓖麻油,甲基葡萄糖倍半硬脂酸酯,异硬脂酸单甘油酯等等。还有部分的聚硅氧烷结构的硅油包水乳化剂,在市场上也有很广的应用。主要成分是以烷基聚二甲基硅氧烷的聚氧乙烷聚氧丙烷的共聚体,以及其在挥发性硅油或二甲基硅油的分散液为主。
油包水的乳化剂,主体除了从结构种类上分类,其分子量的大小也是非常关键的选择参数,一般来讲,分子量越大,乳化剂在界面层上形成的界面膜的强度和刚度也就越大,体系就跟容易稳定,但同时,也会在涂抹感上略有下降。而小分子量的油包水的乳化剂,在涂膜感上会略有提升,但整体的相对稳定性能则有下降。因此,通常选用不同分子量油包水的乳化剂进行复配,即会增加体系的稳定性,也会增加体系的涂摸感。但是,也并非是乳化剂的分子量越大,体系就越稳定,乳化剂的分子量越小,体系涂抹的肤感就轻盈。乳化剂分子的亲油亲水分界端的截面积非常关键。这将直接影响到界面层的致密性。如果乳化剂中有多个亲水和亲油的端面,很形象的就像“锚‘一样,将使得界面层的稳定性,致密性,以及强度都会有极大的提升。如三梨醇倍半硬脂酸酯,聚氧乙烯30聚羟基硬脂酸酯,二聚甘油三异硬脂酸制等等。除了乳化剂中多个亲油亲水平衡点可以增加体系的稳定性外,乳化体系HLB的选择也非常有助于体系的稳定和提升。目前,市场上主流的油包水主乳化剂的HLB选择范围控制在5~6之间,助乳化剂的范围可能更广些,如HLB在2~8的范围内选者。由于HLB值是随着温度的变化和体系中反活性基团的含量多少而发生变化的。通常升高温度,体系的HLB值会下降,降低温度,体系HLB值会上升。如经常经过由低温到常温的温度变化,油包水的体系发生油水分层进而完全转相的情形,就属于这样的范畴。那么在不影响体系乳化能力的情形下,适当的添加低HLB的油包水乳化剂,如HLB 在3~5之间的失水山梨醇脂肪酸酯,不仅可以降低配方的成本,增强涂抹的轻盈的感觉,而且将对体系耐寒也有一定的帮助。
在油包水乳化剂中,聚氧乙烯30聚羟基硬脂酸酯的乳化能力和抗极性油脂非常强,要远远的优异于其他类型的乳化剂。除了本身的较高的分子量,双“锚“式界面定型,其较长的聚氧乙烯链式非常关键的。由于乳化剂要在体系中稳定,必须具有强烈的双亲性,对于任
何一相,过弱或过强度不利于体系的稳定。由于聚氧乙烯30聚羟基硬脂酸酯因为含有30个聚氧乙烯基团,同比于其他的油包水乳化剂,能够承受的极性油脂的能力和强度要高的多(见下文油脂的极性对配方体系的影响),但并非是无限制的增长。虽然烷基聚二甲基硅氧烷的聚氧乙烷丙烷的共聚体也有较高的聚氧乙烯基团,但是由于反向的亲油基团很弱,过而对极性油脂的承受能力也是有限的。正是这样的原因,在油脂极性和乳化剂乳化能力的平衡中(极性油脂很容易降低乳化体系的黏度),聚氧乙烯30聚羟基硬脂酸酯可以容易的配制出能够喷雾的油包水乳化体系。
另外,在油包水的体系中,因为滑爽和轻盈的独特肤感,聚甘油酯类油包水乳化剂也有了一定的潜力和发展,并且在市场上已经占有一定的份额。但因为其乳化能力的不足,通常较多地被应用为助乳化剂,如三聚甘油双异硬脂酸酯等。目前较为新意的选择也可以是二聚甘油异硬脂酸酯和二聚甘油三异硬脂酸酯,并且这两个油包水的乳化剂都属于同系物的油包水的乳化剂。如分开分别使用,则乳化效能都比较低,但是如果复配使用,则会有较大的变化。除两者整体的相容性及配伍性能不错外,两者的分子量也是一高一低的搭配,其HLB值也分别是7也及2.5。另外作为粉体的分散处理剂,比较合适的HLB值一半都是在7~9之间,那么二聚甘油异硬脂酸酯和二聚三甘油异硬脂酸酯若按2比1的比例,不仅可以控制整体的HLB值在5~6之间,而且还可以增强粉体的分散性能。用此两个乳化剂复配使用,不仅可以作出较为清爽的油包水体系,甚至非常接近水包油的感觉,而同时却无硅油包水和油包水类复配带来的果冻感。因而,可能是高档眼霜,晚霜,面霜以及大量的抗酸或抗碱,抗离子,抗氧化还原性,以及需要高油性渗透滋养类配方的很好的选择方向。
助乳化剂的选择助乳化剂通常可作为乳化剂的增效剂。对于两亲的乳化剂,以溶解度较大的相为外相,因此,要增加乳化体系的稳定性,需要增强油包水乳化剂在油相的溶解度。通常在水相添加0.5~2%的无机盐,可以很好的降低乳化剂在水相的溶解度。其原因主要是无机盐在水合时,是通过离子键,其键能要远远大于油包水乳化剂亲水端水合时形成的氢键和共价键,因而在类似于“盐析“效应的影响下,乳化剂在油相得到了更大的溶解值。另外,无机盐可以使乳化颗粒带电,形成扩散双电层。大部分稳定的乳状体系因电离或者吸附会产生电荷,这些属性和胶体有类似的性能。由于乳化剂常带有极性基团,故吸附与电离常同时发生。一般介电常数较高的物质常带正电,介电常数低的物质常带负电。故在O/W型乳状液中油滴常带负电荷;在W/O型乳状液中,水滴常带正电荷。由于液滴带电而形成双电层,它们之间的相互吸引和排斥,提高了分散体的稳定性,尤其对于黏度较低的油包水乳化体系更显得重要。
作为常见的山梨醇脂肪酸酯,聚甘油脂肪酸酯以及聚氧乙烯脂肪酸酯等油包水乳化剂,可针对性地在水相添加山梨醇,甘油,聚乙二醇等对应的亲水性多元醇。由于相应的多元醇在一定的温度下在水相都有一定的溶积值,在水相添加适量的多元醇也可以增加对应的乳化剂在油相的溶解值,而通常在水相添加无机盐和多元醇,这样的方式往往是同时进行的。同时,由于无机盐和多元醇的加入,油包水乳化体体的抗寒性能有了极大的提升,使得产品在低温到室温储藏温度的变化中,体系出水或转相的可能性大大降低,这主要归功于无机盐以及多元醇通过水合作用可以显著降低水的凝固点,故而避免水相凝固造成内相体积过度膨胀而导致破乳。
固体粉末的助乳化作用,许多小粒径固体粉末,请注意是小粒径,当它们处在内外两相界面上时,也能起到良好的乳化作用。细小改性的固体颗粒,由于本身与界面接触角的原因,会很好的吸附在分散相界面,并对内相有一定的包裹作用,故而是性能不错的助乳化剂,对提高体系的稳定性帮助很大。如常见的硬脂酸镁,锌,铝等二价碱土或三价碱金属盐,气相二氧化硅等。而一些常见的固体颗粒,需经过特定的表面处理及改性后,才具有助乳化作用。因此,适当的选择乳化剂和助乳化剂,进行合理的配对,对油包水体系的稳定性有着至关重要的作用,也是配方成败的关键。对于通常的乳化体系,乳化剂的用量一般在3~4%左右,在含极性油或高粉量的乳化体系时,乳化剂用量一般在4~5%左右,在这里需要指出的一点是,在乳化体系里,尤其是油包水的乳化体系里,并非是乳化剂用量越高越稳定,当乳化剂的用量高于一定的范围,其体系的稳定性常常是下降的。其可能的原因一方面是由于乳化界面的空间位阻效应,由于乳化剂相互的作用,当乳化剂的用量超出一定的范围时,其界面层的致密性会有所下降,另一方面,由于油包水的乳化剂的hlb 值一般在3~7之间,没有强烈的亲水性,故而在油相形成油性胶团的能力较低。但由于油包水的乳化剂亲油和亲水的两亲性,与强极性油脂属性非常接近,多余的乳化剂在界面层非常活跃,但对界面层的袭击和穿透影响更多,使得界面层的强度下降和松散性增大,反而可能会让体系破乳或者形成反胶团进而转相。
乳化体系中油脂的选择
在油包水的配方中,油脂的选择对体系的黏度,对体系连续相的配伍性,固体颗粒的分散以及配方的稳定性都有着至关重要的影响。
油脂的极性对黏度的变化油脂的极性对体系的粘度的影响也是非常明显的,油脂的极性越高,体系的粘度越低,同时体系的稳定性由也会有所降低。所以,在配方的铺展性和涂抹性作调整时,需要在黏度和稳定性多方面考虑。