因式分解技巧十法

合集下载

因式分解的16种方法凑因式 方法

因式分解的16种方法凑因式 方法

因式分解的16种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

而在竞赛上,又有拆项与添减项法,分组分解法与十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。

注意三原则1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:()1332--=+-x x x x )分解因式技巧1、分解因式与整式乘法就是互为逆变形。

2、分解因式技巧掌握:①等式左边必须就是多项式;②分解因式的结果必须就是以乘积的形式表示;③每个因式必须就是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数与因式两个方面考虑。

基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都就是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项就是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号。

提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即就是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。

口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形瞧奇偶。

因式分解的十二种方法

因式分解的十二种方法

因式分解的十二种方法因式分解是代数中的一个非常重要的概念,它可以帮助我们将一个复杂的代数表达式简化为更简单的乘积形式。

在因式分解的过程中,有许多不同的方法可以使用。

下面将介绍因式分解的十二种常见方法。

一、公因式提取法(通用方法):公因式提取法是因式分解中最基础也是最常见的一种方法。

它的基本思想是通过提取出一个或多个公因式,将原表达式分解为因子相乘的形式。

例如,对于表达式6x+9y,可以提取出3作为公因式,从而得到3(2x+3y)。

二、配方法(分组法):配方法是一种将高次项与低次项相乘的方法。

通过将原表达式分组,然后将每组中的项相乘,最后将各组之间的结果相加。

例如,对于表达式x^2+5x+6,可以将其写成(x^2+2x)+(3x+6),然后将每组中的项相乘,即得到x(x+2)+3(x+2),再进行合并得到(x+2)(x+3)。

三、分解差平方:分解差平方是一种将平方差分解为两个因数相乘的方法。

它的基本思想是将一项的平方与另一项的平方的差分解为两个因数的乘积。

例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。

四、分解和差平方:分解和差平方是一种将平方和分解为两个因数相乘的方法。

它的基本思想是将一项的平方与另一项的平方的和分解为两个因数的乘积。

例如,对于表达式x^2+4,可以将其分解为(x+2i)(x-2i),其中i是虚数单位。

五、完全平方差公式:完全平方差公式是一种将二次三项式分解为两个完全平方的差的方法。

它的基本形式可以表示为a^2-b^2,其中a和b可以是任意代数式。

根据完全平方差公式,可以将a^2-b^2分解为(a+b)(a-b)。

例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。

六、分组分解法:分组分解法是一种将多项式分解为若干个二次三项式相加的方法。

它的基本思想是通过分组,将多项式分成多个二次三项式的和,然后对每个二次三项式进行因式分解。

例如,对于表达式x^3+x^2+x+1,可以将其分为(x^3+x^2)+(x+1),然后对每个二次三项式进行因式分解,得到x^2(x+1)+1(x+1),再进行合并得到(x^2+1)(x+1)。

(完整版)初中化学十字相乘法因式分解

(完整版)初中化学十字相乘法因式分解

(完整版)初中化学十字相乘法因式分解
初中化学十字相乘法因式分解是化学学科中的一种常用的化学
式化简方法。

该方法适用于由多个化合物组成的复杂化合物的化学
式化简。

十字相乘法因式分解的基本原理是根据化学式中的原子元素的
数量和化合价,寻找可相乘的因子,从而达到分解化学式的目的。

下面将以化合物C6H12O6为例,详细介绍十字相乘法因式分
解的步骤:
1. 首先,找到化合物中各个原子元素的化合价。

在C6H12O6中,碳的化合价为4,氢的化合价为1,氧的化合价为2。

2. 根据化合物元素的化合价,找到可相乘的因子。


C6H12O6中,碳的化合价为4,氢的化合价为1,氧的化合价为2,可以得到因子4、1和2。

3. 将化合物中各个原子元素的数量进行配平,使得因子的乘积
等于化合物中各个原子元素的数量。

在C6H12O6中,碳的原子数
量为6,氢的原子数量为12,氧的原子数量为6。

可得到化合物的
化学式化简为(CH2O)6。

以上就是初中化学十字相乘法因式分解的基本步骤和操作方法。

通过这种方法,可以将复杂化合物的化学式简化为更为简洁和清晰
的形式,便于研究和理解。

因式分解的数学方法

因式分解的数学方法

因式分解的数学方法因式分解的数学方法要想能在综合性较强的几何题目中能灵活应用,就必须要熟记啦。

因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法和十字相乘法。

店铺为大家整理了数学公式:因式分解的方法,方便大家查阅。

一、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。

注意:换元后勿忘还元.【例】在分解(x^2+x+1)(x^2+x+2)-12时,可以令y=x^2+x,则原式=(y+1)(y+2)-12=y^2+3y+2-12=y^2+3y-10=(y+5)(y-2)=(x^2+x+5)(x^2+x-2)=(x^2+x+5)(x+2)(x-1).二、运用公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。

① 平方差公式:a-b=(a+b)(a-b);② 完全平方公式:a±2ab+b=(a±b) ;注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

③ 立方和公式:a^3+b^3=(a+b)(a-ab+b);④ 立方差公式:a^3-b^3=(a-b)(a+ab+b);⑤ 完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.【例】a+4ab+4b =(a+2b)三、分组分解法把一个多项式适当分组后,再进行分解因式的方法叫做分组分解法。

用分组分解法时,一定要想想分组后能否继续完成因式分解,由此选择合理选择分组的方法,即分组后,可以直接提公因式或运用公式。

【例】m+5n-mn-5m=m-5m-mn+5n = (m-5m)+(-mn+5n) =m(m-5)-n(m-5)=(m-5)(m-n).四、拆项、补项法这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。

因式分解解题技巧

因式分解解题技巧

因式分解解题技巧1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、分解因式x-2x-xx-2x-x=x(x-2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a+4ab+4b解:a+4ab+4b=(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m+5n-mn-5m解:m+5n-mn-5m=m-5m-mn+5n=(m-5m)+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x-19x-6分析:1-3722-21=-19解:7x-19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x+3x-40解x+3x-40=x+3x+()-()-40=(x+)-()=(x++)(x+-)=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)。

初中因式分解的方法与技巧

初中因式分解的方法与技巧

初中因式分解的方法与技巧
因式分解是初中数学中一个重要的知识点,同时也是高中数学中不可或缺的一部分。

在初中阶段,因式分解主要用于解方程、求根以及求导等数学活动中。

以下是一些初中因式分解的方法和技巧:
1. 提公因式法:将等式中的某一个变量表示成全体因式,然后
再将其它部分表示成另一个因式,最后提公因式将两个因式相乘即可。

例如:
$$(x+2)(x+3) = x^2 + 5x + 6$$
2. 分组法:将等式中的某些项按照一定规律分组,然后再将其
它部分表示成另一个因式,最后分组相乘即可。

例如:
$$2x^2 + 3xy + 5y^2 = 2(x^2 + 2xy + y^2) + 3(y^2 + xy + x^2)$$ 3. 十字相乘法:将等式中的两个因式分别写成十字交叉的形式,然后再相乘并相加,最后得到另一个因式。

例如:
$$(x+2)(y+3) =xy + 3x + 2y + 6$$
4. 配方法:将等式中的某些项按照一定规律进行配方,然后再
将其它部分表示成另一个因式,最后配成平方的形式。

例如:
$$x^2 - 5x + 6 = (x-3)^2$$
5. 因式定理法:利用因式定理分解因式。

例如:
$$(a+b)^2 = a^2 + 2ab + b^2$$
以上是初中阶段一些常见的因式分解方法和技术。

掌握这些方法和技巧对于解方程、求根以及求导等数学活动都非常重要。

同时,也因式分解是高中数学中重要的基础之一,所以需要在初中阶段打好数
学基础,掌握这些技巧。

因式分解的14种方法讲解

因式分解的14种方法讲解

因式分解的14种方法讲解因式分解是数学中常用的重要方法,它可以将一个多项式表达式分解为一个或多个乘积的形式。

在因式分解过程中,有多种方法可以使用。

下面我将为您介绍14种常见的因式分解方法。

方法一:公因式提取法1.公因式提取法是最基本的一种因式分解方法,适用于多项式中存在公共的因式。

例如,对于多项式2x+6,可以提取出公因式2,得到2(x+3)。

方法二:配方法2. 配方法适用于二次型多项式的因式分解。

对于ax² + bx + c形式的多项式,可以通过配方法将其分解为两个一次因式相乘的形式。

例如,对于多项式x² + 3x + 2,可以找到两个因数(x + 1)(x + 2)。

方法三:x平方差3.x平方差适用于形如x²-a²的多项式,其中a是一个常数。

这种情况下,可以将其分解为两个因子(x+a)(x-a)。

方法四:因式分解公式4.因式分解公式适用于一些特殊的多项式形式。

例如,x²-y²可以通过公式(x-y)(x+y)分解。

方法五:完全平方公式5. 完全平方公式适用于形如a² ± 2ab + b²的多项式。

这种情况下,可以将其分解为平方项的和或差。

(a ± b)²。

方法六:两个平方差的乘积6.两个平方差的乘积适用于形如(a+b)(a-b)(c+d)(c-d)的多项式。

这种情况下,可以分解为两个平方差相乘。

方法七:立方公式7. 立方公式适用于形如a³ ± b³的多项式。

这种情况下,可以将其分解为立方项的和或差。

(a ± b)(a² ∓ ab + b²)。

方法八:差的立方8. 差的立方适用于形如a³ - b³的多项式。

这种情况下,可以分解为差的立方公式(a - b)(a² + ab + b²)。

方法九:高次幂差的因式分解9.高次幂差的因式分解适用于形如aⁿ-bⁿ的多项式,其中n为正整数。

因式分解技巧十法

因式分解技巧十法

因式分解技巧这里介绍了10种因式分解的技巧,若将这些技巧全部掌握,在解决因式分解问题上必然有质的提升。

首先提取公因式,然后考虑用公式。

十字添拆要合适,待定主元要试试。

几种方法反复试,最后必是连乘式。

一、提取公因式法多项式中所有的项都含有的因式称为它们的公因式。

例1:分解因式12a2bc2x2y3-9ab2cx3y2+3abcx2y2解:仔细观察,其中3abcx2y2 是它们的公因式所以原式=3abcx2y2(4acy-3bx+1)技巧:先提取每一项的系数的公因数,再逐个将每个字母的最低次提取出来。

注意其中符号的变化以及不能遗漏其中的“1”。

例2:分解因式3x2y(a+b)(b+c)+3xy2(a+b)(b+c)若在求解过程中将(a+b)(b+c)展开,则在后面的分解过程中会有很大的麻烦,应该观察到每一项都含有(a+b)(b+c),将其看成一个整体,不做变化。

解:含有公因式3xy(a+b)(b+c)所以原式=3xy(a+b)(b+c)(x+y)技巧:在分解过程中,利用好整体思想。

二、公式法利用常见的公式进行因式分解。

常用公式a2-b2=(a+b)(a-b)a2-2ab+b2=(a-b)2a2+2ab+b2=(a+b)2a3-b3=(a-b)(a2+ab+b2)a3+b3=(a+b)(a2-ab+b2)a3+3a2b+3ab2+b3=(a+b)3a3-3a2b+3ab2-b3=(a-b)3a2+b2+c2+2ab+2bc+2ca=(a+b+c)2补充公式当n为正奇数时有a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-……-ab n-2+b n-1)当n为正整数时,有a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+……+ab n-2+b n-1)例3:分解因式16(m+x)2-9(n+y)2解:16(m+x)2=(4m+4x)29(n+y)2=(3n+3y)2原式=(4m+4x)2-(3n+3y)2=(4m+3n+4x+3y)(4m-3n+4x-3y)技巧:应该先观察,若先进行展开,将会非常麻烦。

八年级数学因式分解的方法汇总

八年级数学因式分解的方法汇总
2 2
• 四、完全立方和(差) 分式: 3 2 2
a 3a b 3ab b (a b)
3
3
• 五、常用到的式子: ab b a 1 (a 1)(b 1)
a 4 4 (a 2 2a 2)( a 2 2a 2)
a 2 b 2 c 2 2ab 2ac 2bc (a b c) 2
• (3)设x+y=a,xy=b,则原式 =a(a+2b)+(b+1)(b-1) a 2 2ab b 2 1 • =
(a b 1)( a b 1)
• (4)原式=
1999 x 2 1999 x 2 x 1999 1999 x( x 1999 ) ( x 1999 ) (1999 x 1)( x 1999 )
• 把多项式适当的分组,分组后能够有公因式或能 运用公式,这样的因式分解的方法叫分组分解法。
• 分组除具有尝试性外,还具有目的性,或者分组后能出现 公因式,或者能运用分式。分组分解法是因式分解的基本 方法,体现了化整体为局部,又有全局的思想。如何分组 是解题的关键。常见的分组方法有: • (1)按字母分组:把相同的字母的代数式写在一起; • (2)按次数分组:把多项式写成某一个字母的降幂排列, 再分组; • (3)按系数分组:把系数相同的项写在一起进行分组。 • 在分组分解法时有时要用到拆项、添项的技巧。
设 • (1)解: :x 2 5x a • 则原式= (a 2)(a 3) 12
a 2 5a 6 (a 6)( a 1)
• (2)解:原式= ( x
2
7 x 6)( x 2 5 x 6) x 2

因式分解的13种方法

因式分解的13种方法

因式分解的13种方法因式分解是将多项式分解成几个因式的乘积的过程。

它是代数中的一个重要技巧,可以帮助我们简化计算、解方程、求根等。

以下是13种常见的因式分解方法。

方法一:提公因式法提公因式法是将多项式的共同因子提出来,使得多项式可以分解为几个因子的乘积。

例如,对于多项式2x^2+4x,我们可以提取公因式2x,得到2x(x+2)。

方法二:分组提公因式法分组提公因式法是将多项式中的项按照一定的规则进行分组,然后分别提取每组的公因式。

例如,对于多项式2x^3+4x^2+3x+6,可以将其分组为(2x^3+4x^2)+(3x+6),然后对每个组提取公因式,得到2x^2(x+2)+3(x+2),再提取公因式(x+2),最终得到(x+2)(2x^2+3)。

方法三:差平方公式差平方公式是指a^2-b^2=(a+b)(a-b)。

如果我们遇到一个差平方的形式,可以直接利用差平方公式进行因式分解。

例如,对于多项式x^2-4,可以利用差平方公式得到(x+2)(x-2)。

方法四:和差化积公式和差化积公式是指a^3±b^3=(a±b)(a^2∓ab+b^2)。

如果我们遇到一个和差的形式,可以直接利用和差化积公式进行因式分解。

例如,对于多项式x^3+8,可以利用和差化积公式得到(x+2)(x^2-2x+4)。

方法五:平方差公式平方差公式是指a^2±2ab+b^2=(a±b)^2、如果我们遇到一个平方差的形式,可以直接利用平方差公式进行因式分解。

例如,对于多项式x^2+4x+4,可以利用平方差公式得到(x+2)^2方法六:二次差公式二次差公式是指a^2-b^2=(a-b)(a+b)。

如果我们遇到一个二次差的形式,可以直接利用二次差公式进行因式分解。

例如,对于多项式x^2-9,可以利用二次差公式得到(x-3)(x+3)。

方法七:完全平方公式完全平方公式是指a^2±2ab+b^2=(a±b)^2、如果我们遇到一个完全平方的形式,可以直接利用完全平方公式进行因式分解。

因式分解的14种方法

因式分解的14种方法

因式分解的14 种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。

注意三原则:1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正 (例如:3 .3 1. 2 . x . x . .x x . )分解因式技巧:1. 分解因式与整式乘法是互为逆变形。

2. 分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

基本方法:⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“ -”号,使括号内的第一项的系数成为正数。

提出“ -”号时,多项式的各项都要变号。

提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。

口诀:找准公因式,一次要提净;全家都搬走,留1 把家守;提负要变号,变形看奇偶。

因式分解技巧十法

因式分解技巧十法

因式分解技巧十法因式分解是数学中常见的一个基本操作,它在代数学、高等数学、离散数学等领域都有广泛的应用。

因式分解的目的是将一个多项式表达式分解为两个或多个较简单的因式相乘的形式。

下面将介绍一些常用的因式分解技巧:1.提取公因式:多项式中的各项有公共因式时,可以将公因式提取出来。

例如,对于多项式3x²+6x,可以提取出公因式3x,得到3x(x+2)。

2.利用差平方公式:差平方公式可以将一个二次多项式分解为两个平方差的形式。

差平方公式的一般形式是a²-b²=(a+b)(a-b)。

例如,对于多项式x²-4,可以利用差平方公式得到(x+2)(x-2)。

3.利用平方差公式:平方差公式是差平方公式的特殊形式,即a²-b²=(a+b)(a-b)=(a-b)(a+b)。

例如,对于多项式9x²-4,可以利用平方差公式得到(3x-2)(3x+2)或(3x+2)(3x-2)。

4. 利用完全平方公式:完全平方公式可以将一个三项式分解为两个平方和的形式。

完全平方公式的一般形式是a²+2ab+b²=(a+b)²。

例如,对于多项式x²+6x+9,可以利用完全平方公式得到(x+3)²。

5. 利用完全立方公式:完全立方公式是三项式的一个特殊形式,即a³+b³=(a+b)(a²-ab+b²)。

例如,对于多项式x³+8,可以利用完全立方公式得到(x+2)(x²-2x+4)。

6.利用联立方程:如果一个多项式可以看作两个或多个方程联立的结果,可以将多项式分解为方程组的解。

例如,多项式x²-4x+4可以看作方程(x-2)(x-2)=0的结果,因此可以分解为(x-2)(x-2)。

7. 利用因式分解公式:因式分解公式是一些常见多项式的专门分解公式,例如(ax+b)²=a²x²+2abx+b²,(a+b)³=a³+3a²b+3ab²+b³等。

因式分解最全方法归纳

因式分解最全方法归纳

因式分解最全方法归纳因式分解是代数学习中的重要内容,它可以帮助我们简化复杂的代数表达式,解决方程和不等式等问题。

下面就为大家归纳一下因式分解的各种方法。

一、提公因式法如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

例如,对于多项式 6x + 9,6 和 9 都有公因数 3,所以可以提出 3 得到:3(2x + 3)。

提公因式法的关键在于准确找出多项式各项的公因式。

公因式的系数应取各项系数的最大公约数,字母应取各项都含有的相同字母,字母的指数取次数最低的。

二、运用公式法(1)平方差公式:a² b²=(a + b)(a b)例如,分解 9x² 25,可写成(3x)² 5²,然后利用平方差公式得到:(3x + 5)(3x 5)(2)完全平方公式:a² ± 2ab + b²=(a ± b)²比如,对于 x²+ 6x + 9,可以将其写成 x²+ 2×3×x + 3²,符合完全平方公式,分解为(x + 3)²三、分组分解法将多项式分组后,组与组之间能提公因式或运用公式进行分解。

例如,对于多项式 am + an + bm + bn,可以将其分组为(am +an) +(bm + bn),然后分别提公因式得到:a(m + n) + b(m + n),再提公因式(m + n) 得到:(m + n)(a + b)四、十字相乘法对于二次三项式 ax²+ bx + c,如果存在两个数 p、q,使得 a =p×q,c = m×n,且 b = p×n + q×m,那么 ax²+ bx + c =(px + m)(qx + n)比如,分解 6x²+ 5x 6,将 6 分解为 2×3,-6 分解为-2×3,交叉相乘 2×3 + 3×(-2) = 0,所以可以分解为(2x 1)(3x + 6)五、拆项、添项法把多项式的某一项拆开或加上互为相反数的两项,使原式适合于提公因式法、运用公式法或分组分解法进行分解。

因式分解的十大方法讲解

因式分解的十大方法讲解

因式分解的十大方法讲解因式分解是代数学中十分重要且常用的方法,在数学学习中,因式分解通常是一个非常基础且常见的内容。

因式分解是一种能够将一个代数式表示成乘积的过程,其重要性不言而喻。

在学习因式分解的过程中,我们会遇到各种各样的方法来进行因式分解。

本文将介绍因式分解的十大方法,帮助大家更好地理解和掌握这一重要的数学技能。

一、提公因式法提公因式法是一种将多项式提取公因式的方法。

通过找到多项式中的公因式,并将其提取出来,可以简化多项式的运算和化简。

二、分组分解法分组分解法适用于四次或更高次的多项式。

通过将多项式按照一定规则进行分组,使得每组内部出现公因式,然后再提取公因式进行分解。

这种方法在解决高次多项式因式分解问题时非常有效。

三、换元法换元法是一种通过引入变量来简化多项式的方法。

通过引入合适的变量进行变换,可以使得多项式的结构更加清晰,从而更容易进行因式分解。

四、平方法平方法是一种用于因式分解完全平方的方法。

当多项式为完全平方时,可以通过这种方法快速进行因式分解。

五、辗转相除法辗转相除法是一种可以求得多项式的不可约因式的方法。

通过反复进行辗转相除的运算,可以得到多项式的所有实根和不可约因式。

六、提公式法提公式法是一种用于将多项式提取公式进行因式分解的方法。

通过找到多项式中的公式,并进行提取,可以更快速地进行因式分解。

七、分圆法分圆法是一种用于因式分解一元高次多项式的方法。

通过对多项式进行分圆,可以得到多项式的所有根和不可约因式。

八、差减法差减法是一种用于将多项式化为差或差的方法。

通过将多项式进行差减,可以得到多项式的不可约因式。

九、提多项式法提多项式法是一种用于将多项式提取多项式的方法。

通过找到多项式中的多项式,并进行提取,可以更快速地进行因式分解。

十、其他方法除了以上介绍的十种方法外,还有一些其他的因式分解方法,例如配方法、公因式提取等。

虽然这些方法在实际应用中使用较少,但在特定的问题中仍然有其独特的作用。

因式分解的十二种方法

因式分解的十二种方法

因式分解的十二种方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.例1、分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例2、分解因式a +4ab+4b (2003南通市中考题)a +4ab+4b =(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5mm +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -3 7 2 2-21=-197x -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解.例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.例7、分解因式2x -x -6x -x+2 2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2 =(x+1) (2x-1)(x-2)8、求根法令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )例8、分解因式2x +7x -2x -13x+6令f(x)=2x +7x -2x -13x+6=0通过综合除法可知,f(x)=0根为,-3,-2,1 =c(c-a)(b+a)+b(a+b)(c-a)则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)9、图象法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )例9、因式分解x +2x -5x-6令y= x +2x -5x-6作出其图象,见右图,与x轴交点为-3,-1,2则x +2x -5x-6=(x+1)(x+3)(x-2)10、主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.例10、分解因式a (b-c)+b (c-a)+c (a-b)分析:此题可选定a为主元,将其按次数从高到低排列a (b-c)+b (c-a)+c (a-b)=a(b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c)11、利用特殊值法将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.例11、分解因式x +9x +23x+15令x=2,则x +9x +23x+15=8+36+46+15=105将105分解成3个质因数的积,即105=3×5×7注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值则x +9x +23x+15=(x+1)(x+3)(x+5)12、待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.例12、分解因式x -x -5x -6x-4分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式. 设x -x -5x-6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd所以解得则x -x -5x -6x-4 =(x +x+1)(x -2x-4)⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式.如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数.提出“-”号时,多项式的各项都要变号.例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b).⑵运用公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法. 平方差公式:a^2-b^2=(a+b)(a-b);完全平方公式:a^2±2ab+b^2=(a±b)^2;注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. 立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.a^2 +4ab+4b^2 =(a+2b)^2⑶分组分解法把一个多项式适当分组后,再进行分解因式的方法叫做分组分解法.用分组分解法时,一定要想想分组后能否继续完成因式分解,由此选择合理选择分组的方法,即分组后,可以直接提公因式或运用公式.例如:m^2+5n-mn-5m=m^2-5m -mn+5n = (m^2 -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n).⑷拆项、补项法式适合于提公因式法、运用公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.例如:bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b).十字相乘法这种方法有两种情况.①x^2+(p+q)x+pq型的式子的因式分解这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p+q)x+pq=(x+p)(x+q) .②kx^2+mx+n型的式子的因式分解如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).图示如下:× c d例如:因为1 -3 × 7 2-3×7=-21,1×2=2,且2-21=-19,所以7x^2-19x-6=(7x+2)(x-3).这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原十字相乘法口诀:首尾分解,交叉相乘,求和凑中双十字相乘法双十字相乘法属于因式分解的一类,类似于十字相乘法.双十字相乘法就是二元二次六项式,启始的式子如下: ax^2+bxy+cy^2+dx+ey+fx、y为未知数,其余都是常数用一道例题来说明如何使用.例:分解因式:x^2+5xy+6y^2+8x+18y+12.分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解. 图如下,把所有的数字交叉相连即可x 2y 2①②③ x 3y 6∴原式=(x+2y+2)(x+3y+6).双十字相乘法其步骤为:①先用十字相乘法分解x^2+5xy+6y^2=(x+2y)(x+3y);②先依一个字母(如y)的一次系数分数常数项.如十字相乘图②中6y²+18y+12=(2y+2)(3y+6);因式分解的十二种方法:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下:1、提公因法2次项,如十字相乘图①中如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.例1、分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例2、分解因式a +4ab+4b (2003南通市中考题)a +4ab+4b =(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -3 7 2 2-21=-197x -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解.例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来. =c(c-a)(b+a)+b(a+b)(c-a)例7、分解因式2x -x -6x -x+2 2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2 =(x+1) (2x-1)(x-2)8、求根法令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )例8、分解因式2x +7x -2x -13x+6令f(x)=2x +7x -2x -13x+6=0通过综合除法可知,f(x)=0根为,-3,-2,1则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)9、图象法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )例9、因式分解x +2x -5x-6令y= x +2x -5x-6作出其图象,见右图,与x轴交点为-3,-1,2则x +2x -5x-6=(x+1)(x+3)(x-2)10、主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.例10、分解因式a (b-c)+b (c-a)+c (a-b)分析:此题可选定a为主元,将其按次数从高到低排列a (b-c)+b (c-a)+c (a-b)=a(b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c)11、利用特殊值法将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.例11、分解因式x +9x +23x+15令x=2,则x +9x +23x+15=8+36+46+15=105将105分解成3个质因数的积,即105=3×5×7注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值则x +9x +23x+15=(x+1)(x+3)(x+5)12、待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.例12、分解因式x -x -5x -6x-4分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式. 设x -x -5x-6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd所以解得则x -x -5x -6x-4 =(x +x+1)(x -2x-4)。

因式分解16种方法

因式分解16种方法

因式分解16种方法因式分解是代数学中的一项重要内容,它是将一个多项式写成几个因子相乘的形式。

在代数中,我们可以使用不同的方法来进行因式分解,下面将介绍16种常用的因式分解方法。

一、常数公因子法:当多项式中的每一项都有一个相同的因子时,可以将这个公因子提取出来。

二、提公因式法:可以将多项式中的公因子提取出来,并分别乘在每一项的前面。

三、平方差公式:平方差公式可以将两个平方差分解为两个因子相乘的形式。

四、求和差公式:求和差公式可以将两个数的和或差分解为两个因子相乘的形式。

五、特殊公式:特殊公式是一些特定形式的因式分解规律,如完全平方公式、立方差公式等。

六、分组法:将多项式中的项分成若干组,每一组内部有一个公因子,然后进行合并、提公因子的操作。

七、配方法:如果多项式中存在二次项或一次项,可以使用配方法将其转化为完全平方或完全立方。

八、三项因式分解法:将三个项的多项式进行因式分解,可以根据其特征进行分解,如完全平方三项式、卷积三项式等。

九、因式分解公式:在代数学中,有一些常见的因式分解公式,如平方差公式、和差的立方公式等。

十、分式因式分解法:将分式分解为最简形式,可以进行因式分解,然后进行约分、合并等操作。

十一、二次三项式分解法:将二次三项式进行因式分解,可以根据特定的形式进行分解,如完全平方三项式、卷积三项式等。

十二、差的立方公式:差的立方公式可以将两个数的差分解为两个因子相乘的形式。

十三、平方根的平方差公式:平方根的平方差公式可以将平方根的平方差分解为两个因子相乘的形式。

十四、特殊三项式分解法:特殊三项式分解法是针对特定形式的三项式进行因式分解,如完全平方三项式、卷积三项式等。

十五、分场因子法:将多项式中的每一项提取出一个因子,并按照对应的规律进行提取。

十六、根与系数的关系:多项式的根与系数之间存在一定的关系,可以通过观察根与系数之间的关系进行因式分解。

以上是常用的16种因式分解方法,每一种方法都适用于特定的情况和形式的多项式。

因式分解的方法与技巧

因式分解的方法与技巧

因式分解的方法与技巧因式分解的方法与技巧把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、分解因式x -2x -x(2003淮安市中考题)x -2x -x=x(x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的`关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a +4ab+4b (2003南通市中考题)解:a +4ab+4b =(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析: 1 -37 22-21=-19解:7x -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

因式分解的十一种方法

因式分解的十一种方法

因式分解的十一种方法因式分解可是数学里的一门大学问呀!就好像是一把神奇的钥匙,能打开各种数学难题的大门。

咱先来说说提公因式法,这就好比是从一堆杂乱的东西里,一下子把最关键的那个部分给拎出来。

比如多项式里有个公因式,那咱就果断地把它提出来,让式子变得简洁明了。

然后是公式法,平方差公式和完全平方公式就像是两个超厉害的武器,遇到合适的式子,“唰”地一下就把它们分解得妥妥当当。

再说说分组分解法,这就像是把一群小伙伴合理地分组,让他们各自发挥作用,然后就能达到分解的目的啦。

十字相乘法也很有趣呀,横竖一交叉,答案就出来了,是不是很神奇?就好像是找到了一种特殊的密码组合。

还有双十字相乘法,这可比十字相乘法更复杂一点,但一旦掌握了,那可真是威力无穷啊。

配方法呢,就像是给式子精心打扮一番,让它变得更加完美,从而能顺利进行因式分解。

拆项法和添项法就像是变魔术,通过巧妙地拆分或添加一些项,让式子出现新的转机。

换元法,哇,这简直就是另辟蹊径呀,用一个新的元素来代替原来复杂的部分,一下子就让问题变得简单多了。

求根公式法,就像是找到了式子的根源,根据根来进行分解,是不是很有深度?主元法呢,是把某个字母当作主要的研究对象,其他的都围绕着它来转,是不是很有主次之分?最后还有待定系数法,这就像是在解一个神秘的谜题,通过设定一些未知的系数,然后一点点去求解,最终找到答案。

你看,这十一种方法各有各的特点和用处,就像是一套齐全的工具,在我们解数学题的时候随时都能派上用场。

我们要熟练掌握它们,根据不同的题目灵活运用,那数学难题就都不在话下啦!想想看,当我们用这些方法成功地分解一个复杂的式子时,那成就感,简直爆棚!所以呀,大家可别小瞧了这因式分解的十一种方法哦,它们可是我们数学学习道路上的得力助手呢!。

因式分解难题举例

因式分解难题举例

因式分解难题举例一、巧用公式法1、分解因式:a3+b3+c3-3abc.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式a3+b3+c3-3ab=(a+b)3-3ab(a+b)+c3-3abc c是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式其变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.2、分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以二、拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x 3-8x 3-9x+8 =(9x 3-9x)+(-8x 3+8)=9x (x+1)(x -1)-8(x -1)(x 2+x+1) =(x -1)(x 2+x -8). 解法4 添加两项-x 2+x 2. 原式=x 3-9x+8 =x 3-x 2+x 2-9x+8=x 2(x -1)+(x -8)(x -1) =(x -1)(x 2+x -8). 例5 分解因式: (1)x 9+x 6+x 3-3;(2)(m 2-1)(n 2-1)+4mn ; (3)(x+1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1. 练习设置1. 若a+b=3,a 2b+ab 2=-30,则a 3+b 3的值是( ) (A )117 (B )133 (C )-90 (D )1432. 已知1992,1994,1996=-==c b a ,那么)()()(b a ab a c ca c b bc +--++等于_____________ 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解技巧十法
因式分解是基础数学中的重要内容,它不仅在代数中有重要应用,还有助于解决复杂的数学问题。

因式分解的目的是将一个多项式或一个数分解为相对简单的因子相乘的形式。

在这篇文章中,我们将介绍十种因式分解的技巧。

1.公因式提取:这是最常见的因式分解技巧之一、当多项式中的每一项都有一个公因式时,可以将这个公因式提取出来,得到一个公因式和一个因数。

例如,多项式2x+4可以因式分解为2(x+2)。

2.平方差公式:平方差公式可以用来因式分解二次多项式。

形式为
a^2-b^2的二次多项式可以因式分解为(a+b)(a-b)。

例如,多项式x^2-4可以因式分解为(x+2)(x-2)。

3. 完全平方公式:完全平方公式可以用来因式分解二次多项式。

形式为a^2 + 2ab + b^2的二次多项式可以因式分解为(a + b)^2、例如,多项式x^2 + 2x + 1可以因式分解为(x + 1)^2
4.因式定理:因式定理是一种将多项式分解为更简单的因子的技巧。

根据因式定理,如果一个多项式P(x)在x=a处取0值,那么P(x)可以被因式(x-a)整除。

例如,多项式x^2-2x-3在x=3处取0值,因此可以因式分解为(x-3)(x+1)。

5.线性因式定理:线性因式定理是因式定理的一个特殊情况。

根据线性因式定理,如果一个多项式的次数为n,那么它可以被分解为n个线性因子的乘积。

例如,多项式x^2-3x+2可以因式分解为(x-1)(x-2)。

6. 共轭因式定理:共轭因式定理是一种将复数多项式因式分解为实数因子的技巧。

根据共轭因式定理,如果一个复数多项式P(x)的一个复
数根是a + bi,那么其共轭根是a - bi,且(x - (a + bi))(x - (a - bi))是P(x)的因式。

例如,多项式x^2 + 2x + 5在复数域上没有实数解,但可以因式分解为(x - (-1 + 2i))(x - (-1 - 2i))。

7. 差二次幂公式:差二次幂公式可以用来因式分解高次多项式。


式为a^n - b^n的高次多项式可以因式分解为(a - b)(a^(n-1) + a^(n-2)b + ... + ab^(n-2) + b^(n-1))。

例如,多项式x^3 - 1可以因式分
解为(x - 1)(x^2 + x + 1)。

8. 和二次幂公式:和二次幂公式可以用来因式分解高次多项式。


式为a^n + b^n的高次多项式可以因式分解为(a + b)(a^(n-1) - a^(n-2)b + ... - ab^(n-2) + b^(n-1))。

例如,多项式x^3 + 1可以因式分
解为(x + 1)(x^2 - x + 1)。

9.分组因式分解:分组因式分解是一种将多项式进行分组,然后分别
因式分解的技巧。

这种方法特别适用于四项式,其中可以将前两项和后两
项进行分别因式分解,然后进行公因式提取。

例如,多项式
x^3+3x^2+3x+9可以因式分解为(x^2+3)(x+3)。

10.去括号法:去括号法是一种通过使用乘法公式将多项式展开,然
后进行合并和简化的技巧。

这个方法可以用来因式分解任何形式的多项式。

例如,多项式(x+1)(x+2)可以通过展开并进行合并简化得到x^2+3x+2以上是因式分解的十种常见技巧。

掌握这些技巧可以帮助我们更加灵
活地应用因式分解解决各种复杂的数学问题。

因式分解不仅是解决数学题
目的重要工具,也是深入理解代数概念的关键。

通过不断练习和实践,我
们可以逐渐提高自己的因式分解能力。

相关文档
最新文档