现代智能优化算法—遗传算法40页PPT
合集下载
智能优化技术ppt
详细描述
总结词
高效、低成本、智能化
详细描述
智能优化技术在物流运输领域的应用,可以实现高效的运输计划和运输路径优化。例如,利用智能算法对运输计划进行优化,降低运输成本;通过物联网技术和实时监控系统,实现货物的实时跟踪和调整;在最后一公里配送中,智能优化技术可提高配送效率和质量,例如智能快递柜、无人机配送等。
智能优化技术是一种基于数学、计算机科学、人工智能等学科的技术,它利用各种算法和数学模型等工具,对特定的应用需求进行优化设计,以实现提高系统性能、减少能源消耗、降低成本等目标。
详细描述
智能优化技术的定义
总结词
广泛应用于各种领域,如生产制造、交通运输、能源消耗、金融投资等。
详细描述
智能优化技术在各个领域都有广泛的应用。在生产制造领域,智能优化技术可以用于生产计划、工艺流程优化等方面;在交通运输领域,智能优化技术可以用于交通流量优化、路线规划等方面;在能源消耗领域,智能优化技术可以用于能源管理、节能减排等方面;在金融投资领域,智能优化技术可以用于股票交易、风险管理等方面。
随着技术的不断发展,智能优化技术的应用领域将更加广泛,如在自然语言处理、计算机视觉、智能制造等领域都将有更广泛的应用。
技术发展与人工智能紧密结合
未来智能优化技术的发展将更加紧密地与人工智能结合,实现技术的无缝集成,进一步提高人工智能的应用效果和性能。
谢谢您的观看
THANKS
神经网络的结构
深度学习模型
深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)等,适用于处理复杂的问题。
基础模型
基础模型包括单层感知器和多层感知器,适用于解决简单的问题。
自组织映射模型
自组织映射模型是一种特殊的神经网络模型,它能够自动对输入数据进行聚类和分类。
总结词
高效、低成本、智能化
详细描述
智能优化技术在物流运输领域的应用,可以实现高效的运输计划和运输路径优化。例如,利用智能算法对运输计划进行优化,降低运输成本;通过物联网技术和实时监控系统,实现货物的实时跟踪和调整;在最后一公里配送中,智能优化技术可提高配送效率和质量,例如智能快递柜、无人机配送等。
智能优化技术是一种基于数学、计算机科学、人工智能等学科的技术,它利用各种算法和数学模型等工具,对特定的应用需求进行优化设计,以实现提高系统性能、减少能源消耗、降低成本等目标。
详细描述
智能优化技术的定义
总结词
广泛应用于各种领域,如生产制造、交通运输、能源消耗、金融投资等。
详细描述
智能优化技术在各个领域都有广泛的应用。在生产制造领域,智能优化技术可以用于生产计划、工艺流程优化等方面;在交通运输领域,智能优化技术可以用于交通流量优化、路线规划等方面;在能源消耗领域,智能优化技术可以用于能源管理、节能减排等方面;在金融投资领域,智能优化技术可以用于股票交易、风险管理等方面。
随着技术的不断发展,智能优化技术的应用领域将更加广泛,如在自然语言处理、计算机视觉、智能制造等领域都将有更广泛的应用。
技术发展与人工智能紧密结合
未来智能优化技术的发展将更加紧密地与人工智能结合,实现技术的无缝集成,进一步提高人工智能的应用效果和性能。
谢谢您的观看
THANKS
神经网络的结构
深度学习模型
深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)等,适用于处理复杂的问题。
基础模型
基础模型包括单层感知器和多层感知器,适用于解决简单的问题。
自组织映射模型
自组织映射模型是一种特殊的神经网络模型,它能够自动对输入数据进行聚类和分类。
遗传算法的实例ppt课件.ppt
上述操作反复执行,个体逐渐优化
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
例:求下述二元函数的最大值:
个体
A
B
C
D
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
• 程序结束时,最优个体即为所求解 • 程序结束的判定
根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
011101 111001 101011 111001
配对情况 交叉点位置
1-2
1-2:2
3-4
3-4:4
交叉结果
011001 111101 101001 111011
变异点 变异结果
4 011101 5 111111 2 111001 6 111010
子代群体p(1) x1 x2
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
例:求下述二元函数的最大值:
个体
A
B
C
D
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
• 程序结束时,最优个体即为所求解 • 程序结束的判定
根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
011101 111001 101011 111001
配对情况 交叉点位置
1-2
1-2:2
3-4
3-4:4
交叉结果
011001 111101 101001 111011
变异点 变异结果
4 011101 5 111111 2 111001 6 111010
子代群体p(1) x1 x2
遗传算法(GeneticAlgorithm)PPT课件
2021
14
选择(Selection)
设种群的规模为N xi是i为种群中第i个染色体
1/6 = 17%
A BC
3/6 = 50% 2/6 = 33%
染色体xi被选概率
ps (xi )
F (xi )
N
F(xj)
j 1
fitness(A) = 3 fitness(B) = 1 fitness(C) = 2
假如交叉概率Pc =50%,则交配池中50%的染色体(一半染色体) 将进行交叉操作,余下的50%的染色体进行选择(复制)操作。
GA利用选择和交叉操作可以产生具有更高平均适应值 和更好染色体的群体
2021/3/21
2021
22
变异(Mutation)
➢ 以 编变码异时概,变率P异m改的变基染因色由体0变的成某1一,个或基者因由,1当变以成二0。进制 ➢ 变 间,异平概均率约Pm 1一-2般% 介于1/种群规模与1/染色体长度之
编码(Coding)
10010001
10010010
010001001 011101001
解码(Decoding)
2021/3/21
2021
13
选择(Selection)
➢ 选择(复制)操作把当前种群的染色体按与适应值成正比 例的概率复制到新的种群中
➢ 主要思想: 适应值较高的染色体体有较大的选择(复制) 机会
➢交叉(crossover):
将群体P(t)内的各个个体随机搭配成对,对每一个
个 rat体e),交以换某它个们概之率间P的c (部称分为染交色叉体概。率,crossvoer
➢变异(mutation):
变对异群概体率P,(tm)u中ta的ti每on一r个at个e)体改,变以某某一一个概或率一P些m(基称因为座
智能优化算法.ppt
❖ (1)从网络性能角度可分为:连续型与离散型网络、 确定性与随机性网络;
❖ (2)从网络结构角度可分为前向网络与反馈网络;
❖ (3)从学习方式角度可分为有教师学习网络和无教 师学习网络;
❖ (4)按连接突触性质可分为一阶线性关联网络和高 阶非线性关联网络。
单层前向网络
源节点输入层
神经元输出层
多层前向网络
神经网络-算法概述
人工神经网络的模型
❖ 人工神经网络是由大量处理单元广泛互连而成的网络 , 是人脑的抽象、简化、模拟,反映人脑的基本特性。 一般来说,作为神经元模型应具备三个要素:
(1)之具间有的一联组接突强触度或,联或接称,之常为用权wi值j表。示与神人经脑元神i和经神元经不元同j , 人工神经元权值的取值可在负值与正值之间。
wij (n) (x j (n) x j )( xi (n) xi )
纠错学习
源节点输入层
神经元隐含层
神经元输出层
反馈网络
无自反馈和隐含层 的反馈网络
z z z z 1 1 1 1
竞争神经网络
源节点层
单层输出神经元
最简单的竞争神经网络:Hamming网络
神经网络-算法概述
神经网络的学习
❖ 神经网络的学习也称为训练,指的是通过神经网络 所在环境的刺激作用调整神经网络的自由参数,使 神经网络以一种新的方式对外部环境作出反应的一 个过程。
智能优化算法
随着仿生学、遗传学和人工智能科学的发展, 从20世纪70年代以来,研究人员相继将遗传学、神 经网络科学的原理和方法应用到最优化领域,形成 了一系列新的最优化方法,如:人工神经网络算法、 遗传算法、蚁群算法等。这些算法不需要构造精确 的数学搜索方向,不需要进行繁杂的一维搜索,而 是通过大量简单的信息传播和演变方法来得到问题 的最优解。这些算法具有全局性、自适应、离散化 的特点。
❖ (2)从网络结构角度可分为前向网络与反馈网络;
❖ (3)从学习方式角度可分为有教师学习网络和无教 师学习网络;
❖ (4)按连接突触性质可分为一阶线性关联网络和高 阶非线性关联网络。
单层前向网络
源节点输入层
神经元输出层
多层前向网络
神经网络-算法概述
人工神经网络的模型
❖ 人工神经网络是由大量处理单元广泛互连而成的网络 , 是人脑的抽象、简化、模拟,反映人脑的基本特性。 一般来说,作为神经元模型应具备三个要素:
(1)之具间有的一联组接突强触度或,联或接称,之常为用权wi值j表。示与神人经脑元神i和经神元经不元同j , 人工神经元权值的取值可在负值与正值之间。
wij (n) (x j (n) x j )( xi (n) xi )
纠错学习
源节点输入层
神经元隐含层
神经元输出层
反馈网络
无自反馈和隐含层 的反馈网络
z z z z 1 1 1 1
竞争神经网络
源节点层
单层输出神经元
最简单的竞争神经网络:Hamming网络
神经网络-算法概述
神经网络的学习
❖ 神经网络的学习也称为训练,指的是通过神经网络 所在环境的刺激作用调整神经网络的自由参数,使 神经网络以一种新的方式对外部环境作出反应的一 个过程。
智能优化算法
随着仿生学、遗传学和人工智能科学的发展, 从20世纪70年代以来,研究人员相继将遗传学、神 经网络科学的原理和方法应用到最优化领域,形成 了一系列新的最优化方法,如:人工神经网络算法、 遗传算法、蚁群算法等。这些算法不需要构造精确 的数学搜索方向,不需要进行繁杂的一维搜索,而 是通过大量简单的信息传播和演变方法来得到问题 的最优解。这些算法具有全局性、自适应、离散化 的特点。
《遗传算法详解》课件
特点
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
《遗传算法》PPT课件
遗传算法
学习过程如下:
选择适应度最好的4个
11 01001101 -4 13 01001101 -4 14 00111001 -4 15 00101111 -5
11与13交叉
16 01001101 -4 17 01001101 -4
14与15交叉
18 00111011 -4 19 00101101 -5
遗传算法
遗传算法是一种通过模拟自然进化过程搜索最优解 的方法。 遗传算法是一类随机算法通过作用于染色体上的基 因,寻找好的染色体来求解问题。 遗传算法对求解问题的本身一无所知,它所需要的 仅是对算法所产生的每个染色体进行评价,并基于适 应值来选择染色体,使适应性好的染色体比适应性差 的染色体有更多的繁殖机会。 遗传算法通过有组织地而且是随机地信息交换来重 新结合那些适应性好的串,在每一个新的串的群体中 作为额外增添,偶尔也要在串结构中尝试用新的位和 段来代替原来的部分。
遗传算法
要做的第一件事是将染色体转换成二进制串, 00表示0 01表示1 10表示2 11表示3 交叉位置:6,即父代染色体被复制下来产生两个后代 然后两个后代交换他们的最后两位 变异:由随机选择一位、求反
遗传算法
例如,染色体0223的适应度为4。 若所有7个规则都满足(也就是当染色体是0133),则 适应度为7。 适应度值可以求负操作,以使任务成为最小化搜索。 因此,目标染色体具有-7的适应度。 要做的第一件事是将染色体转换成二进制串, 这可通过由00表示0,01表示1,10表示2,11表示3来完 成。现在每个基因由两位表示,目标染色体有00011111 表示。 为了简化例子,总是在位置6处应用单点交叉。 父染色体被复制下来产生两个后代,然后两个后代交换 他们的最后两位。 变异由随机选择一位且对他求反组成。
《遗传算法》课件
总结词
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
遗传算法原理及其应用PPT课件
遗传算法原理及其应 用
目录
• 遗传算法概述 • 遗传算法的基本原理 • 遗传算法的实现步骤 • 遗传算法的应用案例 • 遗传算法的优缺点与改进方向
01
遗传算法概述
定义与特点
01
定义
遗传算法是一种模拟生物进化过程的优化算法, 通过模拟基因遗传和自然选择的过程来寻找最优
解。 02
特点
遗传算法具有全局搜索能力、隐含并行性、自适 应性、对初始条件要求不严格等优点。
排班问题
遗传算法可以用于解决排班问题,如航空公司的航班排班、医院的医 护人员排班等,以实现资源的高效利用和满足各种约束条件。
遗传算法的优缺点与改进方
05
向
优点
全局搜索能力
遗传算法采用生物进化中的遗传机制, 通过种群搜索的方式进行搜索,能够 跳出局部最优解,寻找全局最优解。
鲁棒性
遗传算法对初始解和参数选择不敏感, 能够在不同领域和问题中应用。
02 多峰值函数优化
遗传算法能够处理多峰值函数,即函数值在多个 点达到最大或最小值的情况,通过全局搜索找到 所有峰值。
03 噪声和异常值处理
遗传算法具有较强的鲁棒性,能够处理噪声和异 常值对优化结果的影响。
组合优化问题
1 2 3
旅行商问题
遗传算法可用于求解旅行商问题,即寻找一条最 短的旅行路线,使得一个推销员能够访问所有指 定的城市并返回出发城市。
交叉操作
单点交叉
在个体基因串中选择一个点作为交叉点,将该点前后的基因进行互换,形成新的 个体。
多点交叉
在个体基因串中选择多个点作为交叉点,将不同个体的对应基因进行互换,形成 新的个体。
变异操作
基因位变异
随机选择个体基因串中的某个基因位,对该 基因位进行取反操作或随机替换。
目录
• 遗传算法概述 • 遗传算法的基本原理 • 遗传算法的实现步骤 • 遗传算法的应用案例 • 遗传算法的优缺点与改进方向
01
遗传算法概述
定义与特点
01
定义
遗传算法是一种模拟生物进化过程的优化算法, 通过模拟基因遗传和自然选择的过程来寻找最优
解。 02
特点
遗传算法具有全局搜索能力、隐含并行性、自适 应性、对初始条件要求不严格等优点。
排班问题
遗传算法可以用于解决排班问题,如航空公司的航班排班、医院的医 护人员排班等,以实现资源的高效利用和满足各种约束条件。
遗传算法的优缺点与改进方
05
向
优点
全局搜索能力
遗传算法采用生物进化中的遗传机制, 通过种群搜索的方式进行搜索,能够 跳出局部最优解,寻找全局最优解。
鲁棒性
遗传算法对初始解和参数选择不敏感, 能够在不同领域和问题中应用。
02 多峰值函数优化
遗传算法能够处理多峰值函数,即函数值在多个 点达到最大或最小值的情况,通过全局搜索找到 所有峰值。
03 噪声和异常值处理
遗传算法具有较强的鲁棒性,能够处理噪声和异 常值对优化结果的影响。
组合优化问题
1 2 3
旅行商问题
遗传算法可用于求解旅行商问题,即寻找一条最 短的旅行路线,使得一个推销员能够访问所有指 定的城市并返回出发城市。
交叉操作
单点交叉
在个体基因串中选择一个点作为交叉点,将该点前后的基因进行互换,形成新的 个体。
多点交叉
在个体基因串中选择多个点作为交叉点,将不同个体的对应基因进行互换,形成 新的个体。
变异操作
基因位变异
随机选择个体基因串中的某个基因位,对该 基因位进行取反操作或随机替换。
遗传算法详解ppt课件
A1=0110 | 1 A2=1100 | 0 交叉操作后产生了两个新的字符串为:
A1’=01100 A2’=11001
一般的交叉操作过程:
图5-2 交叉操作
遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种 群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。
遗传算法在以下几个方面不同于传统优化 方法
① 遗传算法只对参数集的编码进行操作,而不是 参数集本身。
② 遗传算法的搜索始于解的一个种群,而不是单 个解,因而可以有效地防止搜索过程收敛于局部 最优解。
③ 遗传算法只使用适值函数,而不使用导数和其 它附属信息,从而对问题的依赖性小。
④ 遗传算法采用概率的、而不是确定的状态转移 规则,即具有随机操作算子。
表6-3列出了交叉操作之后的结果数据,从中可以看出交叉操作 的具体过程。首先,随机配对匹配集中的个体,将位串1、2配对,位
串3、4配对;然后,随机选取交叉点,设位串1、2的交叉点为k=4,
二者只交换最后一位,从而生成两个新的位串,即 串 串 1 2 : : 1 01 11 00 0 1 0 1 01 11 00 01 0 新 新 1 2串 串
图5–3
遗传算法的工作原理示意图
5.2 遗传算法应用中的一些基本问题
5.2.1 目标函数值到适值形式的映射
适值是非负的,任何情况下总希望越大越好;而目标 函数有正、有负、甚至可能是复数值;且目标函数和适值 间的关系也多种多样。如求最大值对应点时,目标函数和 适值变化方向相同;求最小值对应点时,变化方向恰好相 反;目标函数值越小的点,适值越大。因此,存在目标函 数值向适值映射的问题。
5.遗传算法
A1’=01100 A2’=11001
一般的交叉操作过程:
图5-2 交叉操作
遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种 群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。
遗传算法在以下几个方面不同于传统优化 方法
① 遗传算法只对参数集的编码进行操作,而不是 参数集本身。
② 遗传算法的搜索始于解的一个种群,而不是单 个解,因而可以有效地防止搜索过程收敛于局部 最优解。
③ 遗传算法只使用适值函数,而不使用导数和其 它附属信息,从而对问题的依赖性小。
④ 遗传算法采用概率的、而不是确定的状态转移 规则,即具有随机操作算子。
表6-3列出了交叉操作之后的结果数据,从中可以看出交叉操作 的具体过程。首先,随机配对匹配集中的个体,将位串1、2配对,位
串3、4配对;然后,随机选取交叉点,设位串1、2的交叉点为k=4,
二者只交换最后一位,从而生成两个新的位串,即 串 串 1 2 : : 1 01 11 00 0 1 0 1 01 11 00 01 0 新 新 1 2串 串
图5–3
遗传算法的工作原理示意图
5.2 遗传算法应用中的一些基本问题
5.2.1 目标函数值到适值形式的映射
适值是非负的,任何情况下总希望越大越好;而目标 函数有正、有负、甚至可能是复数值;且目标函数和适值 间的关系也多种多样。如求最大值对应点时,目标函数和 适值变化方向相同;求最小值对应点时,变化方向恰好相 反;目标函数值越小的点,适值越大。因此,存在目标函 数值向适值映射的问题。
5.遗传算法
遗传算法PPT课件
4.1 基本概念
1. 个体与种群
● 个体就是模拟生物个体而对问题中的对象 (一般就是问题的解)的一种称呼,一个个 体也就是搜索空间中的一个点。
● 种群(population)就是模拟生物种群而由若 干个体组成的群体, 它一般是整个搜索空间 的一个很小的子集。
2.
● 适应度(fitness)就是借鉴生物个体对环境的 适应程度,而对问题中的个体对象所设计的 表征其优劣的一种测度。
根据交叉原则产生的一组新解
பைடு நூலகம்
染色体对应基因段交换的概率(可能性大小) 闭区间[0,1]上的一个值,一般为0.65~0.90
染色体水平上基因变化
编码的某些元素被改变
染色体上基因变化的概率(可能性大小)
开区间(0,1)内的一个值, 一般为 0.001~0.01
个体进行优胜劣汰的进化,一代又一代地优 化
目标函数取到最大值,最优的可行解
选择-复制 通常做法是:对于一个规模为N 的种群S,按每个染色体xi∈S的选择概率P(xi)所决 定的选中机会, 分N次从S中随机选定N个染色体, 并进行复制。
这里的选择概率P(xi)的计算公式为
P(xi )
f (xi )
N
f (xj)
j 1
交叉 就是互换两个染色体某些位上的基因。 例如, 设染色体 s1=01001011, s2=10010101, 交换其后4位基因, 即
第 4 章 基于遗传算法的随机优化搜索
❖ 群体的染色体都将逐渐适应环境,不断进化, 最后收敛到一族最适应环境的类似个体,即 得到问题最优的解.值得注意的一点是,现 在的遗传算法是受生物进化论学说的启发提 出的,这种学说对我们用计算机解决复杂问 题很有用,而它本身是否完全正确并不重要 (目前生物界对此学说尚有争议).
智能优化算法——遗传算法
6)
对于k3,k4由于此时f′< F或 f < F,即个体拟合度小于平均拟合度, 说明个体特性差,因此增大Pc和Pm,易使差的个体破坏的可能性增 大,因此,k3,k4的值应大一些,而k1,k2可依据实际情况而定
2 多种群进化
将原种群按特性划分为几个子种群,每个子种群有各自的特点具有 不同的Pc和Pm,不同的种群规模,具有不同的进化策略和算子,个体 的特性分布也不同。这样通过不同子种群之间的进化,可以选取和保 留每个种群的优秀个体,避免单种群进化产生的过早收敛现象,同时 又可以保持优秀个体的进化稳定性。另外为了使每个种群进化的灵活 性,在Pc和Pm的设置时,不再像以前那样将它们设为常值,而是根据 种属的实际情况,使其自动调整参数值。
遗传算法(GA)
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择 和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜 索最优解的方法,是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传 机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首 先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性 的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方 法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确 定的规则。
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: www.1ppt.c om/powerpoint/ Excel 教程:www.1ppt.c om/excel/ PPT课件下载:/kejian/ 试卷下载:www.1ppt.c om/shiti /
1 自适应参数调整
对于k3,k4由于此时f′< F或 f < F,即个体拟合度小于平均拟合度, 说明个体特性差,因此增大Pc和Pm,易使差的个体破坏的可能性增 大,因此,k3,k4的值应大一些,而k1,k2可依据实际情况而定
2 多种群进化
将原种群按特性划分为几个子种群,每个子种群有各自的特点具有 不同的Pc和Pm,不同的种群规模,具有不同的进化策略和算子,个体 的特性分布也不同。这样通过不同子种群之间的进化,可以选取和保 留每个种群的优秀个体,避免单种群进化产生的过早收敛现象,同时 又可以保持优秀个体的进化稳定性。另外为了使每个种群进化的灵活 性,在Pc和Pm的设置时,不再像以前那样将它们设为常值,而是根据 种属的实际情况,使其自动调整参数值。
遗传算法(GA)
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择 和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜 索最优解的方法,是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传 机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首 先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性 的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方 法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确 定的规则。
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: www.1ppt.c om/powerpoint/ Excel 教程:www.1ppt.c om/excel/ PPT课件下载:/kejian/ 试卷下载:www.1ppt.c om/shiti /
1 自适应参数调整
遗传算法——遗传算法PPT课件
第25页/共81页
(3)遗传算子:基本遗传算法使用下述三种遗传算 子: ① 选择运算:使用比例选择算子; ② 交叉运算:使用单点交叉算子; ③ 变异运算:使用基本位变异算子或均匀变异算子。
第26页/共81页
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
第19页/共81页
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
解,遗传算法已经在其中得到了初步的应用。例如, 利用遗传算法进行控制器参数的优化、基于遗传算法 的模糊控制规则的学习、基于遗传算法的参数辨识、 基于遗传算法的神经网络结构的优化和权值学习等。
第22页/共81页
(9)机器学习 基于遗传算法的机器学习在很多领域都得到了应
用。例如,采用遗传算法实现模糊控制规则的优化,可 以改进模糊系统的性能;遗传算法可用于神经网络连接 权的调整和结构的优化;采用遗传算法设计的分类器系 统可用于学习式多机器人路径规划。
第23页/共81页
10.4 遗传算法的优化设计
(2)变异:亲代和子代之间以及子代的不同个体之间 的差异,称为变异。变异是随机发生的,变异的选择 和积累是生命多样性的根源。
(3)生存斗争和适者生存:具有适应性变异的个体被 保留下来,不具有适应性变异的个体被淘汰,通过一 代代的生存环境的选择作用,性状逐渐逐渐与祖先有 所不同,演变为新的物种。
(3)遗传算子:基本遗传算法使用下述三种遗传算 子: ① 选择运算:使用比例选择算子; ② 交叉运算:使用单点交叉算子; ③ 变异运算:使用基本位变异算子或均匀变异算子。
第26页/共81页
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
第19页/共81页
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
解,遗传算法已经在其中得到了初步的应用。例如, 利用遗传算法进行控制器参数的优化、基于遗传算法 的模糊控制规则的学习、基于遗传算法的参数辨识、 基于遗传算法的神经网络结构的优化和权值学习等。
第22页/共81页
(9)机器学习 基于遗传算法的机器学习在很多领域都得到了应
用。例如,采用遗传算法实现模糊控制规则的优化,可 以改进模糊系统的性能;遗传算法可用于神经网络连接 权的调整和结构的优化;采用遗传算法设计的分类器系 统可用于学习式多机器人路径规划。
第23页/共81页
10.4 遗传算法的优化设计
(2)变异:亲代和子代之间以及子代的不同个体之间 的差异,称为变异。变异是随机发生的,变异的选择 和积累是生命多样性的根源。
(3)生存斗争和适者生存:具有适应性变异的个体被 保留下来,不具有适应性变异的个体被淘汰,通过一 代代的生存环境的选择作用,性状逐渐逐渐与祖先有 所不同,演变为新的物种。
智能优化算法——遗传算法
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: www.1ppt.c om/powerpoint/ Excel 教程:www.1ppt.c om/excel/ PPT课件下载:/kejian/ 试卷下载:www.1ppt.c om/shiti /
谢谢!
遗传算法(GA)
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择 和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜 索最优解的方法,是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传 机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首 先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性 的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方 法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确 定的规则。
交叉算子:与传统的交叉算子类似,交换的位置和交换的点数是随机确定的.
变异算子:其作用是在个体结构一定的前提下,加人随机扰动,以寻找最优解,本 文采取加人零均值高斯白噪声的方法.
此外,为提高初始种群的优良性能,在随机产生初始种群的过程中,加人初选 评估程序,即对随机产生的初始种群考察其路边约束和动态避障的适应度值,由 此保证初始种群中满足路边约束和动态避障条件的个体数目大于一定的数量,这 样可保证遗传算法快速、稳定地找到全局最优解.
(3)路径最短
路径最短的适应度函数确定如下:
最后综合得到遗传算法的综合适应度函数为
最后综合得到遗传算法的综合适应度函数为该综合适应度函数把三个约 束条件有机融合在一起,计算简单,且能避免三项加权求和引起的优化不 稳定问题
现代智能优化算法遗传算法
已证明了在一定条件下遗传算法总是以概率1
收敛于问题的最优解。
a
7
达尔文1858年用自然选择来解释物种 起源和生物的进化,其自然选择学说
包括以下三个方面
▪ 1 遗传 种瓜得瓜,种豆得豆。生物有了这 个特征,物种才能稳定存在;
▪ 2 变异 一母生九子,九子各不同。变异的 选择和积累是生物多样性的根源;
这样容易陷入局部极值点。遗传算法进行群体
搜索,而且在搜索的过程中引入遗传运算,使
群体又可以不断进化。这些是遗传算法所特有 的一种隐含并行性。
▪ 遗传算法使用概率搜索技术 。遗传算法属于
一种自适应概率搜索技术,其选择、交叉、变
异等运算都是以一种概率的方式来进行的,从
而增加了其搜索过程的灵活性。实践和理论都
a
14
GA 三个基本算子—变异
通过突变的方式,使得解可以跳脱单纯的交 叉产生的区域,进而产生新的染色体,变异 的过程主要以随机的方式,将染色体的基因 位由0变成1或由1变成0,主要的变异方式有: (1)等位基因突变(Simple Mutation) (2)均匀突变(Uniform Mutation) (3)非均匀突变(Non-Uniform Mutation)
▪
0 00000
▪
31 11111
▪
7 00111
▪
12 01100
a
17
长链中占有一定位置的基本单位。生物的基 因数量根据物种不同多少不一,从几个(病 毒)到几万个(动物)。
a
9
GA的基础术语
▪ 基因座 (locus)染色体中基因的位置 ▪ 表现型 (phenotype)由染色体决定性状的
外部表现 ▪ 基因型 (genetype)与表现型密切相关的基
《遗传算法》PPT课件
2021/7/12
33
一、遗传算法入门
生物只有经过许多世代的不断演化(evolution),才能 更好地完成生存与繁衍的任务。 遗传算法也遵循同样的方式,需要随着时间的推移不 断成长、演化,最后才能收敛,得到针对某类特定问 题的一个或多个解。 因此,了解一些有关有生命的机体如何演化的知识, 对理解遗传算法的演化机制是是有帮助的。我们将扼 要阐述自然演化的机制(通常称为“湿”演化算法), 以及与之相关的术语。理解自然演化的基本机制。我 想,你也会和我一样,深深叹服自然母亲的令人着迷!
2021/7/12
23
智能交通
2021/7/12
24
图像识别系统
2021/7/12
25
云松
銮仙玉骨寒, 松虬雪友繁。 大千收眼底, 斯调不同凡。
2021/7/12
26
(无题)
白沙平舟夜涛声, 春日晓露路相逢。 朱楼寒雨离歌泪, 不堪肠断雨乘风。
2021/7/12
27
2021/7/12
28
2021/7/12
1.7.12 智能制造
1.7.13 智能CAI
1.7.14 智能人机接口
1.7.15 模式识别
1.7.16 数据挖掘与数据库中的知识发现
1.7.17 计算机辅助创新
1.7.18 计算机文艺创作
1.7.19 机器博弈
1.7.20 智能机器人
2021/7/12
18
1.8 人工智能的分支领域与研究方向
从模拟的层次和所用的方法来看,人工智能可分为符号智 能和计算智能两大主要分支领域。而这两大领域各自又有 一些子领域和研究方向。如符号智能中又有图搜索、自动 推理、不确定性推理、知识工程、符号学习等。计算智能 中又有神经计算、进化计算、免疫计算、蚁群计算、粒群 计算、自然计算等。另外,智能Agent也是人工智能的一 个新兴的重要领域。智能Agent或者说Agent智能则是以符
智能优化计算-遗传算法
4.2.4 遗传操作——选择
4.2 基本遗传算法
智能优化计算
湖北民族学院
几个概念 选择强度(selection intensity):将正规高斯分布应用于选择方法,期望平均适应度; 选择方差(selection variance):将正规高斯分布应用于选择方法,期望种群适应度的方差。
80%
选择强度
2.66
1.761.2源自0.970.80.34
智能优化计算 湖北民族学院 常用选择方法 截断选择法(truncation selection) 个体按适应度排列,只有优秀个体能够称为父个体,参数为截断阀值(被选作父个体的百分比)。 4.2.4 遗传操作——选择
基本遗传算法
竞赛规模
湖北民族学院
智能优化计算
智能优化计算
湖北民族学院
适应度函数的作用 适应度函数设计不当有可能出现欺骗问题: (1)进化初期,个别超常个体控制选择过程; (2)进化末期,个体差异太小导致陷入局部极值。
4.2.3 适应度函数及其尺度变换
4.2 基本遗传算法
基本遗传算法
智能优化计算
单击此处添加小标题
湖北民族学院
单击此处添加小标题
4.2.3 适应度函数及其尺度变换 适应度函数的设计 单值、连续、非负、最大化 合理、一致性 计算量小 通用性强
单击此处添加小标题
智能优化计算
湖北民族学院
适应度函数的线性变换法 f’=α*f+β 系数的确定满足以下条件: ① f’avg= favg ② f’max= cmult f’avg cmult =1.0~2.0
4.2.4 遗传操作——选择
个体
1
2
3
4
5
4.2 基本遗传算法
智能优化计算
湖北民族学院
几个概念 选择强度(selection intensity):将正规高斯分布应用于选择方法,期望平均适应度; 选择方差(selection variance):将正规高斯分布应用于选择方法,期望种群适应度的方差。
80%
选择强度
2.66
1.761.2源自0.970.80.34
智能优化计算 湖北民族学院 常用选择方法 截断选择法(truncation selection) 个体按适应度排列,只有优秀个体能够称为父个体,参数为截断阀值(被选作父个体的百分比)。 4.2.4 遗传操作——选择
基本遗传算法
竞赛规模
湖北民族学院
智能优化计算
智能优化计算
湖北民族学院
适应度函数的作用 适应度函数设计不当有可能出现欺骗问题: (1)进化初期,个别超常个体控制选择过程; (2)进化末期,个体差异太小导致陷入局部极值。
4.2.3 适应度函数及其尺度变换
4.2 基本遗传算法
基本遗传算法
智能优化计算
单击此处添加小标题
湖北民族学院
单击此处添加小标题
4.2.3 适应度函数及其尺度变换 适应度函数的设计 单值、连续、非负、最大化 合理、一致性 计算量小 通用性强
单击此处添加小标题
智能优化计算
湖北民族学院
适应度函数的线性变换法 f’=α*f+β 系数的确定满足以下条件: ① f’avg= favg ② f’max= cmult f’avg cmult =1.0~2.0
4.2.4 遗传操作——选择
个体
1
2
3
4
5
相关主题