【初中数学】2016年山东省泰安市岱岳区中考数学二模试卷(解析版) 人教版

合集下载

模拟测评山东省泰安市中考数学二模试题(含详解)

模拟测评山东省泰安市中考数学二模试题(含详解)

山东省泰安市中考数学二模试题 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中,不是代数式的是( )A .5ab 2B .2x +1=7C .0D .4a ﹣b 2、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )A .45︒B .135︒C .75︒D .165︒ 3、利用如图①所示的长为a 、宽为b 的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )·线○封○密○外A .22()4()a b ab a b -+=+B .22()()a b a b a b -+=-C .222()2a b a ab b +=++D .222()2a b a ab b ---+4、用下列几组边长构成的三角形中哪一组不是直角三角形( )A .8,15,17B .6,8,10CD .1,5、如图,下列条件中不能判定AB CD ∥的是( )A .12∠=∠B .34∠=∠C .35180∠+∠=︒D .15∠=∠6、下列计算中,正确的是( )A .a 2+a 3=a 5B .a •a =2aC .a •3a 2=3a 3D .2a 3﹣a =2a 27、下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .8、如图所示,在长方形ABCD 中,AB a ,BC b =,且a b >,将长方形ABCD 绕边AB 所在的直线旋转一周形成圆柱甲,再将长方形ABCD 绕边BC 所在直线旋转一周形成圆柱乙,记两个圆柱的侧面积分別为甲S 、乙S .下列结论中正确的是( )A .S S >甲乙 B .甲乙S S < C .S S =甲乙 D .不确定 9、如图,在平面直角坐标系xOy 中,已知点A (1,0),B (3,0),C 为平面内的动点,且满足∠ACB =90°,D 为直线y =x 上的动点,则线段CD 长的最小值为( ) A .1 B .2 C1 D1 10、如图,有三块菜地△ACD 、△ABD 、△BDE 分别种植三种蔬菜,点D 为AE 与BC 的交点,AD 平分∠BAC ,AD =DE ,AB =3AC ,菜地△BDE 的面积为96,则菜地△ACD 的面积是( )A .24B .27C .32D .36 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、某树主干长出x 根枝干,每个枝干又长出x 根小分支,若主干、枝干和小分支总数共133根,则主干长出枝干的根数x 为______. 2、观察下列图形,它们是按一定规律排列的,按此规律,第2022个图形中“○”的个数为______. ·线○封○密○外3、两个人玩“石头、剪刀、布”游戏,在保证游戏公平的情况下,随机出手一次,两人手势不相同的概率是___________.4、二次函数y=(m﹣1)x2+x+m2﹣1的图象经过原点,则m的值为_____.5、如图,过ABC的重心G作ED AB∥分别交边AC、BC于点E、D,联结AD,如果AD平分BAC∠,AB=,那么EC=______.6三、解答题(5小题,每小题10分,共计50分)1、【数学概念】如图1,A、B为数轴上不重合的两个点,P为数轴上任意一点,我们比较线段PA和PB的长度,将较短线段的长度定义为点P到线段AB的“靠近距离”.特别地,若线段PA和PB的长度相等,则将线段PA或PB的长度定义为点P到线段AB的“靠近距离”.如图①,点A表示的数是-4,点B表示的数是2.(1)【概念理解】若点P表示的数是-2,则点P到线段AB的“靠近距离”为______;(2)【概念理解】若点P 表示的数是m ,点P 到线段AB 的“靠近距离”为3,则m 的值为______(写出所有结果); (3)【概念应用】如图②,在数轴上,点P 表示的数是-6,点A 表示的数是-3,点B 表示的数是2.点P 以每秒2个单位长度的速度沿数轴向右运动,同时点B 以每秒1个单位长度的速度沿数轴向右运动.设运动的时间为t 秒,当点P 到线段AB 的“靠近距离”为2时,求t 的值. 2、如图,在平面直角坐标系中,()2,4A ,()3,1B ,()2,1C --. (1)在图中作出ABC ∆关于x 轴的对称图形111A B C ∆,并直接写出点1C 的坐标; (2)求ABC ∆的面积; (3)点(),2P a a -与点Q 关于x 轴对称,若8PQ =,直接写出点P 的坐标. 3、在平面直角坐标系xOy 中,对于线段AB 和点C ,若△ABC 是以AB 为一条直角边,且满足AC >AB 的直角三角形,则称点C 为线段AB 的“关联点”,已知点A 的坐标为(0,1). ·线○封○密○外(1)若B (2,1),则点D (3,1),E (2,0),F (0,-3),G (-1,-2)中,是AB 关联点的有_______;(2)若点B (-1,0),点P 在直线y =2x -3上,且点P 为线段AB 的关联点,求点P 的坐标;(3)若点B (b ,0)为x 轴上一动点,在直线y =2x +2上存在两个AB 的关联点,求b 的取值范围.4、将两块完全相同的且含60︒角的直角三角板ABC 和AFE 按如图所示位置放置,现将Rt AEF 绕A 点按逆时针方向旋转()090αα︒<<︒.如图,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P .(1)在旋转过程中,连接,AP CE ,求证:AP 所在的直线是线段CE 的垂直平分线.(2)在旋转过程中,CPN 是否能成为直角三角形?若能,直接写出旋转角α的度数;若不能,说明理由.5、对于平面直角坐标系xOy 中的线段AB ,给出如下定义:线段AB 上所有的点到x 轴的距离的最大值叫线段AB 的界值,记作AB W .如图,线段AB 上所有的点到x 轴的最大距离是3,则线段AB 的界值3AB W =.(1)若A (-1,-2),B (2,0),线段AB 的界值AB W =__________,线段AB 关于直线2y =对称后得到线段CD ,线段CD 的界值CD W 为__________; (2)若E (-1,m ),F (2,m +2),线段EF 关于直线2y =对称后得到线段GH ; ①当0m <时,用含m 的式子表示GH W ; ②当3GH W =时,m 的值为__________; ③当35GH W ≤≤时,直接写出m 的取值范围.-参考答案- 一、单选题1、B 【解析】 【分析】 根据代数式的定义即可判定. 【详解】 A. 5ab 2是代数式; B. 2x +1=7是方程,故错误; ·线○封○密·○外C. 0是代数式;D. 4a﹣b是代数式;故选B.【点睛】此题主要考查代数式的判断,解题的关键是熟知:代数式的定义:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独的一个数或一个字母也是代数式.2、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得1453015∠=︒-︒=︒∴∠1补角的度数为18015165︒-︒=︒故选:D.【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.3、A【解析】【分析】整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.【详解】∵大正方形边长为:()a b +,面积为:()2a b +; 1个小正方形的面积加上4个矩形的面积和为:()24a b ab -+; ∴()()2222424a b ab a ab b ab a b -+=-++=+. 故选:A . 【点睛】 此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键. 4、C 【解析】 【分析】 由题意根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形进行分析即可. 【详解】 解:A 、∵82+152=172,∴此三角形为直角三角形,故选项错误; B 、∵2226810+=,∴此三角形是直角三角形,故选项错误; C、∵2222+≠,∴此三角形不是直角三角形,故选项正确; D、∵22212+=,∴此三角形为直角三角形,故选项错误. 故选:C .【点睛】 本题考查勾股定理的逆定理,注意掌握在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系. 5、A ·线○封○密○外【解析】【分析】根据平行线的判定逐个判断即可.【详解】解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,∴∠3=∠5,因为”同旁内角互补,两直线平行“,所以本选项不能判断AB∥CD;B、∵∠3=∠4,∴AB∥CD,故本选项能判定AB∥CD;∠+∠=︒,C、∵35180∴AB∥CD,故本选项能判定AB∥CD;D、∵∠1=∠5,∴AB∥CD,故本选项能判定AB∥CD;故选:A.【点睛】本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.6、C【解析】【分析】根据整式的加减及幂的运算法则即可依次判断.【详解】A. a 2+a 3不能计算,故错误;B. a •a =a 2,故错误;C. a •3a 2=3a 3,正确;D. 2a 3﹣a =2a 2不能计算,故错误; 故选C . 【点睛】 此题主要考查幂的运算即整式的加减,解题的关键是熟知其运算法则. 7、C 【解析】 【分析】 根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解. 【详解】 解: A 、不是中心对称图形,是轴对称图形,故此选项错误; B 、是中心对称图形,不是轴对称图形,故此选项错误; C 、是中心对称图形,也是轴对称图形,故此选项正确; D 、不是中心对称图形,是轴对称图形,故此选项错误; 故选:C . 【点睛】 ·线○封○密○外本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、C【解析】【分析】根据公式,得甲S =2AD AB π••,乙S =2AB AD π••,判断选择即可.【详解】∵甲S =2AD AB π••,乙S =2AB AD π••,∴甲S =乙S .故选C .【点睛】本题考查了圆柱体的形成及其侧面积的计算,正确理解侧面积的计算公式是解题的关键.9、C【解析】【分析】取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,求出DE 长即可求出答案.【详解】解:取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,∵点A (1,0),B (3,0),∴OA =1,OB =3,∴OE =2,∴ED∵∠ACB =90°, ∴点C 在以AB 为直径的圆上, ∴线段CD−1. 故选:C . 【点睛】 本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C ,D 两点的位置是解题的关键. 10、C 【解析】 【分析】 利用三角形的中线平分三角形的面积求得S △ABD =S △BDE =96,利用角平分线的性质得到△ACD 与△ABD 的高相等,进一步求解即可. 【详解】 解:∵AD =DE ,S △BDE =96, ∴S △ABD =S △BDE =96, 过点D 作DG ⊥AC 于点G ,过点D 作DF ⊥AB 于点F , ·线○封○密○外∵AD 平分∠BAC ,∴DG=DF ,∴△ACD 与△ABD 的高相等,又∵AB =3AC ,∴S △ACD =13S △ABD =196323⨯=.故选:C .【点睛】本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.二、填空题1、11【解析】【分析】某树主干长出x 根枝干,每个枝干又长出x 根小分支,则小分支有2x 根,可得主干、枝干和小分支总数为()21x x ++根,再列方程解方程,从而可得答案. 【详解】解:某树主干长出x 根枝干,每个枝干又长出x 根小分支,则21133,x x21320,x x12110,x x 解得:1212,11,x x经检验:12x =-不符合题意;取11,x = 答:主干长出枝干的根数x 为11. 故答案为:11. 【点睛】 本题考查的是一元二次方程的应用,理解题意,用含x 的代数式表示主干、枝干和小分支总数是解本题的关键. 2、6067 【解析】 【分析】 设第n 个图形共有an 个○(n 为正整数),观察图形,根据各图形中○个数的变化可找出变化规律“an =3n +1(n 为正整数)”,依此规律即可得出结论. 【详解】 解:设第n 个图形共有an 个○(n 为正整数). 观察图形,可知:a 1=4=3+1=3×1+1,a 2=7=6+1=3×2+1,a 3=10=9+1=3×3+1,a 4=13=12+1=3×4+1,…, ∴an =3n +1(n 为正整数), ∴a 2022=3×2022+1=6067. 故答案为6067. 【点睛】 ·线○封○密·○外本题考查了规律型:图形的变化类,根据各图形中○个数的变化找出变化规律“an=3n+1(n为正整数)”是解题的关键.3、2 3【解析】【分析】画出树状图分析,找出可能出现的情况,再计算即可.【详解】解:画树形图如下:从树形图可以看出,所有可能出现的结果共有9种,两人手势不相同有6种,所以两人手势不相同的概率=62 93 ,故答案为:23.【点睛】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.4、-1【解析】【分析】将原点坐标(0,0)代入二次函数解析式,列方程求m即可.【详解】解:∵点(0,0)在抛物线y=(m﹣1)x2+x+m2﹣1上,∴m 2﹣1=0,解得m 1=1或m 2=﹣1,∵m =1不合题意,∴m =1,故答案为:﹣1.【点睛】 本题考查利用待定系数法求解二次函数解析式,能够熟练掌握待定系数法是解决本题的关键. 5、8 【解析】 【分析】 由重心的性质可以证明23DE AB =,再由AD 平分BAC ∠和ED AB ∥可得DE =AE ,最后根据ED AB ∥得到23DE EC AB AC ==即可求出EC . 【详解】 连接CG 并延长与AB 交于H , ∵G 是ABC 的重心 ∴2CG GH = ∴23CG CH = ∵ED AB ∥ ·线○封○密·○外∴23CG ECCH AC==,ADE BAD∠=∠,ECD ACB△△∴23 EC DE AC AB==∴243DE AB==∵AD平分BAC∠∴EAD BAD ∠=∠∴EAD ADE∠=∠∴4DE AE==∴23EC ECAC EC AE==+,∴8EC=【点睛】本题考查三角形的重心的性质、相似三角形的性质与判定、平行线分线段成比例,解题的关键是利用好平行线得到多个结论.三、解答题1、 (1)2;(2)-7或-1或5;(3)t的值为12或52或6或10.【解析】【分析】(1)由“靠近距离”的定义,可得答案;(2)点P到线段AB的“靠近距离”为3时,有三种情况:①当点P在点A左侧时;②当点P在点A 和点B之间时;③当点P在点B右侧时;(3)分四种情况进行讨论:①当点P 在点A 左侧,PA <PB ;②当点P 在点A 右侧,PA <PB ;③当点P 在点B 左侧,PB <PA ;④当点P 在点B 右侧,PB <PA ,根据点P 到线段AB 的“靠近距离”为2列出方程,解方程即可. (1) 解:∵PA =-2-(-4)=2,PB =2-(-2)=4,PA <PB ∴点P 到线段AB 的“靠近距离”为:2 故答案为:2; (2) ∵点A 表示的数为-4,点B 表示的数为2, ∴点P 到线段AB 的“靠近距离”为3时,有三种情况: ①当点P 在点A 左侧时,PA <PB , ∵点A 到线段AB 的“靠近距离”为3, ∴-4-m =3 ∴m =-7; ②当点P 在点A 和点B 之间时, ∵PA =m +4,PB =2-m , 如果m +4=3,那么m =-1,此时2-m =3,符合题意; ∴m =-1; ③当点P 在点B 右侧时,PB <PA , ∵点P 到线段AB 的“靠近距离”为3, ∴m -2=3, ∴m =5,符合题意; 综上,所求m 的值为-7或-1或5.·线○封○密·○外故答案为-7或-1或5;(3)分四种情况进行讨论:①当点P在点A左侧,PA<PB,∴-3-(-6+2t)=2,∴t=12;②当点P在点A右侧,PA<PB,∴(-6+2t)-(-3)=2,∴t=52;③当点P在点B左侧,PB<PA,10∴2+t-(-6+2t)=2,∴t=6;④当点P在点B右侧,PB<PA,∴(-6+2t)-(2+t)=2,∴t=10;综上,所求t的值为12或52或6或10.【点睛】本题考查了新定义,一元一次方程的应用,数轴上两点间的距离,理解点到线段的“靠近距离”的定义,进行分类讨论是解题的关键.2、 (1)见详解;(−2,1);(2)8.5;(3)P(5,3)或(−1,−3).【解析】【分析】(1)画出△A1B1C1,据图直接写出C1坐标;(2)先求出△ABC外接矩形CDEF面积,用之减去三个直角三角形的面积,得△ABC的面积;(3)先根据P,Q关于x轴对称,得到Q的坐标,再构建方程求解即可.(1)解:如图1△A1B1C1就是求作的与△ABC关于x轴对称的三角形,点C1的坐标(−2,1);(2)解:如图2由图知矩形CDEF的面积:5×5=25△ADC的面积:12×4×5=10△ABE的面积:12×1×3=32·线○封○密○外△CBF 的面积:12×5×2=5所以△ABC 的面积为:25-10-32-5=8.5.(3)解:∵点P (a ,a −2)与点Q 关于x 轴对称,∴Q (a ,2−a ),∵PQ =6,∴|(a -2)-(2-a )|=6,解得:a =5或a =-1,∴P(5,3)或(−1,−3).【点睛】本题考查了作图−轴对称变换,三角形的面积等知识,解题的关键是理解题意,掌握关于坐标轴对称的两点的坐标特征,属于中考常考题型.3、 (1)点E ,点F ;(2)(4133-,)或(2533-,); (3)b 的取值范围1<b <2或2<b <3.【解析】【分析】(1)根据以点B 为直角顶点,点B 与点E 横坐标相同,点E 在过点B 与AB 垂直的直线上,△ABE 为直角三角形,且AE 大于AB ;以点A 为直角顶点,点A 与点F 横坐标相同,△AFB 为直角三角形,BF 大于AB 即可; (2)根据点A (0,1)点B (-1,0),OA =OB ,∠AOB =90°,得出△AOB 为等腰直角三角形,可得∠ABO =∠BAO =45°,以点A 为直角顶点,过点A ,与AB 垂直的直线交x 轴于S ,利用待定系数法求出AS 解析式为1y x =-+,联立方程组123y x y x =-+⎧⎨=-⎩,以点B 为直角顶点,过点B ,与AB 垂直的直线交y 轴·线○于R ,∠OBR =90°-∠ABO =45°,可得△OBR 为等腰直角三角形,OR =OB =1,点R (0,-1),利用平移的性质可求BR 解析式为1y x =--,联立方程组123y x y x =--⎧⎨=-⎩,解方程组即可; (3)过点A 与AB 垂直的直线交直线y =2x +2于U ,把△AOB 绕点A 顺时针旋转90°,得△AO′U,AO′=AO =1,O′U =OB =b ,根据点U (-1,b -1)在直线22y x =+上,得出方程()1212b -=⨯-+,求出b 的值,当过点A 的直线与直线22y x =+平行时没有 “关联点”,OB =OW =b =2,得出在1<b <2时,直线22y x =+上存在两个AB 的“关联点”,当b >2时,根据旋转性质将△AOB 绕点A 逆时针旋转90°得到△AO′U ,得出AO′=AO =1,O′U =OB =b ,根据点U (1,1+b )在直线22y x =+上,列方程1212b +=⨯+,得出3b =即可.(1)解:点D 与AB 纵坐标相同,在直线AB 上,不能构成直角三角形,以点B 为直角顶点,点B 与点E 横坐标相同,点E 在过点B 与AB 垂直的直线上,∴△ABE 为直角三角形,且AE 大于AB ;以点A 为直角顶点,点A 与点F 横坐标相同,△AFB 为直角三角形,AF=4>AB =2,∴点E 与点F 是AB 关联点,点G 不在A 、B 两点垂直的直线上,故不能构成直角三角形,故答案为点E ,点F ;(2)解:∵点A (0,1)点B (-1,0),OA =OB ,∠AOB =90°,∴△AOB 为等腰直角三角形,AB ∴∠ABO =∠BAO =45°,以点A 为直角顶点,过点A ,与AB 垂直的直线交x 轴于S ,∴∠OAS =90°-∠BAO =45°,∴△AOS 为等腰直角三角形,∴OS =OA =1,点S (1,0),设AS 解析式为y kx b =+代入坐标得:10b k b =⎧⎨+=⎩, 解得11b k =⎧⎨=-⎩,AS 解析式为1y x =-+,∴123y x y x =-+⎧⎨=-⎩, 解得4313x y ⎧=⎪⎪⎨⎪=-⎪⎩, 点P (4133-,), AP=AP >AB 以点B 为直角顶点,过点B ,与AB 垂直的直线交y 轴于R , ∴∠OBR =90°-∠ABO =45°, ∴△OBR 为等腰直角三角形,∴OR =OB =1,点R (0,-1), 过点R 与AS 平行的直线为AS 直线向下平移2个单位, 则BR 解析式为1y x =--, ∴123y x y x =--⎧⎨=-⎩, 解得2353x y ⎧=⎪⎪⎨⎪=-⎪⎩, 点P 1(2533-,), AP 1·线○封○密○外∴点P 为线段AB 的关联点,点P 的坐标为(4133-,)或(2533-,);(3)解:过点A 与AB 垂直的直线交直线y =2x +2于U ,把△AOB 绕点A 顺时针旋转90°,得△AO′U,∴AO′=AO =1,O′U =OB =b ,点U (-1,b -1)在直线22y x =+上,∴()1212b -=⨯-+∴1b =,∴当b >1时存在两个“关联点”,当b <1时,UA <AB ,不满足定义,没有两个“关联点”当过点A 的直线与直线22y x =+平行时没有 “关联点” 22y x =+与x 轴交点X (-1,0),与y 轴交点W (0,2) ∵OA =OX =1,∠XOW =∠AOB =90°,AB ⊥XW , ∴△OXW 顺时针旋转90°,得到△OAB , ∴OB =OW =2, ∴在1<b <2时,直线22y x =+上存在两个AB 的“关联点”,当b >2时,将△AOB 绕点A 逆时针旋转90°得到△AO′U , ∴AO′=AO =1,O′U =OB =b , 点U (1,1+b )在直线22y x =+上, ∴1212b +=⨯+ ·线○封○密·○外∴解得3b =∴当2<b <3时, 直线22y x =+上存在两个AB 的“关联点”,当b >3时,UA <AB ,不满足定义,没有两个“关联点”综合得,b 的取值范围1<b <2或2<b <3.【点睛】本题考查新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC >AB ,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,掌握新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC >AB ,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,是解题关键.4、 (1)见解析;(2)CPN 能成为直角三角形,α=30°或60°【解析】【分析】(1)由全等三角形的性质可得∠AEF =∠ACB ,AE=AC ,根据等腰三角形的判定与性质证明∠PEC =∠PCE ,PE=PC ,然后根据线段垂直平分线的判定定理即可证得结论;(2)分∠CPN =90°和∠CNP =90°,利用旋转的性质和三角形的内角和定理求解即可. (1)证明:∵两块是完全相同的且含60︒角的直角三角板ABC 和AFE ,∴AE=AC ,∠AEF =∠ACB =30°,∠F =60°,∴∠AEC =∠ACE ,∴∠AEC -∠AEF =∠ACE -∠ACB ,∴∠PEC =∠PCE ,∴PE=PC ,又AE=AC , ∴AP 所在的直线是线段CE 的垂直平分线.(2) 解:在旋转过程中,CPN 能成为直角三角形, 由旋转的性质得:∠FAC = α, 当∠CNP =90°时,∠FNA =90°,又∠F =60°, ∴α=∠FAC =180°-∠FNA -∠F =180°-90°-60°=30°; 当∠CPN =90°时,∵∠NCP =30°, ∴∠PNC =180°-90°-30°=60°,即∠FNA =60°, ∵∠F =60°, ∴α=∠FAC =180°-∠FNA -∠F =180°-60°-60°=60°, 综上,旋转角α的的度数为30°或60°. ·线○封○密·○外【点睛】本题考查直角三角板的度数、全等三角形的性质、等腰三角形的判定与性质、线段垂直平分线的判定、旋转性质、对顶角相等、三角形的内角和定理,熟练掌握相关知识的联系与运用是解答的关键.5、 (1)2,6(2)①GH W =4-m ;1,5;11m -≤≤,57m ≤≤【解析】【分析】(1)由对称的性质求得C 、D 点的坐标即可知6CD W =.(2)由对称的性质求得G 点坐标为(-1,4-m ),H 点坐标为(2,2-m )①因为0m <,故4-m >2-m >0,则GH W =4-m ②需分类讨论4m -和2m -的值大小,且需要将所求m 值进行验证. ③需分类讨论,当42m m ->-,则345m ≤-≤且23m -≤,当42m m -<-,则325m ≤-≤且43m -≤,再取公共部分即可.(1)线段AB 上所有的点到x 轴的最大距离是2,则线段AB 的界值2AB W =线段AB 关于直线2y =对称后得到线段CD ,C 点坐标为(-1,6),D 点坐标为(2,4),线段CD 上所有的点到x 轴的最大距离是6,则线段CD 的界值6CD W =(2)设G 点纵坐标为a ,H 点纵坐标为b 由题意有22a m +=,222b m ++= 解得a =4-m ,b =2-m故G 点坐标为(-1,4-m ),H 点坐标为(2,2-m )①当0m <,4-m >2-m >0故GH W =4-m ②若42m m ->-,则43m -=即m =1或m =7当m =1时,43m -=,21m -=,符合题意当m =7时,43m -=,25m -=,42m m -<-,不符合题意,故舍去. 若42m m -<-,则23m -= 即m =-1或m =5 当m =-1时,45m -=,23m -=,42m m ->-,不符合题意,故舍去 当m =5时,41m -=,23m -=,符合题意. 则3GH W =时,m 的值为1或5. ③当42m m ->-,则345m ≤-≤且23m -≤ 故有34m ≤-, 解得1m ,7m ≥ 45m -≤,解得19m -≤≤ 故11m -≤≤,79m ≤≤ 23m -≤ 解得15m -≤≤ 故11m -≤≤ 当42m m -<-,则325m ≤-≤且43m -≤ 故有32m ≤-,·线○封○密○外解得1m ≤-,5m ≥25m -≤,解得37m -≤≤故31m -≤≤-,57m ≤≤43m -≤解得17m ≤≤故57m ≤≤综上所述,当35GH W ≤≤时, m 的取值范围为11m -≤≤和57m ≤≤.【点睛】本题考查了坐标轴中对称变化和含绝对值的不等式,本题不但要分类讨论4-m 和2-m 的大小关系,还有去绝对值的情况是解题的关键.x a ≤的解集为a x a -≤≤,x a ≥的解集为x a ≤-,x a ≥.。

山东省泰安市2016届九年级中考模拟考试数学试题解析(解析版)

山东省泰安市2016届九年级中考模拟考试数学试题解析(解析版)

山东省泰安市2016届九年级中考模拟考试数学试题一、选择题:本大题共20小题,每小题3分,共60分1.下列算式结果为-3的是()A.-|-3| B.(-3)0 C.-(-3) D.(-3)-1【答案】A.【解析】试题解析:∵-|-3|=-3,(-3)0=1,-(-3)=3,(-3)-1=-13,∴算式结果为-3的是-|-3|.故选A.考点:.负整数指数幂;2.相反数;3.绝对值;4.零指数幂.2.某种埃博拉病毒(EBV)长0.000000665nm左右.将0.000000665用科学记数法表示应为()A.0.665×10-6 B.6.65×10-7 C.6.65×10-8 D.0.665×10-9【答案】B.【解析】试题解析:0.000000665=6.65×10-7;故选B.考点:科学记数法—表示较小的数.3.下列图形中,既是轴对称图形,又是中心对称图形的是()【答案】C.【解析】试题解析:A、是轴对称图形,不是中心对称图形,故A错误;B、既不是轴对称图形也不是中心对称图形,故B错误;C、既是轴对称图形,又是中心对称图形,故C正确;D、是中心对图形,不是轴对称图形,故D错误;故选C.考点:1.中心对称图形;2.轴对称图形.4.下列计算正确的是()A.(a4)2=a6 B.a+2a=3a2 C.a7÷a2=a5 D.a(a2+a+1)=a3+a2【答案】C.【解析】试题解析:A、幂的乘方底数不变指数相乘,故A错误;B、合并同类项系数相加字母部分不变,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、单项式乘多项式用单项式乘多项式的每一项,并把所得的乘积相加,故D错误;故选C.考点:1.同底数幂的除法;2.合并同类项;3.幂的乘方与积的乘方;4.单项式乘多项式.5.如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2 B.8πcm2 C.6πcm2 D.3πcm2【答案】B.【解析】试题解析:观察三视图知:该几何体为圆柱,高为4cm,底面直径为2cm,侧面积为:πdh=2π×4=8πcm2.则这个几何体的侧面积是8πcm2.故选B.考点:由三视图判断几何体.6.小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).根据以上信息,如下结论错误的是()A.被抽取的天数为50天B.空气轻微污染的所占比例为10%C.扇形统计图中表示优的扇形的圆心角度数57.6°D.估计该市这一年达到优和良的总天数不多于290天【答案】D.【解析】试题解析:A、被抽查的天数是:32÷64%=50(天),则命题正确;B、空气轻度微污染的天数是:50-8-32-3-1-1=5,则所占的比例是:550×100%=10%,则命题正确;C、表示优的扇形统计图的圆心角是:360°×850=57.6°,则命题正确;D、一年中达到优和良的天数是365×83250=292(天),则命题错误.故选D.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.7.将一块等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠2的度数为()A.85° B.75° C.60° D.45°【答案】B.【解析】试题解析:如图1,,∵∠1=60°,∴∠3=∠1=60°,∴∠4=90°-60°=30°,∵∠5=∠4,∴∠5=30°,∴∠2=∠5+∠6=30°+45°=75°.故选B .考点:平行线的性质.8.在六张卡片上分别写有π,13,1.5,-3,0六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .23【答案】B.【解析】试题解析:∵在六张卡片上分别写有π,13,1.5,-3,0六个数, ∴从中任意抽取一张,卡片上的数为无理数的概率是:2163 . 故选B .考点:1.概率公式;2.无理数.9.如图,在⊙O 中,弦AB∥CD,若∠ABC=40°,则∠BOD=( )A .20° B.40° C.50° D.80°【答案】D.【解析】试题解析:∵弦AB∥CD,∴∠ABC=∠BCD,∴∠BOD=2∠ABC=2×40°=80°.故选D.考点:1.圆周角定理;2.平行线的性质.10.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.88152.5x x+= B.88152.5x x=+ C.8184 2.5x x+= D.8812.54x x=+【答案】D. 【解析】试题解析:设乘公交车平均每小时走x千米,根据题意可列方程为:8812.54 x x=+故选D.考点:由实际问题抽象出分式方程.11.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为()A.【答案】B.【解析】试题解析:如图:∵将矩形纸片ABCD 折叠,使点C 与点A 重合,∴AC⊥EF,AO=CO ,在矩形ABCD ,∠D=90°,∴△ACD 是Rt△,由勾股定理得=,∵∠EOC=∠D=90°,∠ECO=∠DCA,∴△DAC∽△OFC, ∴CO FOCD AD =,2FO=,,故选B .考点:翻折变换(折叠问题)12.不等式组10360x x -≤⎧⎨-⎩<的解集在数轴上表示正确的是( )【答案】D.【解析】试题解析:01036x x -≤⎧⎨-⎩①<②, 由①得:x≥1,由②得:x <2,在数轴上表示不等式的解集是:故选D.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.13.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A.先把△ABC向左平移5个单位,再向下平移2个单位B.先把△ABC向右平移5个单位,再向下平移2个单位C.先把△AB C向左平移5个单位,再向上平移2个单位D.先把△ABC向右平移5个单位,再向上平移2个单位【答案】A.【解析】试题解析:根据网格结构,观察对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D 的位置,所以平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选A.考点:生活中的平移现象.14.如图1,△ABC和△DEF都是等腰直角三角形,其中∠C=∠EDF=90°,点A与点D重合,点E在AB上,AB=4,DE=2.如图2,△ABC保持不动,△DEF沿着线段AB从点A向点B移动,当点D与点B重合时停止移动.设AD=x,△DEF与△ABC重叠部分的面积为y,则y关于x的函数图象大致是()【答案】B.考点:动点问题的函数图象.15.如图,AB 是⊙O 的直径,AD 是⊙O 的切线,点C 在⊙O 上,BC∥OD,AB=2,OD=3,则BC 的长为( )A .23B .32CD 【答案】A.【解析】试题解析:∵BC∥OD∴∠B=∠AOD∵∠C=∠OAD∴△ABC∽△DOA∴BC:OA=AB:OD∴BC=23.故选A.考点:1.圆周角定理;2.切线的性质;3.相似三角形的判定与性质.16.如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米 B.C.D.100+1)米【答案】D.【解析】试题解析:由已知,得∠A=30°,∠B=45°,CD=100,∵CD⊥AB于点D.∴在Rt△ACD中,∠CDA=90°,tanA=CD AD,∴AD=tanCDA==在Rt△BCD中,∠CDB=90°,∠B=45°∴DB=CD=100米,+100=100+1)米.故选D.考点:解直角三角形的应用-仰角俯角问题.17.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()【答案】C.【解析】试题解析:当a <0时,二次函数顶点在y 轴负半轴,一次函数经过一、二、四象限;当a >0时,二次函数顶点在y 轴正半轴,一次函数经过一、二、三象限.故选C .考点:1.二次函数的图象;2.一次函数的图象.18.如图,正方形ABCD 中,AB=6,点E 在边CD 上,且CD=3DE ,将△ADE 沿AE 对折至△AFE,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S △FGC =185. 其中正确结论的个数是( )A .1B .2C .3D .4【答案】D.【解析】试题解析:作FM⊥BC 于M ,∵四边形ABCD 是正方形,∴AB=BC=CD=DA=6,∠B=∠D=∠BCD=90°,∵△AEF 是由△ADE 翻折,∴AD=AF=AB,∠ADE=∠AFE=∠AFG=90°,在RT△AGF 和RT△AGB 中,AG AG AF AB =⎧⎨=⎩, ∴△ABG≌△AFG.故①正确.∴BG=GF,设BG=GF=x ,在RT△EGC 中,∵∠ECG=90°,EC=4,EG=x+2,GC=6-x ,∴(x+2)2=42+(6-x )2,∴x=3,∴BG=GC=3,故②正确.∵FM∥EC, ∴FG FM GM GE EC GC==, ∴FM=125,GC=95,CM=65, ∴tan∠AGB=63=2,tan∠FCM=FM CM =2, ∴∠AGB=∠FCM,∴AG∥CF,故③正确,∴S △FGC=112183255⨯⨯=,故④正确. 故选D .考点:1.正方形的性质;2.全等三角形的判定与性质;3.翻折变换(折叠问题).19.如图,在Rt△ABC 中,∠ACB=90°,∠BAC=60°.把△ABC 绕点A 按顺时针方向旋转60°后得到△AB'C',若AB=4,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是( )A .23πB .53π C .2π D .4π 【答案】C .【解析】试题解析:扇形BAB′的面积是:260483603ππ⨯=,在直角△ABC ,AC=12AB=2,S △ABC =S △AB′C′=12AC•BC=12. 扇形CAC′的面积是:260223603ππ⨯=, 则阴影部分的面积是:扇形BAB′的面积+S △AB′C′-S △ABC -扇形CAC′的面积=8233ππ-=2π. 故选C .考点:1.扇形面积的计算;2.旋转的性质.20.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论错误的是( )A .abc >0B .3a >2bC .m (am+b )≤a -b (m 为任意实数)D .4a-2b+c <0【答案】D.【解析】试题解析:A .由函数图象可得各系数的关系:a <0,c >0,对称轴x=-2b a =-1<0,则b <0, 故abc >0,故此选项正确,但不符合题意;B .∵x=-2b a=-1, ∴b=2a,∴2b=4a,∵a<0,b <0,∴3a>2b ,故此选项正确,但不符合题意;C .∵b=2a,代入m (am+b )-(a-b )得:∴m(am+2a )-(a-2a ),=am 2+2am+a ,=a (m+1)2,∵a<0,∴a(m+1)2≤0,∴m(am+b )-(a-b )≤0,即m (am+b )≤a -b ,故此选项正确,但不符合题意;D .当x=-2代入y=ax 2+bx+c ,得出y=4a-2b+c ,利用图象与x 轴交点右侧小于1,则得出图象与坐标轴左侧交点一定小于-2,故y=4a-2b+c >0,故此选项错误,符合题意;故选D .考点:二次函数图象与系数的关系.二、填空题:本大题共4小题,满分12分,每小题3分21.化简221(1)11x x -÷+-的结果是 . 【答案】(x-1)2.【解析】试题解析:原式=11x x -+•(x+1)(x-1) =(x-1)2.考点:分式的混合运算.22.已知关于x 的一元二次方程(a-1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是 .【答案】a <2,且a ≠1.【解析】试题解析:∵关于x 的一元二次方程(a-1)x 2-2x+l=0有两个不相等的实数根,∴△=b2-4ac>0,即4-4×(a-2)×1>0,解这个不等式得,a<2,又∵二次项系数是(a-1),∴a≠1.故a的取值范围是a<2且a≠1.考点:1.根的判别式;2.一元二次方程的定义.23.如图,方格纸中有三个格点A、B、C,则sin∠ABC=..【解析】试题解析:如图所示:过点A作AD⊥BC于点D,连接AC,∵S△ABC =20-12×2×5-12×2×4-12×1×4=9,S△ABC =12×BC×AD=9,∴12AD=9,解得:故sin∠ABC=ADAB==.考点:1.勾股定理;2.锐角三角函数的定义.24.在平面直角坐标系xOy中,记直线y=x+1为l.点A1是直线l与y轴的交点,以A1O为边作正方形A1OC1B1,使点C1落在在x轴正半轴上,作射线C1B1交直线l于点A2,以A2C1为边作正方形A2C1C2B2,使点C2落在在x轴正半轴上,依次作下去,得到如图所示的图形.则点B4的坐标是,点Bn的坐标是.【答案】(15,8); (2n-1,2n-1).考点:1.正方形的性质;2.一次函数图象上点的坐标特征.三、解答题:本大题共5小题,满分48分25.黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?【答案】四座车租1辆,十一座车租6辆.【解析】试题分析:设四座车租x辆,十一座车租y辆,先根据“共有70名职员”作为相等关系列出x,y的方程,再根据“公司职工正好坐满每辆车且总费用不超过5000元”作为不等关系列不等式,求x,y的整数解即可.注意求得的解要代入实际问题中检验.试题解析:设四座车租x辆,十一座车租y辆,则有:4117070606011105000x y x y +=⎧⎨⨯++⨯≤⎩, 将4x+11y=70变形为:4x=70-11y ,代入70×60+60x+11y×10≤5000,可得:70×60+15(70-11y )+11y×10≤5000,解得y≥5011, 又∵x=70114y -≥0, ∴y≤7011, 故y=5,6.当y=5时,x=154(不合题意舍去). 当y=6时,x=1.答:四座车租1辆,十一座车租6辆.考点:1.一元一次不等式组的应用;2.二元一次方程组的应用.26.如图,在平面直角坐标系xOy 中,直线y=2x+n 与x 轴、y 轴分别交于点A 、B ,与双曲线y=4x 在第一象限内交于点C (1,m ).(1)求m 和n 的值;(2)过x 轴上的点D (3,0)作平行于y 轴的直线l ,分别与直线AB 和双曲线y=4x交于点P 、Q ,求△APQ 的面积.【答案】(1)m=4,n=2;(2)403. 【解析】试题分析:(1)先把C(1,m)代入y=4x可求出m,确定C点坐标,然后把C点坐标代入直线y=2x+n可求得n的值;(2)先利用直线y=2x+2,令x=0和3,分别确定A点和P点坐标;再通过y=4x,令x=3,确定Q点坐标,然后利用三角形面积公式计算即可.试题解析:(1)把C(1,m)代入y=4x中得m=41,解得m=4,∴C点坐标为(1,4),把C(1,4)代入y=2x+n得4=2×1+n,解得n=2;(2)∵对于y=2x+2,令x=3,则y=2×3+2=8,得到P点坐标为(3,8);令y=0,则2x+2=0,则x=-1,得到A点坐标为(-1,0),对于y=4x,令x=3,则y=43,得到Q点坐标为(3,43),∴△APQ的面积=12AD•PQ=12×(3+1)×(8-43)=403.考点:反比例函数与一次函数的交点问题.27.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.【答案】(1)CH=AB ;(2)当点E 在DC 边上且不是DC 的中点时,(1)中的结论CH=AB 仍然成立.证明见解析.(3)3+.【解析】试题分析:(1)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C 、H 两点都在以BE 为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC ,最后根据AB=BC ,判断出CH=AB 即可.(2)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C 、H 两点都在以BE 为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC ,最后根据AB=BC ,判断出CH=AB 即可.(3)首先根据三角形三边的关系,可得CK <AC+AK ,据此判断出当C 、A 、K 三点共线时,CK 的长最大;然后根据全等三角形判定的方法,判断出△DFK≌△DEH,即可判断出DK=DH ,再根据全等三角形判定的方法,判断出△DAK≌△DCH,即可判断出AK=CH=AB ;最后根据CK=AC+AK=AC+AB ,求出线段CK 长的最大值是多少即可.试题解析:(1)如图1,连接BE ,,在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°,∵点E 是DC 的中点,DE=DF ,∴点F 是AD 的中点,∴AF=CE,在△ABF 和△CBE 中,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF≌△CBE,∵EH⊥BF,∠BCE=90°,∴C、H 两点都在以BE 为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(2)当点E 在DC 边上且不是DC 的中点时,(1)中的结论CH=AB 仍然成立. 如图2,连接BE ,,在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°,∵AD=CD,DE=DF ,∴AF=CE,在△ABF 和△CBE 中,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H 两点都在以BE 为直径的圆上,∴∠3=∠2,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(3)如图3,,∵CK≤AC+AK,∴当C 、A 、K 三点共线时,CK 的长最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE,∵∠DEH+∠DFH=360°-∠ADC -∠EHF=360°-90°-90°=180°, ∠DFK+∠DFH=180°,∴∠DFK=∠DEH,在△DFK 和△DEH 中,KDF HDE DF DEDFK DEH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DFK≌△DEH,∴DK=DH,在△DAK 和△DCH 中,DA DC KDA HDC DK DH =⎧⎪∠=∠⎨⎪=⎩∴△DAK≌△DCH,∴AK=CH又∵CH=AB,∴AK=CH=AB,∵AB=3,∴AK=3,,∴CK=AC+AK=AC+AB=3+,即线段CK长的最大值是3+.考点:四边形综合题.28.在△ABC 和△DEC 中,∠A=∠EDC=45°,∠ACB=∠DCE=30°,点DC 在AC 上,点B 和点E 在AC 两侧,AB=5,25DC AC =. (1)求CE 的长;(2)如图2,点F 和点E 在AC 同侧,∠FAD=∠FDA=15°.①求证:AB=DF+DE ;②连接BE ,直接写出△BEF 的面积.【答案】.(2) ①证明见解析;②192. 【解析】 试题分析:(1)过点E 作EN⊥DC 于点N ,证明△ABC∽△DEC.得出对应边成比例DE DC AB AC =,求DE ,再在△DEC 中,由∠EDC=45°,∠DCE=30°,求出,即可得出;(2)①过点F作FM⊥FD交AB于点M,连接MD,先证明△AMF为等边三角形,得出FM=AF=FD=AM,得出∠FMD=∠FDM=45°,再证出MD∥BC,得出比例式求出MB=DE,即可得出结论;②由三角形的面积公式=12absinC,分别求出五边形ABCEF的面积、△ABF的面积、△BCE的面积,△BEF的面积=五边形ABCEF的面积-△ABF的面积-△BCE的面积,即可得出结果.试题解析: (1)过点E作EN⊥DC于点N,如图1所示:在△ABC和△DEC中,∵∠A=∠EDC,∠ACB=∠DCE,∴△ABC∽△DEC.∴DE DC AB AC=,∵AB=5,25 DCAC=,∴DE=2.在△DEC中,∠EDC=45°,∠DCE=30°,,DE,,.(2)①证明:过点F作FM⊥FD交AB于点M,连接MD,如图2所示:∵∠FAD=∠FDA=15°,∴AF=DF,∠AFD=150°.∴∠AFM=60°.∵∠MAF=∠BAC+∠DAF=60°,∴△AMF 为等边三角形.∴FM=AF=FD=AM,∴∠FMD=∠FDM=45°.∴∠AMD=105°=∠ABC.∴MD∥BC, ∴MB AB DC AC=. 由(1)知:DE AB DC AC=, ∴MB DE DC DC =, ∴MB=DE.∴AB=DF+DE.②由①得: DF=AB-DE=3,∴FM=FD=AM=3,,∵MD∥BC,∴MD:BC=AM :AB ,即:BC=3:5,,∵DC:AC=2:5,,∵△ABC 的面积=12×AB×ACsin45°=12 △ADF 的面积=12×AF×DFsin150°=12×3×3×12=94,△CDE 的面积=12×CD×CEsin30°=12+×12,△DEF 的面积=12×DE×DFsin120°=12△ABF 的面积=12×AB×AFsin60°=12,△BCE 的面积=12×BC×CEsin60°=12∴△BEF 的面积=五边形ABCEF 的面积-△ABF 的面积-△BCE 的面积=94)192. 考点:相似形综合题.29.如图,已知抛物线与x 轴交于点A (-2,0),B (4,0),与y 轴交于点C (0,8).(1)求抛物线的解析式及其顶点D 的坐标;(2)设直线CD 交x 轴于点E .在线段OB 的垂直平分线上是否存在点P ,使得点P 到直线CD 的距离等于点P 到原点O 的距离?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)过点B 作x 轴的垂线,交直线CD 于点F ,将抛物线沿其对称轴平移,使抛物线与线段EF 总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?【答案】(1)y=-x 2+2x+8;顶点D (1,9);(2)P 的坐标为(2,-).(3)向上最多可平移72个单位长,向下最多可平移14个单位长. 【解析】试题分析:(1)由抛物线过A 、B 、C 三点可求出抛物线表达式;(2)假设存在,设出P 点,解出直线CD 的解析式,根据点P 到CD 的距离等于PO 可解出P 点坐标;(3)应分两种情况:抛物线向上或下平移,设出解析式,代入点求出平移的单位长度.试题解析:(1)设抛物线解析式为y=a (x+2)(x-4).把C(0,8)代入,得a=-1.∴y=-x2+2x+8=-(x-1)2+9,顶点D(1,9);(2)假设满足条件的点P存在.依题意设P(2,t).由C(0,8),D(1,9)求得直线CD的解析式为y=x+8,它与x轴的夹角为45°.设OB的中垂线交CD于H,则H(2,10).则PH=|10-t|,点P到CD的距离为|10t|d==-又PO==.|10t|=-.平方并整理得:t2+20t-92=0,解之得t=-.∴存在满足条件的点P,P的坐标为(2,-).(3)由上求得E(-8,0),F(4,12).①若抛物线向上平移,可设解析式为y=-x2+2x+8+m(m>0).当x=-8时,y=-72+m.当x=4时,y=m.∴-72+m≤0或m≤12.∴0<m≤72.②若抛物线向下平移,可设解析式为y=-x2+2x+8-m(m>0).由2288y x x m y x⎧=-++-⎨=+⎩,有-x2+x-m=0.∴△=1-4m≥0,∴m≤14.∴向上最多可平移72个单位长,向下最多可平移14个单位长.考点:二次函数综合题.。

2016年山东省泰安市泰山区中考数学模拟试卷试题解析

2016年山东省泰安市泰山区中考数学模拟试卷试题解析

2016年山东省泰安市泰山区中考数学模拟试卷试题解析一、选择题(共20小题,每小题3分,满分60分)1.|﹣|的相反数是()A.B.﹣C.3 D.﹣3【考点】绝对值;相反数.【分析】一个负数的绝对值是它的相反数,求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:∵|﹣|=,∴的相反数是﹣.故选:B.2.下列运算正确的是()A.x3•x2=x5B.(x3)3=x6C.x5+x5=x10D.x6﹣x3=x3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法,幂的乘方与合并同类项的知识求解,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、x3•x2=x5,故本选项正确;B、(x3)3=x9,故本选项错误;C、x5+x5=2x5,故本选项错误;D、x6﹣x3≠x3,故本选项错误.故选A.3.下列图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称的概念和各图形的特点即可求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.4.南海是我国的固有领土,2014年在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×109B.0.194×1010 C.19.4×109D.1.94×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将194亿用科学记数法表示为1.94×1010.故选D.5.如图,是由两个相同的圆柱组成的图形,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看立着的圆柱是一个圆,躺着的圆柱是一个矩形,并且矩形位于圆的右侧.故选C.6.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3C.4.5 D.5【考点】翻折变换(折叠问题);勾股定理的应用.【分析】先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在Rt△C′BF中,运用勾股定理BF2+BC′2=C′F2求解.【解答】解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.7.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A. B. C. D.【考点】二次函数的图象;反比例函数的图象.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.8.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为4,大正方形面积为74,直角三角形中较小的锐角为θ,那么tanθ的值是()A.B.C.D.【考点】勾股定理;锐角三角函数的定义.【分析】由题意知小正方形的边长为2,大正方形的边长为.设直角三角形中较小边长为x,则有(x+2)2+x2=()2,解方程求得x=5,从而求出较长边的长度,再运用正切函数定义求解.【解答】解:由已知条件可知,小正方形的边长为2,大正方形的边长为.设直角三角形中较小边长为x,则有(x+2)2+x2=()2,解得x=5.则较长边的边长为x+2=5+2=7.故tanθ==.故选B.9.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,有以下结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确结论的个数为()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质.【分析】先证明△AEB≌△AFC得∠EAB=∠FAC即可推出③正确,由△AEM≌△AFN 即可推出①正确,由△CMD≌△BND可以推出②正确,由△ACN≌△ABM可以推出④正确,由此即可得出结论.【解答】解:在△AEB和△AFC中,,∴△AEB≌△AFC,∴∠EAB=∠FAC,EB=CF,AB=AC,∴∠EAM=∠FAN,故③正确,在△AEM和△AFN中,,∴△AEM≌△AFN,∴EM=FN,AM=AN,故①正确,∵AC=AB,∴CM=BN,在△CMD和△BNC中,,∴△CMD≌△BND,∴CD=DN,故②正确,在△ACN和△ABM中,,∴△ACN≌△ABM,故④正确,故①②③④正确,故选D.10.不等式组的整数解()个.A.3 B.4 C.5 D.6【考点】一元一次不等式组的整数解.【分析】先求出每个不等式的解集,在确定不等式组的解集,即可得整数解个数.【解答】解:解不等式﹣2x+1<x+4,得:x>﹣1,解不等式≤1,得:x≤4,∴不等式组的解集为:﹣1<x≤4,则不等式组的整数解有0、1、2、3、4这5个,故选:C.11.方程(k﹣1)x2﹣x+=0有两个实数根,则k的取值范围是()A.k≥1 B.k≤1 C.k>1 D.k<1【考点】根的判别式.【分析】假设k=1,代入方程中检验,发现等式不成立,故k不能为1,可得出此方程为一元二次方程,进而有方程有解,得到根的判别式大于等于0,列出关于k的不等式,求出不等式的解集得到k的范围,且由负数没有平方根得到1﹣k大于0,得出k的范围,综上,得到满足题意的k的范围.【解答】解:当k=1时,原方程不成立,故k≠1,∴方程为一元二次方程,又此方程有两个实数根,∴b2﹣4ac=(﹣)2﹣4×(k﹣1)×=1﹣k﹣(k﹣1)=2﹣2k≥0,解得:k≤1,1﹣k>0,综上k的取值范围是k<1.故选D.12.某校春季运动会比赛中,八年级(1)班和(5)班的竞技实力相当.关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①(1)班得分×5=(5)班得分×6;②1)班得分=(5)班×2﹣40分,根据等量关系列出方程组即可.【解答】解:设(1)班得x分,(5)班得y分,根据题意得:,故选:D.13.化简÷(1+)的结果是()A.B. C.D.【考点】分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.14.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为()A.B.πC.πD.【考点】几何概率.【分析】针扎到内切圆区域的概率就是内切圆的面积与正三角形面积的比.【解答】解:∵如图所示的正三角形,∴∠CAB=60°,设三角形的边长是a,∴AB=a,∵⊙O是内切圆,∴∠OAB=30°,∠OBA=90°,∴BO=tan30°AB=a,则正三角形的面积是a2,而圆的半径是a,面积是a2,因此概率是a2÷a2=.故选C.15.如图,是某工件的三视图,其中圆的半径为10cm,等腰三角形的高为30cm,则此工件的侧面积是()cm2.A.150πB.300πC.50πD.100π【考点】圆锥的计算;由三视图判断几何体.【分析】根据给出的三视图,此工件是一个圆锥,此工件的侧面积展开图是扇形,根据扇形的面积计算.【解答】解:由题意知:展开侧面是一个扇形,扇形所在圆的半径是: =10(cm),扇形的弧长是:20π,∴工件的侧面积是×10×20π=100π(cm2).故选D.16.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A.10海里/小时 B.30海里/小时C.20海里/小时 D.30海里/小时【考点】解直角三角形的应用-方向角问题.【分析】易得△ABC是直角三角形,利用三角函数的知识即可求得答案.【解答】解:∵∠CAB=10°+20°=30°,∠CBA=80°﹣20°=60°,∴∠C=90°,∵AB=20海里,∴AC=AB•cos30°=10(海里),∴救援船航行的速度为:10÷=30(海里/小时).故选D.17.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A.53°B.37°C.47°D.123°【考点】平行四边形的性质.【分析】设EC于AD相交于F点,利用直角三角形两锐角互余即可求出∠EFA的度数,再利用平行四边形的性质:即两对边平行即可得到内错角相等和对顶角相等,即可求出∠BCE的度数.【解答】解:∵在平行四边形ABCD中,过点C的直线CE⊥AB,∴∠E=90°,∵∠EAD=53°,∴∠EFA=90°﹣53°=37°,∴∠DFC=37∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCE=∠DFC=37°.故选B.18.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n)B.(m,n)C.(m,)D.()【考点】位似变换;坐标与图形性质.【分析】根据A,B两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.【解答】解:∵△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上,即A点坐标为:(4,6),B点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),().∴线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为:故选D.19.如图,已知AB是⊙O的直径,BC是弦,∠ABC=30°,过圆心O作OD⊥BC交弧BC于点D,连接DC,则∠DCB的度数为()度.A.30 B.45 C.50 D.60【考点】圆心角、弧、弦的关系.【分析】根据已知条件“过圆心O作OD⊥BC交弧BC于点D、,∠ABC=30°”、及直角三角形OBE的两个锐角互余求得∠BOE=60°;然后根据同弧BD所对的圆周角∠DCB是所对的圆心角∠DOB的一半,求得∠DCB的度数.【解答】解:∵OD⊥BC,∠ABC=30°,∴在直角三角形OBE中,∠BOE=60°(直角三角形的两个锐角互余);又∵∠DCB=∠DOB(同弧所对的圆周角是所对的圆心角的一半),∴∠DCB=30°;故选A.20.根据下表中关于二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判x轴()﹣…2B.有两个交点,且它们分别在y轴两侧C.有两个交点,且它们均在y轴同侧D.无交点【考点】抛物线与x轴的交点.【分析】利用二次函数y=ax2+bx+c的自变量x与函数y的对应值.【解答】解:根据表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可以发现当x=0,x=2时,y的值都等于﹣<0,又根据二次函数的图象对称性可得:x=1是二次函数y=ax2+bx+c的对称轴,此时y有最小值﹣2,再根据表中的数据,可以判断出y=0时,x<﹣1或x>2,因此判断该二次函数的图象与x轴有两个交点,且它们分别在y轴两侧.故选B.二、填空题(本大题共4个小题,满分12分,只要求填写最后结果,每小题填对得3分)21.计算:(﹣3)2×+(sin45°﹣1)0﹣()﹣1+×= 25 .【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别进行乘方、零指数幂、负整数指数幂、二次根式的乘法运算,然后合并求解.【解答】解:原式=3+1﹣3+24=25.故答案为:25.22.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则= .【考点】等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.【分析】首先根据题意推出△CAE≌△BCD,可知∠DCB=∠CAE,因此∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°,所以∠FAG=30°,即可推出结论.【解答】解:∵AD=BE,∴CE=BD,∵等边三角形ABC,∴△CAE≌△DCB,∴∠DCB=∠CAE,∴∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°,∵AG⊥CD,∴∠FAG=30°,∴FG:AF=.故答案为:.23.如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为(+1)cm(结果不取近似值).【考点】轴对称-最短路线问题;正方形的性质.【分析】由于点B与点D关于AC对称,所以如果连接DQ,交AC于点P,那么△PBQ的周长最小,此时△PBQ的周长=BP+PQ+BQ=DQ+BQ.在Rt△CDQ中,由勾股定理先计算出DQ的长度,再得出结果.【解答】解:连接DQ,交AC于点P,连接PB、BD,BD交AC于O.∵四边形ABCD是正方形,∴AC⊥BD,BO=OD,CD=2cm,∴点B与点D关于AC对称,∴BP=DP,∴BP+PQ=DP+PQ=DQ .在Rt △CDQ 中,DQ===cm ,∴△PBQ 的周长的最小值为:BP+PQ+BQ=DQ+BQ=+1(cm ).故答案为:(+1).24.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n+1(n 为自然数)的坐标为 (2n ,1) (用n 表示).【考点】规律型:点的坐标.【分析】根据图形分别求出n=1、2、3时对应的点A 4n+1的坐标,然后根据变化规律写出即可.【解答】解:由图可知,n=1时,4×1+1=5,点A 5(2,1), n=2时,4×2+1=9,点A 9(4,1), n=3时,4×3+1=13,点A 13(6,1), 所以,点A 4n+1(2n ,1). 故答案为:(2n ,1).三、解答题(本大题共5个小题,共48分.解答应写出文字说明、证明过程或演算步骤)25.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?【考点】分式方程的应用.【分析】首先设李老师每小时走x 千米,则张老师每小时走(x+1)千米,根据关键描述语是:“比李老师早到半小时”可得等量关系为:李老师所用时间﹣张老师所用时间=,再由等量关系列出方程,解方程即可. 【解答】解:设李老师每小时走x 千米,依题意得到的方程:,解得x1=﹣6,x2=5,经检验x1=﹣6,x2=5都是原分式方程的解,但x1=﹣6不合题意舍去.所以张老师每小时走:5+1=6(千米),答:李老师每小时走5千米,张老师每小时走6千米.26.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【考点】全等三角形的判定与性质;直角三角形斜边上的中线;菱形的判定.【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案;(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∴平行四边形ADCF是菱形.27.已知:A(m,2)是一次函数y=kx+b与反比例函数(x>0)的交点.(1)求m的值;(2)若该一次曲线的图象分别与x、y轴交于E、F两点,且点A恰为E、F的中点,求该直线的解析式;(3)在(x>0)的图象上另取一点B,作BK⊥x轴于K,在(2)的条件下,在线段OF上取一点C,使FO=4CO.试问:在y轴上是否存在点P,使得△PCA和△PBK的面积相等?若存在,求出所有可能的点P的坐标;若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)把点A的横纵坐标代入反比例函数的解析式即可求得m的值;(2)由A点向两坐标轴作垂线,利用相似三角形的性质求得点E、F的坐标,利用待定系数法求得函数的解析式即可;(3)设出B的坐标,利用CO和FO的关系求得C点的坐标,再利用两三角形面积相等得到有关y的关系式求得y的值即可作为P点的纵坐标.【解答】解:(1)∵A(m,2)是一次函数y=kx+b与反比例函数y=的交点∴2=,∴m=;(2)由(1)得A(,2),∴2=k+b,由题意可知:A是线段EF的中点,且E(﹣,0)F(0,b)则:A(,),∴=2即b=4,∴k=﹣,∴一次函数y=kx+b的解析式为:y=﹣+4;(3)由题意知:B、F坐标分别为(k,),(0,4),又4CO=FO,∴C点坐标为(0,1),设P点坐标为(0,y),则S△PCA=×|y﹣1|;又BK⊥x轴于k,S△PBK=;∵S△PCA =S△PBK,∴|y﹣1|=××k,∴y=﹣1或3.即存在点P且P点坐标为(0,﹣1)或(0,3).28.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.【考点】旋转的性质;直角三角形全等的判定;正方形的性质.【分析】(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AH⊥CG.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.【解答】解:(1)答:AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG,∴∠1=∠2;∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG,∴∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.29.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先求出A、B、C的坐标,再运用待定系数法就可以直接求出二次函数的解析式;(2)①由(1)的解析式可以求出抛物线的对称轴,分类讨论当∠CEF=90°时,当∠CFE=90°时,根据相似三角形的性质就可以求出P点的坐标;②先运用待定系数法求出直线CD的解析式,设PM与CD的交点为N,根据CD的解析式表示出点N的坐标,再根据S△PCD =S△PCN+S△PDN就可以表示出三角形PCD的面积,运用顶点式就可以求出结论.【解答】解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).代入解析式为,解得:.∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴l=﹣=﹣1,∴E点的坐标为(﹣1,0).如图,当∠CEF=90°时,△CEF∽△COD.此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于点M,则△EFC∽△EMP.∴,∴MP=3EM.∵P的横坐标为t,∴P(t,﹣t2﹣2t+3).∵P在第二象限,∴PM=﹣t2﹣2t+3,EM=﹣1﹣t,∴﹣t2﹣2t+3=﹣(t﹣1)(t+3),解得:t1=﹣2,t2=﹣3(因为P与C重合,所以舍去),∴t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3.∴P(﹣2,3).∴当△CEF与△COD相似时,P点的坐标为:(﹣1,4)或(﹣2,3);②设直线CD的解析式为y=kx+b,由题意,得,解得:,∴直线CD的解析式为:y=x+1.设PM与CD的交点为N,则点N的坐标为(t, t+1),∴NM=t+1.∴PN=PM﹣NM=﹣t2﹣2t+3﹣(t+1)=﹣t2﹣+2.∵S△PCD =S△PCN+S△PDN,∴S△PCD=PN•CM+PN•OM=PN(CM+OM)=PN•OC=×3(﹣t2﹣+2)=﹣(t+)2+,∴当t=﹣时,S△PCD的最大值为.2016年6月27日。

山东省泰安市岱岳区2016年中考数学模拟试卷(一)(解析版)

山东省泰安市岱岳区2016年中考数学模拟试卷(一)(解析版)

山东省泰安市岱岳区2016年中考数学模拟试卷(一)(解析版)参考答案与试题解析一、选择题(本大题共20小题,每小题3分)1.﹣4的相反数是()A.B.﹣C.4 D.﹣4【分析】根据相反数的定义作答即可.【解答】解:﹣4的相反数是4.故选C.【点评】本题考查了相反数的知识,注意互为相反数的特点:互为相反数的两个数的和为0.2.下列运算正确的是()A.x2+x3=x5B.3=﹣x6,故B选项错误;C、应为x6÷x2=x4,故C选项错误;D、﹣2xx2=﹣2x3,符合同底数幂的乘法法则,故D选项正确.故选D.【点评】本题考查同底数幂的运算法则:乘法法则,底数不变,指数相加;除法法则,底数不变,指数相减;幂的乘方,底数不变,指数相乘,熟练掌握运算性质和法则是解题的关键.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.【点评】本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.4.如图,该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:左视图有2列,从左往右依次有2,1个正方形,其左视图为:.故选D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=()A.20° B.25° C.30° D.35°【分析】延长DC交直线m于E.由平行线得出∠CEB=65°.在Rt△BCE中,由互余两角的关系即可得出结果.【解答】解:延长DC交直线m于E.如图所示:∵l∥m,∴∠CEB=65°.在Rt△BCE中,∠BCE=90°,∠CEB=65°,∴∠α=90°﹣∠CEB=90°﹣65°=25°;故选:B.【点评】本题考查了平行线的性质、直角三角形的性质;熟知平行线的性质及直角三角形的性质是解决问题的关键.6.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y 人.下面所列的方程组正确的是()A.B.C.D.【分析】设到井冈山的人数为x人,到瑞金的人数为y人,根据共34人进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,即可得出方程组.【解答】解:设到井冈山的人数为x人,到瑞金的人数为y人,由题意得:.故选B.【点评】本题考查了有实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.7.如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C 顺时针旋转60°,则顶点A所经过的路径长为()A.10π B.C.π D.π【分析】由题意可知点A所经过的路径为以C为圆心,CA长为半径,圆心角为60°的弧长,故在直角三角形ACD中,由AD及DC的长,利用勾股定理求出AC的长,然后利用弧长公式即可求出.【解答】解:如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:AC==,又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为l==π.故选C【点评】此题考查了弧长公式,以及勾股定理,解本题的关键是根据题意得到点A所经过的路径为以C为圆心,CA长为半径,圆心角为60°的弧长.8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣4【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选:C.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.9.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20° B.30° C.40° D.50°【分析】先连接BC,由于AB 是直径,可知∠BCA=90°,而∠A=25°,易求∠CBA,又DC 是切线,利用弦切角定理可知∠DCB=∠A=25°,再利用三角形外角性质可求∠D.【解答】解:如右图所示,连接BC,∵AB 是直径,∴∠BCA=90°,又∵∠A=25°,∴∠CBA=90°﹣25°=65°,∵DC是切线,∴∠BCD=∠A=25°,∴∠D=∠CBA﹣∠BCD=65°﹣25°=40°.故选C.【点评】本题考查了直径所对的圆周角等于90°、弦切角定理、三角形外角性质.解题的关键是连接BC,构造直角三角形ABC.10.如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.【分析】求得阴影部分的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率;【解答】解:设正方形的ABCD的边长为a,则BF=BC=,AN=NM=MC=a,∴阴影部分的面积为()2+(a)2=a2,∴小鸟在花圃上的概率为=故选C.【点评】本题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积.11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=与y=bx+c在同一直角坐标系内的大致图象是()A.B.C.D.【分析】根据二次函数的图象得出a,b,c的符号,进而利用一次函数与反比例函数得出图象经过的象限.【解答】解:∵二次函数y=ax2+bx+c(a≠0)的图象开口向下,∴a<0,∵对称轴经过x的负半轴,∴a,b同号,图象经过y轴的正半轴,则c>0,∵函数y=,a<0,∴图象经过二、四象限,∵y=bx+c,b<0,c>0,∴图象经过一、二、四象限,故选:B.【点评】此题主要考查了二次函数的图象以及一次函数和反比例函数的性质,根据已知得出a,b,c的值是解题关键.12.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时) 4 5 6 7 8 10户数 1 3 6 5 4 1这20户家庭日用电量的众数、中位数分别是()A.6,6.5 B.6,7 C.6,7.5 D.7,7.5【分析】根据众数和中位数的定义求解即可,众数是一组数据中出现次数最多的数;中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:这20户家庭日用电量的众数是6,中位数是(6+7)÷2=6.5,故选A.【点评】本题考查了众数和中位数的定义,解题的关键是牢记定义,此题比较简单,易于掌握.13.如图,直线y=x+2与双曲线y=在第二象限有两个交点,那么m的取值范围在数轴上表示为()A.B.C.D.【分析】因为直线y=x+2与双曲线y=在第二象限有两个交点,联立两方程求出m的取值范围即可,然后在数轴上表示出m的取值范围.【解答】解:根据题意知,直线y=x+2与双曲线y=在第二象限有两个交点,即x+2=有两根,即x2+2x+3﹣m=0有两解,△=4﹣4×(3﹣m)>0,解得m>2,∵双曲线在二、四象限,∴m﹣3<0,∴m<3,∴m的取值范围为:2<m<3.故在数轴上表示为.故选B.【点评】本题主要考查反比例函数与一次函数的交点问题和在数轴上表示不等式的解集的知识点,解答本题的关键是联立两方程解得m的取值范围.14.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A.10海里/小时B.30海里/小时C.20海里/小时D.30海里/小时【分析】易得△ABC是直角三角形,利用三角函数的知识即可求得答案.【解答】解:∵∠CAB=10°+20°=30°,∠CBA=80°﹣20°=60°,∴∠C=90°,∵AB=20海里,∴AC=ABcos30°=10(海里),∴救援船航行的速度为:10÷=30(海里/小时).故选D.【点评】本题考查了解直角三角形的应用﹣方向角问题,根据方位角的定义得到图中方位角的度数是前提条件.15.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB 为边在第一象限作正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线上则a的值是()A.1 B.2 C.3 D.4【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB≌△FDA≌△BEC,求得A、B的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D 的坐标是(4,1),C 的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C 的纵坐标是4,把y=4代入y=得:x=1.即G 的坐标是(1,4),∴CG=2,∴a=2.故选B .【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得C 、D 的坐标是关键.16.二次函数y=ax 2+bx+c (a ≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m ≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.【解答】解:∵抛物线和x 轴有两个交点,∴b 2﹣4ac >0,∴4ac ﹣b 2<0,∴①正确;∵对称轴是直线x=﹣1,和x 轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x 轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a ﹣2b+c >0,∴4a+c>2b,∴②错误;∵把x=1代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵﹣=﹣1,∴b=2a,∴3b+2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选:B.【点评】此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法,同时注意特殊点的运用.17.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB 中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78° B.75° C.60° D.45°【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故选:B.【点评】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.18.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3D.4【分析】作OM⊥AB于M,ON⊥CD于N,连接OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OM的长.【解答】解:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理、勾股定理得:OM=ON==3,∵弦AB、CD互相垂直,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=3故选:C.【点评】本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线.19.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.【分析】分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论.【解答】解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位/秒,则:(1)当点P在A→B段运动时,PB=1﹣t,S=π(1﹣t)2(0≤t<1);(2)当点P在B→A段运动时,PB=t﹣1,S=π(t﹣1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:S=π(t﹣1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.【点评】本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择.20.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②正确;先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③正确;当∠ABC=45°时,∠BCN=45°,由P为BC边的中点,得出BN=PB=PC,判断④正确.【解答】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,正确;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN=PB=PC,正确.故选D.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键.二、填空题(本大题共4小题,满分12分,每小题填对得3分)21.分解因式:x3﹣4x2+4x=x(x﹣2)2.【分析】首先提取公因式x,然后利用完全平方式进行因式分解即可.【解答】解:x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2,故答案为x(x﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.22.化简÷(1+)的结果是.【分析】根据分式混合运算的法则进行计算即可.【解答】解:原式=÷==.故答案为:.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.23.如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留π)【分析】过点O作OD⊥BC于点D,交于点E,则可判断点O是的中点,由折叠的性质可得OD=OE=R=2,在Rt△OBD中求出∠OBD=30°,继而得出∠AOC,求出扇形AOC的面积即可得出阴影部分的面积.【解答】解:过点O作OD⊥BC于点D,交于点E,连接OC,则点E 是的中点,由折叠的性质可得点O 为的中点,∴S 弓形BO =S 弓形CO ,在Rt △BOD 中,OD=DE=R=2,OB=R=4,∴∠OBD=30°,∴∠AOC=60°,∴S 阴影=S 扇形AOC ==.故答案为:.【点评】本题考查了扇形面积的计算,解答本题的关键是作出辅助线,判断点O 是的中点,将阴影部分的面积转化为扇形的面积.24.(3分)(2013资阳)如图,在Rt △ABC 中,∠C=90°,∠B=60°,点D 是BC 边上的点,CD=1,将△ABC 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD上的动点,则△PEB 的周长的最小值是 1+ .【分析】连接CE ,交AD 于M ,根据折叠和等腰三角形性质得出当P 和D 重合时,PE+BP 的值最小,即可此时△BPE 的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE ,先求出BC 和BE 长,代入求出即可.【解答】解:连接CE,交AD于M,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,∴AD垂直平分CE,即C和E关于AD对称,CD=DE=1,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,∵∠DEA=90°,∴∠DEB=90°,∵∠B=60°,DE=1,∴BE=,BD=,即BC=1+,∴△PEB的周长的最小值是BC+BE=1++=1+,故答案为:1+.【点评】本题考查了折叠性质,等腰三角形性质,轴对称﹣最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置,题目比较好,难度适中.三、解答题(本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)(2015德州模拟)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,12),点C的坐标为(﹣4,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)【分析】(1)过点A作AD⊥x轴于D,根据A、C的坐标求出AD=12,CD=n+4,已知tan∠ACO=2,可求出n的值,把点的坐标代入解析式即可求得反比例函数和一次函数解析式;(2)将反比例函数和一次函数的解析式联立,解方程组即可求得点B的坐标;(3)分两种情况:①AE⊥x轴,②EA⊥AC,分别写出E的坐标即可.【解答】解:(1)过点A作AD⊥x轴于D,∵C的坐标为(﹣4,0),A的坐标为(n,12),∴AD=12,CD=n+4,∵tan∠ACO=2,∴==2,解得:n=2,∴A(2,12),把A(2,12)代入y=,得m=2×12=24,∴反比例函数表达式为:y=,又∵点A(2,12),C(﹣4,0)在直线y=kx+b上,∴2k+b=12,﹣4k+b=0,解得:k=2,b=8,∴一次函数的表达式为:y=2x+8;(2)由方程组,解得:,,∵A(2,12),∴B(﹣6,﹣4);(3)分两种情况:①当AE⊥x轴时,即点E与点D重合,此时E1(2,0);②当EA⊥AC时,此时△ADE∽△CDA,则=,DE==24,又∵D的坐标为(2,0),∴E2(26,0).综上所述,所求点E的坐标为E1(2,0),E2(26,0).【点评】本题考查了反比例函数与一次函数的交点问题,锐角三角函数的定义,待定系数法求函数的解析式,直角三角形的性质,相似三角形的判定与性质,难度适中.利用数形结合、方程思想与分类讨论是解题的关键.26.(8分)(2014重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,求a的值.【分析】(1)设用于购买书桌、书架等设施的为x元,则购买书籍的有(30000﹣x)元,利用“购买书刊的资金不少于购买书桌、书架等设施资金的3倍”,列出不等式求解即可;(2)根据“自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,且总集资额为20000元”列出方程求解即可.【解答】解:(1)设用于购买书桌、书架等设施的为x元,则购买书籍的有(30000﹣x)元,根据题意得:30000﹣x≥3x,解得:x≤7500.答:最多用7500元购买书桌、书架等设施;(2)根据题意得:200(1+a%)×150(1﹣a%)=20000整理得:a2+10a﹣3000=0,解得:a=50或a=﹣60(舍去),所以a的值是50.【点评】本题考查了一元二次方程的应用及一元一次不等式的应用,解题的关键是从题目中整理出等量关系和不等关系,难度不大.27.(10分)(2013呼和浩特)如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.【分析】(1)由正方形的性质可得:∠B=∠C=90°,由同角的余角相等,可证得:∠BAE=∠CEF,根据同角的正弦值相等即可解答;(2)在BA边上截取BK=BE,连接KE,根据角角之间的关系得到∠AKE=∠ECP,由AB=CB,BK=BE,得AK=EC,结合∠KAE=∠CEP,证明△AKE≌△ECP,于是结论得出;(3)作DM⊥AE于AB交于点M,连接ME、DP,易得出DM∥EP,由已知条件证明△ADM≌△BAE,进而证明MD=EP,四边形DMEP是平行四边形即可证出.【解答】(1)解:∵四边形ABCD是正方形,∴∠B=∠D,∵∠AEP=90°,∴∠BAE=∠FEC,在Rt△ABE中,AE==,∵sin∠BAE==sin∠FEC=,∴=,解法二:由上得∠BAE=∠FEC,∵∠BAE=∠FEC,∠B=∠DCB,∴△ABE∽△ECF,∴=,(2)证明:在BA边上截取BK=BE,连接KE,∵∠B=90°,BK=BE,∴∠BKE=45°,∴∠AKE=135°,∵CP平分外角,∴∠DCP=45°,∴∠ECP=135°,∴∠AKE=∠ECP,∵AB=CB,BK=BE,∴AB﹣BK=BC﹣BE,即:AK=EC,由第一问得∠KAE=∠CEP,∵在△AKE和△ECP中,,∴△AKE≌△ECP(ASA),∴AE=EP;(3)答:存在.证明:作DM⊥AE交AB于点M,则有:DM∥EP,连接ME、DP,∵在△ADM与△BAE中,,∴△ADM≌△BAE(ASA),∴MD=AE,∵AE=EP,∴MD=EP,∴MD EP,∴四边形DMEP为平行四边形.【点评】此题考查了相似三角形的判定与性质,全等三角形的判定与性质以及正方形的性质等知识.此题综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择.28.(10分)(2014武汉)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P 从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.【分析】(1)分两种情况讨论:①当△BPQ∽△BAC时,=,当△BPQ∽△BCA时,=,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出=,代入计算即可;(3)作PE⊥AC于点E,DF⊥AC于点F,先得出DF=,再把QC=4t,PE=8﹣CM=8﹣4t代入求出DF,过BC的中点R作直线平行于AC,得出RC=DF,D在过R的中位线上,从而证出PQ的中点在△ABC的一条中位线上.【解答】解:(1)∵AC=6cm,BC=8cm,∴AB==10cm,①当△BPQ∽△BAC时,∵=,BP=5t,QC=4t,AB=10cm,BC=8cm,∴=,∴t=1;②当△BPQ∽△BCA时,∵=,∴=,∴t=,∴t=1或时,△BPQ与△ABC相似;(2)如图所示,过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=PBsinB=3t,BM=4t,MC=8﹣4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,∴△ACQ∽△CMP,∴=,∴=,解得:t=;(3)如图,作PM⊥BC于点M,PQ的中点设为D点,再作PE⊥AC于点E,DF⊥AC于点F,∵∠ACB=90°,∴DF为梯形PECQ的中位线,∴DF=,∵QC=4t,PE=8﹣BM=8﹣4t,∴DF==4,∵BC=8,过BC的中点R作直线平行于AC,∴RC=DF=4成立,∴D在过R的中位线上,∴PQ的中点在△ABC的一条中位线上.【点评】此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、中位线的性质等,关键是画出图形作出辅助线构造相似三角形,注意分两种情况讨论.29.(12分)(2016岱岳区校级模拟)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1.tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.【分析】(1)由三角函数的定义可求得OB,再结合旋转可得到A、B、C的坐标,利用待定系数法可求得抛物线解析式;(2)①△COD为直角三角形,可知当△CEF与△COD相似时有两种情况,即∠FEC=90°或∠EFC=90°,当PE⊥CE时,则可得抛物线的顶点满足条件,当PE⊥CD时,过P作PG⊥x 轴于点G,可证△PGE∽△COD,利用相似三角形的性质可得到关于t的方程,可求得P点坐标;②可求得直线CD的解析式,过P作PN⊥x轴于点N,交CD于点M,可用t表示出PM的长,当PM取最大值时,则△PCD的面积最大,可求得其最大值.【解答】解:(1)∵OA=1.tan∠BAO=3,∴=3,解得OB=3,又由旋转可得OB=OC=3,∴A(1,0),B(0,3),C(﹣3,0),设抛物线解析式为y=ax2+bx+c,把A、B、C三点的坐标代入可得,解得,∴抛物线解析式为y=﹣x2﹣2x+3,(2)①由(1)可知抛物线对称轴为x=﹣1,顶点坐标为(﹣1,4),∵△COD为直角三角形,∴当△CEF与△COD相似时有两种情况,即∠FEC=90°或∠EFC=90°,若∠FEC=90°,则PE⊥CE,∵对称轴与x轴垂直,∴此时抛物线的顶点即为满足条件的P点,此时P点坐标为(﹣1,4);若∠EFC=90°,则PE⊥CD,如图,过P作PG⊥x轴于点G,则∠GPE+∠PEG=∠DCO+∠PEG,∴∠GPE=∠OCD,且∠PGE=∠COD=90°,∴△PGE∽△COD,∴=,∵E(﹣1,0),G(t,0),且P点横坐标为t,∴GE=﹣1﹣t,PG=﹣t2﹣2t+3,∴=,解得t=﹣2或t=3,∵P点在第二象限,∴t<0,即t=﹣2,此时P点坐标为(﹣2,3),综上可知满足条件的P点坐标为(﹣1,4)或(﹣2,3);②设直线CD解析式为y=kx+m,把C、D两点坐标代入可得,解得,∴直线CD解析式为y=x+1,如图2,过P作PN⊥x轴,交x轴于点N,交直线CD于点M,∵P点横坐标为t,∴PN=﹣t2﹣2t+3,MN=t+1,∵P点在第二象限,∴P点在M点上方,∴PM=PN﹣MN=﹣t2﹣2t+3﹣(t+1)=﹣t2﹣t+2=﹣(t+)2+,∴当t=﹣时,PM有最大值,最大值为,∵S△PCD=S△PCM+S△PDM=PMCN+PMNO=PMOC=PM,∴当PM有最大值时,△PCD的面积有最大值,∴(S△PCD)max=×=,综上可知存在点P使△PCD的面积最大,△PCD的面积有最大值为.【点评】本题为二次函数的综合应用,涉及知识点有三角函数的定义、旋转的性质、待定系数法、二次函数的最值、三角形相似的判定和性质及分类思想等.在(1)中求得C点的坐标是解题的关键,在(2)中注意P点的位置分两种情况,在(3)中注意利用二次函数求最值.本题考查知识点较多,综合性较强,难度很大.。

山东省泰安市岱岳区新城实验中学2016届九年级数学下学期第二次月考试卷(含解析)

山东省泰安市岱岳区新城实验中学2016届九年级数学下学期第二次月考试卷(含解析)

2015-2016学年山东省泰安市岱岳区新城实验中学九年级(下)第二次月考数学试卷一、选择题(本大题共20道题,每小题3分)1.地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B.5.1×109C.5.1×108D.0.51×1072.在,0,﹣1,﹣这四个数中,最小的数是()A.B.0 C.﹣ D.﹣13.下列运算正确的是()A.3x3﹣5x3=﹣2x B.6x3÷2x﹣2=3xC.()2=x6D.﹣3(2x﹣4)=﹣6x﹣124.如图所示的几何体的主视图是()A.B.C.D.cm)()A.186,186 B.186,187 C.186,188 D.208,1886.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为()A.B.C.D.7.化简﹣的结果是()A.m+3 B.m﹣3 C.D.8.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°9.下列剪纸图案中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.10.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为()A.3 B.C.5 D.11.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.212.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.3013.函数y=ax(a≠0)与y=在同一坐标系中的大致图象是()A.B.C.D.14.若不等式组恰有两个整数解,则m的取值范围是()A.﹣1≤m<0 B.﹣1<m≤0 C.﹣1≤m≤0 D.﹣1<m<015.如图,在Rt△ABC中,∠ABC=90°.AB=BC.点D是线段AB上的一点,连结CD.过点B 作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF,给出以下四个结论:①=;②若点D是AB的中点,则AF=AB;③当B、C、F、D四点在同一个圆上时,DF=DB;④若=,则S△ABC=9S△BDF,其中正确的结论序号是()A.①② B.③④ C.①②③D.①②③④16.如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.(11﹣2)米B.(11﹣2)米C.(11﹣2)米D.(11﹣4)米17.如图,在△ABO中,AB⊥OB,OB=,AB=1.将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(1,﹣)C.(﹣1,﹣)D.(﹣1,﹣)或(﹣,﹣1)18.电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x条,“三多”的狗有y条,则解此问题所列关系式正确的是()A.B.C.D.19.如图,点O是圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使和都经过圆心O,则阴影部分的面积是⊙O面积的()A.B.C.D.20.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴相交于点C,且OA=OC,则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题(本题共4小题,每小题3分,共12分)21.分解因式:﹣x3+2x2﹣x= .22.若关于x的一元二次方程ax2+2x﹣1=0无解,则a的取值范围是.23.如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F对称,过点F作FG ∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为.24.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC 的度数为.三、解答题(本题共5小题,满分48分)25.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?26.如图,一次函数y=﹣x+2的图象与x轴交于点B,与反比例函数y=的图象的交点为A(﹣2,3).(1)求反比例函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.27.(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.28.如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.29.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x 轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.2015-2016学年山东省泰安市岱岳区新城实验中学九年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(本大题共20道题,每小题3分)1.地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B.5.1×109C.5.1×108D.0.51×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于510000000有9位,所以可以确定n=9﹣1=8.【解答】解:510 000 000=5.1×108.故选C.2.在,0,﹣1,﹣这四个数中,最小的数是()A.B.0 C.﹣ D.﹣1【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣1<﹣<0<,故选:D.3.下列运算正确的是()A.3x3﹣5x3=﹣2x B.6x3÷2x﹣2=3xC.()2=x6D.﹣3(2x﹣4)=﹣6x﹣12【考点】整式的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方;负整数指数幂.【分析】根据合并同类项的法则、整式的除法法则、幂的乘方法则及去括号的法则分别进行各选项的判断.【解答】解:A、3x3﹣5x3=﹣2x3,原式计算错误,故本选项错误;B、6x3÷2x﹣2=3x5,原式计算错误,故本选项错误;C、()2=x6,原式计算正确,故本选项正确;D、﹣3(2x﹣4)=﹣6x+12,原式计算错误,故本选项错误;故选C.4.如图所示的几何体的主视图是()A .B .C .D .【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:几何体的主视图是:故选:A .cm )( )A .186,186B .186,187C .186,188D .208,188 【考点】众数;中位数. 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据. 【解答】解:众数是:186cm ;中位数是:188cm .故选C .6.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为( )A .B .C .D .【考点】几何概率.【分析】根据正方形的性质求出阴影部分占整个面积的,进而得出答案.【解答】解:由题意可得出:图中阴影部分占整个面积的,因此一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是:. 故选:B .7.化简﹣的结果是( )A.m+3 B.m﹣3 C.D.【考点】分式的加减法.【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式===m+3.故选A.8.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°【考点】直角三角形的性质.【分析】利用直角三角形的性质以及互余的关系,进而得出∠COA的度数,即可得出答案.【解答】解:∵将一副直角三角尺如图放置,∠AOD=20°,∴∠COA=90°﹣20°=70°,∴∠BOC=90°+70°=160°.故选:B.9.下列剪纸图案中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:A.10.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为()A.3 B.C.5 D.【考点】翻折变换(折叠问题).【分析】首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.【解答】解:设ED=x,则AE=6﹣x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=3.75,∴ED=3.75故选:B.11.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2【考点】切线的性质;矩形的性质.【分析】连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.【解答】解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BG O=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在R t△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=,∴DM=3=,故选A.12.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.30【考点】规律型:图形的变化类.【分析】仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=7求解即可.【解答】解:观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…第n个图形有3+3n=3(n+1)个圆圈,当n=7时,3×(7+1)=24,故选B.13.函数y=ax(a≠0)与y=在同一坐标系中的大致图象是()A .B .C .D .【考点】反比例函数的图象;正比例函数的图象.【分析】根据正比例函数与反比例函数的性质对各选项进行逐一分析即可.【解答】解:A 、由反比例函数的图象可知a >0,由正比例函数的图象可知a <0,二者相矛盾,故本选项错误;B 、由反比例函数的图象可知a <0,由正比例函数的图象可知a >0,二者相矛盾,故本选项错误;C 、由反比例函数的图象可知a >0,由正比例函数的图象可知a <0,二者相矛盾,故本选项错误;D 、由反比例函数的图象可知a >0,由正比例函数的图象可知a >0,二者一致,故本选项正确.故选D .14.若不等式组恰有两个整数解,则m 的取值范围是( )A .﹣1≤m <0B .﹣1<m ≤0C .﹣1≤m ≤0D .﹣1<m <0【考点】一元一次不等式组的整数解.【分析】先求出不等式的解集,根据题意得出关于m 的不等式组,求出不等式组的解集即可.【解答】解:∵不等式组的解集为m ﹣1<x <1,又∵不等式组恰有两个整数解,∴﹣2≤m ﹣1<﹣1,解得:﹣1≤m <0恰有两个整数解,故选A .15.如图,在Rt △ABC 中,∠ABC=90°.AB=BC .点D 是线段AB 上的一点,连结CD .过点B 作BG ⊥CD ,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连结DF ,给出以下四个结论:①=;②若点D 是AB 的中点,则AF=AB ;③当B 、C 、F 、D 四点在同一个圆上时,DF=DB ;④若=,则S △ABC =9S △BDF ,其中正确的结论序号是( )A.①② B.③④ C.①②③D.①②③④【考点】相似形综合题.【分析】由△AFG∽△BFC,可确定结论①正确;由△AFG≌△AFD可得AG=AB=BC,进而由△AFG∽△BFC确定点F为AC的三等分点,可确定结论②正确;当B、C、F、D四点在同一个圆上时,由圆内接四边形的性质得到∠2=∠ACB由于∠ABC=90°,AB=BC,得到∠ACB=∠CAB=45°,于是得到∠CFD=∠AFD=90°,根据垂径定理得到DF=DB,故③正确;因为F为AC的三等分点,所以S△ABF=S△ABC,又S△BDF=S△ABF,所以S△ABC=6S△BDF,由此确定结论④错误.【解答】解:依题意可得BC∥AG,∴△AFG∽△BFC,∴,又AB=BC,∴.故结论①正确;如右图,∵∠1+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△ABG与△BCD中,,∴△ABG≌△BCD(ASA),∴AG=BD,又BD=AD,∴AG=AD;在△AFG与△AFD中,,∴△AFG≌△AFD(SAS)∵△ABC为等腰直角三角形,∴AC=AB;∵△AFG≌△AFD,∴AG=AD=AB=BC;∵△AFG∽△BFC,∴=,∴FC=2AF,∴AF=AC=AB.故结论②正确;当B、C、F、D四点在同一个圆上时,∴∠2=∠ACB∵∠ABC=90°,AB=BC,∴∠ACB=∠CAB=45°,∴∠2=45°,∴∠CFD=∠AFD=90°,∴CD是B、C、F、D四点所在圆的直径,∵BG⊥CD,∴,∴DF=DB,故③正确;∵,∵AG=BD,,∴,∴=,∴AF=AC,∴S△ABF=S△ABC;∴S△BDF=S△ABF,∴S△BDF=S△ABC,即S△ABC=12S△BDF.故结论④错误.故选C.16.如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.(11﹣2)米B.(11﹣2)米C.(11﹣2)米D.(11﹣4)米【考点】解直角三角形的应用.【分析】出现有直角的四边形时,应构造相应的直角三角形,利用相似求得PB、PC,再相减即可求得BC长.【解答】解:如图,延长OD,BC交于点P.∵∠ODC=∠B=90°,∠P=30°,OB=11米,CD=2米,∴在直角△CPD中,DP=DC•cot30°=2m,PC=CD÷(sin30°)=4米,∵∠P=∠P,∠PDC=∠B=90°,∴△PDC∽△PBO,∴=,∴PB===11米,∴BC=PB﹣PC=(11﹣4)米.故选:D.17.如图,在△ABO中,AB⊥OB,OB=,AB=1.将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(1,﹣)C.(﹣1,﹣)D.(﹣1,﹣)或(﹣,﹣1)【考点】坐标与图形变化-旋转.【分析】需要分类讨论:在把△ABO绕点O顺时针旋转90°和逆时针旋转90°后得到△A1B1O 时点A1的坐标.【解答】解:∵△ABO中,AB⊥OB,OB=,AB=1,∴∠AOB=30°,当△ABO绕点O顺时针旋转90°后得到△A1B1O,则易求A1(1,﹣);当△ABO绕点O逆时针旋转90°后得到△A1B1O,则易求A1(﹣1,).故选B.18.电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x条,“三多”的狗有y条,则解此问题所列关系式正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程.【分析】根据一少三多四下分,不要双数要单数,列出不等式组解答即可.【解答】解:设“一少”的狗有x条,“三多”的狗有y条,可得:,故选:B.19.如图,点O是圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使和都经过圆心O,则阴影部分的面积是⊙O面积的()A.B.C.D.【考点】翻折变换(折叠问题);扇形面积的计算.【分析】作OD⊥AB于点D,连接AO,BO,CO,求出∠OAD=30°,得到∠AOB=2∠AOD=120°,进而求得∠AOC=120°,再利用阴影部分的面积=S扇形AOC得出阴影部分的面积是⊙O面积的【解答】解:作OD⊥AB于点D,连接AO,BO,CO,∵OD=AO∴∠OAD=30°,∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S扇形BOC=×⊙O面积.故选:B.20.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴相交于点C,且OA=OC,则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选:B.二、填空题(本题共4小题,每小题3分,共12分)21.分解因式:﹣x3+2x2﹣x= ﹣x(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式﹣x,再利用完全平方公式进行二次分解.完全平方公式:(a﹣b)2=a2﹣2ab+b2.【解答】解:﹣x3+2x2﹣x,=﹣x(x2﹣2x+1)…(提取公因式)=﹣x(x﹣1)2.…(完全平方公式)22.若关于x的一元二次方程ax2+2x﹣1=0无解,则a的取值范围是a<﹣1 .【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的定义和根的判别式的意义得到a≠0且△=22﹣4×a×(﹣1)<0,然后求出a的取值范围.【解答】解:∵关于x的一元二次方程ax2+2x﹣1=0无解,∴a≠0且△=22﹣4×a×(﹣1)<0,解得a<﹣1,∴a的取值范围是a<﹣1.故答案为:a<﹣1.23.如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F对称,过点F作FG ∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为27 .【考点】三角形中位线定理;等腰三角形的性质;轴对称的性质.【分析】先根据点A、D关于点F对称可知点F是AD的中点,再由CD⊥AB,FG∥CD可知FG 是△ACD的中位线,故可得出CG的长,再根据点E是AB的中点可知GE是△ABC的中位线,故可得出GE的长,由此可得出结论.【解答】解:∵点A、D关于点F对称,∴点F是AD的中点.∵CD⊥AB,FG∥CD,∴FG是△ACD的中位线,AC=18,BC=12,∴CG=AC=9.∵点E是AB的中点,∴GE是△ABC的中位线,∵CE=CB=12,∴GE=BC=6,∴△CEG的周长=CG+GE+CE=9+6+12=27.故答案为:27.24.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC 的度数为110°.【考点】圆周角定理.【分析】根据圆周角定理求得∠BOC=100°,进而根据三角形的外角的性质求得∠BDC=70°,然后根据邻补角求得∠ADC的度数.【解答】解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案为110°.三、解答题(本题共5小题,满分48分)25.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路1200 米;(2)求原计划每小时抢修道路多少米?【考点】分式方程的应用.【分析】(1)按原计划完成总任务的时,列式计算即可;(2)设原计划每天修道路x米.根据原计划工作效率用的时间+实际工作效率用的时间=10等量关系列出方程.【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米, 故答案为:1200米;(2)设原计划每小时抢修道路x 米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.26.如图,一次函数y=﹣x+2的图象与x 轴交于点B ,与反比例函数y=的图象的交点为A (﹣2,3).(1)求反比例函数的解析式;(2)过点A 作AC ⊥x 轴,垂足为C ,若点P 在反比例函数图象上,且△PBC 的面积等于18,求P 点的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A 的坐标代入反比例函数解析式,列出关于系数m 的方程,通过解方程来求m 的值;(2)由一次函数解析式可以求得点B 的坐标,然后根据三角形的面积公式来求点P 的坐标.【解答】解:(1)由题意得:A (﹣2,3)在反比例函数y=的图象上,则=3, 解得m=﹣6.故该反比例函数的解析式为y=﹣;(2)设点P 的坐标是(a ,b ).∵一次函数y=﹣x+2的图象与x 轴交于点B ,∴当y=0时,﹣x+2=0,解得x=4.∴点B 的坐标是(4,0),即OB=4.∴BC=6.∵△PBC 的面积等于18,∴×BC×|b|=18,解得:|b|=6,∴b1=6,b2=﹣6,∴点P的坐标是(﹣1,6),(1,﹣6).27.(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理.【分析】(1)连接BE,证明△ACD≌△BCE,得到AD=BE,在Rt△BAE中,AB=6,AE=3,求出BE,得到答案;(2)连接BE,证明△ACD∽△BCE,得到==,求出BE的长,得到AD的长.【解答】解:(1)如图1,连接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE=9,∴AD=9;(2)如图2,连接BE,在Rt△ACB中,∠ABC=∠CED=30°,tan30°==,∵∠ACB=∠DCE=90°,∴∠BCE=∠ACD,∴△ACD∽△BCE,∴==,∵∠BAC=60°,∠CAE=30°,∴∠BAE=90°,又AB=6,AE=8,∴BE=10,∴AD=.28.如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.【考点】菱形的性质;矩形的判定;解直角三角形.【分析】(1)利用菱形的对角线互相垂直结合平行线的性质得出∠BOC=∠OCE=∠OBE=90°,进而求出即可;(2)利用菱形的性质结合勾股定理得出CO,BO的长,进而求出四边形OBEC的面积.【解答】(1)证明:∵菱形ABCD的对角线AC与BD相交于点O,∴AC⊥BD,∵BE∥AC,CE∥BD,∴∠BOC=∠OCE=∠OBE=90°,∴四边形OBEC是矩形;(2)解:∵菱形ABCD的周长是4,∴AB=BC=AD=DC=,∵tanα=,∴设CO=x,则BO=2x,∴x2+(2x)2=()2,解得:x=,∴四边形OBEC的面积为:×2=4.29.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x 轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x﹣1)(x﹣5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;(2)点A关于对称轴的对称点A′的坐标为(6,4),连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小,可求出直线BA′的解析式,即可得出点P的坐标.(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t, t2﹣t+4)(0<t<5),再求得直线AC的解析式,即可求得NG的长与△ACN的面积,由二次函数最大值的问题即可求得答案.【解答】解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t, t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AD×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).。

2016年山东省泰安市中考数学试卷

2016年山东省泰安市中考数学试卷

2016年山东省泰安市中考数学试卷一、(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个,均记零分)1.(3分)(2016•泰安)计算(﹣2)0+9÷(﹣3)的结果是()A.﹣1 B.﹣2 C.﹣3 D.﹣42.(3分)(2016•泰安)下列计算正确的是()A.(a2)3=a5B.(﹣2a)2=﹣4a2C.m3•m2=m6D.a6÷a2=a43.(3分)(2016•泰安)下列图形:任取一个是中心对称图形的概率是()A .B .C .D.14.(3分)(2016•泰安)化简:÷﹣的结果为()A .B .C .D.a5.(3分)(2016•泰安)如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为()页脚内容1A.90°B.120° C.135° D.150°6.(3分)(2016•泰安)国家统计局的相关数据显示,2015年我国国民生产总值(GDP)约为67.67万亿元,将这个数据用科学记数法表示为()A.6.767×1013元B.6.767×1012元C.6.767×1012元D.6.767×1014元7.(3分)(2016•泰安)如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2 B.3 C.4 D.68.(3分)(2016•泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n9.(3分)(2016•泰安)一元二次方程(x+1)2﹣2(x﹣1)2=7的根的情况是()页脚内容2A.无实数根B.有一正根一负根C.有两个正根D.有两个负根10.(3分)(2016•泰安)如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°11.(3分)(2016•泰安)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)选修课A B C D E F人数4060100根据图表提供的信息,下列结论错误的是()页脚内容3A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少12.(3分)(2016•泰安)二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A .B .C .D .13.(3分)(2016•泰安)某机加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x人加工A零件,由题意列方程得()A .=B .=C .=D .×30=×20页脚内容414.(3分)(2016•泰安)当x 满足时,方程x2﹣2x﹣5=0的根是()A.1±B .﹣1 C.1﹣D.1+15.(3分)(2016•泰安)在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n 的顶点在坐标轴上的概率为()A .B .C .D .16.(3分)(2016•泰安)如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)()A.22.48 B.41.68 C.43.16 D.55.6317.(3分)(2016•泰安)如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于()页脚内容5A.1:B.1:C.1:2 D.2:318.(3分)(2016•泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°19.(3分)(2016•泰安)当1≤x≤4时,mx﹣4<0,则m的取值范围是()A.m>1 B.m<1 C.m>4 D.m<420.(3分)(2016•泰安)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()页脚内容6A .B .C .D .二、填空题(本大题共4小题,满分12分.只要求填写最后结果,每小题填对得3分,)21.(3分)(2016•泰安)将抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为______.22.(3分)(2016•泰安)如图,半径为3的⊙O与Rt△AOB的斜边AB切于点D,交OB于点C,连接CD 交直线OA于点E,若∠B=30°,则线段AE的长为______.23.(3分)(2016•泰安)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC 于点F,则△BOF的面积为______.页脚内容724.(3分)(2016•泰安)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n﹣1B n顶点B n的横坐标为______.三、解答题(共5小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)(2016•泰安)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.(1)求反比例函数和一次函数的表达式;(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.页脚内容826.(8分)(2016•泰安)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.27.(10分)(2016•泰安)如图,在四边形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中点,AD⊥AE.(1)求证:AC2=CD•BC;(2)过E作EG⊥AB,并延长EG至点K,使EK=EB.①若点H是点D关于AC的对称点,点F为AC的中点,求证:FH⊥GH;②若∠B=30°,求证:四边形AKEC是菱形.页脚内容928.(10分)(2016•泰安)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.页脚内容1029.(12分)(2016•泰安)(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则的值是多少?(直接写出结论,不要求写解答过程)页脚内容112016年山东省泰安市中考数学试卷参考答案与试题解析一、(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个,均记零分)1.(3分)(2016•泰安)计算(﹣2)0+9÷(﹣3)的结果是()A.﹣1 B.﹣2 C.﹣3 D.﹣4【分析】根据零指数幂和有理数的除法法则计算即可.【解答】解:原式=1+(﹣3)=﹣2,故选:B.2.(3分)(2016•泰安)下列计算正确的是()A.(a2)3=a5B.(﹣2a)2=﹣4a2C.m3•m2=m6D.a6÷a2=a4【分析】直接利用同底数幂的乘除法运算法则以及结合积的乘方运算法则和幂的乘方运算法则分别化简求出答案.【解答】解:A、(a2)3=a6,故此选项错误;B、(﹣2a)2=4a2,故此选项错误;C、m3•m2=m5,故此选项错误;页脚内容12D、a6÷a2=a4,正确.故选:D.3.(3分)(2016•泰安)下列图形:任取一个是中心对称图形的概率是()A .B .C .D.1【分析】由共有4种等可能的结果,任取一个是中心对称图形的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵共有4种等可能的结果,任取一个是中心对称图形的有3种情况,∴任取一个是中心对称图形的概率是:.故选C.4.(3分)(2016•泰安)化简:÷﹣的结果为()A .B .C .D.a页脚内容13【分析】先将分式的分子分母因式分解,同时将除法转化为乘法,再计算分式的乘法,最后计算分式的加法即可.【解答】解:原式=×﹣=﹣=,故选:C.5.(3分)(2016•泰安)如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为()A.90°B.120° C.135° D.150°【分析】根据圆锥的底面半径得到圆锥的底面周长,也就是圆锥的侧面展开图的弧长,根据勾股定理得到圆锥的母线长,利用弧长公式可求得圆锥的侧面展开图中扇形的圆心角.【解答】解:∵圆锥的底面半径为3,∴圆锥的底面周长为6π,∵圆锥的高是6,页脚内容14∴圆锥的母线长为=9,设扇形的圆心角为n°,∴=6π,解得n=120.答:圆锥的侧面展开图中扇形的圆心角为120°.故选B.6.(3分)(2016•泰安)国家统计局的相关数据显示,2015年我国国民生产总值(GDP)约为67.67万亿元,将这个数据用科学记数法表示为()A.6.767×1013元B.6.767×1012元C.6.767×1012元D.6.767×1014元【分析】首先把67.67万亿化为676700亿,再用科学记数法表示676700亿,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:67.67万亿元=6.767×1013元,故选:A.7.(3分)(2016•泰安)如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()页脚内容15A.2 B.3 C.4 D.6【分析】由平行四边形的性质和角平分线得出∠F=∠FCB,证出BF=BC=8,同理:DE=CD=6,求出AF=BF ﹣AB=2,AE=AD﹣DE=2,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=4;故选:C.页脚内容168.(3分)(2016•泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【解答】解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选A.9.(3分)(2016•泰安)一元二次方程(x+1)2﹣2(x﹣1)2=7的根的情况是()A.无实数根B.有一正根一负根C.有两个正根D.有两个负根【分析】直接去括号,进而合并同类项,求出方程的根即可.【解答】解:∵(x+1)2﹣2(x﹣1)2=7,∴x2+2x+1﹣2(x2﹣2x+1)=7,页脚内容17整理得:﹣x2+6x﹣8=0,则x2﹣6x+8=0,(x﹣4)(x﹣2)=0,解得:x1=4,x2=2,故方程有两个正根.故选:C.10.(3分)(2016•泰安)如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【解答】解:连接OB,∵四边形ABCO是平行四边形,页脚内容18∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°,故选:B.11.(3分)(2016•泰安)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)选修课A B C D E F人数4060100页脚内容19根据图表提供的信息,下列结论错误的是()A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少【分析】通过计算得出选项A、B、C正确,选项D错误,即可得出结论.【解答】解:被调查的学生人数为60÷15%=400(人),∴选项A正确;扇形统计图中D 的圆心角为×360°=90°,∵×360°=36°,360°(17.5%+15%+12.5%)=162°,∴扇形统计图中E的圆心角=360°﹣162°﹣90°﹣36°=72°,∴选项B正确;∵400×=80(人),400×17.5%=70(人),页脚内容20∴选项C正确;∵12.5%>10%,∴喜欢选修课A的人数最少,∴选项D错误;故选:D.12.(3分)(2016•泰安)二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A .B .C .D .【分析】由y=ax2+bx+c的图象判断出a>0,b>0,于是得到一次函数y=ax+b的图象经过一,二,四象限,即可得到结论.【解答】解:∵y=ax2+bx+c的图象的开口向上,∴a>0,页脚内容21∵对称轴在y轴的左侧,∴b>0,∴一次函数y=ax+b的图象经过一,二,三象限.故选A.13.(3分)(2016•泰安)某机加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x人加工A零件,由题意列方程得()A .=B .=C .=D .×30=×20【分析】直接利用现要加工2100个A零件,1200个B零件,同时完成两种零件的加工任务,进而得出等式即可.【解答】解:设安排x人加工A零件,由题意列方程得:=.故选:A.14.(3分)(2016•泰安)当x 满足时,方程x2﹣2x﹣5=0的根是()A.1±B .﹣1 C.1﹣D.1+页脚内容22【分析】先求出不等式组的解,再求出方程的解,根据范围即可确定x的值.【解答】解:,解得:2<x<6,∵方程x2﹣2x﹣5=0,∴x=1±,∵2<x<6,∴x=1+.故选D.15.(3分)(2016•泰安)在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n 的顶点在坐标轴上的概率为()A .B .C .D .【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:页脚内容23∵﹣2,﹣1,0,1,2这五个数中任取两数m,n,一共有20种可能,其中取到0的有8种可能,∴顶点在坐标轴上的概率为=.故选A.16.(3分)(2016•泰安)如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)()A.22.48 B.41.68 C.43.16 D.55.63页脚内容24【分析】过点P作PA⊥MN于点A,则若该船继续向南航行至离灯塔距离最近的位置为PA的长度,利用锐角三角函数关系进行求解即可【解答】解:如图,过点P作PA⊥MN于点A,MN=30×2=60(海里),∵∠MNC=90°,∠CPN=46°,∴∠MNP=∠MNC+∠CPN=136°,∵∠BMP=68°,∴∠PMN=90°﹣∠BMP=22°,∴∠MPN=180°﹣∠PMN﹣∠PNM=22°,∴∠PMN=∠MPN,∴MN=PN=60(海里),∵∠CNP=46°,∴∠PNA=44°,页脚内容25∴PA=PN•sin∠PNA=60×0.6947≈41.68(海里)故选:B.17.(3分)(2016•泰安)如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于()A.1:B.1:C.1:2 D.2:3【分析】由AB是⊙O的直径,得到∠ACB=90°,根据已知条件得到,根据三角形的角平分线定理得到=,求出AD=AB,BD=AB,过C作CF⊥AB于F,连接OE,由CE平分∠ACB 交⊙O于E,得到OE⊥AB,求出OE=AB,CF=AB,根据三角形的面积公式即可得到结论.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=30°,∴,∵CE平分∠ACB交⊙O于E,∴=,页脚内容26∴AD=AB,BD=AB,过C作CF⊥AB于F,连接OE,∵CE平分∠ACB交⊙O于E,∴=,∴OE⊥AB,∴OE=AB,CF=AB,∴S△ADE:S△CDB=(AD•OE):(BD•CF)=():()=2:3.故选D.18.(3分)(2016•泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()页脚内容27A.44°B.66°C.88°D.92°【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可.【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.19.(3分)(2016•泰安)当1≤x≤4时,mx﹣4<0,则m的取值范围是()A.m>1 B.m<1 C.m>4 D.m<4【分析】设y=mx﹣4,根据题意列出一元一次不等式,解不等式即可.页脚内容28【解答】解:设y=mx﹣4,由题意得,当x=1时,y<0,即m﹣4<0,解得m<4,当x=4时,y<0,即4m﹣4<0,解得,m<1,则m的取值范围是m<1,故选:B.20.(3分)(2016•泰安)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A .B .C .D .页脚内容29【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案.【解答】解:∵△ABC是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,∴∠BPD=∠CAP,∴△BPD∽△CAP,∴BP:AC=BD:PC,∵正△ABC的边长为4,BP=x,BD=y,∴x:4=y:(4﹣x),∴y=﹣x2+x.故选C.二、填空题(本大题共4小题,满分12分.只要求填写最后结果,每小题填对得3分,)21.(3分)(2016•泰安)将抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为y=2(x+2)2﹣2.【分析】按照“左加右减,上加下减”的规律求得即可.页脚内容30【解答】解:抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位得到y=2(x﹣1+3)2+2﹣4=2(x+2)2﹣2.故得到抛物线的解析式为y=2(x+2)2﹣2.故答案为:y=2(x+2)2﹣2.22.(3分)(2016•泰安)如图,半径为3的⊙O与Rt△AOB的斜边AB切于点D,交OB于点C,连接CD 交直线OA于点E,若∠B=30°,则线段AE 的长为.【解答】解:连接OD,如右图所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BO•tan30°=,∵∠COE=90°,OC=3,∴OE=OC•tan60°=,∴AE=OE﹣OA=,页脚内容31故答案为:.23.(3分)(2016•泰安)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC.于点F,则△BOF 的面积为【解答】解:∵四边形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD==10,∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,页脚内容32∴=,即=,解得,BF=,则OF==,则△BOF的面积=×OF×OB=,故答案为:.24.(3分)(2016•泰安)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n﹣1B n顶点B n的横坐标为2n+1﹣2.【分析】先求出B1、B2、B3…的坐标,探究规律后,即可根据规律解决问题.【解答】解:由题意得OA=OA1=2,∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,页脚内容33∴B1(2,0),B2(6,0),B3(14,0)…,2=22﹣2,6=23﹣2,14=24﹣2,…∴B n的横坐标为2n+1﹣2.故答案为2n+1﹣2.三、解答题(共5小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)(2016•泰安)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.(1)求反比例函数和一次函数的表达式;(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.页脚内容34【分析】(1)由正方形OABC的顶点C坐标,确定出边长,及四个角为直角,根据AD=2DB,求出AD的长,确定出D坐标,代入反比例解析式求出m的值,再由AM=2MO,确定出MO的长,即M坐标,将M 与D坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)把y=3代入反比例解析式求出x的值,确定出N坐标,得到NC的长,设P(x,y),根据△OPM 的面积与四边形OMNC的面积相等,求出y的值,进而得到x的值,确定出P坐标即可.【解答】解:(1)∵正方形OABC的顶点C(0,3),∴OA=AB=BC=OC=3,∠OAB=∠B=∠BCO=90°,∵AD=2DB,∴AD=AB=2,∴D(﹣3,2),把D坐标代入y=得:m=﹣6,∴反比例解析式为y=﹣,∵AM=2MO,∴MO=OA=1,即M(﹣1,0),把M与D坐标代入y=kx+b 中得:,解得:k=b=﹣1,则直线DM解析式为y=﹣x﹣1;页脚内容35(2)把y=3代入y=﹣得:x=﹣2,∴N(﹣2,3),即NC=2,设P(x,y),∵△OPM的面积与四边形OMNC的面积相等,∴(OM+NC)•OC=OM|y|,即|y|=9,解得:y=±9,当y=9时,x=﹣10,当y=﹣9时,x=8,则P坐标为(﹣10,9)或(8,﹣9).26.(8分)(2016•泰安)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设直拍球拍每副x元,横拍球每副y元,根据题意列出二元一次方程组,解方程组即可;(2)设购买直拍球拍m副,根据题意列出不等式,解不等式求出m的范围,根据题意列出费用关于m的一次函数,根据一次函数的性质解答即可.页脚内容36【解答】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最小值,最小值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.27.(10分)(2016•泰安)如图,在四边形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中点,AD⊥AE.(1)求证:AC2=CD•BC;页脚内容37(2)过E作EG⊥AB,并延长EG至点K,使EK=EB.①若点H是点D关于AC的对称点,点F为AC的中点,求证:FH⊥GH;②若∠B=30°,求证:四边形AKEC是菱形.【分析】(1)欲证明AC2=CD•BC,只需推知△ACD∽△BCA即可;(2)①连接AH.构建直角△AHC,利用直角三角形斜边上的中线等于斜边的一半、等腰对等角以及等量代换得到:∠FHG=∠CAB=90°,即FH⊥GH;②利用“在直角三角形中,30度角所对的直角边等于斜边的一半”、“直角三角形斜边上的中线等于斜边的一半”推知四边形AKEC的四条边都相等,则四边形AKEC是菱形.【解答】证明:(1)∵AC平分∠BCD,∴∠DCA=∠ACB.又∵AC⊥AB,AD⊥AE,∴∠DAC+∠CAE=90°,∠CAE+∠EAB=90°,∴∠DAC=∠EAB.又∵E是BC的中点,页脚内容38∴AE=BE,∴∠EAB=∠ABC,∴∠DAC=∠ABC,∴△ACD∽△BCA,∴=,∴AC2=CD•BC;(2)①证明:连接AH.∵∠ADC=∠BAC=90°,点H、D关于AC对称,∴AH⊥BC.∵EG⊥AB,AE=BE,∴点G是AB的中点,∴HG=AG,∴∠GAH=GHA.∵点F为AC的中点,∴AF=FH,∴∠HAF=∠FHA,页脚内容39∴∠FHG=∠AHF+∠AHG=∠FAH+∠HAG=∠CAB=90°,∴FH⊥GH;②∵EK⊥AB,AC⊥AB,∴EK∥AC,又∵∠B=30°,∴AC=BC=EB=EC.又EK=EB,∴EK=AC,即AK=KE=EC=CA,∴四边形AKEC是菱形.28.(10分)(2016•泰安)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;页脚内容40(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.【分析】(1)设出抛物线解析式,用待定系数法求解即可;(2)先求出直线AB解析式,设出点P坐标(x,﹣x2+4x+5),建立函数关系式S四边形APCD=﹣2x2+10x,根据二次函数求出极值;(3)先判断出△HMN≌△AOE,求出M点的横坐标,从而求出点M,N的坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=﹣1,页脚内容41y=﹣(x﹣2)2+9=﹣x2+4x+5,(2)当y=0时,﹣x2+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直线AB的解析式为y=﹣x+5;设P(x,﹣x2+4x+5),∴D(x,﹣x+5),∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,∵AC=4,=×AC×PD=2(﹣x2+5x)=﹣2x2+10x,∴S四边形APCD∴当x=﹣=时,∴S=,四边形APCD最大(3)如图,页脚内容42过M作MH垂直于对称轴,垂足为H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,页脚内容43∴MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+0E2=26∵MN=AE∴MN2=AE2,∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴1+(b+2)2=26,∴b=3,或b=﹣7,∴10+b=13或10+b=3∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3),页脚内容4429.(12分)(2016•泰安)(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则的值是多少?(直接写出结论,不要求写解答过程)【分析】(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论;(3)作DF∥BC交AC于F,同(1)得:△DBE≌△CFD,得出EB=DF,证出△ADF是等腰直角三角形,得出DF=AD,即可得出结果.【解答】(1)证明:作DF∥BC交AC于F,如图1所示:则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,∵△ABC是等腰三角形,∠A=60°,页脚内容45∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,∴△ADF是等边三角形,∠DFC=120°,∴AD=DF,∵∠DEC=∠DCE,∴∠FDC=∠DEC,ED=CD,在△DBE和△CFD 中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD;(2)解:EB=AD成立;理由如下:作DF∥BC交AC的延长线于F,如图2所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴在△DBE和△CFD 中,,页脚内容46∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD;(3)解:=;理由如下:作DF∥BC交AC于F,如图3所示:同(1)得:△DBE≌△CFD(AAS),∴EB=DF,∵△ABC是等腰直角三角形,DF∥BC,∴△ADF是等腰直角三角形,∴DF=AD,∴=,∴=.页脚内容47页脚内容48参与本试卷答题和审题的老师有:1286697702;sd2011;zcx;三界无我;王学峰;wdzyzmsy@;zgm666;gbl210;弯弯的小河;sdwdmahongye;nhx600;sks;星月相随(排名不分先后)菁优网2016年9月21日页脚内容49。

山东省泰安市2016年中考数学模拟试卷(二)含答案解析

山东省泰安市2016年中考数学模拟试卷(二)含答案解析

山东省泰安市2016年中考数学模拟试卷(二)(解析版)一、选择题:本大题共20小题,每小题3分,共60分1.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D2.下列运算正确的是()A.3a+3b=6ab B.a3﹣a=a2C.a6÷a3=a2D.(a2)3=a63.2015年1﹣3月,全国网上商品零售额6310亿元,将6310用科学记数法表示应为()A.6.310×103 B.63.10×102 C.0.6310×104D.6.310×1044.下列图形中,既是中心对称图形又是轴对称图形的是()A.B. C.D.5.化简的结果是()A.x+1 B. C.x﹣1 D.6.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④7.某次比赛中,15名选手的成绩如图所示,则这15名选手成绩的众数和中位数分别是()A.98,95 B.98,98 C.95,98 D.95,958.物理某一实验的电路图如图所示,其中K1,K2,K3为电路开关,L1,L2为能正常发光的灯泡.任意闭合开关K1,K2,K3中的两个,那么能让两盏灯泡同时发光的概率为()A.B.C.D.9.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是()A.B.C.D.10.如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.2 B.4 C.D.211.如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段PD B.线段PC C.线段PE D.线段DE12.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥313.如图,点M、N分别在矩形ABCD边AD、BC上,将矩形ABCD沿MN翻折后点C恰好与点A重合.若此时=,则△AMD′的面积与△AMN的面积的比为()A.1:3 B.1:4 C.1:6 D.1:914.当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A.B.C.D.15.如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B.+1 C.D.﹣116.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.()米B.12米C.()米D.10米17.把抛物线y=x2+bx+4的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣2x+3,则b的值为()A.2 B.4 C.6 D.818.如图,AB是⊙O的直径,C、D是⊙O上两点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则cos∠E等于()A.B.C.D.119.如图,已知△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC的长为()A. B.6 C. D.20.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x 轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④二、填空题:本大题共4小题,满分12分,每小题3分21.化简+的结果为.22.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB 上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.23.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为.24.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为=,现已知x1=﹣,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2015=.三、解答题:本大题共5小题,满分48分25.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).26.如图,已知点A(4,0),B(0,4),把一个直角三角尺DEF放在△OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动.其中∠EFD=30°,ED=2,点G 为边FD的中点.(1)求直线AB的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k≠0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由.27.如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.28.△ABC中,AB=AC,取BC的中点D,做DE⊥AC与点E,取DE的中点F,连接BE,AF交于点H.(1)如图1,如果∠BAC=90°,那么∠AHB=°,=;(2)如图2,如果∠BAC=60°,猜想∠AHB的度数和的值,并证明你的结论;(3)如果∠BAC=α,那么=.(用含α表达式表示)29.如图,在平面直角坐标系xOy 中,抛物线y=x 2﹣3x+交y 轴于点E ,C 为抛物线的顶点,直线AD :y=kx+b (k >0)与抛物线相交于A ,D 两点(点D 在点A 的下方).(1)当k=2,b=﹣3时,求A ,D 两点坐标;(2)当b=2﹣3k 时,直线AD 交抛物线的对称轴于点P ,交线段CE 于点F ,求的最小值;(3)当b=0时,若B 是抛物线上点A 的对称点,直线BD 交对称轴于点M ,求证:PC=CM .2016年山东省泰安市中考数学模拟试卷(二)参考答案与试题解析一、选择题:本大题共20小题,每小题3分,共60分1.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D【分析】相反数的定义:符号不同,绝对值相等的两个数叫互为相反数.根据定义,结合数轴进行分析.【解答】解:∵表示2的相反数的点,到原点的距离与2这点到原点的距离相等,并且与2分别位于原点的左右两侧,∴在A,B,C,D这四个点中满足以上条件的是A.故选A.【点评】本题考查了互为相反数的两个数在数轴上的位置特点:分别位于原点的左右两侧,并且到原点的距离相等.2.下列运算正确的是()A.3a+3b=6ab B.a3﹣a=a2C.a6÷a3=a2D.3=a6,故此选项正确;故选:D.【点评】此题主要考查了合并同类项、同底数幂的除法、幂的乘方,关键是掌握各计算法则.3.2015年1﹣3月,全国网上商品零售额6310亿元,将6310用科学记数法表示应为()A.6.310×103 B.63.10×102 C.0.6310×104D.6.310×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6310用科学记数法表示为6.31×103.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列图形中,既是中心对称图形又是轴对称图形的是()A.B. C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,也不是中心对称图形,故错误;B、不是轴对称图形,是中心对称图形,故错误;C、不是轴对称图形,也不是中心对称图形,故错误;D、是轴对称图形,是中心对称图形,故正确.故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.化简的结果是()A.x+1 B. C.x﹣1 D.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1.故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别得到每个几何体的三视图,进而得到答案.【解答】解:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.7.某次比赛中,15名选手的成绩如图所示,则这15名选手成绩的众数和中位数分别是()A.98,95 B.98,98 C.95,98 D.95,95【分析】根据众数与中位数的定义分别进行解答即可.【解答】解:由条形统计图给出的数据可得:95出现了6次,出现的次数最多,则众数是95;把这组数据从小到达排列,最中间的数是98,则中位数是98;故选C.【点评】此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.8.物理某一实验的电路图如图所示,其中K1,K2,K3为电路开关,L1,L2为能正常发光的灯泡.任意闭合开关K1,K2,K3中的两个,那么能让两盏灯泡同时发光的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴能让两盏灯泡同时发光的概率为:P==.故选A.【点评】本题考查了列表法与树状图法.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比9.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是()A.B.C.D.【分析】根据关键语句“到学校共用时15分钟”可得方程:x+y=15,根据“骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程:250x+80y=2900,两个方程组合可得方程组.【解答】解:他骑车和步行的时间分别为x分钟,y分钟,由题意得:,故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.10.如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.2 B.4 C.D.2【分析】首先连接OA,OB,由圆周角定理即可求得∠AOB=90°,又由OA=OB=2,利用勾股定理即可求得弦AB的长.【解答】解:连接OA,OB,∵∠APB=45°,∴∠AOB=2∠APB=90°,∵OA=OB=2,∴AB==2.故选D.【点评】此题考查了圆周角定理以及勾股定理.注意准确作出辅助线是解此题的关键.11.如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段PD B.线段PC C.线段PE D.线段DE【分析】设出等边三角形的边长,根据等边三角形的性质确定各个线段取最小值时,x的范围,结合图象得到答案.【解答】解:设边长AC=a,则0<x<a,根据题意和等边三角形的性质可知,当x=a时,线段PE有最小值;当x=a时,线段PC有最小值;当x=a时,线段PD有最小值;线段DE的长为定值.故选:C.【点评】本题考查的是动点问题的函数图象,灵活运用等边三角形的性质和函数的对称性是解题的关键.12.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥3【分析】不等式组中第一个不等式求出解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式组变形得:,由不等式组的解集为x<3,得到m的范围为m≥3,故选D【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.13.如图,点M、N分别在矩形ABCD边AD、BC上,将矩形ABCD沿MN翻折后点C恰好与点A重合.若此时=,则△AMD′的面积与△AMN的面积的比为()A.1:3 B.1:4 C.1:6 D.1:9【分析】由=,可知,易证AN=AM,得到,于是可求出△AMD′的面积与△AMN的面积的比.【解答】解:根据折叠的性质,AN=CN,∠ANM=∠CNM,∵四边形ABCD是矩形,∴AD∥BC,∴∠CNM=∠AMN,∴∠ANM=∠AMN,∴AM=AN,∵=,∴,∴,∴△AMD′的面积:△AMN的面积=1:3.故选:A.【点评】本题主要考查了图形的折叠问题、等高的三角形面积比等于底的比,把△AMD′的面积与△AMN的面积的比转化为边的比,运用等高的三角形面积比等于底的比这一性质是解决问题的关键.14.当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A.B.C.D.【分析】分a>0和a<0两种情况讨论,分析出两函数图象所在象限,再在四个选项中找到正确图象.【解答】解:当a>0时,y=ax+1过一、二、三象限,y=过一、三象限;当a<0时,y=ax+1过一、二、四象限,y=过二、四象限;故选C.【点评】本题考查了一次函数与反比例函数的图象和性质,解题的关键是明确在同一a值的前提下图象能共存.15.如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B.+1 C.D.﹣1【分析】取AC的中点O,连接AD、DG、BO、OM,如图,易证△DAG∽△DCF,则有∠DAG=∠DCF,从而可得A、D、C、M四点共圆,根据两点之间线段最短可得BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,只需求出BO、OM 的值,就可解决问题.【解答】解:AC的中点O,连接AD、DG、BO、OM,如图.∵△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,∴AD⊥BC,GD⊥EF,DA=DG,DC=DF,∴∠ADG=90°﹣∠CDG=∠FDC,=,∴△DAG∽△DCF,∴∠DAG=∠DCF.∴A、D、C、M四点共圆.根据两点之间线段最短可得:BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,此时,BO===,OM=AC=1,则BM=BO﹣OM=﹣1.故选:D.【点评】本题主要考查了等边三角形的性质、等腰三角形的性质、相似三角形的判定与性质、四点共圆的判定、勾股定理、两点之间线段最短等知识,求出动点M的运动轨迹是解决本题的关键.16.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.()米B.12米C.()米D.10米【分析】延长AC交BF延长线于D点,则BD即为AB的影长,然后根据物长和影长的比值计算即可.【解答】解:延长AC交BF延长线于D点,则∠CEF=30°,作CF⊥BD于F,在Rt△CEF中,∠CEF=30°,CE=4m,∴CF=2(米),EF=4cos30°=2(米),在Rt△CFD中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,即CF=2(米),CF:DF=1:2,∴DF=4(米),∴BD=BE+EF+FD=8+2+4=12+2(米)在Rt△ABD中,AB=BD=(12+2)=(+6)米.故选A.【点评】本题考查了解直角三角形的应用以及相似三角形的性质.解决本题的关键是作出辅助线得到AB的影长.17.把抛物线y=x2+bx+4的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣2x+3,则b的值为()A.2 B.4 C.6 D.8【分析】首先根据点的坐标平移规律是上加下减,左加右减,利用这个规律即可得到所求抛物线的顶点坐标,然后就可以求出抛物线的解析式.【解答】解:∵y=x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2,∴顶点坐标为(1,2),∴向左平移3个单位,再向下平移2个单位,得(﹣2,0),则原抛物线y=x2+bx+4的顶点坐标为(﹣2,0),∴原抛物线y=x2+bx+4=(x+2)2=x2+4x+4,∴b=4.故选:B.【点评】此题主要考查了平移规律,首先根据平移规律求出已知抛物线的顶点坐标,然后求出所求抛物线的顶点坐标,最后就可以求出原抛物线的解析式.18.如图,AB是⊙O的直径,C、D是⊙O上两点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则cos∠E等于()A.B.C.D.1【分析】连接OC,求出∠OCE=90°,求出∠A=∠ACO=30°,根据三角形外角性质求出∠COE=60°,进而可求出∠E的度数,即可求出答案.【解答】解:连接OC,∵EC切⊙O于C,∴∠OCE=90°,∵∠CDB=30°,∴∠A=∠CDB=30°,∵OA=OC,∴∠ACO=∠A=30°,∴∠COE=30°+30°=60°,∴∠E=180°﹣90°﹣60°=30°,∴cos∠E=,故选A.【点评】本题考查了切线性质,三角形的外角性质,圆周角定理,等腰三角形的性质的应用,求出∠E的度数是解题关键.19.如图,已知△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC的长为()A. B.6 C. D.【分析】首先过点O作OF⊥BC于F,由垂径定理可得BF=CF=BC,然后由∠BAC=120°,AB=AC,利用等边对等角与三角形内角和定理,即可求得∠C与∠BAC的度数,由BD为⊙O的直径,即可求得∠BAD与∠D的度数,又由AD=6,即可求得BD的长,继而求得BC的长.【解答】解:过点O作OF⊥BC于F,∴BF=CF=BC,∵AB=AC,∠BAC=120°,∴∠C=∠ABC==30°,∵∠C与∠D是对的圆周角,∴∠D=∠C=30°,∵BD为⊙O的直径,∴∠BAD=90°,∴∠ABD=60°,∴∠OBC=∠ABD﹣∠ABC=30°,∵AD=6,∴BD===4,∴OB=BD=2,∴BF=OBcos30°=2×=3,∴BC=6.故选B.【点评】此题考查了圆周角定理、垂径定理、等腰三角形的性质、直角三角形的性质以及特殊角的三角函数值等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用,注意准确作出辅助线.20.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x 轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④【分析】根据与y2=(x﹣3)2+1的图象在x轴上方即可得出y2的取值范围;把A(1,3)代入抛物线y1=a(x+2)2﹣3即可得出a的值;由抛物线与y轴的交点求出,y2﹣y1的值;根据两函数的解析式直接得出AB与AC的关系即可.【解答】解:①∵抛物线y2=(x﹣3)2+1开口向上,顶点坐标在x轴的上方,∴无论x取何值,y2的值总是正数,故本小题正确;②把A(1,3)代入,抛物线y1=a(x+2)2﹣3得,3=a(1+2)2﹣3,解得a=,故本小题错误;③由两函数图象可知,抛物线y1=a(x+2)2﹣3解析式为y1=(x+2)2﹣3,当x=0时,y1=(0+2)2﹣3=﹣,y2=(0﹣3)2+1=,故y2﹣y1=+=,故本小题错误;④∵物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),∴y1的对称轴为x=﹣2,y2的对称轴为x=3,∴B(﹣5,3),C(5,3)∴AB=6,AC=4,∴2AB=3AC,故本小题正确.故选D.【点评】本题考查的是二次函数的性质,根据题意利用数形结合进行解答是解答此题的关键.二、填空题:本大题共4小题,满分12分,每小题3分21.化简+的结果为x.【分析】先把两分式化为同分母的分式,再把分母不变,分子相加减即可.【解答】解:原式=﹣==x.故答案为:x.【点评】本题考查的是分式的加减法,即把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.22.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB 上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为3.【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N 与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.【解答】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.【点评】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.23.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为cm2.【分析】过点C作CD⊥OB,CE⊥OA,则△AOB是等腰直角三角形,由∠ACO=90°,可知△AOC是等腰直角三角形,由HL定理可知Rt△OCE≌Rt△ACE,故可得出S扇形OEC=S扇形AEC ,与弦OC围成的弓形的面积等于与弦AC所围成的弓形面积,S阴影=S△AOB即可得出结论.【解答】解:过点C作CD⊥OB,CE⊥OA,∵OB=OA,∠AOB=90°,∴△AOB是等腰直角三角形,∵OA是直径,∴∠ACO=90°,∴△AOC是等腰直角三角形,∵CE⊥OA,∴OE=AE,OC=AC,在Rt△OCE与Rt△ACE中,∵,∴Rt △OCE ≌Rt △ACE (HL ),∵S 扇形OEC =S 扇形AEC ,∴与弦OC 围成的弓形的面积等于与弦AC 所围成的弓形面积,同理可得,与弦OC 围成的弓形的面积等于与弦BC 所围成的弓形面积,∴S 阴影=S △AOB =×1×1=cm 2.故答案是: cm 2.【点评】本题考查的是扇形面积的计算与等腰直角三角形的判定与性质,根据题意作出辅助线,构造出直角三角形得出S 阴影=S △AOB 是解答此题的关键.24.若x 是不等于1的实数,我们把称为x 的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为=,现已知x 1=﹣,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2015= . 【分析】根据已知条件可以先计算出几个x 的值,从而可以发现其中的规律,求出x 2015的值.【解答】解:由已知可得,x 1=﹣,x 2==,x 3==4, x 4==﹣,可知每三个一个循环,2015÷3=671…2,故x2015=.【点评】本题考查实数的性质,解题的关键是发现其中的规律,求出相应的x的值.三、解答题:本大题共5小题,满分48分25.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).【分析】(1)设售价应为x元,根据不等关系:该文具店在9月份销售量不低于1100件,列出不等式求解即可;(2)先求出10月份的进价,再根据等量关系:10月份利润达到3388元,列出方程求解即可.【解答】解:(1)设售价应为x元,依题意有1160﹣≥1100,解得x≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元),由题意得:1100(1+m%)[15(1﹣m%)﹣12]=3388,设m%=t,化简得50t2﹣25t+2=0,解得:t1=,t2=,所以m1=40,m2=10,因为m>10,所以m=40.答:m的值为40.【点评】考查了一元一次不等式的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等关系和等量关系,列出不等式和方程,再求解.26.如图,已知点A(4,0),B(0,4),把一个直角三角尺DEF放在△OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动.其中∠EFD=30°,ED=2,点G 为边FD的中点.(1)求直线AB的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k≠0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由.【分析】(1)设直线AB的解析式为y=kx+b,把点A、B的坐标代入,组成方程组,解方程组求出k、b的值即可;(2)由Rt△DEF中,求出EF、DF,在求出点D坐标,得出点F、G坐标,把点G坐标代入反比例函数求出k即可;(3)设F(t,﹣t+4),得出D、G坐标,设过点G和F的反比例函数解析式为y=,用待定系数法求出t、m,即可得出反比例函数解析式.【解答】解:(1)设直线AB的解析式为y=kx+b,∵A(4,0),B(0,4),∴,解得:,∴直线AB的解析式为:y=﹣x+4;(2)∵在Rt△DEF中,∠EFD=30°,ED=2,∴EF=2,DF=4,∵点D与点A重合,∴D(4,0),∴F(2,2),∴G(3,),∵反比例函数y=经过点G,∴k=3,∴反比例函数的解析式为:y=;(3)经过点G的反比例函数的图象能同时经过点F;理由如下:∵点F在直线AB上,∴设F(t,﹣t+4),又∵ED=2,∴D(t+2,﹣t+2),∵点G为边FD的中点.∴G(t+1,﹣t+3),若过点G的反比例函数的图象也经过点F,设解析式为y=,则,整理得:(﹣t+3)(t+1)=(﹣t+4)t,解得:t=,∴m=,∴经过点G的反比例函数的图象能同时经过点F,这个反比例函数解析式为:y=.【点评】本题是反比例函数综合题目,考查了用待定系数法求一次函数的解析式、求反比例函数的解析式、坐标与图形特征、解直角三角形、解方程组等知识;本题难度较大,综合性强,用待定系数法确定一次函数和反比例函数的解析式是解决问题的关键.27.如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.【分析】(1)先证∠AED=∠CGD,再证明△ADE≌△CDG,根据全等三角形的对应边相等即可得出结论;(2)先证明△AEB≌△CGD,得出对应角相等∠AEB=∠CGD,得出∠AEB=∠EGF,即可证出平行线.【解答】解:(1)证明:在正方形ABCD中,∵AD=CD,∴∠DAE=∠DCG,∵DE=DG,∴∠DEG=∠DGE,∴∠AED=∠CGD.在△AED和△CGD中,∴△AED≌△CGD(AAS),∴AE=CG.(2)解法一:BE∥DF,理由如下:在正方形ABCD中,AB∥CD,∴∠BAE=∠DCG.在△AEB和△CGD中,∴△AEB≌△CGD(SAS),∴∠AEB=∠CGD.∵∠CGD=∠EGF,∴∠AEB=∠EGF,∴BE∥DF.解法二:BE∥DF,理由如下:在正方形ABCD中,∵AD∥FC,∴=.∵CG=AE,∴AG=CE.又∵在正方形ABCD中,AD=CB,∴=.又∵∠GCF=∠ECB,∴△CGF∽△CEB,∴∠CGF=∠CEB,∴BE∥DF.【点评】本题考查了正方形的性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.28.△ABC中,AB=AC,取BC的中点D,做DE⊥AC与点E,取DE的中点F,连接BE,AF交于点H.(1)如图1,如果∠BAC=90°,那么∠AHB=90°,=;(2)如图2,如果∠BAC=60°,猜想∠AHB的度数和的值,并证明你的结论;(3)如果∠BAC=α,那么tan(°﹣α).(用含α表达式表示)【分析】连接AD,根据等腰三角形的性质可得∠ABC=∠C,∠BAD=∠BAC,AD⊥BC,然后根据同角的余角相等可得∠ADE=∠C.易证△ADB∽△DEC,可得ADCE=BDDE.由此可得ADCE=BC2DF=BCDF,即=,由此可证到△AFD∽△BEC,则有=.在Rt△ADB中根据三角函数的定义可得tan∠ABD=tan(90°﹣∠BAC)==,从而可得=tan(90°﹣∠BAC).由△AFD∽△BEC可得∠DAF=∠CBE,即可得到∠DAF+∠AOH=∠CBE+∠BOD=90°,即可得到∠AHB=90°.利用以上结论即可解决题中的三个问题.【解答】解:连接AD,∵AB=AC,点D是BC的中点,∴∠ABC=∠C,∠BAD=∠DAC=∠BAC,AD⊥BC,∵AD⊥BC,DE⊥AC,∴∠ADE+∠CDE=90°,∠C+∠CDE=90°,∴∠ADE=∠C.又∵∠ADB=∠DEC=90°,∴△ADB∽△DEC,∴=即ADCE=BDDE.∵点D是BC的中点,点F是DE的中点,∴BD=BC,DE=2DF,∴ADCE═BC2DF=BCDF,。

中考数学二模试卷(含解析)101

中考数学二模试卷(含解析)101

山东省泰安市新泰市2016年中考数学二模试卷一、选择题(本大题共20小题,在每小题给出的选项中,只有一个是正确的,请把正确的选项选出来,填在答题卡中,每小题选对得3分,选错、多选或不选均记零分)1.在算式(﹣2)□(﹣3)的□中填上运算符号,使结果最小,运算符号是()A.加号 B.减号 C.乘号 D.除号2.国家卫生和计划生育委员会公布H7N9禽流感病毒直径约为0.00000012米,这一直径用科学记数法表示为()A.1.2×10﹣9米B.1.2×10﹣8米C.12×10﹣8米D.1.2×10﹣7米3.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.下列运算正确的是()A.3x2﹣5x3=﹣2x B.6x3÷2x2=3xC.( x3)2=x6D.﹣3(2x﹣4)=﹣6x﹣125.如图是一个三棱柱的立体图形,它的主视图是()A. B. C. D.6.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为()A. B. C. D.7.如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=()A.55° B.30° C.50° D.60°8.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A. B.C. D.9.如图,△DEF经过怎样的平移得到△ABC()A.把△DEF向左平移4个单位,再向下平移2个单位B.把△DEF向右平移4个单位,再向下平移2个单位C.把△DEF向右平移4个单位,再向上平移2个单位D.把△DEF向左平移4个单位,再向上平移2个单位10.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣11.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A. B. C. D.12.如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm,若水面上升2cm(即EG=2cm),则此时水面宽AB为()A.8cm B.16cm C.8cm D.16cm13.如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为()A. B. C. D.14.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4567810户数136541这20户家庭日用电量的众数、中位数分别是()A.6,6.5 B.6,7 C.6,7.5 D.7,7.515.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.( +1)km16.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE 在同一条直线上,开始时点C与点D重合.将△ABC沿直线DE向右平移,直到点A与点E 重合为止.设CD的长为x,若△ABC与正方形DEFG重合部分的面积为y,则y与x的函数图象是()A. B. C. D.17.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A. B. C. D.18.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A. B. C. D.19.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A.5个B.4个C.3个D.2个20.已知Y1,Y2,Y3分别表示二次函数、反比例函数和一次函数的三个函数值,它们的交点分别是A(﹣1,﹣2)、B(2,1)和C(,3),规定M={Y1,Y2,Y3中最小的函数值},则下列结论:①当x<﹣1时,M=Y1;②当﹣1<x<0时,Y2<Y3<Y1;③当0≤x≤2时,M的最大值是1,无最小值;④当x≥2时,M最大值是1,无最小值.其中正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题3分,共12分)21.分解因式:﹣3x3+12x2﹣12x=______.22.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为______.23.如图,同心圆O中,大圆半径OA、OB分别交小圆于D、C,OA⊥OB,若四边形ABCD的面积为50,则图中阴影部分的面积为______.24.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n在x轴上,点B1、B2、…、B n在直线y=x上,已知OA2=1,则OA2016的长为______.三、解答题(本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤)25.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A,与y轴交于点C,PB⊥x轴于点B,且AC=BC,S△PBC=4.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.26.(10分)(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?27.(10分)(2016•新泰市二模)已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG•DF=DB•EF.(2016•新泰市二模)如图,在正方形ABCD与等腰直角三角形BEF中,∠BEF=90°,28.(10分)BE=EF,连接PF,点P是FD的中点,连接PE、PC.(1)如图1,当点E在CB边上时,求证:PE=CE;(2)如图2,当点E在CB的延长线上时,线段PC、CE有怎样的数量关系,写出你的猜想,并给与证明.29.(10分)(2016•新泰市二模)已知:如图,直线y=﹣x+2与x轴交于B点,与y轴交于C点,A点坐标为(﹣1,0).(1)求过A、B、C三点的抛物线的解析式.(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若不存在,说明理由.2016年山东省泰安市新泰市中考数学二模试卷参考答案与试题解析一、选择题(本大题共20小题,在每小题给出的选项中,只有一个是正确的,请把正确的选项选出来,填在答题卡中,每小题选对得3分,选错、多选或不选均记零分)1.在算式(﹣2)□(﹣3)的□中填上运算符号,使结果最小,运算符号是()A.加号 B.减号 C.乘号 D.除号【考点】有理数的混合运算.【分析】将各个运算符号放入算式中计算得到结果,比较即可.【解答】解:(﹣2)+(﹣3)=﹣5;(﹣2)﹣(﹣3)=﹣2+3=1;(﹣2)×(﹣3)=6;(﹣2)÷(﹣3)=,则在算式(﹣2)□(﹣3)的□中填上运算符号,使结果最小,运算符号是加号,故选A【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.国家卫生和计划生育委员会公布H7N9禽流感病毒直径约为0.00000012米,这一直径用科学记数法表示为()A.1.2×10﹣9米B.1.2×10﹣8米C.12×10﹣8米D.1.2×10﹣7米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000012=1.2×10﹣7.故选D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.下列运算正确的是()A.3x2﹣5x3=﹣2x B.6x3÷2x2=3xC.( x3)2=x6D.﹣3(2x﹣4)=﹣6x﹣12【考点】整式的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方.【分析】根据单项式除法法则、单项式与多项式的乘法法则,以及幂的乘方法则即可作出判断.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、(x3)2=x6,选项错误;D、﹣3(2x﹣4)=﹣6x+12,选项错误.故选B.【点评】本题考查了单项式的乘法、除法以及幂的乘方,合并同类项法则,正确理解指数的计算是关键.5.如图是一个三棱柱的立体图形,它的主视图是()A. B. C. D.【考点】简单几何体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解;从正面看是矩形,看不见的棱用虚线表示,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的棱用虚线表示.6.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为()A. B. C. D.【考点】切线的性质;圆周角定理;特殊角的三角函数值.【分析】首先连接OC,由CE是⊙O切线,可得OC⊥CE,由圆周角定理,可得∠BOC=60°,继而求得∠E的度数,则可求得sin∠E的值.【解答】解:连接OC,∵CE是⊙O切线,∴OC⊥CE,即∠OCE=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴∠E=90°﹣∠COB=30°,∴sin∠E=.故选A.【点评】此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.7.如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=()A.55° B.30° C.50° D.60°【考点】平行线的性质.【分析】先根据三角形的外角性质求得∠4的度数,再根据平行线的性质即可求解.【解答】解:由三角形的外角性质可得∠4=∠1+∠3=50°,∵∠2和∠4是两平行线间的内错角,∴∠2=∠4=50°.故选C.【点评】本题综合考查了三角形的外角性质和平行线的性质,得到∠4的度数是解题的关键.8.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】首先设甲车间每天能加工x个,则乙车间每天能加工1.3x个,由题意可得等量关系:甲车间生产2300件所用的时间+甲乙两车间生产2300件所用的时间=33天,根据等量关系可列出方程.【解答】解:设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:+=33,故选:B.【点评】本题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.9.如图,△DEF经过怎样的平移得到△ABC()A.把△DEF向左平移4个单位,再向下平移2个单位B.把△DEF向右平移4个单位,再向下平移2个单位C.把△DEF向右平移4个单位,再向上平移2个单位D.把△DEF向左平移4个单位,再向上平移2个单位【考点】平移的性质.【分析】根据网格图形的特点,结合图形找出对应点的平移变换规律,然后即可选择答案.【解答】解:根据图形,△DEF向左平移4个单位,向下平移2个单位,即可得到△ABC.故选A.【点评】本题考查了平移变换的性质以及网格图形,准确识别图形是解题的关键.10.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.【解答】解:由(1)得x>8;由(2)得x<2﹣4a;其解集为8<x<2﹣4a,因不等式组有四个整数解,为9,10,11,12,则,解得﹣≤a<﹣.故选B.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.【考点】列表法与树状图法;点的坐标.【分析】画出树状图,然后确定出在第二象限的点的个数,再根据概率公式列式进行计算即可得解.【解答】解:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P==.故选B.【点评】本题考查了列表法与树状图法,第二象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.12.如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm,若水面上升2cm(即EG=2cm),则此时水面宽AB为()A.8cm B.16cm C.8cm D.16cm【考点】垂径定理的应用.【分析】连接OA、OC.设⊙O的半径是R,则OG=R﹣2,OE=R﹣4.根据垂径定理,得CG=10.在直角三角形OCG中,根据勾股定理求得R的值,再进一步在直角三角形OAE中,根据勾股定理求得AE的长,从而再根据垂径定理即可求得AB的长.【解答】解:如图所示,连接OA、OC.设⊙O的半径是R,则OG=R﹣2,OE=R﹣4.∵OF⊥CD,∴CG=CD=10cm.在直角三角形COG中,根据勾股定理,得R2=102+(R﹣2)2,解,得R=26.在直角三角形AOE中,根据勾股定理,得AE==8cm.根据垂径定理,得AB=16(cm),故选B.【点评】本题考查了勾股定理,垂径定理的应用,能构造直角三角形是解此题的关键,注意:垂直于弦的直径平分弦.13.如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为()A.B.C.D.【考点】矩形的性质;翻折变换(折叠问题).【分析】根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DAC=∠BCA,从而得到∠EAC=∠DAC,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形对应边成比例求出=,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.【解答】解:∵矩形沿直线AC折叠,点B落在点E处,∴∠BAC=∠EAC,AE=AB=CD,∵矩形ABCD的对边AB∥CD,∴∠DCA=∠BAC,∴∠EAC=∠DCA,设AE与CD相交于F,则AF=CF,∴AE﹣AF=CD﹣CF,即DF=EF,∴=,又∵∠AFC=∠EFD,∴△ACF∽△EDF,∴==,设DF=3x,FC=5x,则AF=5x,在Rt△ADF中,AD===4x,又∵AB=CD=DF+FC=3x+5x=8x,∴==.故选A.【点评】本题考查了矩形的性质,平行线的性质,等角对等边的性质,相似三角形的判定与性质,勾股定理的应用,综合性较强,但难度不大,熟记各性质是解题的关键.14.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4567810户数136541这20户家庭日用电量的众数、中位数分别是()A.6,6.5 B.6,7 C.6,7.5 D.7,7.5【考点】众数;中位数.【分析】根据众数和中位数的定义求解即可,众数是一组数据中出现次数最多的数;中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:这20户家庭日用电量的众数是6,中位数是(6+7)÷2=6.5,故选A.【点评】本题考查了众数和中位数的定义,解题的关键是牢记定义,此题比较简单,易于掌握.15.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.( +1)km【考点】解直角三角形的应用-方向角问题.【分析】过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.【解答】解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选:C.【点评】本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.16.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE 在同一条直线上,开始时点C与点D重合.将△ABC沿直线DE向右平移,直到点A与点E 重合为止.设CD的长为x,若△ABC与正方形DEFG重合部分的面积为y,则y与x的函数图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】按照x的取值范围分为当0≤x<2时,当2≤x<4时,分段根据重合部分的图形求面积,得出y是x的二次函数,即可得出结论.【解答】解:分两种情况:①如图1,当0≤x<2时,y=x(2+2﹣x)=﹣x2+2x;②如图2,当2≤x≤4时,y=(4﹣x)2;故选:C.【点评】本题考查了动点问题的函数图象、正方形及等腰直角三角形的性质.关键是根据图形的特点,分段求函数关系式.17.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选:B.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的角是本题的关键.18.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【解答】解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.【点评】本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.19.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A.5个B.4个C.3个D.2个【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质.【分析】依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°.∵在△APE和△AME中,,∴△APE≌△AME,故①正确;∴PE=EM=PM,同理,FP=FN=NP.∵正方形ABCD中AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确.∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P是AB的中点.故⑤正确.故选:B.【点评】本题是正方形的性质、矩形的判定、勾股定理得综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.20.已知Y1,Y2,Y3分别表示二次函数、反比例函数和一次函数的三个函数值,它们的交点分别是A(﹣1,﹣2)、B(2,1)和C(,3),规定M={Y1,Y2,Y3中最小的函数值},则下列结论:①当x<﹣1时,M=Y1;②当﹣1<x<0时,Y2<Y3<Y1;③当0≤x≤2时,M的最大值是1,无最小值;④当x≥2时,M最大值是1,无最小值.其中正确结论的个数为()A.1个B.2个C.3个D.4个【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】首先要明确M={Y1,Y2,Y3中最小的函数值},观察图象可以判断四个选项的正误.【解答】解:一次函数Y3过点A(﹣1,﹣2)、B(2,1),则解析式为:Y3=x﹣1;①当x<﹣1时,Y1,Y2,Y3中最小的函数值为Y1,所以M=Y1,故①正确;②当﹣1<x<0时,Y2<Y3<Y1,故②正确;③当0≤x≤2时,Y1,Y2,Y3中最小的函数值为Y3,M的最小值是﹣1,最大值是1;故③错误;④当x≥2时,Y1,Y2,Y3中最小的函数值为Y1,则M最大值是1,无最小值,故④正确.故选C.【点评】本题综合考查了二次函数、一次函数、反比例函数的性质,同时此类题考查了学生能根据图象求最值问题,这在学生中是一个难点,原则是:在一定范围内,最下边是最小,最上边是最大.二、填空题(本大题共4小题,每小题3分,共12分)21.分解因式:﹣3x3+12x2﹣12x= ﹣3x(x﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式后,利用完全平方公式分解即可.【解答】解:原式=﹣3x(x﹣2)2.故答案为:﹣3x(x﹣2)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为 2 .【考点】根的判别式.【分析】由方程有实数根,可得出b2﹣4ac≥0,代入数据即可得出关于k的一元一次不等式,解不等式即可得k的取值范围,再找出其内的最大偶数即可.【解答】解:由已知得:△=b2﹣4ac=22﹣4(m﹣2)≥0,即12﹣4m≥0,解得:m≤3,∴偶数m的最大值为2.故答案为:2.【点评】本题考查了根的判别式,解题的关键是找出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(或不等式)组是关键.23.如图,同心圆O中,大圆半径OA、OB分别交小圆于D、C,OA⊥OB,若四边形ABCD的面积为50,则图中阴影部分的面积为75π.【考点】垂径定理;扇形面积的计算.【分析】由于四边形ABCD的面积=大圆面积的﹣△COD的面积﹣(大圆面积的﹣△AOB 的面积),依此可得(OA2﹣OD2)的值,再根据图中阴影部分的面积为圆环面积的即可求解.【解答】解:四边形ABCD的面积=大圆面积的﹣△COD的面积﹣(大圆面积的﹣△AOB 的面积)=△AOB的面积﹣△COD的面积=OA2﹣OD2=50,则OA2﹣OD2=100,图中阴影部分的面积=π×100×=75π.故答案为:75π【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式,以及得到(OA2﹣OD2)的值是解答此题的关键.24.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n在x轴上,点B1、B2、…、B n在直线y=x上,已知OA2=1,则OA2016的长为22014.【考点】一次函数图象上点的坐标特征;等腰直角三角形.【分析】根据规律得出OA1=,OA2=1,OA3=2,OA4=4,所以可得OA n=2n﹣2,进而解答即可.【解答】解:因为OA2=1,∴OA1=,OA2=1,OA3=2,OA4=4,由此得出OA n=2n﹣2,所以OA2016=22014,故答案为:22014.【点评】此题考查一次函数图象上点的坐标,关键是根据规律得出OA n=2n﹣2进行解答.三、解答题(本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤)25.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A,与y轴交于点C,PB⊥x轴于点B,且AC=BC,S△PBC=4.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.【考点】反比例函数与一次函数的交点问题;菱形的判定.【分析】(1)由AC=BC结合CO⊥AB可得出OA=OB,由点P的坐标结合三角形的面积公式可得出OA=OB=4,即得出点A、点P的坐标,由点A、点P的坐标利用待定系数法即可得出一次函数的解析式,由点P的坐标利用待定系数法即可得出反比例函数的解析式;(2)假设存在,过点C作x轴的平行线与双曲线交于点D,令一次函数解析式中x=0找出点C的坐标,将点C的纵坐标代入反比例函数解析式中即可得出点D的坐标,再结合点P、点B的坐标即可得出BP与CD互相垂直平分,由此可证得四边形BCPD为菱形.【解答】解:(1)∵AC=BC,CO⊥AB,∴O为AB的中点,即OA=OB,∵S△PBC=4,即OB×PB=4,∵P(n,2),∴PB=2,∴OA=OB=4,∴P(4,2),B(4,0),A(﹣4,0).将A(﹣4,0)与P(4,2)代入y=kx+b得:,解得:.∴一次函数解析式为y=x+1;将P(4,2)代入反比例解析式得:2=,解得:m=8,∴反比例解析式为y=.(2)假设存在这样的D点,使四边形BCPD为菱形.过点C作x轴的平行线与双曲线交于点D,如图所示.令一次函数y=x+1中x=0,则有y=1,∴点C的坐标为(0,1),∵CD∥x轴,∴设点D坐标为(x,1).将点D(x,1)代入反比例解析式y=中,得:1=,解得:x=8,∴点D的坐标为(8,1),即CD=8.∵P点横坐标为4,∴BP与CD互相垂直平分,∴四边形BCPD为菱形.故反比例函数图象上存在点D,使四边形BCPD为菱形,此时点D的坐标为(8,1).【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及菱形的判定定理,解题的关键是:(1)求出点A、点P的坐标;(2)利用“对角线互相垂直平分”证出四边形为菱形.本题属于基础题,难度不大,解决该题型题目时,根据三角形的面积公式找出边的长度,再由边的长度找出点的坐标,最后由点的坐标利用待定系数法求出函数解析式即可.26.(10分)(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【考点】分式方程的应用;一元一次不等式的应用.。

山东省泰安市中考数学二模考试试卷

山东省泰安市中考数学二模考试试卷

山东省泰安市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2016·深圳模拟) 给出四个数0,,π,﹣1,其中最小的是()A . 0B .C . πD . ﹣12. (2分)下列计算:①+=;②2a3•3a2=6a6;③(2x+y)(x-3y)=2x2-5xy-3y2;④(x+y)2=x2+y2 .其中计算错误的个数是()A . 0个B . 1个C . 2个D . 3个3. (2分)将不等式3x-2<1的解集表示在数轴上,正确的是()A .B .C .D .4. (2分)如图所示,该几何体的主视图是()A .B .C .D .5. (2分) (2019九上·张家港期末) 如图,已知等腰△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E,若CD=4 ,CE=8,则⊙O的半径是()A .B . 5C . 6D .6. (2分)(2018·泸县模拟) 二次函数y=﹣x2+6x﹣7,当x取值为t≤x≤t+2时,y最大值=﹣(t﹣3)2+2,则t的取值范围是()A . t=0B . 0≤t≤3C . t≥3D . 以上都不对二、填空题 (共6题;共7分)7. (1分)(2017·广州模拟) 计算|﹣2|+()﹣1×(π﹣)2﹣ =________.8. (1分) (2019七上·琼中期末) 据统计,今年琼中绿橙的产值约为28500000元,数据28500000用科学记数法表示为________.9. (1分)(2019·营口) 在一次青年歌手演唱比赛中,10位评委给某位歌手的打分分别是:9.5,9.8,9.4,9.5,9.6,9.3,9.6,9.4,9.3,9.4,则这组数据的众数是________.10. (1分) (2019九上·沙坪坝期末) 计算:|-1|+()-1=________.11. (2分) (2019七上·如皋期末) 将图1中的正方形剪开得到图2,图2中共有4个正方形,将图2中一个正方形剪开得到图3,图3中共有7个正方形,将图3中一个正方形剪开得到图4,图4中共有10个正方形如此下去,则图2019中共有正方形的个数为________.12. (1分)如图,矩形ABCD中,AB=6,BC=8,E是BC边上的一定点,P是CD边上的一动点(不与点C、D 重合),M,N分别是AE、PE的中点,记MN的长度为a,在点P运动过程中,a不断变化,则a的取值范围是________ .三、解答题 (共11题;共56分)13. (5分) (2019七上·朝阳期中) 先化简,再求值:,其中 .14. (5分) (2017九下·沂源开学考) 解方程:﹣ =1.15. (2分) (2020八上·中山期末) 如图,△AB C中,AE=BE,∠AED=∠ABC。

山东省泰安市中考模拟考试卷(二)数学考试卷(解析版)(初三)中考模拟.doc

山东省泰安市中考模拟考试卷(二)数学考试卷(解析版)(初三)中考模拟.doc

山东省泰安市中考模拟考试卷(二)数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】如图,数轴上有A,B,C,D四个点其中表示2的相反数的点是().A. 点AB. 点BC. 点CD. 点D【答案】A【解析】试题解析:∵表示2的相反数的点,到原点的距离与2这点到原点的距离相等,并且与2分别位于原点的左右两侧,∴在A,B,C,D这四个点中满足以上条件的是A.故选A.考点:1.相反数;2.数轴.【题文】下列运算正确的是()A.3a+3b=6ab B.a3-a=a2 C.a6÷a3=a2 D.(a2)3=a6,【答案】D.【解析】试题解析:A.3a与3b不是同类项,不能合并,故该选项错误;B.a3与a不是同类项,不能合并,故该选项错误;C.a6÷a3=a3,故该选项错误;D.(a2)3=a6,故此选项正确;故选D.考点:1.合并同类项;2.同底数幂的除法;3.幂的乘方【题文】2015年1-3月,全国网上商品零售额6310亿元,将6310用科学记数法表示应为()A.6.310×103 B.63.10×102C.0.6310×104 D.6.310×104【答案】A.【解析】题解析:将6310用科学记数法表示为6.31×103.评卷人得分故选A.考点:科学记数法—表示较大的数.【题文】下列图形中,既是中心对称图形又是轴对称图形的是()【答案】D.【解析】试题解析:A、不是轴对称图形,也不是中心对称图形,故错误;B、不是轴对称图形,是中心对称图形,故错误;C、不是轴对称图形,也不是中心对称图形,故错误;D、是轴对称图形,是中心对称图形,故正确.故选D.考点:1.中心对称图形;2.轴对称图形.【题文】化简的结果是()A.x+1 B. C.x-1 D.【答案】A.【解析】试题解析:原式=.故选A考点:分式的加减法.【题文】如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①② B.②③ C.②④ D.③④【答案】B.【解析】试题解析:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆,故选B.考点:简单几何体的三视图。

泰安市中考数学二模试卷

泰安市中考数学二模试卷

泰安市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016八上·永登期中) 实数9的算术平方根是()A . 3B . ﹣3C . ±3D . 812. (2分) (2019七上·丹江口期末) 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A . 3×106B . 30×105C . 300×104D . 30000003. (2分)(2020·岳阳) 下列运算结果正确的是()A .B .C .D .4. (2分)在x=-4,-1,0,3中,满足不等式组的x值是()A . ﹣4和0B . ﹣4和﹣1C . 0和3D . ﹣1和05. (2分)(2020·南宁模拟) 如图,以矩形ABCD对角线AC为底边作等腰直角△ACE,连接BE,分别交AD,AC于点F,N,CD=AF,AM平分∠BAN。

下列结论:①△CDE≌△AFE;②∠BCM=∠NCM;③AE·AM=NE·FM;④BN2+EF²=EN2;其中正确结论的个数是()A . 1B . 2C . 3D . 46. (2分)小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是()A . 12πc m2B . 15πcm2C . 18πcm2D . 24πcm27. (2分)(2018·井研模拟) 一组数据4,5,6,4,4,7,,5的平均数是5.5,则该组数据的中位数和众数分别是()A . 4,4B . 5,4C . 5,6D . 6,78. (2分)(2016·余姚模拟) 折叠一张正方形纸片,按如下折法不一定能折出45°角的是()A .B .C .D .9. (2分)如图平行四边变形 ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则BF∶FD等于()A . 2∶5B . 3∶5C . 2∶3D . 5∶710. (2分)某厂的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3小时后安排2人装箱,若3小时装产品150件,未装箱的产品数量(y)是时间(t)的函数,这个函数的大致图象是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)(2017·泸州) 分解因式:2m2﹣8=________.12. (1分)使有意义的X的取值范围为1 .13. (1分)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为________.14. (1分)(2019·福州模拟) 如图,为测量一座大厦AB的高度,当小明在C处时测得楼顶A的仰角为60°,接着沿BC方向行走30m至D处时测得楼顶A的仰角为30°,则大厦AB的高度是________.15. (1分)已知二次函数y=-x2+2x-2,当时,函数值y的取值范围是________.16. (1分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为________.三、解答题 (共8题;共100分)17. (10分)(2016·嘉善模拟) 计算下列各题(1)计算: +2﹣1+|﹣ |(2)化简:(a﹣3)2+3a(a+2)18. (10分) (2016七上·黄冈期末) 目前节能灯在城市已基本普及,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表所示:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为44000元?(2)如何进货,商场销售完节能灯时恰好获利30%,此时利润为多少元?19. (15分) (2017八上·双柏期末) 根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如下统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天5路公共汽车平均每班的载客量;(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.20. (15分)(2018·霍邱模拟) 今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:(1)求全班学生人数和m的值.(2)直接写出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.分组分数段(分)频数A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<611021. (10分) (2018九上·江都月考) 如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.22. (10分)(2019·顺义模拟) 如图,在平面直角坐标系xOy中,直线y=kx+k与双曲线y=(x>0)交于点A(1,a).(1)求a,k的值;(2)已知直线l过点D(2,0)且平行于直线y=kx+k,点P(m,n)(m>3)是直线l上一动点,过点P分别作x轴、y轴的平行线,交双曲线y=(x>0)于点M、N,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为W.横、纵坐标都是整数的点叫做整点.①当m=4时,直接写出区域W内的整点个数;②若区域W内的整点个数不超过8个,结合图象,求m的取值范围.23. (10分)(2014·资阳) 如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O 于点D,BD的延长线交AC于E,连接AD.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2 ,求AE的长.24. (20分)(2018·沈阳) 如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B (﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共100分)17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。

2016年山东省泰安市岱岳区中考数学二模试卷含答案解析

2016年山东省泰安市岱岳区中考数学二模试卷含答案解析

2016年山东省泰安市岱岳区中考数学二模试卷一、选择题:本大题共20道小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分1.2016的相反数是()A.B.﹣2016 C.﹣D.20162.下列运算正确的是()A.a+2a=3a2B.3a3•2a2=6a6C.a8÷a2=a4D.(2a)3=8a33.下列图案中,轴对称图形是()A.B. C.D.4.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,又是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是()A.1 B.2 C.3 D.45.化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a26.下列四个物体的俯视图与右边给出视图一致的是()A.B.C.D.7.学校“清洁校园”环境爱护志愿者的年龄分布如图,那么这些志愿者年龄的众数是()A.12岁B.13岁C.14岁D.15岁8.小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A.无解 B.x=1 C.x=﹣4 D.x=﹣1或x=49.如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是()A.0.25 B.0.5 C.0.75 D.0.9510.如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为()A.6 B.12 C.2D.411.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C. D.12.四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A.OA=OC,OB=OD B.AD∥BC,AB∥DC C.AB=DC,AD=BC D.AB∥DC,AD=BC13.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④ D.①③④14.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.15.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是()A.B.C.D.16.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=45°,则∠ABD的度数是()A.30°B.22.5° C.20°D.15°17.若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥1 B.a>1 C.a≤﹣1 D.a<﹣118.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.D.πr219.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③ B.①②④ C.①③④ D.②③④20.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.40二、填空题:本大题共4小题,每小题3分,共12分21.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为米(结果保留整数,测角仪忽略不计,≈1.414,,1.732)22.如图,矩形ABCO中,OA在x轴上,OC在y轴上,且OA=2,AB=5,把△ABC沿着AC对折得到△AB′C,AB′交y轴于D点,则B′点的坐标为.23.如图,一次函数y=kx+2与反比例函数y=(x>0)的图象交于点A,与y轴交于点M,与x轴交于点N,且AM:MN=1:2,则k=.24.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为.三、解答题:本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或演算步骤25.天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游,共支付给旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特地貌特征的黄果树风景区旅游?26.如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)求直线AB和反比例函数的解析式;(2)求△OCD的面积.27.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.28.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.29.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C (0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.2016年山东省泰安市岱岳区中考数学二模试卷参考答案与试题解析一、选择题:本大题共20道小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分1.2016的相反数是()A.B.﹣2016 C.﹣D.2016【考点】相反数.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:2016的相反数是﹣2016.故选:B.2.下列运算正确的是()A.a+2a=3a2B.3a3•2a2=6a6C.a8÷a2=a4D.(2a)3=8a3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据合并同类项,可判断A;根据单项式的乘法,可判断B;根据同底数幂的除法,可判断C;根据积的乘方,可判断D.【解答】解:A、不是同类项不能合并,故A错误;B、单项式乘单项式系数乘系数,同底数的幂相乘,单独出现的字母连同指数作为积的因式,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.3.下列图案中,轴对称图形是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各图形分析判断后即可求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选;D.4.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,又是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是()A.1 B.2 C.3 D.4【考点】命题与定理.【分析】根据平行四边形的性质对①进行判断;根据矩形的判定方法对②进行判断;根据正方形的性质对③进行判断;根据菱形的判定方法对④进行判断.【解答】解:平行四边形的对边相等,所以①正确;对角线相等的平行四边形是矩形,所以②错误;正方形既是轴对称图形,又是中心对称图形,所以③正确;一条对角线平分一组对角的平行四边形是菱形,所以④正确.故选C.5.化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【考点】约分.【分析】首先将分式的分子因式分解,进而约分求出即可.【解答】解:==﹣ab.故选:B.6.下列四个物体的俯视图与右边给出视图一致的是()A.B.C.D.【考点】由三视图判断几何体.【分析】从上面看几何体,得到俯视图,即可做出判断.【解答】解:几何体的俯视图为,故选C7.学校“清洁校园”环境爱护志愿者的年龄分布如图,那么这些志愿者年龄的众数是()A.12岁B.13岁C.14岁D.15岁【考点】条形统计图;众数.【分析】根据众数的定义,就是出现次数最多的数,据此即可判断.【解答】解:众数是14岁.故选:C.8.小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A.无解 B.x=1 C.x=﹣4 D.x=﹣1或x=4【考点】抛物线与x轴的交点.【分析】关于x的方程x2+ax+b=0的解是抛物线y=x2+ax+b与x轴交点的横坐标.【解答】解:如图,∵函数y=x2+ax+b的图象与x轴交点坐标分别是(﹣1,0),(4,0),∴关于x的方程x2+ax+b=0的解是x=﹣1或x=4.故选:D.9.如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是()A.0.25 B.0.5 C.0.75 D.0.95【考点】列表法与树状图法.【分析】根据题意列出表格,得出所有等可能的情况数,找出至少有一个灯泡发光的情况数,即可求出所求的概率.则P==0.75.故选:C.10.如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为()A.6 B.12 C.2D.4【考点】翻折变换(折叠问题).【分析】设BE=x,表示出CE=16﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.【解答】解:设BE=x,则CE=BC﹣BE=16﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=16﹣x,在Rt△ABE中,AB2+BE2=AE2,即82+x2=(16﹣x)2,解得x=6,∴AE=16﹣6=10,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=10,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=8,AH=BE=6,∴FH=AF﹣AH=10﹣6=4,在Rt△EFH中,EF===4.故选:D.11.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【分析】由弟弟的年龄是x岁,哥哥的年龄是y岁,根据“哥哥与弟弟的年龄和是18岁,”,哥哥与弟弟的年龄差不变得出18﹣y=y﹣x,列出方程组即可.【解答】解:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选:D.12.四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A.OA=OC,OB=OD B.AD∥BC,AB∥DC C.AB=DC,AD=BC D.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形的判定定理求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;B、∵AD∥BC,AB∥DC,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;C、AB=DC,AD=BC,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;D、AB∥DC,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.故不能能判定这个四边形是平行四边形.故选:D.13.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④ D.①③④【考点】垂径定理;菱形的判定;圆周角定理;解直角三角形.【分析】分别根据垂径定理、菱形的判定定理、锐角三角函数的定义对各选项进行逐一判断即可.【解答】解:∵点A是劣弧的中点,OA过圆心,∴OA⊥BC,故①正确;∵∠D=30°,∴∠ABC=∠D=30°,∴∠AOB=60°,∵点A是劣弧的中点,∴BC=2CE,∵OA=OB,∴OA=OB=AB=6cm,∴BE=AB•cos30°=6×=3cm,∴BC=2BE=6cm,故②正确;∵∠AOB=60°,∴sin∠AOB=sin60°=,故③正确;∵∠AOB=60°,∴AB=OB,∵点A是劣弧的中点,∴AC=AB,∴AB=BO=OC=CA,∴四边形ABOC是菱形,故选:B.14.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;反比例函数的图象.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.15.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设该长途汽车在原来国道上行驶的速度为x千米/时,根据“甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半”,可列出方程.【解答】解:设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意得=•.16.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=45°,则∠ABD的度数是()A.30°B.22.5° C.20°D.15°【考点】切线的性质;圆周角定理.【分析】由AC为圆O的切线,利用切线的性质得到AC与AB垂直,根据∠C的度数求出∠AOC的度数,由OB=OD,利用等边对等角得到∠ABD=∠BDO,利用外角性质即可求出所求角度数.【解答】解:∵AC是圆O的切线,∴AC⊥AB,∴∠BAC=90°,∵∠C=45°,∴∠AOC=45°,∵OB=OD,∴∠ABD=∠ODB=22.5°,故选B17.若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥1 B.a>1 C.a≤﹣1 D.a<﹣1【考点】解一元一次不等式组.【分析】将不等式组解出来,根据不等式组无解,求出a的取值范围.【解答】解:解得,,∵无解,∴a≥1.故选:A.18.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.D.πr2【考点】扇形面积的计算;等边三角形的性质;切线的性质.【分析】过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.【解答】解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,.∴.由.∵由题意,∠DO1E=120°,得,∴圆形纸片不能接触到的部分的面积为=.故选:C.19.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③ B.①②④ C.①③④ D.②③④【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.【解答】解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a﹣b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选:B.20.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.40【考点】规律型:图形的变化类.【分析】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=,进一步求得第(6)个图形中面积为1的正方形的个数即可.【解答】解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选:B.二、填空题:本大题共4小题,每小题3分,共12分21.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为137米(结果保留整数,测角仪忽略不计,≈1.414,,1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据仰角和俯角的定义得到∠ABD=30°,∠ACD=45°,设AD=xm,先在Rt△ACD 中,利用∠ACD的正切可得CD=AD=x,则BD=BC+CD=x+100,然后在Rt△ABD中,利用∠ABD的正切得到x=(x+100),解得x=50(+1),再进行近似计算即可.【解答】解:如图,∠ABD=30°,∠ACD=45°,BC=100m,设AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+100,在Rt△ABD中,∵tan∠ABD=,∴x=(x+100),∴x=50(+1)≈137,即山高AD为137米.故答案为137.22.如图,矩形ABCO中,OA在x轴上,OC在y轴上,且OA=2,AB=5,把△ABC沿着AC对折得到△AB′C,AB′交y轴于D点,则B′点的坐标为(,).【考点】翻折变换(折叠问题);坐标与图形性质.【分析】作B′E⊥x轴,设OD=x,在Rt△AOD中,根据勾股定理列方程,可求得D点的坐标,然后依据△ADO∽△AB′E可求得B′E、AE的长,从而可求得点B′的坐标.【解答】解:作B′E⊥x轴,∵∠BAC=∠B′AC,∠BAC=∠OCA,∴∠B′AC=∠OCA,∴AD=CD,设OD=x,AD=5﹣x,在Rt△AOD中,根据勾股定理列方程得:22+x2=(5﹣x)2,解得:x=2.1,∴OD=2.1.∴AD=CD=5﹣2.1=2.9.∵CO⊥AO,B′E⊥AO,∴DO∥B′E.∴△ADO∽△AB′E.∴,即.解得:B′E=,AE=.∴OE=.∴点B′的坐标为(,).故答案为:(,).23.如图,一次函数y=kx+2与反比例函数y=(x>0)的图象交于点A,与y轴交于点M,与x轴交于点N,且AM:MN=1:2,则k=.【考点】反比例函数与一次函数的交点问题.【分析】利用相似三角形的判定与性质得出A点坐标,进而代入一次函数解析式得出答案.【解答】解:过点A作AD⊥x轴,由题意可得:MO∥AO,则△NOM∽△NDA,∵AM:MN=1:2,∴==,∵一次函数y=kx+2,与y轴交点为;(0,2),∴MO=2,∴AD=3,∴y=3时,3=,解得:x=,∴A(,3),将A点代入y=kx+2得:3=k+2,解得:k=.故答案为:.24.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为5.【考点】垂径定理的应用;勾股定理;切线的性质.【分析】首先由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,易求得FH的长,然后设求半径为r,则OH=8﹣r,然后在Rt△OFH 中,r2﹣(16﹣r)2=82,解此方程即可求得答案.【解答】解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,在矩形ABCD中,AD∥BC,而IG⊥BC,∴IG⊥AD,∴在⊙O中,FH=EF=4,设求半径为r,则OH=8﹣r,在Rt△OFH中,r2﹣(8﹣r)2=42,解得r=5,故答案为:5.三、解答题:本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或演算步骤25.天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游,共支付给旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特地貌特征的黄果树风景区旅游?【考点】一元二次方程的应用.【分析】首先根据共支付给旅行社旅游费用27000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x名员工去黄果树风景区旅游.即可由对话框,超过25人的人数为(x﹣25)人,每人降低20元,共降低了20(x﹣25)元.实际每人收了[1000﹣20(x﹣25)]元,列出方程求解.【解答】解:设该单位去具有喀斯特地貌特征的黄果树旅游人数为x人,则人均费用为1000﹣20(x﹣25)元由题意得x[1000﹣20(x﹣25)]=27000整理得x2﹣75x+1350=0,解得x1=45,x2=30.当x=45时,人均旅游费用为1000﹣20(x﹣25)=600<700,不符合题意,应舍去.当x=30时,人均旅游费用为1000﹣20(x﹣25)=900>700,符合题意.答:该单位这次共有30名员工去具有喀斯特地貌特征的黄果树风景区旅游.26.如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)求直线AB和反比例函数的解析式;(2)求△OCD的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.【解答】解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E,tan∠ABO===.∴OA=2,CE=3.∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=﹣x+2.设反比例函数的解析式为y=(m≠0),将点C的坐标代入,得3=,∴m=﹣6.∴该反比例函数的解析式为y=﹣.(2)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(6,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=6,故△OCD的面积为2+6=8.27.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.28.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.【考点】三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.【解答】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.29.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C (0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.【考点】二次函数综合题.【分析】(1)由抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,则代入求得a,b,c,进而得解析式与顶点D.(2)由P在AD上,则可求AD解析式表示P点.由S△APE=•PE•y P,所以S可表示,进而由函数最值性质易得S最值.(3)由最值时,P为(﹣,3),则E与C重合.画示意图,P'过作P'M⊥y轴,设边长通过解直角三角形可求各边长度,进而得P'坐标.判断P′是否在该抛物线上,将x P'坐标代入解析式,判断是否为y P'即可.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,∴,解得,∴解析式为y=﹣x2﹣2x+3∵﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线顶点坐标D为(﹣1,4).(2)∵A(﹣3,0),D(﹣1,4),∴设AD为解析式为y=kx+b,有,解得,∴AD解析式:y=2x+6,∵P在AD上,∴P(x,2x+6),∴S△APE=•PE•y P=•(﹣x)•(2x+6)=﹣x2﹣3x(﹣3<x<﹣1),当x=﹣=﹣时,S取最大值.(3)如图1,设P′F与y轴交于点N,过P′作P′M⊥y轴于点M,∵△PEF沿EF翻折得△P′EF,且P(﹣,3),∴∠PFE=∠P′FE,PF=P′F=3,PE=P′E=,∵PF∥y轴,∴∠PFE=∠FEN,∵∠PFE=∠P′FE,∴∠FEN=∠P′FE,∴EN=FN,设EN=m,则FN=m,P′N=3﹣m.在Rt△P′EN中,∵(3﹣m)2+()2=m2,∴m=.∵S△P′EN=•P′N•P′E=•EN•P′M,∴P′M=.在Rt△EMP′中,∵EM==,∴OM=EO﹣EM=,∴P′(,).当x=时,y=﹣()2﹣2•+3=≠,∴点P′不在该抛物线上.2016年6月14日。

【初中数学】山东省泰安市岱岳区2016年中考数学一模试卷 人教版

【初中数学】山东省泰安市岱岳区2016年中考数学一模试卷 人教版

山东省泰安市岱岳区2016年中考数学一模试卷一、选择题1.若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D.x≥0且x≠12.下列各式计算正确的是()A.a0=1 B.C.(﹣3)﹣2=﹣D.3.2013年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()A.1.2×10﹣9米B.1.2×10﹣8米C.12×10﹣8米D.1.2×10﹣7米4.下列标志中,可以看作是中心对称图形的是()A.B.C.D.5.如图是某几何体的三视图,其侧面积()A.6 B.4πC.6πD.12π6.不等式组的解集在数轴上表示为()A.B.C.D.7.某校八年级二班的10名团员在“情系芦山”的献爱心捐款活动中,捐款情况如下(单位:元):10,8,12,15,10,12,11,9,13,10.则这组数据的()A.众数是10.5 B.方差是3.8 C.极差是8 D.中位数是108.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形 B.正八边形 C.正六边形 D.正五边形9.已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为()A.﹣10 B.4 C.﹣4 D.1010.用一圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是()A.1cm B.2cm C.3cm D.4cm11.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.B.C.D.12.如图在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y=x2﹣2交于A,B 两点,且A点在y轴左侧,P点坐标为(0,﹣4),连接PA,PB.以下说法正确的是()①PO2=PA•PB;②当k>0时,(PA+AO)(PB﹣BO)的值随k的增大而增大;③当k=﹣时,BP2=BO•BA;④三角形PAB面积的最小值为.A.③④B.①②C.②④D.①④13.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC 于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°14.若x=﹣1,y=2,则﹣的值等于()A.B.C.D.15.甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为()A.+=1 B.10+8+x=30C.+8(+)=1 D.(1﹣)+x=816.如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(﹣1,5)、B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为()A.﹣1≤x≤9 B.﹣1≤x<9 C.﹣1<x≤9 D.x≤﹣1或x≥917.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G.若BG=4,则△CEF的面积是()A.B.2C.3D.418.如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为()A.cm B.(2+π)cm C.cm D.3cm19.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()A.B.3 C.1 D.20.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数:“i“,使其满足i2=﹣1(即方程x2=﹣1有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1.从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4)n•i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么,i+i2+i3+i4+…+i2012+i2013的值为()A.0 B.1 C.﹣1 D.i二、填空题21.若m=2n+1,则m2﹣4mn+4n2的值是.22.计算:2﹣1﹣(π﹣3)0﹣=.23.如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为米.24.如图,⊙O的半径为4cm,直线l与⊙O相交于A、B两点,AB=4cm,P为直线l 上一动点,以1cm为半径的⊙P与⊙O没有公共点.设PO=dcm,则d的范围是.三、解答题25.如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线y=(x>0)交于D点,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB≌△ACD.(1)如果b=﹣2,求k的值;(2)试探究k与b的数量关系,并写出直线OD的解析式.26.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.27.如图,在平面直角坐标系中,△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.(1)如图①,若∠BPC=60°,求证:AC=AP;(2)如图②,若sin∠BPC=,求tan∠PAB的值.28.已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.29.如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.2016年山东省泰安市岱岳区中考数学一模试卷参考答案与试题解析一、选择题1.若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D.x≥0且x≠1【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:,解得:x≥0且x≠1.故选D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.下列各式计算正确的是()A.a0=1 B.C.(﹣3)﹣2=﹣D.【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、当a≠0时,a0=1,错误;B、原式=3﹣4=﹣,正确;C、原式=,错误;D、原式=2,错误,故选B【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.3.2013年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()A.1.2×10﹣9米B.1.2×10﹣8米C.12×10﹣8米D.1.2×10﹣7米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000012=1.2×10﹣7.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列标志中,可以看作是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D.【点评】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.5.如图是某几何体的三视图,其侧面积()A.6 B.4πC.6πD.12π【考点】由三视图判断几何体.【专题】压轴题.【分析】先判断出该几何体为圆柱,然后计算其侧面积即可.【解答】解:观察三视图知:该几何体为圆柱,高为3cm,底面直径为2cm,侧面积为:πdh=2π×3=6π.故选C.【点评】本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.6.不等式组的解集在数轴上表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,即可得答案.【解答】解:解不等式3x<2x+4得:x<4,解不等式得:x≥3,则不等式组的解集为:3≤x<4,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.某校八年级二班的10名团员在“情系芦山”的献爱心捐款活动中,捐款情况如下(单位:元):10,8,12,15,10,12,11,9,13,10.则这组数据的()A.众数是10.5 B.方差是3.8 C.极差是8 D.中位数是10【考点】方差;中位数;众数;极差.【分析】根据众数、方差、极差、中位数的定义和公式分别进行计算,即可得出答案.【解答】解:这组数据10,8,12,15,10,12,11,9,13,10中,10出现了3次,出现的次数最多,则众数是10;平均数是(10+8+12+15+10+12+11+9+13+10)÷10=11,则方差=[3×(10﹣11)2+(8﹣11)2+2×(12﹣11)2+(15﹣11)2+(11﹣11)2+(9﹣11)2+(13﹣11)2]=3.8;极差是:15﹣8=7;把这组数据从小到大排列为:8,9,10,10,10,11,12,12,13,15,最中间两个数的平均数是(10+11)÷2=10.5;故选B.【点评】此题考查了众数、方差、极差、中位数,方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),众数是一组数据中出现次数最多的数.8.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形 B.正八边形 C.正六边形 D.正五边形【考点】平面镶嵌(密铺).【分析】根据密铺的知识,找到一个内角能整除周角360°的正多边形即可.【解答】解:A、正十边形每个内角是180°﹣360°÷10=144°,不能整除360°,不能单独进行镶嵌,不符合题意;B、正八边形每个内角是180°﹣360°÷8=135°,不能整除360°,不能单独进行镶嵌,不符合题意;C、正六边形的每个内角是120°,能整除360°,能整除360°,可以单独进行镶嵌,符合题意;D、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能单独进行镶嵌,不符合题意;故选:C.【点评】本题考查了平面密铺的知识,注意几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.9.已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为()A.﹣10 B.4 C.﹣4 D.10【考点】根与系数的关系.【专题】计算题.【分析】利用根与系数的关系表示出m+n与mn,已知等式左边利用多项式乘多项式法则变形,将m+n与mn的值代入即可求出a的值.【解答】解:根据题意得:m+n=3,mn=a,∵(m﹣1)(n﹣1)=mn﹣(m+n)+1=﹣6,∴a﹣3+1=﹣6,解得:a=﹣4.故选C【点评】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.10.用一圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是()A.1cm B.2cm C.3cm D.4cm【考点】圆锥的计算.【分析】利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得.【解答】解:设此圆锥的底面半径为r,由题意,得2πr=,解得r=2cm.故选B.【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.11.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.B.C.D.【考点】列表法与树状图法;轴对称图形.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是轴对称图形的情况,再利用概率公式求解即可求得答案.【解答】解:分别用A、B、C、D表示等腰三角形、平行四边形、菱形、圆,画树状图得:∵共有12种等可能的结果,抽到卡片上印有的图案都是轴对称图形的有6种情况,∴抽到卡片上印有的图案都是轴对称图形的概率为:=.故选D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.12.如图在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y=x2﹣2交于A,B 两点,且A点在y轴左侧,P点坐标为(0,﹣4),连接PA,PB.以下说法正确的是()①PO2=PA•PB;②当k>0时,(PA+AO)(PB﹣BO)的值随k的增大而增大;③当k=﹣时,BP2=BO•BA;④三角形PAB面积的最小值为.A.③④B.①②C.②④D.①④【考点】二次函数综合题.【分析】首先得到两个基本结论:(I)设A(m,km),B(n,kn),联立两个解析式,由根与系数关系得到:m+n=3k,mn=﹣6;(II)直线PA、PB关于y轴对称.利用以上结论,解决本题:(1)说法①错误.如答图1,设点A关于y轴的对称点为A′,若结论①成立,则可以证明△POA′∽△PBO,得到∠AOP=∠PBO.而∠AOP是△PBO的外角,∠AOP>∠PBO,由此产生矛盾,故说法①错误;(2)说法②错误.如答图2,可求得(PA+AO)(PB﹣BO)=16为定值,故错误;(3)说法③正确.联立方程组,求得点A、B坐标,进而求得BP、BO、BA,验证等式BP2=BO•BA成立,故正确;(4)说法④正确.由根与系数关系得到:S△PAB=2,当k=0时,取得最小值为,故正确.【解答】解:设A(m,km),B(n,kn),其中m<0,n>0.联立y=x2﹣2与y=kx得:x2﹣2=kx,即x2﹣3kx﹣6=0,∴m+n=3k,mn=﹣6.设直线PA的解析式为y=ax+b,将P(0,﹣4),A(m,km)代入得:,解得a=,b=﹣4,∴y=()x﹣4.令y=0,得x=,∴直线PA与x轴的交点坐标为(,0).同理可得,直线PB的解析式为y=()x﹣4,直线PB与x轴交点坐标为(,0).∵+=0,∴直线PA、PB与x轴的交点关于y轴对称,即直线PA、PB关于y轴对称.(1)说法①错误.理由如下:如答图1所示,∵PA、PB关于y轴对称,∴点A关于y轴的对称点A′落在PB上.连接OA′,则OA=OA′,∠POA=∠POA′.假设结论:PO2=PA•PB成立,即PO2=PA′•PB,∴,又∵∠BPO=∠BPO,∴△POA′∽△PBO,∴∠POA′=∠PBO,∴∠AOP=∠PBO.而∠AOP是△PBO的外角,∴∠AOP>∠PBO,矛盾,∴说法①错误.(2)说法②错误.理由如下:易知:==,∴OB=﹣OA.由对称可知,PO为△APB的角平分线,∴,∴PB=﹣PA.∴(PA+AO)(PB﹣BO)=(PA+AO)[﹣PA﹣(﹣OA)]=﹣(PA+AO)(PA﹣OA)=﹣(PA2﹣AO2).如答图2所示,过点A作AD⊥y轴于点D,则OD=﹣km,PD=4+km.∴PA2﹣AO2=(PD2+AD2)﹣(OD2+AD2)=PD2﹣OD2=(4+km)2﹣(﹣km)2=8km+16,∵m+n=3k,∴k=(m+n),∴PA2﹣AO2=8×(m+n)•m+16=m2+mn+16=m2+×(﹣6)+16=m2.∴(PA+AO)(PB﹣BO)=﹣(PA2﹣AO2)=﹣•m2=﹣mn=﹣×(﹣6)=16.即:(PA+AO)(PB﹣BO)为定值,所以说法②错误.(3)说法③正确.理由如下:当k=时,联立方程组:,得A(﹣2,2),B(,﹣1),∴BP2=12,BO•BA=2×6=12,∴BP2=BO•BA,故说法③正确.(4)说法④正确.理由如下:S△PAB=S△PAO+S△PBO=OP•(﹣m)+OP•n=OP•(n﹣m)=2(n﹣m)=2=2,∴当k=0时,△PAB面积有最小值,最小值为2=4.故说法④正确.综上所述,正确的说法是:③④.故选A.【点评】本题是代数几何综合题,难度很大.解答中首先得到两个基本结论,其中PA、PB 的对称性是判定说法①的基本依据,根与系数关系的结论是判定说法②、④的关键依据.正确解决本题的关键是打好数学基础,将平时所学知识融会贯通、灵活运用.13.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC 于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°【考点】切线的性质;等腰直角三角形.【专题】压轴题.【分析】首先连接AO,由切线的性质,易得OD⊥AB,即可得OD是△ABC的中位线,继而求得OD的长;根据圆周角定理即可求出∠MND的度数.【解答】解:连接OA,∵AB与⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,∴AO⊥BC,∴OD∥AC,∵O为BC的中点,∴OD=AC=2;∵∠DOB=45°,∴∠MND=∠DOB=22.5°,故选A.【点评】此题考查了切线的性质、圆周角定理、切线长定理以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.14.若x=﹣1,y=2,则﹣的值等于()A.B.C.D.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x,y的值代入进行计算即可.【解答】解:原式=﹣===,当x=﹣1,y=2时,原式==.故选D.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.15.甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为()A.+=1 B.10+8+x=30C.+8(+)=1 D.(1﹣)+x=8【考点】由实际问题抽象出分式方程.【分析】设乙工程队单独完成这项工程需要x天,由题意可得等量关系:甲10天的工作量+甲与乙8天的工作量=1,再根据等量关系可得方程10×+(+)×8=1即可.【解答】解:设乙工程队单独完成这项工程需要x天,由题意得:10×+(+)×8=1.故选:C.【点评】此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,找出题目中的等量关系,再列出方程,此题用到的公式是:工作效率×工作时间=工作量.16.如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(﹣1,5)、B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为()A.﹣1≤x≤9 B.﹣1≤x<9 C.﹣1<x≤9 D.x≤﹣1或x≥9【考点】二次函数与不等式(组).【专题】压轴题.【分析】先观察图象确定抛物线y2=ax2+bx+c(a≠0)和一次函数y1=kx+n(k≠0)的交点的横坐标,即可求出y1≥y2时,x的取值范围.【解答】解:由图形可以看出:抛物线y2=ax2+bx+c(a≠0)和一次函数y1=kx+n(k≠0)的交点的横坐标分别为﹣1,9,当y1≥y2时,x的取值范围正好在两交点之内,即﹣1≤x≤9.故选A.【点评】本题考查了二次函数与不等式(组),此类题可采用“数形结合”的思想进行解答,这也是速解习题常用的方法.17.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G.若BG=4,则△CEF的面积是()A.B.2C.3D.4【考点】平行四边形的性质.【分析】首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,证明△ABE∽△FCE,再分别求出△ABE的面积,然后根据面积比等于相似比的平方即可得到答案.【解答】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=4,∴AG═2,∴AE=2AG=4;∴S△ABE=AE•BG=×4×4=8.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1.∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=2.故选B.【点评】本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.18.如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为()A.cm B.(2+π)cm C.cm D.3cm【考点】弧长的计算;等边三角形的性质;旋转的性质.【专题】压轴题.【分析】通过观察图形,可得从开始到结束经过两次翻动,求出点B两次划过的弧长,即可得出所经过路径的长度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∴∠AC(A)=120°,点B两次翻动划过的弧长相等,则点B经过的路径长=2×=π.故选C.【点评】本题考查了弧长的计算,解答本题的关键是仔细观察图形,得到点B运动的路径,注意熟练掌握弧长的计算公式.19.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()A.B.3 C.1 D.【考点】翻折变换(折叠问题).【专题】压轴题.【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可.【解答】解:∵AB=3,AD=4,∴DC=3,∴AC==5,根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,22+x2=(4﹣x)2,解得:x=,故选:A.【点评】此题主要考查了图形的翻着变换,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.20.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数:“i“,使其满足i2=﹣1(即方程x2=﹣1有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1.从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4)n•i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么,i+i2+i3+i4+…+i2012+i2013的值为()A.0 B.1 C.﹣1 D.i【考点】一元二次方程的解.【专题】新定义.【分析】i1=i,i2=﹣1,i3=i2•i=(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,i5=i4•i=i,i6=i5•i=﹣1,从而可得4次一循环,一个循环内的和为0,计算即可.【解答】解:由题意得,i1=i,i2=﹣1,i3=i2•i=(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,i5=i4•i=i,i6=i5•i=﹣1,故可发现4次一循环,一个循环内的和为0,∵=503…1,∴i+i2+i3+i4+…+i2012+i2013=i.故选:D.【点评】本题考查了一元二次方程的解的定义,实数的运算,解答本题的关键是计算出前面几个数的值,发现规律,求出一个循环内的和再计算,有一定难度.二、填空题21.若m=2n+1,则m2﹣4mn+4n2的值是1.【考点】完全平方公式.【专题】计算题.【分析】所求式子利用完全平方公式变形,将已知等式变形后代入计算即可求出值.【解答】解:∵m=2n+1,即m﹣2n=1,∴原式=(m﹣2n)2=1.故答案为:1【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.22.计算:2﹣1﹣(π﹣3)0﹣=﹣1.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】本题涉及0指数幂、负指数幂、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣1﹣=﹣1.故答案为:﹣1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握0指数幂、负指数幂、立方根考点的运算.23.如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为750米.【考点】解直角三角形的应用-仰角俯角问题.【专题】压轴题.【分析】作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD 的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.【解答】解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×25=750(米),∴AD=AC•sin45°=375(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=750(米).故答案为:750.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形并解直角三角形,难度适中.24.如图,⊙O的半径为4cm,直线l与⊙O相交于A、B两点,AB=4cm,P为直线l 上一动点,以1cm为半径的⊙P与⊙O没有公共点.设PO=dcm,则d的范围是d>5或2≤d <3.【考点】圆与圆的位置关系.【专题】压轴题.【分析】根据两圆内切和外切时,求出两圆圆心距,进而得出d的取值范围.【解答】解:连接OP、OA,∵⊙O的半径为4cm,1cm为半径的⊙P,⊙P与⊙O没有公共点,∴d>5时,两圆外离,当两圆内切时,过点O作OD⊥AB于点D,OP′=4﹣1=3cm,OD==2(cm),∴以1cm为半径的⊙P与⊙O没有公共点时,2≤d<3,故答案为:d>5或2≤d<3.【点评】此题主要考查了圆与圆的位置关系,根据图形进行分类讨论得出是解题关键.三、解答题25.如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线y=(x>0)交于D点,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB≌△ACD.(1)如果b=﹣2,求k的值;(2)试探究k与b的数量关系,并写出直线OD的解析式.【考点】反比例函数综合题.【分析】(1)首先求出直线y=2x﹣2与坐标轴交点的坐标,然后由△AOB≌△ACD得到CD=OB,AO=AC,即可求出D坐标,由点D在双曲线y=(x>0)的图象上求出k的值;(2)首先直线y=2x+b与坐标轴交点的坐标为A(﹣,0),B(0,b),再根据△AOB≌△ACD 得到CD=DB,AO=AC,即可求出D坐标,把D点坐标代入反比例函数解析式求出k和b 之间的关系,进而也可以求出直线OD的解析式.【解答】解:(1)当b=﹣2时,直线y=2x﹣2与坐标轴交点的坐标为A(1,0),B(0,﹣2).∵△AOB≌△ACD,∴CD=OB,AO=AC,∴点D的坐标为(2,2).∵点D在双曲线y=(x>0)的图象上,∴k=2×2=4.(2)直线y=2x+b与坐标轴交点的坐标为A(﹣,0),B(0,b).∵△AOB≌△ACD,∴CD=OB,AO=AC,∴点D的坐标为(﹣b,﹣b).∵点D在双曲线y=(x>0)的图象上,∴k=(﹣b)•(﹣b)=b2.即k与b的数量关系为:k=b2.直线OD的解析式为:y=x.【点评】本题主要考查反比例函数的综合题的知识点,解答本题的关键是熟练掌握反比例函数的性质以及反比例函数图象的特征,此题难度不大,是一道不错的中考试题.26.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【考点】菱形的判定与性质;三角形中位线定理.【分析】从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.27.如图,在平面直角坐标系中,△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.(1)如图①,若∠BPC=60°,求证:AC=AP;(2)如图②,若sin∠BPC=,求tan∠PAB的值.【考点】圆周角定理;圆心角、弧、弦的关系;解直角三角形.【专题】计算题.【分析】(1)根据圆周角定理得到∠BAC=∠BPC=60°,加上AB=AC,可判断△ABC为等边三角形,所以∠ACB=60°,再由点P是弧AB的中点得∠ACP=∠BCP=30°,接着可判断△APC为直角三角形,然后根据∠APC的正切即可得到AC=AP;(2)连接AO并延长交PC于F,交BC于E,过点E作EG⊥AC于G,连接OC,如图,根据垂径定理和等腰三角形的性质得AF⊥BC,BF=CF,再根据角平分线性质得EG=EF.接着由圆周角定理得∠BPC=∠BAC=∠FOC,则sin∠FOC=sin∠BPC=,于是设FC=24a,则OC=OA=25a,所以OF=7a,AF=25a+7a=32a,在Rt△AFC中利用勾股定理计算出AC=40a,接着证明△AEG∽△ACF,利用相似比得=,解得EG=12a,然后在Rt△CEF中,可得tan∠ECF==,再利用圆周角定理易得tan∠PAB=tan∠PCB=.【解答】(1)证明:∵弧BC=弧BC,∴∠BAC=∠BPC=60°,又∵AB=AC,∴△ABC为等边三角形,∴∠ACB=60°,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年山东省泰安市岱岳区中考数学二模试卷一、选择题:本大题共20道小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分1.2016的相反数是()A.B.﹣2016 C.﹣D.20162.下列运算正确的是()A.a+2a=3a2B.3a3•2a2=6a6C.a8÷a2=a4D.(2a)3=8a33.下列图案中,轴对称图形是()A.B.C. D.4.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,又是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是()A.1 B.2 C.3 D.45.化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a26.下列四个物体的俯视图与右边给出视图一致的是()A.B.C.D.7.学校“清洁校园”环境爱护志愿者的年龄分布如图,那么这些志愿者年龄的众数是()A.12岁 B.13岁 C.14岁 D.15岁8.小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A.无解B.x=1 C.x=﹣4 D.x=﹣1或x=49.如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是()A.0.25 B.0.5 C.0.75 D.0.9510.如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为()A.6 B.12 C.2D.411.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.12.四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A.OA=OC,OB=OD B.AD∥BC,AB∥DC C.AB=DC,AD=BC D.AB∥DC,AD=BC13.如图,在半径为6cm 的⊙O 中,点A 是劣弧的中点,点D 是优弧上一点,且∠D=30°,下列四个结论:①OA ⊥BC ;②BC=6;③sin ∠AOB=;④四边形ABOC 是菱形.其中正确结论的序号是( )A .①③B .①②③④C .②③④D .①③④14.函数y=与y=﹣kx 2+k (k≠0)在同一直角坐标系中的图象可能是( )A .B .C .D .15.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x 千米/时,根据题意,下列方程正确的是( )A .B .C .D .16.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD ,∠C=45°,则∠ABD 的度数是( )A .30°B .22.5°C .20°D .15°17.若关于x 的一元一次不等式组无解,则a 的取值范围是( )A .a≥1B .a >1C .a≤﹣1D .a <﹣118.如图,一个半径为r 的圆形纸片在边长为a ()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是( )A.B. C. D.πr219.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④20.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.40二、填空题:本大题共4小题,每小题3分,共12分21.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为米(结果保留整数,测角仪忽略不计,≈1.414,,1.732)22.如图,矩形ABCO中,OA在x轴上,OC在y轴上,且OA=2,AB=5,把△ABC沿着AC 对折得到△AB′C,AB′交y轴于D点,则B′点的坐标为.23.如图,一次函数y=kx+2与反比例函数y=(x>0)的图象交于点A,与y轴交于点M,与x轴交于点N,且AM:MN=1:2,则k=.24.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为.三、解答题:本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或演算步骤25.天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游,共支付给旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特地貌特征的黄果树风景区旅游?26.如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)求直线AB和反比例函数的解析式;(2)求△OCD的面积.27.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD 的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.28.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.29.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C (0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.2016年山东省泰安市岱岳区中考数学二模试卷参考答案与试题解析一、选择题:本大题共20道小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分1.2016的相反数是()A.B.﹣2016 C.﹣D.2016【考点】相反数.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:2016的相反数是﹣2016.故选:B.2.下列运算正确的是()A.a+2a=3a2B.3a3•2a2=6a6C.a8÷a2=a4D.(2a)3=8a3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据合并同类项,可判断A;根据单项式的乘法,可判断B;根据同底数幂的除法,可判断C;根据积的乘方,可判断D.【解答】解:A、不是同类项不能合并,故A错误;B、单项式乘单项式系数乘系数,同底数的幂相乘,单独出现的字母连同指数作为积的因式,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.3.下列图案中,轴对称图形是()A.B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各图形分析判断后即可求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选;D.4.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,又是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是()A.1 B.2 C.3 D.4【考点】命题与定理.【分析】根据平行四边形的性质对①进行判断;根据矩形的判定方法对②进行判断;根据正方形的性质对③进行判断;根据菱形的判定方法对④进行判断.【解答】解:平行四边形的对边相等,所以①正确;对角线相等的平行四边形是矩形,所以②错误;正方形既是轴对称图形,又是中心对称图形,所以③正确;一条对角线平分一组对角的平行四边形是菱形,所以④正确.故选C.5.化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【考点】约分.【分析】首先将分式的分子因式分解,进而约分求出即可.【解答】解:==﹣ab.故选:B.6.下列四个物体的俯视图与右边给出视图一致的是()A.B.C.D.【考点】由三视图判断几何体.【分析】从上面看几何体,得到俯视图,即可做出判断.【解答】解:几何体的俯视图为,故选C7.学校“清洁校园”环境爱护志愿者的年龄分布如图,那么这些志愿者年龄的众数是()A.12岁 B.13岁 C.14岁 D.15岁【考点】条形统计图;众数.【分析】根据众数的定义,就是出现次数最多的数,据此即可判断.【解答】解:众数是14岁.故选:C.8.小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A.无解B.x=1 C.x=﹣4 D.x=﹣1或x=4【考点】抛物线与x轴的交点.【分析】关于x的方程x2+ax+b=0的解是抛物线y=x2+ax+b与x轴交点的横坐标.【解答】解:如图,∵函数y=x2+ax+b的图象与x轴交点坐标分别是(﹣1,0),(4,0),∴关于x的方程x2+ax+b=0的解是x=﹣1或x=4.故选:D.9.如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是()A.0.25 B.0.5 C.0.75 D.0.95【考点】列表法与树状图法.【分析】根据题意列出表格,得出所有等可能的情况数,找出至少有一个灯泡发光的情况数,即可求出所求的概率.则P==0.75.故选:C.10.如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为()A.6 B.12 C.2D.4【考点】翻折变换(折叠问题).【分析】设BE=x,表示出CE=16﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.【解答】解:设BE=x,则CE=BC﹣BE=16﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=16﹣x,在Rt△ABE中,AB2+BE2=AE2,即82+x2=(16﹣x)2,解得x=6,∴AE=16﹣6=10,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=10,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=8,AH=BE=6,∴FH=AF﹣AH=10﹣6=4,在Rt△EFH中,EF===4.故选:D.11.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】由弟弟的年龄是x岁,哥哥的年龄是y岁,根据“哥哥与弟弟的年龄和是18岁,”,哥哥与弟弟的年龄差不变得出18﹣y=y﹣x,列出方程组即可.【解答】解:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选:D.12.四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A.OA=OC,OB=OD B.AD∥BC,AB∥DC C.AB=DC,AD=BC D.AB∥DC,AD=BC 【考点】平行四边形的判定.【分析】根据平行四边形的判定定理求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;B、∵AD∥BC,AB∥DC,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;C、AB=DC,AD=BC,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;D、AB∥DC,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.故不能能判定这个四边形是平行四边形.故选:D.13.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④【考点】垂径定理;菱形的判定;圆周角定理;解直角三角形.【分析】分别根据垂径定理、菱形的判定定理、锐角三角函数的定义对各选项进行逐一判断即可.【解答】解:∵点A是劣弧的中点,OA过圆心,∴OA⊥BC,故①正确;∵∠D=30°,∴∠ABC=∠D=30°,∴∠AOB=60°,∵点A是劣弧的中点,∴BC=2CE,∵OA=OB,∴OA=OB=AB=6cm,∴BE=AB•cos30°=6×=3cm,∴BC=2BE=6cm,故②正确;∵∠AOB=60°,∴sin∠AOB=sin60°=,故③正确;∵∠AOB=60°,∴AB=OB,∵点A是劣弧的中点,∴AC=AB,∴AB=BO=OC=CA,∴四边形ABOC是菱形,故④正确.故选:B.14.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;反比例函数的图象.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.15.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设该长途汽车在原来国道上行驶的速度为x千米/时,根据“甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半”,可列出方程.【解答】解:设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意得=•.故选:D.16.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=45°,则∠ABD的度数是()A.30°B.22.5° C.20°D.15°【考点】切线的性质;圆周角定理.【分析】由AC为圆O的切线,利用切线的性质得到AC与AB垂直,根据∠C的度数求出∠AOC 的度数,由OB=OD,利用等边对等角得到∠ABD=∠BDO,利用外角性质即可求出所求角度数.【解答】解:∵AC是圆O的切线,∴AC⊥AB,∴∠BAC=90°,∵∠C=45°,∴∠AOC=45°,∵OB=OD,∴∠ABD=∠ODB=22.5°,故选B17.若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥1B.a>1 C.a≤﹣1 D.a<﹣1【考点】解一元一次不等式组.【分析】将不等式组解出来,根据不等式组无解,求出a的取值范围.【解答】解:解得,,∵无解,∴a≥1.故选:A.18.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B. C. D.πr2【考点】扇形面积的计算;等边三角形的性质;切线的性质.【分析】过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.【解答】解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,.∴.由.∵由题意,∠DO1E=120°,得,∴圆形纸片不能接触到的部分的面积为=.故选:C.19.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.【解答】解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a﹣b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选:B.20.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.40【考点】规律型:图形的变化类.【分析】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=,进一步求得第(6)个图形中面积为1的正方形的个数即可.【解答】解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选:B.二、填空题:本大题共4小题,每小题3分,共12分21.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为137米(结果保留整数,测角仪忽略不计,≈1.414,,1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据仰角和俯角的定义得到∠ABD=30°,∠ACD=45°,设AD=xm,先在Rt△ACD中,利用∠ACD的正切可得CD=AD=x,则BD=BC+CD=x+100,然后在Rt△ABD中,利用∠ABD的正切得到x=(x+100),解得x=50(+1),再进行近似计算即可.【解答】解:如图,∠ABD=30°,∠ACD=45°,BC=100m,设AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+100,在Rt△ABD中,∵tan∠ABD=,∴x=(x+100),∴x=50(+1)≈137,即山高AD为137米.故答案为137.22.如图,矩形ABCO中,OA在x轴上,OC在y轴上,且OA=2,AB=5,把△ABC沿着AC对折得到△AB′C,AB′交y轴于D点,则B′点的坐标为(,).【考点】翻折变换(折叠问题);坐标与图形性质.【分析】作B′E⊥x轴,设OD=x,在Rt△AOD中,根据勾股定理列方程,可求得D点的坐标,然后依据△ADO∽△AB′E可求得B′E、AE的长,从而可求得点B′的坐标.【解答】解:作B′E⊥x轴,∵∠BAC=∠B′AC,∠BAC=∠OCA,∴∠B′AC=∠OCA,∴AD=CD,设OD=x,AD=5﹣x,在Rt△AOD中,根据勾股定理列方程得:22+x2=(5﹣x)2,解得:x=2.1,∴OD=2.1.∴AD=CD=5﹣2.1=2.9.∵CO⊥AO,B′E⊥AO,∴DO∥B′E.∴△ADO∽△AB′E.∴,即.解得:B′E=,AE=.∴OE=.∴点B′的坐标为(,).故答案为:(,).23.如图,一次函数y=kx+2与反比例函数y=(x>0)的图象交于点A,与y轴交于点M,与x轴交于点N,且AM:MN=1:2,则k=.【考点】反比例函数与一次函数的交点问题.【分析】利用相似三角形的判定与性质得出A点坐标,进而代入一次函数解析式得出答案.【解答】解:过点A作AD⊥x轴,由题意可得:MO∥AO,则△NOM∽△NDA,∵AM:MN=1:2,∴==,∵一次函数y=kx+2,与y轴交点为;(0,2),∴MO=2,∴AD=3,∴y=3时,3=,解得:x=,∴A(,3),将A点代入y=kx+2得:3=k+2,解得:k=.故答案为:.24.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为5.【考点】垂径定理的应用;勾股定理;切线的性质.【分析】首先由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,易求得FH的长,然后设求半径为r,则OH=8﹣r,然后在Rt△OFH中,r2﹣(16﹣r)2=82,解此方程即可求得答案.【解答】解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,在矩形ABCD中,AD∥BC,而IG⊥BC,∴IG⊥AD,∴在⊙O中,FH=EF=4,设求半径为r,则OH=8﹣r,在Rt△OFH中,r2﹣(8﹣r)2=42,解得r=5,故答案为:5.三、解答题:本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或演算步骤25.天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游,共支付给旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特地貌特征的黄果树风景区旅游?【考点】一元二次方程的应用.【分析】首先根据共支付给旅行社旅游费用27000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x名员工去黄果树风景区旅游.即可由对话框,超过25人的人数为(x﹣25)人,每人降低20元,共降低了20(x﹣25)元.实际每人收了[1000﹣20(x﹣25)]元,列出方程求解.【解答】解:设该单位去具有喀斯特地貌特征的黄果树旅游人数为x人,则人均费用为1000﹣20(x﹣25)元由题意得x[1000﹣20(x﹣25)]=27000整理得x2﹣75x+1350=0,解得x1=45,x2=30.当x=45时,人均旅游费用为1000﹣20(x﹣25)=600<700,不符合题意,应舍去.当x=30时,人均旅游费用为1000﹣20(x﹣25)=900>700,符合题意.答:该单位这次共有30名员工去具有喀斯特地貌特征的黄果树风景区旅游.26.如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)求直线AB和反比例函数的解析式;(2)求△OCD的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.【解答】解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E,tan∠ABO===.∴OA=2,CE=3.∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=﹣x+2.设反比例函数的解析式为y=(m≠0),将点C的坐标代入,得3=,∴m=﹣6.∴该反比例函数的解析式为y=﹣.(2)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(6,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=6,故△OCD的面积为2+6=8.27.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD 的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE 的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.28.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.【考点】三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.【解答】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.29.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C (0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.【考点】二次函数综合题.【分析】(1)由抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,则代入求得a,b,c,进而得解析式与顶点D.(2)由P在AD上,则可求AD解析式表示P点.由S△APE=•PE•y P,所以S可表示,进而由函数最值性质易得S最值.(3)由最值时,P为(﹣,3),则E与C重合.画示意图,P'过作P'M⊥y轴,设边长通过解直角三角形可求各边长度,进而得P'坐标.判断P′是否在该抛物线上,将x P'坐标代入解析式,判断是否为y P'即可.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,∴,解得,∴解析式为y=﹣x2﹣2x+3∵﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线顶点坐标D为(﹣1,4).(2)∵A(﹣3,0),D(﹣1,4),∴设AD为解析式为y=kx+b,有,解得,∴AD解析式:y=2x+6,∵P在AD上,∴P(x,2x+6),∴S△APE=•PE•y P=•(﹣x)•(2x+6)=﹣x2﹣3x(﹣3<x<﹣1),当x=﹣=﹣时,S取最大值.(3)如图1,设P′F与y轴交于点N,过P′作P′M⊥y轴于点M,∵△PEF沿EF翻折得△P′EF,且P(﹣,3),∴∠PFE=∠P′FE,PF=P′F=3,PE=P′E=,∵PF∥y轴,∴∠PFE=∠FEN,∵∠PFE=∠P′FE,∴∠FEN=∠P′FE,∴EN=FN,设EN=m,则FN=m,P′N=3﹣m.在Rt△P′EN中,∵(3﹣m)2+()2=m2,∴m=.∵S△P′EN=•P′N•P′E=•EN•P′M,∴P′M=.在Rt△EMP′中,∵EM==,∴OM=EO﹣EM=,∴P′(,).当x=时,y=﹣()2﹣2•+3=≠,∴点P′不在该抛物线上.2016年6月14日。

相关文档
最新文档