二叉树的遍历演示
二叉树的遍历及常用算法
⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。
二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)
⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。
对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。
由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。
⽐⽅堆了。
所以。
对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。
四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。
求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。
然后在訪问左⼦树和右⼦树。
所以。
对于随意结点node。
第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。
若为空。
则须要訪问右⼦树。
注意。
在訪问过左孩⼦之后。
《二叉树的概念》课件
05
二叉树的应用
Chapter
在数据结构中的应用
二叉搜索树
二叉搜索树是一种特殊的二叉树,它的每个节点的左子树上的所有元素都小于 该节点,右子树上的所有元素都大于该节点。这种数据结构可以用于快速查找 、插入和删除操作。
AVL树和红黑树
这两种二叉树都是自平衡二叉搜索树,它们通过调整节点的左右子树的高度来 保持树的平衡,从而在插入、删除等操作时具有较好的性能。
VS
详细描述
平衡二叉树的特点是,它的左右子树的高 度差不会超过1,且左右子树都是平衡二 叉树。平衡二叉树的性质还包括,它的所 有叶节点的层数相等,且所有非叶节点的 左右子树的高度差不超过1。平衡二叉树 的查找、插入和删除操作的时间复杂度为 O(log n),其中n为节点数。
04
二叉树的遍历
Chapter
决策树
在机器学习和人工智能领域,决策树 是一种重要的分类和回归方法。其基 础结构就是二叉树,通过构建决策树 ,可以解决分类和回归问题。
THANKS
感谢观看
代码表示法
总结词:严谨规范
详细描述:使用编程语言的语法结构来表示二叉树,每个节点用对象或结构体表示,节点间的关系通 过指针或引用表示,严谨规范,易于编写和调试。
03
二叉树的性质
Chapter
深度最大的二叉树
总结词
深度最大的二叉树是指具有最大 可能深度的二叉树。
详细描述
在二叉树中,深度最大的二叉树 是满二叉树,即每个层级都完全 填满,没有空缺的节点。满二叉 树的深度等于其节点总数减一。
02
二叉树的表示方法
Chapter
图形表示法
总结词:直观明了
详细描述:通过图形的方式展示二叉树的结构,每个节点用圆圈或方框表示,节 点间的关系用线段表示,直观易懂,易于理解。
《二叉树的遍历》PPT课件.ppt
a
b
c
前序遍历:abdefgc
d
f
中序遍历: debgfac
ห้องสมุดไป่ตู้
后序遍历: edgfbca
eg
练习!!!!!!!!
练习!!!!!!!!
A
B
C
前序序列: ABDGCEFH 中序序列: DGBAECHF 后序序列: GDBEHFCA
D G
E
F
H
图 5-15
下面我们再给出一种遍历二叉树的方法
二叉树的遍历
二叉树遍历的定义
所谓二叉树的遍历,是指按一定的顺序对二叉 树中的每个结点均访问一次,且仅访问一次。
按照根结点访问位置的不同,通常把二叉树的 遍历分为六种:
TLR(根左右), TRL(根右左) LTR(左根右), RTL(右根左) LRT(左右根), RLT(右左根)
其中,TRL、RTL和RLT三种顺序在左右子树之间均 是先右子树后左子树,这与人们先左后右的习惯不 同,因此,往往不予采用。余下的三种顺序TLR、 LTR和LRT根据根访问的位置不同分别被称为前序遍 历、中序遍历和后序遍历。
(1)二叉树的前序遍历 首先访问根结点; 然后按照前序遍历的顺序访问根结点的左子树; 再按照前序遍历的顺序访问根结点的右子树。
(2)二叉树的中序遍历 首先按照中序遍历的顺序访问根结点的左子树;
然后访问根结点; 最后按照中序遍历的顺序访问根结点的右子树。
(3)二叉树的后序遍历 首先按照后序遍历的顺序访问根结点的左子树; 然后按照后序遍历的顺序访问根结点的右子树;
(1)对一棵二叉树中序遍历时,若我们将二叉树严
格地按左子树的所有结点位于根结点的左侧,右子树的所
有结点位于根右侧的形式绘制,就可以对每个结点做一条
数据结构-二叉树的存储结构和遍历
return(p); }
建立二叉树
以字符串的形式“根左子树右子树”定义 一棵二叉树
1)空树 2)只含一个根 结点的二叉树 A 3)
B C
A
以空白字符“ ”表示
以字符串“A ”表示
D
以下列字符串表示 AB C D
建立二叉树 A B C C
T
A ^ B ^ C^ ^ D^
D
建立二叉树
Status CreateBiTree(BiTree &T) {
1 if (!T) return;
2 Inorder(T->lchild, visit); // 遍历左子树 3 visit(T->data); } // 访问结点 4 Inorder(T->rchild, visit); // 遍历右子树
后序(根)遍历
若二叉树为空树,则空操
根
左 子树
右 子树
作;否则, (1)后序遍历左子树; (2)后序遍历右子树; (3)访问根结点。
统计二叉树中结点的个数
遍历访问了每个结点一次且仅一次
设置一个全局变量count=0
将visit改为:count++
统计二叉树中结点的个数
void PreOrder (BiTree T){ if (! T ) return; count++; Preorder( T->lchild); Preorder( T->rchild); } void Preorder (BiTree T,void( *visit)(TElemType& e)) { // 先序遍历二叉树 1 if (!T) return; 2 visit(T->data); // 访问结点 3 Preorder(T->lchild, visit); // 遍历左子树 4 Preorder(T->rchild, visit);// 遍历右子树 }
二叉树遍历(前中后序遍历,三种方式)
⼆叉树遍历(前中后序遍历,三种⽅式)⽬录刷题中碰到⼆叉树的遍历,就查找了⼆叉树遍历的⼏种思路,在此做个总结。
对应的LeetCode题⽬如下:,,,接下来以前序遍历来说明三种解法的思想,后⾯中序和后续直接给出代码。
⾸先定义⼆叉树的数据结构如下://Definition for a binary tree node.struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};前序遍历,顺序是“根-左-右”。
使⽤递归实现:递归的思想很简单就是我们每次访问根节点后就递归访问其左节点,左节点访问结束后再递归的访问右节点。
代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;helper(root,res);return res;}void helper(TreeNode *root, vector<int> &res){res.push_back(root->val);if(root->left) helper(root->left, res);if(root->right) helper(root->right, res);}};使⽤辅助栈迭代实现:算法为:先把根节点push到辅助栈中,然后循环检测栈是否为空,若不空,则取出栈顶元素,保存值到vector中,之后由于需要想访问左⼦节点,所以我们在将根节点的⼦节点⼊栈时要先经右节点⼊栈,再将左节点⼊栈,这样出栈时就会先判断左⼦节点。
代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;stack<TreeNode*> st;st.push(root);while(!st.empty()){//将根节点出栈放⼊结果集中TreeNode *t = st.top();st.pop();res.push_back(t->val);//先⼊栈右节点,后左节点if(t->right) st.push(t->right);if(t->left) st.push(t->left);}return res;}};Morris Traversal⽅法具体的详细解释可以参考如下链接:这种解法可以实现O(N)的时间复杂度和O(1)的空间复杂度。
第6章演示
二叉树的性质
性质1:二叉树第i层上的结点数目最多为2i-1(i≥1)。 性质2:深度为k的二叉树至多有2k-1个结点(k≥1)。 性质3:在任意一棵二叉树中,若终端结点的个数为 n0,度为2的结点数为n2,则n0=n2+1。
返回
满二叉树和完全二叉树
满二叉树和完全二叉树是二叉树的两种特殊情形。 1、满二叉树(FullBinaryTree) 一棵深度为k且有2k-1个结点的二叉树称为满二叉树。 满二叉树的特点: (1)每一层上的结点数都达到最大值。即对给定的高度, 它是具有最多结点数的二叉树。 (2)满二叉树中不存在度数为1的结点,每个分支结点 均有两棵高度相同的子树,且树叶都在最下一层上。
满二叉树和完全二叉树
2、完全二叉树(Complete BinaryTree) 若一棵二叉树至多只有最下面的两层上结点的度 数可以小于2,并且最下一层上的结点都集中在该层 最左边的若干位置上,则此二叉树称为完全二叉树。 具有n个结点,其形状与满二叉树按层编号的前n 个结点的位置顺序一一对应。 完全二叉树的特点: (1)满二叉树是完全二叉树,完全二叉树不一定是满二 叉树。 (2)在满二叉树的最下一层上,从最右边开始连续删去 若干结点后得到的二叉树仍然是一棵完全二叉树。 (3)在完全二叉树中,若某个结点没有左孩子,则它一 定没有右孩子,即该结点必是叶结点。
祖先(Ancestor)和子孙(Descendant) ①路径(path) 注意: 若一个结点序列是路径,则在树的树形图表示中, 该结点序列“自上而下”地通过路径上的每条边。 从树的根结点到树中其余结点均存在一条惟一的 路径 。 A B E K L F C G H M D I J
祖先(Ancestor)和子孙(Descendant) ②祖先(Ancestor)和子孙(Descendant) 若树中结点k到ks存在一条路径,则称k是ks的祖 祖 先(Ancestor),ks是k的子孙 子孙(Descendant)。 子孙 一个结点的祖先是从根结点到该结点路径上所经 过的所有结点,而一个结点的子孙则是以该结点为根 的子树中的所有结点。 约定: 结点k的祖先和子孙不包含结点k本身。
前序后序中序详细讲解
前序后序中序详细讲解1.引言1.1 概述在数据结构与算法中,前序、中序和后序是遍历二叉树的三种基本方式之一。
它们是一种递归和迭代算法,用于按照特定的顺序访问二叉树的所有节点。
通过遍历二叉树,我们可以获取有关树的结构和节点之间关系的重要信息。
前序遍历是指先访问根节点,然后递归地访问左子树,最后递归地访问右子树。
中序遍历是指先递归地访问左子树,然后访问根节点,最后递归地访问右子树。
后序遍历是指先递归地访问左子树,然后递归地访问右子树,最后访问根节点。
它们的不同之处在于访问根节点的时机不同。
前序遍历可以帮助我们构建二叉树的镜像,查找特定节点,或者获取树的深度等信息。
中序遍历可以帮助我们按照节点的大小顺序输出树的节点,或者查找二叉搜索树中的某个节点。
后序遍历常用于删除二叉树或者释放二叉树的内存空间。
在实际应用中,前序、中序和后序遍历算法有着广泛的应用。
它们可以用于解决树相关的问题,例如在Web开发中,树结构的遍历算法可以用于生成网页导航栏或者搜索树结构中的某个节点。
在图像处理中,前序遍历可以用于图像压缩或者图像识别。
另外,前序和后序遍历算法还可以用于表达式求值和编译原理中的语法分析等领域。
综上所述,前序、中序和后序遍历算法是遍历二叉树的重要方式,它们在解决各种与树有关的问题中扮演着关键的角色。
通过深入理解和应用这些遍历算法,我们可以更好地理解和利用二叉树的结构特性,并且能够解决更加复杂的问题。
1.2文章结构文章结构是指文章中各个部分的布局和组织方式。
一个良好的文章结构可以使读者更好地理解和理解文章的内容。
本文将详细讲解前序、中序和后序三个部分的内容和应用。
首先,本文将在引言部分概述整篇文章的内容,并介绍文章的结构和目的。
接下来,正文部分将分为三个小节,分别对前序、中序和后序进行详细讲解。
在前序讲解部分,我们将定义和解释前序的意义,并介绍前序在实际应用中的场景。
通过详细的解释和实例,读者将能更好地理解前序的概念和用途。
NOIP初赛复习4二叉树的遍历和性质
二叉树的遍历(图1)(图2)二叉树的遍历运算(递归定义)(1)先序遍历:根,左子树,右子树根在先例如图1:271653894;图2:ABCKDEHFJG(2)中序遍历:左子树,根,右子树根在中例如图1:175632849;图2:BKCAHEDHFG(3)后序遍历:左子树,右子树,根根在后例如图1:153674982;图2:KCBHEJGFDA题型一:已知其中一些遍历结果,求其他遍历结果题型二:统计n个不同的点可以构造多少棵不同的二叉树?Catalan数=C(n,2*n)/(n+1)题型三:中缀表达式向前缀和后缀表达式的转化每日练习注:题1已知先序和中序,二叉树是唯一的。
题2已知后序和中序,二叉树是唯一的。
题3已知先序和后序,二叉树不是唯一的。
1、已知先序:1243576,中序:2417536,请画出整棵二叉树。
2、已知后序:4526731,中序:4257631,请画出整棵二叉树。
3、已知先序:123456,后序:325641,请画所有二叉树的情况。
4、如果只知道先序abc,画出所有可能二叉树形状,并且计算多少种?5、如果只知道中序abc,画出所有可能二叉树形状,并且计算多少种?6、如果只知道后序abc,画出所有可能二叉树形状,并且计算多少种?往年真题1.一颗二叉树的前序遍历序列是ABCDEFG,后序遍历序列是CBFEGDA,则根结点的左子树的结点个数可能是()。
A.0B.2C.4D.62.表达式a*(b+c)-d的后缀表达式是:A)abcd*+-B)abc+*d-C)abc*+d-D)-+*abcd3.二叉树T,已知其先序遍历是1243576(数字为节点编号,以下同),后序遍历是4275631,则该二叉树的中根遍历是()A.4217536B.2417536C.4217563D.24157364.二叉树T,已知其先根遍历是1243576(数字为结点编号,以下同),中根遍历是2415736,则该二叉树的后根遍历是()A.4257631B.4275631C.7425631D.42765315.已知7个节点的二叉树的先根遍历是1245637(数字为结点的编号,以下同),后根遍历是4652731,则该二叉树的可能的中根遍历是()A.4265173B.4256137C.4231567D.42561736.已知7个节点的二叉树的先根遍历是1245637(数字为节点的编号,以下同),中根遍历是4265173,则该二叉树的后根遍历是()A.4652731B.4652137C.4231547D.46531 727.已知6个结点的二叉树的先根遍历是123456(数字为结点的编号,以下同),后根遍历是325641,则该二叉树的可能的中根遍历是()A.321465B.321546C.231546D.231465二叉树的性质性质1:二叉树第i层上的结点数目最多为。
二叉树的遍历PPT-课件
4 、二叉树的创建算法
利用二叉树前序遍历的结果可以非常方便地生成给定的
二叉树,具体做法是:将第一个输入的结点作为二叉树的 根结点,后继输入的结点序列是二叉树左子树前序遍历的 结果,由它们生成二叉树的左子树;再接下来输入的结点 序列为二叉树右子树前序遍历的结果,应该由它们生成二 叉树的右子树;而由二叉树左子树前序遍历的结果生成二 叉树的左子树和由二叉树右子树前序遍历的结果生成二叉 树的右子树的过程均与由整棵二叉树的前序遍历结果生成 该二叉树的过程完全相同,只是所处理的对象范围不同, 于是完全可以使用递归方式加以实现。
void createbintree(bintree *t) { char ch; if ((ch=getchar())==' ') *t=NULL; else { *t=(bintnode *)malloc(sizeof(bintnode)); /*生成二叉树的根结点*/ (*t)->data=ch; createbintree(&(*t)->lchild); /*递归实现左子树的建立*/ createbintree(&(*t)->rchild); /*递归实现右子树的建立*/ }
if (s.top>-1) { t=s.data[s.top]; s.tag[s.top]=1; t=t->rchild; }
else t=NULL; }
}
7.5 二叉树其它运算的实现
由于二叉树本身的定义是递归的,因此关于二叉树的许多 问题或运算采用递归方式实现非常地简单和自然。 1、二叉树的查找locate(t,x)
(1)对一棵二叉树中序遍历时,若我们将二叉树严
格地按左子树的所有结点位于根结点的左侧,右子树的所
第六章树2
有六种遍历方法:D L R,L D R,L R D,D R L,R D L,R L D D R, R, D, L, L, 约定: R, R, 约定:先左后右,有三种遍历方法: D L R,L D R,L R D , 分别称为先序遍历,中序遍历,后序遍历
3
A,先序遍历(D L R)(前缀表示) D R 若二叉树非空 (1)访问根结点; (2)先序遍历左子树; D (3)先序遍历右子树; ; 例:先序遍历右图所示的二叉树
……
if (k== -1) T=NULL; else { } } // } // CrtBT
18
T=(BiTNode*)malloc(sizeof(BiTNode)); T->data = pre[ps]; if (k==is) T->Lchild = NULL; else CrtBT(T->Lchild, pre[], ino[], ps+1, is, k-is ); if (k=is+n-1) T->Rchild = NULL; else CrtBT(T->Rchild, pre[], ino[], ps+1+(k-is), k+1, n-(k-is)-1 );
2
2,对"二叉树"而言,可以有三条搜索路径: , 二叉树"而言,可以有三条搜索路径: 先上后下 先上后下的按层次遍历; 先左 先左(子树)后右 后右(子树)的遍历; 后右 先右 先右(子树)后左 后左(子树)的遍历. 后左
二叉树由根,左子树,右子树三部分组成 令: D:访问根结点 L:遍历左子树 R:遍历右子树 L D R
24
4,复制二叉树
(后序遍历) 后序遍历)
其基本操作为:生成一个结点. 其基本操作为:生成一个结点. T 根元素 左子树 左子树 右子树 右子树 左子树 NEWT 根元素 右子树
二叉树的遍历(前序、中序、后序、已知前中序求后序、已知中后序求前序)
⼆叉树的遍历(前序、中序、后序、已知前中序求后序、已知中后序求前序)之前的⼀篇随笔()只对⼆叉树的遍历进⾏了笼统的描述,这篇随笔重点对前、中、后序的遍历顺序进⾏分析⼆叉树的遍历⼆叉树的深度优先遍历可细分为前序遍历、中序遍历、后序遍历,这三种遍历可以⽤递归实现(本篇随笔主要分析递归实现),也可使⽤⾮递归实现的前序遍历:根节点->左⼦树->右⼦树(根->左->右)中序遍历:左⼦树->根节点->右⼦树(左->根->右)后序遍历:左⼦树->右⼦树->根节点(左->右->根)在进⾏已知两种遍历顺序求另⼀种遍历顺序前,先看⼀下不同遍历顺序对应的代码前序遍历1/* 以递归⽅式前序遍历⼆叉树 */2void PreOrderTraverse(BiTree t, int level)3 {4if (t == NULL)5 {6return ;7 }8 printf("data = %c level = %d\n ", t->data, level);9 PreOrderTraverse(t->lchild, level + 1);10 PreOrderTraverse(t->rchild, level + 1);11 }中序遍历1/* 以递归⽅式中序遍历⼆叉树 */2void PreOrderTraverse(BiTree t, int level)3 {4if (t == NULL)5 {6return ;7 }8 PreOrderTraverse(t->lchild, level + 1);9 printf("data = %c level = %d\n ", t->data, level);10 PreOrderTraverse(t->rchild, level + 1);11 }后序遍历1/* 以递归⽅式后序遍历⼆叉树 */2void PreOrderTraverse(BiTree t, int level)3 {4if (t == NULL)5 {6return ;7 }8 PreOrderTraverse(t->lchild, level + 1);9 PreOrderTraverse(t->rchild, level + 1);10 printf("data = %c level = %d\n ", t->data, level);11 }三种遍历⽅式对应的代码⼏乎相同,只是⼀条语句的位置发⽣了变化printf("data = %c level = %d\n ", t->data, level);只看⽂字和代码来理解遍历的过程是⽐较困难的,建议读者亲⾃去遍历,为了理清遍历的过程下⾯上题(图⽚来源:)前序遍历前序的遍历的特点,根节点->左⼦树->右⼦树,注意看前序的遍历的代码printf语句是放在两条递归语句之前的,所以先访问根节点G,打印G,然后访问左⼦树D,此时左⼦树D⼜作为根节点,打印D,再访问D的左⼦树AA⼜作为根节点,打印A,A没有左⼦树或者右⼦树,函数调⽤结束返回到D节点(此时已经打印出来的有:GDA)D节点的左⼦树已经递归完成,现在递归访问右⼦树F,F作为根节点,打印F,F有左⼦树访问左⼦树E,E作为根节点,打印E,(此时已经打印出来的有:GDAFE),E没有左⼦树和右⼦树,函数递归结束返回F节点,F的左⼦树已经递归完成了,但没有右⼦树,所以函数递归结束,返回D节点,D节点的左⼦树和右⼦树递归全部完成,函数递归结束返回G节点,访问G节点的右⼦树M,M作为根节点,打印M,访问M的左⼦树H,H作为根节点,打印H,(此时已经打印出来的有:GDAFEMH)H没有左⼦树和右⼦树,函数递归结束,返回M节点,M节点的左⼦树已经递归完成,访问右⼦树Z,Z作为根节点,打印Z,Z没有左⼦树和右⼦树,函数递归结束,返回M节点,M节点的左⼦树右⼦树递归全部完成,函数递归结束,返回G节点,G节点的左右⼦树递归全部完成,整个⼆叉树的遍历就结束了(MGJ,终于打完了··)前序遍历结果:GDAFEMHZ总结⼀下前序遍历步骤第⼀步:打印该节点(再三考虑还是把访问根节点这句话去掉了)第⼆步:访问左⼦树,返回到第⼀步(注意:返回到第⼀步的意思是将根节点的左⼦树作为新的根节点,就好⽐图中D是G的左⼦树但是D也是A节点和F节点的根节点)第三步:访问右⼦树,返回到第⼀步第四步:结束递归,返回到上⼀个节点前序遍历的另⼀种表述:(1)访问根节点(2)前序遍历左⼦树(3)前序遍历右⼦树(在完成第2,3步的时候,也是要按照前序遍历⼆叉树的规则完成)前序遍历结果:GDAFEMHZ中序遍历(详细遍历过程就不再赘述了,(┬_┬))中序遍历步骤第⼀步:访问该节点左⼦树第⼆步:若该节点有左⼦树,则返回第⼀步,否则打印该节点第三步:若该节点有右⼦树,则返回第⼀步,否则结束递归并返回上⼀节点(按我⾃⼰理解的中序就是:先左到底,左到不能在左了就停下来并打印该节点,然后返回到该节点的上⼀节点,并打印该节点,然后再访问该节点的右⼦树,再左到不能再左了就停下来)中序遍历的另⼀种表述:(1)中序遍历左⼦树(2)访问根节点(3)中序遍历右⼦树(在完成第1,3步的时候,要按照中序遍历的规则来完成)所以该图的中序遍历为:ADEFGHMZ后序遍历步骤第⼀步:访问左⼦树第⼆步:若该节点有左⼦树,返回第⼀步第三步:若该节点有右⼦树,返回第⼀步,否则打印该节点并返回上⼀节点后序遍历的另⼀种表述:(1)后序遍历左⼦树(2)后序遍历右⼦树(3)访问根节点(在完成1,2步的时候,依然要按照后序遍历的规则来完成)该图的后序遍历为:AEFDHZMG(读者如果在纸上遍历⼆叉树的时候,仍然容易将顺序搞错建议再回去看⼀下三种不同遍历对应的代码)进⼊正题,已知两种遍历结果求另⼀种遍历结果(其实就是重构⼆叉树)第⼀种:已知前序遍历、中序遍历求后序遍历前序遍历:ABCDEF中序遍历:CBDAEF在进⾏分析前读者需要知道不同遍历结果的特点1、前序遍历的第⼀元素是整个⼆叉树的根节点2、中序遍历中根节点的左边的元素是左⼦树,根节点右边的元素是右⼦树3、后序遍历的最后⼀个元素是整个⼆叉树的根节点(如果读者不明⽩上述三个特点,建议再回去看⼀下三种不同遍历对应的代码,并在纸上写出⼀个简单的⼆叉树的三种不同的遍历结果,以加深对三种不同遍历的理解)⽤上⾯这些特点来分析遍历结果,第⼀步:先看前序遍历A肯定是根节点第⼆步:确认了根节点,再来看中序遍历,中序遍历中根节点A的左边是CBD,右边是EF,所有可以确定⼆叉树既有左⼦树⼜有右⼦树第三步:先来分析左⼦树CBD,那么CBD谁来做A的左⼦树呢?这个时候不能直接⽤中序遍历的特点(左->根->右)得出左⼦树应该是这个样⼦因为有两种情况都满⾜中序遍历为CBD⽆法直接根据中序遍历来直接得出左⼦树的结构,这个时候就要返回到前序遍历中去观察前序遍历ABCDEF,左⼦树CBD在前序遍历中的顺序是BCD,意味着B是左⼦树的根节点(这么说可能不太好理解,换个说法就是B是A的左⼦树),得出这个结果是因为如果⼀个⼆叉树的根节点有左⼦树,那么这个左⼦树⼀定在前序遍历中⼀定紧跟着根节点(这个是⽤前序遍历的特点(根->左->右)得出的),到这⾥就可以确认B是左⼦树的根节点第四步:再观察中序遍历CBDAEF,B元素左边是C右边是D,说明B节点既有左⼦树⼜有右⼦树,左右⼦树只有⼀个元素就可以直接确定了,不⽤再返回去观察前序遍历第五步:到这⾥左⼦树的重建就已经完成了,现在重建右⼦树,因为重建右⼦树的过程和左⼦树的过程⼀模⼀样,步骤就不像上⾯写这么细了((┬_┬)),观察中序遍历右⼦树为EF,再观察前序遍历ABCDEF中右⼦树的顺序为EF,所以E为A的右⼦树,再观察中序便利中E只有右边有F,所有F为E的右⼦树,最后得到的⼆叉树是这个样⼦的所有求得的后序遍历为:CDBFEA总结⼀下上述步骤:先观察前序遍历找到根节点->观察中序遍历将根节点左边归为左⼦树元素,右边归为右⼦树元素(可能会出现只有左⼦树或者右⼦树的情况)->观察前序遍历中左\右⼦树⼏个元素的顺序,最靠前的为左\右⼦树的根节点->重复前⾯的步骤第⼆种:已知中序遍历、后序遍历求前序遍历(题还是上⾯这道)中序遍历:CBDAEF后序遍历为:CDBFEA仍然是根据不同遍历⽅式结果的特点来重构⼆叉树,过程很相似这⾥就不详细说了,后序遍历的最后⼀个元素A是根节点,在中序遍历中以根节点A作为分界将元素分为左⼦树(CBD)和右⼦树(EF),再观察后序遍历中左⼦树的顺序是CDB,可以判断出B是左⼦树的根节点(因为后序遍历是:左->右->根),再观察中序遍历,B元素左边是C右边是D,说明B节点既有左⼦树⼜有右⼦树,左右⼦树只有⼀个元素就可以直接确定了,不⽤再返回去观察后序遍历,左⼦树重建完成,现在来看右⼦树,右⼦树有两个元素EF,观察后序遍历E在F的后⾯,所以E是右⼦树的根节点,然后看中序遍历中E只有右边⼀个F元素了,即F是E的右⼦树,此时整个⼆叉树重构完成总结⼀下上述步骤:先观察后序遍历找到根节点->观察中序遍历将根节点左边归为左⼦树元素,右边归为右⼦树元素(可能会出现只有左⼦树或者右⼦树的情况)->观察后序遍历中左\右⼦树⼏个元素的顺序,最靠后的为左\右⼦树的根节点->重复前⾯的步骤注意:已知前序遍历、后序遍历⽆法求出中序遍历(因为由前序后序重构出来的⼆叉树不⽌⼀种)举个栗⼦左图这两种⼆叉树前序(BEFA)和后序(AFEB)⼀样,但对应的中序遍历结果不⼀样(左边的是AFEB右边的是BEFA),所以仅靠前序后序是重构出唯⼀的⼆叉树。
二叉树的四种遍历算法
⼆叉树的四种遍历算法⼆叉树作为⼀种重要的数据结构,它的很多算法的思想在很多地⽅都⽤到了,⽐如STL算法模板,⾥⾯的优先队列、集合等等都⽤到了⼆叉树⾥⾯的思想,先从⼆叉树的遍历开始:看⼆叉树长什么样⼦:我们可以看到这颗⼆叉树⼀共有七个节点0号节点是根节点1号节点和2号节点是0号节点的⼦节点,1号节点为0号节点的左⼦节点,2号节点为0号节点的右⼦节点同时1号节点和2号节点⼜是3号节点、四号节点和五号节点、6号节点的双亲节点五号节点和6号节点没有⼦节点(⼦树),那么他们被称为‘叶⼦节点’这就是⼀些基本的概念⼆叉树的遍历⼆叉树常⽤的遍历⽅式有:前序遍历、中序遍历、后序遍历、层序遍历四种遍历⽅式,不同的遍历算法,其思想略有不同,我们来看⼀下这四种遍历⽅法主要的算法思想:1、先序遍历⼆叉树顺序:根节点 –> 左⼦树 –> 右⼦树,即先访问根节点,然后是左⼦树,最后是右⼦树。
上图中⼆叉树的前序遍历结果为:0 -> 1 -> 3 -> 4 -> 2 -> 5 -> 62、中序遍历⼆叉树顺序:左⼦树 –> 根节点 –> 右⼦树,即先访问左⼦树,然后是根节点,最后是右⼦树。
上图中⼆叉树的中序遍历结果为:3 -> 1 -> 4 -> 0 -> 5 -> 2 -> 63、后续遍历⼆叉树顺序:左⼦树 –> 右⼦树 –> 根节点,即先访问左⼦树,然后是右⼦树,最后是根节点。
上图中⼆叉树的后序遍历结果为:3 -> 4 -> 1 -> 5 -> 6 -> 2 -> 04、层序遍历⼆叉树顺序:从最顶层的节点开始,从左往右依次遍历,之后转到第⼆层,继续从左往右遍历,持续循环,直到所有节点都遍历完成上图中⼆叉树的层序遍历结果为:0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6下⾯是四种算法的伪代码:前序遍历:preOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束cout << tree[n].w ; // 输出当前节点内容preOrderParse(tree[n].leftChild); // 递归输出左⼦树preOrderParse(tree[n].rightChild); // 递归输出右⼦树}中序遍历inOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束inOrderParse(tree[n].leftChild); // 递归输出左⼦树cout << tree[n].w ; // 输出当前节点内容inOrderParse(tree[n].rightChild); // 递归输出右⼦树}pastOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束pastOrderParse(tree[n].leftChild); // 递归输出左⼦树pastOrderParse(tree[n].rightChild); // 递归输出右⼦树cout << tree[n].w ; // 输出当前节点内容}可以看到前三种遍历都是直接通过递归来完成,⽤递归遍历⼆叉树简答⽅便⽽且好理解,接下来层序遍历就需要动点脑筋了,我们如何将⼆叉树⼀层⼀层的遍历输出?其实在这⾥我们要借助⼀种数据结构来完成:队列。
完全二叉树操作演示
安徽省巢湖学院计算机与信息工程学院课程设计报告课程名称《数据结构》课题名称完全二叉树操作演示专业班级计算机科学与技术专升本1班学号********、********、********姓名李鹏王帅李泳波联系方式指导教师严小燕完成日期: 2014年12月27 日目录1 数据结构课程设计任务书 (1)1.1题目 (1)1.2目的 (1)1.3要求 (1)2 总体设计 (1)2.1功能模块设计 (1)2.2所有功能模块流程图 (1)3 详细设计 (2)3.1程序中所采用的数据结构及存储结构的说明 (2)3.2算法设计思想 (3)3.3主要的功能函数 (3)4 调试与测试 (3)4.1调试方法与步骤 (4)4.2测试结果分析与讨论 (4)4.3测试过程中遇到的主要问题及采取的解决措施 (5)5 时间复杂度分析 (6)6 程序清单 (6)7 总结 (12)参考文献 (13)1 数据结构课程设计任务书1.1题目完全二叉树操作演示1.2目的(1)掌握二叉树的概念和性质。
(2)掌握完全二叉树存储结构。
(3)掌握完全二叉树的基本操作。
1.3 要求(1)创建完全二叉树(用字母表示节点)(用顺序方式存储)。
(2)求二叉树的深度和叶子结点数。
(3)实现二叉树的前序、中序、后序和层次遍历。
(4)查找给定结点的双亲、祖先和左右孩子节点。
2 总体设计2.1 功能模块设计根据课程设计题目的功能要求,各个功能模块的组成框图如图1:图 1 功能组成框图2.2 所有功能模块流程图设计好功能模块后,各个模块的关系如下图2:图 2 流程图3 详细设计3.1程序中所采用的数据结构及存储结构的说明(1)整个程序采用结构体与顺序表相结合的编程方法一共完成了7个功能。
在你输入错误时有报错消息,这样使整个程序运行起来更加完整。
程序中有若干个子函数被主函数调用执行。
结构体定义如下:#define MAX 100 //定义100个节点typedef struct{char dat; //节点信息}node;typedef struct Tree //节点组成树{int length;node *r; //指向根节点}Tree;3.2 算法设计思想完全二叉树具有以下几个性质,由此可设计出相应算法。
二叉树的遍历及例题
⼆叉树的遍历及例题⼆叉树的遍历及例题前序遍历就是根在前,中序是根在根在中,前序遍历根 --> 左 --> 右中序遍历左 --> 根 --> 右后序遍历左 --> 右 --> 根如图是⼀颗⼆叉树前序(根左右),中序(左根右),后序(左右根)它的前序遍历结果为: A B D F G H I E C 代表的含义为A( B ( D ( F ,G( H ,I ) ) ,E ) , C )所以第⼀个点⼀定是根节点它的中序遍历结果为: F D H G I B E A C它代表的含义,A(已知它不是叶⼦节点)在中间说明A的左边是左⼉⼦,A的右边是他的右⼉⼦它的后序遍历结果为:F H I G D E B C A解题:如果有前序和中序或者中序和后序可以得到⼆叉树,从⽽得到后序。
如果有前序和后序⽆法的得到⼆叉树。
1.已知前序、中序遍历求后序遍历例:前序遍历:A B G D E C F H中序遍历:G B E D A F C H构建⼆叉树的步骤:1.根据前序遍历特点,得到根节点A2.观察中序遍历结果:根节点左边节点为G B E D,根节点的右边节点为 F C H。
同时,两段也是左右⼦树的中序遍历的结果。
B G D E也是左⼦树前序遍历的结果。
C F H也是右⼦树前序遍历的结果。
3.重复 1 2的步骤,直到找到叶⼦结点就可以得到最后的⼆叉树。
例题:题意:给出中序遍历和前序遍历,让你找到后序遍历的结果。
#include <iostream>using namespace std;const int maxn = 105;int pre[maxn],in[maxn],pos[maxn];int infind(int root,int l,int r){//在中序遍历中找到当前根节点的位置for(int i=l;i<r;i++){if(in[i]==root){return i;}}}int cnt;void posorder(int prel,int prer,int inl,int inr){if(prel==prer) return ;int root=infind(pre[prel],inl,inr);//找当前的根的位置int len=root-inl;posorder(prel+1,prel+1+len,inl,inl+len);//prel的位置是root的位置,删去posorder(prel+1+len,prer,inl+1+len,inr);//inl+len+1的位置是root的位置,删去//进⾏完左边和右边的遍历之后,进⾏赋值。
二叉树的遍历
T->rchild= CreatBiTree(); /*构造右子树*/ 扩展先序遍历序列
}
2021/2/21
return (T) ;}
A B Φ D Φ Φ C Φ 17Φ
T
T
T
ch=B
ch=Φ
Λ
T
T= Λ, Creat(T)
ch=A T
A
B creat(T L)
ΛB 返回
creat(T L)
creat(T R)
A
p=p->RChild;
}
2021/2/21
}
top
A
B
C
D
top
B
top
A
A
top
D
A
top
A
top
C
13
top
中序遍历二叉树的非递归算法:
A
void InOrder(BiTree T)
{ InitStack(&S); 相当于top=-1;
p=T;
B
C
while(p!=NULL | | !IsEmpty(S)) 相当于top==-1;
}
后序遍历二叉树的递归算法:
void PostOrder (BiTree T)
{ if(T!=NULL)
{ PostOrder (T->lchild);
PostOrder (T->rchild);
printf(T->data); }
2021/2/21
15
}
先序遍历二叉树的递归算法: void PreOder (BiTree T) { if(T! =NULL){ printf (T->data); PreOrder (T->lchild); PreOrder (T->rchild); } }
树的三种搜索(人工智能)
中序遍历二叉树的递归过程图解
前序遍历 (Preorder Traversal) 前序遍历二叉树算法的框架是 若二叉树为空,则空操作; 否则 访问根结点 (V); 前序遍历左子树 (L); 前序遍历右子树 (R)。 遍历结果 -+a*b-cd/ef
二叉树递归的前序遍历算法 template <class Type> void BinaryTree <Type>::PreOrder ( ) { PreOrder ( root ); } template <class Type> void BinaryTree<Type>:: PreOrder ( BinTreeNode <Type> *current ) { if ( current != NULL ) { cout << current→data; PreOrder ( current→leftChild ); PreOrder ( current→rightChild )Traversal) 后序遍历二叉树算法的框架是 若二叉树为空,则空操作; 否则 后序遍历左子树 (L); 后序遍历右子树 (R); 访问根结点 (V)。 遍历结果 abcd-*+ef/-
二叉树递归的后序遍历算法 template <class Type> void BinaryTree <Type>::PostOrder ( ) { PostOrder ( root ); } template <class Type> void BinaryTree<Type>:: PostOrder ( BinTreeNode <Type> *current ) { if ( current != NULL ) { PostOrder ( current→leftChild ); PostOrder ( current→rightChild ); cout << current→data; } }
二叉树的遍历ppt课件
后序遍历顺序:
A
B
C
DE
F
中 序遍历 : 资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
DBEAF
C
前序遍历: A B D E C F
后序遍历
A
B
C
D EF
二叉树
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
总结:
我们这节课主要采用“案例驱动式”教 学方法讲解了二叉树的遍历,以案例方式讲 解通过其中两种遍历顺序推断出第三种遍历 顺序的分析方法。主要培养大家灵活运用知 识的能力和举一反三的分析能力。
一棵二叉树的中序遍历结果为 DBEAFC,前序遍历结果为ABDECF, 则后序遍历结果为 【 】 。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
前序遍历:若二叉树非空,则先访问根节点,再 遍历左子树,最后遍历右子树。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
拓展:
已知二叉树的 后序遍历:D A B E C 中序遍历:D E B A C
请问前序遍历结果为?
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二叉树遍历演示100[ 标签:二叉树] 课题五:二叉树遍历演示演示遍历二叉树的过程,所以首先建立二叉树,并用图形显示出树的形状。
建立的过程是采用前序便利的方法来创建,设计两种生成树的方式:一种是系统随机生成,另一种是人工输入。
考虑到屏幕界面的有限性,限定二叉树不超过5层,最多26个字符,输入字符小数点“.”代表NULL。
初始树为某种颜色的结点,三种情况的遍历采用填充另外一种醒目的颜色,来表示当前遍历的结点,同时显示该结点的访问序号。
同时在遍历的过程中在遍历图形的下方显示出遍历序列。
这是我们的课程设计对我来说有点难所以请大家帮忙如果你们觉得麻烦就给我一部分帮助比喻给我1.随即生产二叉树的函数还有人工输入二叉数的函数2.还有就是图形显示的函数3.主函数4.三种遍历的函数等等谢谢啦匿名回答:1 人气:57 解决时间:2009-11-10 10:09满意答案好评率:0% 四、遍历二叉树二叉树是一种非线性的数据结构,在对它进行操作时,总是需要逐一对每个数据元素实施操作,这样就存在一个操作顺序问题,由此提出了二叉树的遍历操作。
所谓遍历二叉树就是按某种顺序访问二叉树中的每个结点一次且仅一次的过程。
这里的访问可以是输出、比较、更新、查看元素内容等等各种操作。
二叉树的遍历方式分为两大类:一类按根、左子树和右子树三个部分进行访问;另一类按层次访问。
下面我们将分别进行讨论。
1、按根、左子树和右子树三部分进行遍历遍历二叉树的顺序存在下面6种可能:TLR(根左右), TRL(根右左)LTR(左根右), RTL(右根左)LRT(左右根), RLT(右左根)其中,TRL、RTL和RLT三种顺序在左右子树之间均是先右子树后左子树,这与人们先左后右的习惯不同,因此,往往不予采用。
余下的三种顺序TLR、LTR和LRT根据根访问的位置不同分别被称为先序遍历、中序遍历和后序遍历。
(1)先序遍历若二叉树为空,则结束遍历操作;否则访问根结点;先序遍历左子树;先序遍历右子树。
(2)中序遍历若二叉树为空,则结束遍历操作;否则中序遍历左子树;访问根结点;中序遍历右子树。
(3)后序遍历若二叉树为空,则结束遍历操作;否则后序遍历左子树;后序遍历右子树;访问根结点。
例如。
以下是一棵二叉树及其经过三种遍历所得到的相应遍历序列二叉树的两种遍历方法:(1)对一棵二叉树中序遍历时,若我们将二叉树严格地按左子树的所有结点位于根结点的左侧,右子树的所有结点位于根右侧的形式绘制,就可以对每个结点做一条垂线,映射到下面的水平线上,由此得到的顺序就是该二叉树的中序遍历序列(2)任何一棵二叉树都可以将它的外部轮廓用一条线绘制出来,我们将它称为二叉树的包线,这条包线对于理解二叉树的遍历过程很有用。
由此可以看出:(1)遍历操作实际上是将非线性结构线性化的过程,其结果为线性序列,并根据采用的遍历顺序分别称为先序序列、中序序列或后序序列;(2)遍历操作是一个递归的过程,因此,这三种遍历操作的算法可以用递归函数实现。
(1)先序遍历递归算法void PreOrder(BTree BT) {if (BT) { Visit(BT);PreOrder(BT->Lchild);PreOrder(BT->Rchild);}(2)中序遍历递归算法void InOrder(BTree BT) {if (BT) {InOrder(BT->Lchild);Visit(BT);InOrder(BT->Rchild);}}(3)后序遍历递归算法void PostOrder(BTree BT) {if (BT) {PostOrder(BT->Lchild);PostOrder(BT->Rchild);Visit(BT);}}2 、按层次遍历二叉树实现方法为从上层到下层,每层中从左侧到右侧依次访问每个结点。
下面我们将给出一棵二叉树及其按层次顺序访问其中每个结点的遍历序列。
void LevelOreder(QBTree BT) {for (i=1;i<=BT.n;i++)if (BT.elem[i]!='#') Visite(BT.elem[i]);}二叉树用链式存储结构表示时,按层遍历的算法实现访问过程描述如下:访问根结点,并将该结点记录下来;若记录的所有结点都已处理完毕,则结束遍历操作;否则重复下列操作。
取出记录中第一个还没有访问孩子的结点,若它有左孩子,则访问左孩子,并将记录下来;若它有右孩子,则访问右孩子,并记录下来。
在这个算法中,应使用一个队列结构完成这项操作。
所谓记录访问结点就是入队操作;而取出记录的结点就是出队操作。
这样一来,我们的算法就可以描述成下列形式:(1)访问根结点,并将根结点入队;(2)当队列不空时,重复下列操作:从队列退出一个结点;若其有左孩子,则访问左孩子,并将其左孩子入队;若其有右孩子,则访问右孩子,并将其右孩子入队;void LevelOrder(BTree *BT) {if (!BT) exit;InitQueue(Q); p=BT; //初始化Visite(p); EnQueue(&Q,p); //访问根结点,并将根结点入队while (!QueueEmpty(Q)) { //当队非空时重复执行下列操作DeQueue(&Q,&p); //出队if (!p->Lchild) {Visite(p->Lchild);EnQueue(&Q,p->Lchild); //处理左孩子if (!p->Rchild) {Visite(p->Rchild);EnQueue(&Q,p->Rchild); //处理右孩子}}五、典型二叉树的操作算法1、输入一个二叉树的先序序列,构造这棵二叉树为了保证唯一地构造出所希望的二叉树,在键入这棵树的先序序列时,需要在所有空二叉树的位置上填补一个特殊的字符,比如,'#'。
在算法中,需要对每个输入的字符进行判断,如果对应的字符是'#',则在相应的位置上构造一棵空二叉树;否则,创建一个新结点。
整个算法结构以先序遍历递归算法为基础,二叉树中结点之间的指针连接是通过指针参数在递归调用返回时完成。
算法:BTree Pre_Create_BT( ) {getch(ch);if (ch=='#') return NULL; //构造空树else { BT=(BTree)malloc(sizeof(BTLinklist)); //构造新结点BT->data=ch;BT->lchild =Pre_Create_BT( ); //构造左子树BT->rchild =Pre_Create_BT( ); //构造右子树return BT;}}2、计算一棵二叉树的叶子结点数目这个操作可以使用三种遍历顺序中的任何一种,只是需要将访问操作变成判断该结点是否为叶子结点,如果是叶子结点将累加器加1即可。
下面这个算法是利用中序遍历实现的。
算法:void Leaf(BTree BT,int *count) {if (BT) {Leaf(BT->child,&count); //计算左子树的叶子结点个数if (BT->lchild==NULL&&BT->rchild==NULL) (*count)++;Leaf(BT->rchild,&count); //计算右子树的叶子结点个数}}3、交换二叉树的左右子树许多操作可以利用三种遍历顺序的任何一种,只是某种遍历顺序实现起来更加方便一些。
而有些操作则不然,它只能使用其中的一种或两种遍历顺序。
将二叉树中所有结点的左右子树进行交换这个操作就属于这类情况。
算法:void change_left_right(BTree BT) {if (BT) {change_left_right(BT->lchild);change_left_right(BT->rchild);BT->lchild<->BT->rchild;}}4 、求二叉树的高度这个操作使用后序遍历比较符合人们求解二叉树高度的思维方式。
首先分别求出左右子树的高度,在此基础上得出该棵树的高度,即左右子树较大的高度值加1。
算法:int hight(BTree BT) { //h1和h2分别是以BT为根的左右子树的高度if (BT==NULL) return 0;else {h1=hight(BT->lchild);h2=hight(BT->right);return max{h1,h2}+1;}}六、树、森林与二叉树的转换1、树、森林转换成二叉树将一棵树转换成二叉树的方法:将一棵树转换成二叉树实际上就是将这棵树用孩子兄弟表示法存储即可,此时,树中的每个结点最多有两个指针:一个指针指向第一个孩子,另一个指针指向右侧第一个兄弟。
当你将这两个指针看作是二叉树中的左孩子指针和孩子右指针时,就是一棵二叉树了。
特点:一棵树转换成二叉树后,根结点没有右孩子。
将森林转换成二叉树的方法与一棵树转换成二叉树的方法类似,只是把森林中所有树的根结点看作兄弟关系,并对其中的每棵树依依地进行转换。