北师大版2017初一(下册)数学全册教案WORD
北师大版七年级数学下册全册教案
2017—2018学年度第二学期教学进度任课教师:学科:数学七年级注意事项:1、结合学生实际情况,多采取游戏式的教学,务实基础,引导学生乐于参与数学学习活动。
?2、培养学生认真地计算能力及习惯,在原有基础上再提高。
?3、培养学生的数学能力,提高解决数学问题的正确率,抓好尖子生。
?4、在课堂教学中,注意多一些有利于孩子理解的问题,应该考虑学生实际的思维水平,多照顾中等生以及思维偏慢的学生。
?同底数幂的乘法教学目标:知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算。
过程与方法:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。
情感、态度、价值观:提高学生学习数学的兴趣。
教学重点和难点:幂的运算性质.教学过程:一、实例导入:二、温故:2.,指出下列各式的底数与指数:(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?三、知新:1.利用乘方的意义,提问学生,引出法则计算103×102.解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=105.2.引导学生建立幂的运算法则将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即a m·a n=a m+n.3.引导学生剖析法则(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么(5)当三个以上同底数幂相乘时,上述法则是否成立?要求学生叙述这个法则:同底数幂相乘,底数不变,指数相加。
北师大版七年级数学下册教案(全册)
北师大版七年级数学下册教案(全册)6.1从实际问题到方程教学目的1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程一、复习提问小学里已经学过列方程解简单的应用题,让我们回顾一下,如何列方程解应用题?例如:一本笔记本1.2元。
小红有6元钱,那么她最多能买到几本这样的笔记本呢?解:设小红能买到工本笔记本,那么根据题意,得1.2x=6因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:我们再来看下面一个例子:问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?问:你能解决这个问题吗?有哪些方法?(让学生思考后,回答,教师再作讲评)算术法:(328-64)÷44=264÷44=6(辆)列方程解应用题:设需要租用x辆客车,那么这些客车共可乘44x人,加上乘坐校车的64人,就是全体师生328人,可得。
44x+64=328(1)解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?(学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。
)问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”小敏同学很快说出了答案。
“三年”。
他是这样算的:1年后,老师46岁,同学们的年龄是14岁,不是老师的三分之一。
2年后,老师47岁,同学们的年龄是15岁,也不是老师的三分之一。
3年后,老师48岁,同学们的年龄是16岁,恰好是老师的三分之一。
你能否用方程的方法来解呢?通过分析,列出方程:13+x=(45+x)(2)问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。
北师大版七年级(下)数学全册教案
(此文档为word 格式,下载后您可任意编辑修改!)北师大版实验教科书七年级下册1.1整式教学目标:1.在现实情景中进一步理解用字母表示数的意义,发展符号感。
2.了解整式产生的背景和整式的概念,能求出整式的次数。
教学重点:整式的概念与整式的次数。
教学难点:整式的次数。
教学方法:尝试练习法,讨论法,归纳法。
教学用具:投影仪、常用的教学教具活动准备:1、分别求出下列图形的面积:三角形的面积为_________; 长方形的面积为______正方形的面积为________;圆的面积为____________.2、代数式的系数、项的回顾:(1)代数式b a 231的系数是 代数式-24m n 的系数是(2)代数式42b a -的系数是 代数式543st 的系数是(3)代数式c b a ab 423-共有 项,它们的系数分别是 、 , 项是________________.(4)代数式z x xy y x 232741-+-共有 项,它们的系数分别是 、 、教学过程:1. 课前复习1的基础上求下列图形的面积:一个塑料三角尺如图所示,阴影部分所占的面积是_______ 2.小红、小兰和小明的房间的窗户从左到右如下图所示, 其上方的装饰(它们的半径相同)(1) 装饰物所占的面积分别是_____ ______ _______(2) 窗户中能射进阳光的部分的面积分别是__________ _____北师大版实验教科书七年级下册1.2整式的加减(2)教学目标:1.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。
2.通过探索规律的问题,进一步体会符号表示的意义,发展符号感,发展推理能力。
教学重点:整式加减的运算。
教学难点:探索规律的猜想。
教学方法:尝试练习法,讨论法,归纳法。
教学用具:投影仪 活动准备:计算:(1)(-x +2x 2+5)+(-3+4x 2-6x )(2)求下列整式的值:(-3a 2-ab +7)-(-3a 2-ab +9),其中a =21,b =3 教学过程:一、探索练习: ……摆第1个“小屋子”需要5枚棋子,摆第2个需要 枚棋子,摆第3个需要 枚棋子。
北师大版七年级下册数学教案全册
(4)x3+y3=(x+y)3 ( )(5)[(m-n)3]4-[(m-n)2]6=0 ()三、提高练习:1、1、计算5(P3)4·(-P2)3+2[(-P)2]4·(-P5)2[(-1)m]2n+1m-1+02002―(―1)19902、若(x2)n=x8,则m=_____________.3、、若[(x3)m]2=x12,则m=_____________。
4、若x m·x2m=2,求x9m的值。
5、若a2n=3,求(a3n)4的值。
6、已知am=2,a n=3,求a2m+3n的值.板书设计:课后体会:1.4 积的乘方教学目的:1、经历探索积的乘方的运算的性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。
2、了解积的乘方的运算性质,并能解决一些实际问题。
教学重点:积的乘方的运算教学难点:正确区别幂的乘方与积的乘方的异同。
教学方法:探索、猜想、实践法教学用具:课件教学过程:4 整式的乘法(3)——多项式乘以多项式 教学目标1.理解和掌握单项式与多项式乘法法则及其推导过程.2.熟练运用法则进行单项式与多项式的乘法计算.3.通过用文字概括法则,提高学生数学表达能力.4.通过反馈练习,培养学生计算能力和综合运用知识的能力.5.渗透公式恒等变形的和谐美、简洁美. 教学重点、多项式与多项式乘法的法则及应用. 教学难点:多项式乘法法则的推导过程以及法则的应用 教学过程: 一、 课前练习:1、 计算:(1)________)3(3=-xy (2)________)23(23=-y x (3)________)102(47=⨯- (4)_________)()(2=-⋅-x x(5)_________)(62=-⋅-a a (6)_____)(53=-x(7)______)(532=⋅-a a(8)______)()2(2532=-⋅-bc a b a2、计算:(1))132(22---x x x(2))6)(1253221(xy y x --+-二、 探索练习:如图,计算此长方形的面积有几种方法?如何计算? 小组讨论 你从计算中发现了什么?多项式与多项式相乘, 三、 巩固练习: 1、计算下列各题:(1))3)(2(++x x (2))1)(4(+-a a (3))31)(21(+-y y(4))436)(42(-+x x (5))3)(3(n m n m -+ﻩ5 平方差公式(二)教学目的:进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.教学重点和难点:公式的应用及推广教学过程一、复习提问1.(1)用较简单的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.讲评要点:沿HD、GD裁开均可,但一定要让学生在裁开之前知道HD=BC=GD=FE=a-b,这样裁开后才能重新拼成一个矩形.希望推出公式:2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活.3.判断正误:(1)(4x+3b)(4x-3b)=4x2-3b2; (×) (2)(4x+3b)(4x-3b)=16x2-9;ﻩ(×)(3)(4x+3b)(4x-3b)=4x2+9b2;ﻩ(×) (4)(4x+3b)(4x-3b)=4x2-9b2;(×)二、新课例1 运用平方差公式计算:(1)102×98; (2)(y+2)(y-2)(y2+4).解:(1)102×98 (2)(y+2)(y-2)(y2+4)=(100+2)(100-2) =(y2-4)(y2+4)=1002-22=10000-4 =(y2)2-42=y4-16.=9996;2.运用平方差公式计算:(1)103×97;(2)(x+3)(x-3)(x2+9);(3)59.8×60.2;3.请每位同学自编两道能运用平方差公式计算的题目.例2填空:(1)a2-4=(a+2)( );(2)25-x2=(5-x)( );(3)m2-n2=( )( );思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习空:1.x2-25=( )( );2.4m2-49=(2m-7)( );3.a4-m4=(a2+m2)( )=(a2+m2)()( );例3计算:(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).三、小结1.什么是平方差公式?一般两个二项式相乘的积应是几项式?2.平方差公式中字母a、b可以是那些形式?3.怎样判断一个多项式的乘法问题是否可以用平方差公式?四、布置作业P39知1问1补充运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).2.运用平方差公式计算:板书设计:(a +b)2=a 2+2ab+b 2(a –b)2=a2–2a b+b2问题:① 这两个公式有何相同点与不同点? ② 你能用自己的语言叙述这两个公式吗?(学生交流,教师归纳总结:)强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减。
北师大版七年级(下)数学全册教案
北师大版七年级(下)数学全册教案一、教学目标1. 知识目标•熟悉直角三角形、集合、比例、百分数等基础概念;•学会解决基础的数学问题;•熟悉各种图形的性质及其运用;2. 能力目标•培养学生的逻辑思维能力和动手能力;•培养学生的解决问题能力;•培养学生的观察、分析和归纳能力;3. 情感目标•培养学生的自信心和发现问题的兴趣;•培养学生的创新能力和合作精神;•培养学生的勤奋精神和团结互助意识;二、教学重难点1. 教学重点•直角三角形的数学概念及其性质;•集合的概念、运算及其应用;•百分数的概念、应用及其计算方法;2. 教学难点•理解直角三角形的性质及其运用;•掌握集合的应用和差集、交集、并集的计算方法;•熟练掌握百分数的计算方法和应用领域;三、教学过程1. 导入环节通过案例分析引导学生了解三角形、集合、百分数等基本概念,培养学生发现问题和解决问题的能力。
2. 讲授环节第一节:直角三角形1.通过视频教学和图片演示,讲解直角三角形的定义、性质、勾股定理等基础知识;2.给学生进行直角三角形的绘制和测量,帮助学生掌握直角三角形的性质和计算方法;3.给学生练习相关题型,加深对直角三角形的理解和掌握。
第二节:集合1.通过实例演示,讲解集合、子集、交集、并集、差集等概念和相关运算;2.给学生进行集合的绘制和计算,帮助学生掌握集合的操作方法;3.给学生练习常规题型,加强对集合的理解和掌握。
第三节:百分数1.通过实例解题,讲解百分数概念和百分数的计算方法;2.帮助学生理解百分数的意义及其在实际中的应用;3.给学生练习各种应用场景下的百分数计算,强化对百分数知识的运用。
3. 练习环节在课程末尾,安排一定数量的练习题,让学生运用课程所学知识进行解答。
考察学生对于课程的掌握程度。
4. 总结环节回顾本节课所学知识,让学生进行整体性的掌握和总结。
同时也可以引导学生思考和反思自己的学习过程,发现不足的地方,并加以改进。
四、教学资源•北京师范大学出版社七年级数学教材和配套习题册•视频教学资料、图片展示•课件、教具、练习册等五、教学评估通过课堂练习、作业分析、小测试等方式,对学生的数学学科能力进行评估,检验教学效果。
北师大版七年级数学下册教案(全册)
北师大版七年级数学下册教案(全册)
北师大版七年级数学下册教案(全册)
6.1从实际问题到方程
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
小学里已经学过列方程解简单的应用题,让我们回顾一下,如何列方程解应用题?
例如:一本笔记本1.2元。
小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
我们再来看下面一个例子:
问题1:某校初中一年级328名师生乘车外出春游,已有2
你能否用方程的方法来解呢?
通过分析,列出方程:13+x=(45+x)(2)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。
也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,。
(整理)北师大版七年级数学教案下册全套.doc
【北师大版】七年级下册数学教案全套【七年级下教案|全套】目录第一章整式的运算 (1)1.1整式 (2)1.2 整式的加减(1) (4)1.2整式的加减(2) (6)1.3 同底数幂的乘法(一) (9)1.4幂的乘方与积的乘方(1) (11)1.4 积的乘方 (12)1.5同底数幂的除法 (14)1.6 单项式的乘法 (15)1.6整式的乘法(2) (17)1.6 整式的乘法(3)——多项式乘以多项式 (19)1.7平方差公式(1)(P29~P30) (21)1.7 平方差公式(二) (22)1.8完全平方公式(1) (24)1.8完全平方公式(2) (26)1.9整式的除法(1)(P39~P41) (28)1.9 多项式除以单项式 (29)第二章平行线与相交线 (32)2.1台球桌面上的角 (32)2.2探索直线平行的条件(1) (34)2.2探索直线平行的条件(2) (35)2.3 平行线的性质(1) (37)2.4用尺规作线段和角(1) (40)2.4 用尺规作角 (41)第三章生活中的数据 (44)3.2 近似数与有效数字 (45)3.3世界新生儿图(1) (47)3.3世界新生儿图(2)(P88~P89) (49)第四章概率 (50)4.1 游戏公平吗(1) (50)4.1游戏公平吗(2) (52)4.2摸到红球的概率 (54)4.3停留在黑砖上的概率 (56)第五章三角形 (58)5.1认识三角形(1) (58)5.2 认识三角形(2) (59)5.1认识三角形(3) (62)5.1 认识三角形(4) (64)5、2图形的全等 (65)5、3图案设计 (67)5.4全等三角形 (69)5.5探索三角形全等的条件(1) (71)5.5探索三角形全等的条件(2) (74)5.5《边角边》第1课时 (76)5.6作三角形 (79)5.7利用三角形全等测距离 (81)5.8探索直角三角形全等的条件 (84)第六章变量之间的关系 (87)6、1小车下滑的时间 (87)6.2变化中的三角形 (89)6.3 温度的变化 (90)6.4速度的变化 (92)第七章生活中的轴对称 (94)7、1轴对称现象 (94)7.2简单的轴对称图形 (96)7.2简单的轴对称图形 (98)7.3探索轴对称的性质 (100)7.4利用轴对称设计图案 (101)7.5 镜子改变了什么 (104)7.6镶边与剪纸 (106)北师大版实验教科书七年级下册第一章整式的运算一、值得讨论的问题:1、符号感的含义是什么?如何培养学生的符号感?符号感主要表现在“能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表示的问题”。
(新)北师大版七年级数学下册教案(全册)
(新)北师大版七年级数学下册教案(全册)《同底数幂的乘法》教案教学目标一、知识与技能1.掌握同底数幂的乘法法则,并会用式子表示;2.能利用同底数幂的乘法法则进行简单计算;二、过程与方法1.在探索性质的过程中让学生经历观察、猜想、创新、交流、验证、归纳总结的思维过程;2.课堂中教给学生“动手做,动脑想,多合作,大胆猜,会验证”的研讨式学习方法;三、情感态度和价值观1.在活动中培养乐于探索、合作学习的习惯,培养“用数学”的意识和能力;2.通过同底数幂乘法性质的推导和应用,使学生初步理解“特殊、一般、特殊”的认知规律和辨证唯物主义思想,体会科学的思想方法,激发学生探索创新精神;教学重点同底数幂乘法法则;教学难点同底数幂的乘法法则的灵活运用;教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备练习本;课时安排1课时教学过程一、导入光在真空中的速度大约是3×108m/s.太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年.一年以3×107秒计算,比邻星与地球的距离约为多少?3×108×3×107×4.22= 37.98× (108×107).108×107等于多少呢?通过呈现实际问题引起学生的注意,对同底数幂的乘法内容具体,便于引导学生进入相关问题的思考.二、新课在乘方意义的基础上,学生开展探究,采用观察分析、探究归纳,合作学习的方法,易使学生体会知识的形成过程,从而突破难点,同时也培养了学生观察、概括与抽象的能力。
1.计算下列各式:(1)102×103;(2)105×108;(3)10m×10n(m,n 都是正整数).你发现了什么?(1)102×103 =(10×10)×(10×10×10)=10×10×10×10×10=105=102+3;(2)105×108 =(10×10×10×10×10)×(10×10×10×10×10×10×10×10)=10×10×10×···×10×10=1013=105+8;13个10(3)10m×10n =(10×10×···×10×10)×(10×10×···×10×10)m个10 n个10=10×10×10×···×10×10=10m+n;m+n个102.2m ×2n 等于什么?( ) m × ( )n 和 (-3) m ×( -3 )n 呢?(m ,n 都是正整数)引导学生剖析规律. (1)等式左边是什么运算? (2)等式两边的底数有什么关系?(3)等式两边的指数有什么关系? (4)设疑:那么 a m ·a n =_____?猜想: a m ·a n =a m+n (当m 、n 都是正整数)证明:a m ·a n =(aa…a )(aa…a )(乘方的意义)m 个a n 个a= aa…a (乘法结合律)(m+n )个a=a m+n (乘方的意义)a m ·a n =a m+n (当m 、n 都是正整数)观察以上等式,你发现什么规律?你能用等式或语言表示这个规律吗?a m ·a n =a m+n (当m 、n 都是正整数)。
北师大版数学七年级下册教案(全册))
1.1同底数幂的乘法1.理解并掌握同底数幂的乘法法则;(重点)2.运用同底数幂的乘法法则进行相关运算.(难点)一、情境导入问题:2015年9月24日,美国国家航空航天局(下简称:NASA)对外宣称将有重大发现宣布,可能发现除地球外适合人类居住的星球,一时间引起了人们的广泛关注.早在2014年,NASA就发现一颗行星,这颗行星是第一颗在太阳系外恒星旁发现的适居带内、半径与地球相若的系外行星,这颗行星环绕红矮星开普勒186,距离地球492光年.1光年是光经过一年所行的距离,光的速度大约是3×105km/s.问:这颗行星距离地球多远(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.问题:“10×105×107×102”等于多少呢?二、合作探究探究点:同底数幂的乘法【类型一】底数为单项式的同底数幂的乘法计算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)m n+1·m n·m2·m.解析:(1)根据同底数幂的乘法法则进行计算即可;(2)先算乘方,再根据同底数幂的乘法法则进行计算即可;(3)根据同底数幂的乘法法则进行计算即可.解:(1)原式=23+4+1=28;(2)原式=-a3·a2·(-a3)=a3·a2·a3=a8;(3)原式=m n+1+n+2+1=a2n+4.方法总结:同底数幂的乘法法则只有在底数相同时才能使用;单个字母或数可以看成指数为1的幂,进行运算时,不能忽略了幂指数1.【类型二】底数为多项式的同底数幂的乘法计算:(1)(2a+b)2n+1·(2a+b)3·(2a+b)n-4;(2)(x-y)2·(y-x)5.解析:将底数看成一个整体进行计算.解:(1)原式=(2a +b )(2n +1)+3+(n -4)=(2a +b )3n ; (2)原式=-(x -y )2·(x -y )5=-(x -y )7.方法总结:底数互为相反数的幂相乘时,先把底数统一,再进行计算.(a -b )n =⎩⎪⎨⎪⎧(b -a )n (n 为偶数),-(b -a )n (n 为奇数). 【类型三】 运用同底数幂的乘法求代数式的值若82a +3·8b -2=810,求2a +b 的值.解析:根据同底数幂的乘法法则,底数不变指数相加,可得a 、b 的关系,根据a 、b 的关系求解.解:∵82a +3·8b -2=82a +3+b -2=810,∴2a +3+b -2=10,解得2a +b =9. 方法总结:将等式两边化为同底数幂的形式,底数相同,那么指数也相同. 【类型四】 同底数幂的乘法法则的逆用已知a m =3,a n =21,求a m +n 的值.解析:把a m +n 变成a m ·a n ,代入求值即可.解:∵a m =3,a n =21,∴a m +n =a m ·a n =3×21=63.方法总结:逆用同底数幂的乘法法则把a m +n 变成a m ·a n . 三、板书设计1.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.即a m ·a n =a m +n (m ,n 都是正整数). 2.同底数幂的乘法法则的运用在同底数幂乘法公式的探究过程中,学生表现出观察角度的差异:有的学生只是侧重观察某个单独的式子,把它孤立地看,而不知道将几个式子联系起来;有的学生则既观察入微,又统揽全局,表现出了较强的观察力.教师要善于抓住这个契机,适当对学生进行指导,培养他们“既见树木,又见森林”的优良观察品质.对于公式使用的条件既要把握好“度”,又要把握好“方向”1.2幂的乘方与积的乘方第1课时幂的乘方1.理解幂的乘方的运算性质,进一步体会和巩固幂的意义;(重点)2.掌握幂的乘方法则的推导过程并能灵活应用.(难点)一、情境导入1.填空:(1)同底数幂相乘,________不变,指数________;(2)a2×a3=________;10m×10n=________;(3)(-3)7×(-3)6=________;(4)a·a2·a3=________;(5)(23)2=23·23=________;(x4)5=x4·x4·x4·x4·x4=________.2.计算(22)3;(24)3;(102)3.问题:(1)上述几道题目有什么共同特点?(2)观察计算结果,你能发现什么规律?(3)你能推导一下(a m)n的结果吗?请试一试.二、合作探究探究点一:幂的乘方计算:(1)(a3)4; (2)(x m-1)2;(3)[(24)3]3; (4)[(m-n)3]4.解析:直接运用(a m)n=a mn计算即可.解:(1)(a3)4=a3×4=a12;(2)(x m-1)2=x2(m-1)=x2m-2;(3)[(24)3]3=24×3×3=236;(4)[(m-n)3]4=(m-n)12.方法总结:运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆,在幂的乘方中,底数可以是单项式,也可以是多项式.探究点二:幂的乘方的逆用【类型一】逆用幂的乘方比较数的大小请看下面的解题过程:比较2100与375的大小.解:∵2100=(24)25,375=(33)25,又∵24=16,33=27,16<27,∴2100<375.请你根据上面的解题过程,比较3100与560的大小,并总结本题的解题方法.解析:首先理解题意,然后可得3100=(35)20,560=(53)20,再比较35与53的大小,即可求得答案.解:∵3100=(35)20,560=(53)20,又∵35=243,53=125,243>125,即35>53,∴3100>560.方法总结:此题考查了幂的乘方的性质的应用.注意理解题意,根据题意得到3100=(35)20,560=(53)20是解此题的关键.【类型二】 逆用幂的乘方求代数式的值已知2x +5y -3=0,求4x ·32y 的值.解析:由2x +5y -3=0得2x +5y =3,再把4x ·32y 统一为底数为2的乘方的形式,最后根据同底数幂的乘法法则即可得到结果.解:∵2x +5y -3=0,∴2x +5y =3,∴4x ·32y =22x ·25y =22x +5y =23=8.方法总结:本题考查了幂的乘方的逆用及同底数幂的乘法,整体代入求解也比较关键. 【类型三】 逆用幂的乘方结合方程思想求值已知221=8y +1,9y =3x -9,则代数式13x +12y 的值为________.解析:由221=8y +1,9y =3x-9得221=23(y+1),32y =3x -9,则21=3(y +1),2y =x -9,解得x =21,y =6,故代数式13x +12y =7+3=10.故答案为10.方法总结:根据幂的乘方的逆运算进行转化得到x 和y 的方程组,求出x 、y ,再计算代数式.三、板书设计1.幂的乘方法则:幂的乘方,底数不变,指数相乘. 即(a m )n =a mn (m ,n 都是正整数). 2.幂的乘方的运用幂的乘方公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则第2课时 积的乘方1.掌握积的乘方的运算法则;(重点)2.掌握积的乘方的推导过程,并能灵活运用.(难点)一、情境导入1.教师提问:同底数幂的乘法公式和幂的乘方公式是什么? 学生积极举手回答:同底数幂的乘法公式:同底数幂相乘,底数不变,指数相加. 幂的乘方公式:幂的乘方,底数不变,指数相乘.2.肯定学生的发言,引入新课:今天学习幂的运算的第三种形式——积的乘方. 二、合作探究探究点一:积的乘方【类型一】 直接运用积的乘方法则进行计算计算:(1)(-5ab )3; (2)-(3x 2y )2; (3)(-43ab 2c 3)3; (4)(-x m y 3m )2.解析:直接运用积的乘方法则计算即可. 解:(1)(-5ab )3=(-5)3a 3b 3=-125a 3b 3; (2)-(3x 2y )2=-32x 4y 2=-9x 4y 2; (3)(-43ab 2c 3)3=(-43)3a 3b 6c 9=-6427a 3b 6c 9;(4)(-x m y 3m )2=(-1)2x 2m y 6m =x 2m y 6m .方法总结:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.【类型二】 含积的乘方的混合运算计算:(1)(-2a 2)3·a 3+(-4a )2·a 7-(5a 3)3; (2)(-a 3b 6)2+(-a 2b 4)3.解析:(1)先进行积的乘方,然后根据同底数幂的乘法法则求解;(2)先进行积的乘方和幂的乘方,然后合并.解:(1)原式=-8a 6·a 3+16a 2·a 7-125a 9=-8a 9+16a 9-125a 9=-117a 9; (2)原式=a 6b 12-a 6b 12=0.方法总结:先算积的乘方,再算乘法,然后算加减,最后合并同类项. 【类型三】 积的乘方的实际应用太阳可以近似地看作是球体,如果用V 、R 分别代表球的体积和半径,那么V =43πR 3,太阳的半径约为6×105千米,它的体积大约是多少立方千米(π取3)?解析:将R =6×105千米代入V =43πR 3,即可求得答案.解:∵R =6×105千米,∴V =43πR 3≈43×3×(6×105)3≈8.64×1017(立方千米).答:它的体积大约是8.64×1017立方千米.方法总结:读懂题目信息,理解球的体积公式并熟记积的乘方的性质是解题的关键. 探究点二:积的乘方的逆用【类型一】 逆用积的乘方进行简便运算计算:(23)2014×(32)2015.解析:将(32)2015转化为(32)2014×32,再逆用积的乘方公式进行计算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法总结:对公式a n ·b n =(ab )n 要灵活运用,对于不符合公式的形式,要通过恒等变形转化为公式的形式,运用此公式可进行简便运算.【类型二】 逆用积的乘方比较数的大小试比较大小:213×310与210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法总结:利用积的乘方,转化成同底数的同指数幂是解答此类问题的关键. 三、板书设计1.积的乘方法则:积的乘方等于各因式乘方的积. 即(ab )n =a n b n (n 是正整数). 2.积的乘方的运用在本节的教学过程中教师可以采用与前面相同的方式展开教学.教师在讲解积的乘方公式的应用时,再补充讲解积的乘方公式的逆运算:a n ·b n =(ab )n ,同时教师为了提高学生的运算速度和应用能力,也可以补充讲解:当n 为奇数时,(-a )n =-a n (n 为正整数);当n 为偶数时,(-a )n =a n (n 为正整数)1.3 同底数幂的除法第1课时 同底数幂的除法1.理解并掌握同底数幂的除法运算并能运用其解决实际问题;(重点)2.理解并掌握零次幂和负指数幂的运算性质.(难点)一、情境导入一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?二、合作探究探究点一:同底数幂的除法【类型一】 直接运用同底数幂的除法进行运算计算:(1)(-xy )13÷(-xy )8; (2)(x -2y )3÷(2y -x )2;(3)(a 2+1)7÷(a 2+1)4÷(a 2+1)2.解析:利用同底数幂的除法法则即可进行计算,其中(1)应把(-xy )看作一个整体;(2)把(x -2y )看作一个整体,2y -x =-(x -2y );(3)把(a 2+1)看作一个整体.解:(1)(-xy )13÷(-xy )8=(-xy )13-8=(-xy )5=-x 5y 5; (2)(x -2y )3÷(2y -x )2=(x -2y )3÷(x -2y )2=x -2y ;(3)(a 2+1)7÷(a 2+1)4÷(a 2+1)2=(a 2+1)7-4-2=(a 2+1)1=a 2+1.方法总结:计算同底数幂的除法时,先判断底数是否相同或可变形为相同,再根据法则计算.【类型二】 逆用同底数幂的除法进行计算已知a m =4,a n =2,a =3,求a m -n -1的值.解析:先逆用同底数幂的除法,对a m -n -1进行变形,再代入数值进行计算.解:∵a m =4,a n =2,a =3,∴a m-n -1=a m ÷a n ÷a =4÷2÷3=23.方法总结:解此题的关键是逆用同底数幂的除法得出a m -n -1=a m ÷a n ÷a .声音的强弱用分贝表示,通常人们讲话时的声音是50分贝,它表示声音的强度是105,汽车的声音是100分贝,表示声音的强度是1010,喷气式飞机的声音是150分贝,求:(1)汽车声音的强度是人声音的强度的多少倍?(2)喷气式飞机声音的强度是汽车声音的强度的多少倍?解析:(1)用汽车声音的强度除以人声音的强度,再利用“同底数幂相除,底数不变,指数相减”计算;(2)将喷气式飞机声音的分贝数转化为声音的强度,再除以汽车声音的强度即可得到答案.解:(1)因为1010÷105=1010-5=105,所以汽车声音的强度是人声音的强度的105倍; (2)因为人的声音是50分贝,其声音的强度是105,汽车的声音是100分贝,其声音的强度为1010,所以喷气式飞机的声音是150分贝,其声音的强度为1015,所以1015÷1010=1015-10=105,所以喷气式飞机声音的强度是汽车声音的强度的105倍.方法总结:本题主要考查同底数幂除法的实际应用,熟练掌握其运算性质是解题的关键. 探究点二:零指数幂和负整数指数幂 【类型一】 零指数幂若(x -6)0=1成立,则x 的取值范围是( ) A .x ≥6 B .x ≤6 C .x ≠6 D .x =6解析:∵(x -6)0=1成立,∴x -6≠0,解得x ≠6.故选C.方法总结:本题考查的是0指数幂成立的条件,非0的数的0次幂等于1,注意0指数幂的底数不能为0.【类型二】 比较数的大小若a =(-23)-2,b =(-1)-1,c =(-32)0,则a 、b 、c 的大小关系是( )A .a >b =cB .a >c >bC .c >a >bD .b >c >a解析:∵a =(-23)-2=(-32)2=94,b =(-1)-1=-1,c =(-32)0=1,∴a >c >b .故选B.方法总结:本题的关键是熟悉运算法则,利用计算结果比较大小.当底数是分数,指数为负整数时,只要把底数的分子、分母颠倒,负指数就可变为正指数.【类型三】 零指数幂与负整数指数幂中底数的取值范围若(x -3)0-2(3x -6)-2有意义,则x 的取值范围是( ) A .x >3 B .x ≠3且x ≠2 C .x ≠3或x ≠2 D .x <2解析:根据题意,若(x -3)0有意义,则x -3≠0,即x ≠3.(3x -6)-2有意义,则3x -6≠0,即x ≠2,所以x ≠3且x ≠2.故选B.方法总结:任意非0的数的0次幂为1,底数不能为0,负整数指数幂的底数不能为0. 【类型四】 含整数指数幂、零指数幂与绝对值的混合运算计算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分别根据有理数的乘方、零指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法总结:熟练掌握有理数的乘方、零指数幂、负整数指数幂及绝对值的性质是解答此题的关键.三、板书设计1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减. 2.零次幂:任何一个不等于零的数的零次幂都等于1.即a0=1(a≠0).3.负整数次幂:任何一个不等于零的数的-p(p是正整数)次幂,等于这个数p次幂的倒数.即a-p=1a p (a≠0,p是正整数).从计算具体问题中的同底数幂的除法,逐步归纳出同底数幂除法的一般性质.教学时要多举几个例子,让学生从中总结出规律,体验自主探究的乐趣和数学学习的魅力,为以后的学习奠定基础第2课时用科学记数法表示较小的数1.理解并掌握科学记数法表示小于1的数的方法;(重点)2.能将用科学记数法表示的数还原为原数.一、情境导入同底数幂的除法公式为a m÷a n=a m-n,有一个附加条件:m>n,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m=n或m<n时,情况怎样呢?二、合作探究探究点:用科学记数法表示较小的数【类型一】用科学记数法表示绝对值小于1的数2014年6月18日中商网报道,一种重量为0.000106千克,机身由碳纤维制成,且只有昆虫大小的机器人是全球最小的机器人,0.000106用科学记数法可表示为() A.1.06×10-4B.1.06×10-5C.10.6×10-5D.106×10-6解析:0.000106=1.06×10-4.故选A.方法总结:绝对值小于1的数也可以用科学记数法表示,一般形式为a×10-n,其中1≤a<10,n为正整数.与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数前面的0的个数所决定.【类型二】将用科学记数法表示的数还原为原数用小数表示下列各数:(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小数点向左移动相应的位数即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708;(4)2.17×10-1=0.217.方法总结:将科学记数法表示的数a×10-n还原成通常表示的数,就是把a的小数点向左移动n位所得到的数.三、板书设计用科学记数法表示绝对值小于1的数:一般地,一个小于1的正数可以表示为a×10n,其中1≤a<10,n是负整数.从本节课的教学过程来看,结合了多种教学方法,既有教师主导课堂的例题讲解,又有学生主导课堂的自主探究.课堂上学习气氛活跃,学生的学习积极性被充分调动,在拓展学生学习空间的同时,又有效地保证了课堂学习质量1.4 整式的乘法第1课时 单项式与单项式相乘1.复习幂的运算性质,探究并掌握单项式乘以单项式的运算法则;(重点)2.能够熟练运用单项式乘以单项式的运算法则进行计算并解决实际问题.(难点)一、情境导入根据乘法的运算律计算:(1)2x ·3y ;(2)5a 2b ·(-2ab 2).解:(1)2x ·3y =(2×3)·(x ·y )=6xy ;(2)5a 2b ·(-2ab 2)=5×(-2)·(a 2·a )·(b ·b 2)=-10a 3b 3.观察上述运算,你能归纳出单项式乘法的运算法则吗?二、合作探究探究点:单项式与单项式相乘【类型一】 直接利用单项式乘以单项式法则进行计算计算:(1)(-23a 2b )·56ac 2; (2)(-12x 2y )3·3xy 2·(2xy 2)2; (3)-6m 2n ·(x -y )3·13mn 2(y -x )2. 解析:运用幂的运算法则和单项式乘以单项式的法则计算即可.解:(1)(-23a 2b )·56ac 2=-23×56a 3bc 2=-59a 3bc 2; (2)(-12x 2y )3·3xy 2·(2xy 2)2=-18x 6y 3×3xy 2×4x 2y 4=-32x 9y 9; (3)-6m 2n ·(x -y )3·13mn 2(y -x )2=-6×13m 3n 3(x -y )5=-2m 3n 3(x -y )5. 方法总结:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算;(3)不要丢掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立.【类型二】 单项式乘以单项式与同类项的综合已知-2x 3m +1y 2n 与7x 5m -3y 5n -4的积与x 4y 是同类项,求m 2+n 的值.解析:根据-2x 3m +1y 2n 与7x 5m -3y 5n -4的积与x 4y 是同类项可得出关于m ,n 的方程组,进而求出m ,n 的值,即可得出答案.解:∵-2x 3m +1y 2n 与7x 5m -3y 5n -4的积与x 4y是同类项,∴⎩⎪⎨⎪⎧3m +1+5m -3=4,2n +5n -4=1,解得⎩⎨⎧m =34,n =57,∴m 2+n =143112. 方法总结:掌握单项式乘以单项式的运算法则,再结合同类项,列出二元一次方程组是解题关键.【类型三】 单项式乘以单项式的实际应用有一块长为x m ,宽为y m 的长方形空地,现在要在这块地中规划一块长35x m ,宽34y m 的长方形空地用于绿化,求绿化的面积和剩下的面积.解析:先求出长方形的面积,再求出绿化的面积,两者相减即可求出剩下的面积.解:长方形的面积是xy m 2,绿化的面积是35x ×34y =920xy (m 2),则剩下的面积是xy -920xy =1120xy (m 2). 方法总结:掌握长方形的面积公式和单项式乘单项式法则是解题的关键.三、板书设计1.单项式乘以单项式的运算法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里面含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以单项式的应用本课时的重点是让学生理解单项式的乘法法则并能熟练应用.要求学生在乘法的运算律以及幂的运算律的基础上进行探究.教师在课堂上应该处于引导位置,鼓励学生“试一试”,学生通过动手操作,能够更为直接的理解和应用该知识点第2课时 单项式与多项式相乘1.能根据乘法分配律和单项式与单项式相乘的法则探究单项式与多项式相乘的法则;2.掌握单项式与多项式相乘的法则并会运用.(重点,难点)一、情境导入计算:(-12)×(12-13-14).我们可以根据有理数乘法的分配律进行计算,那么怎样计算2x ·(3x 2-2x +1)呢?二、合作探究探究点:单项式乘以多项式【类型一】 直接利用单项式乘以多项式法则进行计算计算:(1)(23ab 2-2ab )·12ab ; (2)-2x ·(12x 2y +3y -1). 解析:利用单项式乘以多项式法则计算即可.解:(1)(23ab 2-2ab )·12ab =23ab 2·12ab -2ab ·12ab =13a 2b 3-a 2b 2; (2)-2x ·(12x 2y +3y -1)=-2x ·12x 2y +(-2x )·3y +(-2x )·(-1)=-x 3y +(-6xy )+2x =-x 3y -6xy +2x .方法总结:单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【类型二】 单项式与多项式乘法的实际应用一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a +2b )米,坝高12a 米. (1)求防洪堤坝的横断面面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?解析:(1)根据梯形的面积公式,然后利用单项式乘以多项式的运算法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解:(1)防洪堤坝的横断面面积S =12[a +(a +2b )]×12a =14a (2a +2b )=12a 2+12ab (平方米).故防洪堤坝的横断面面积为(12a 2+12ab )平方米; (2)堤坝的体积V =Sl =(12a 2+12ab )×100=50a 2+50ab (立方米).故这段防洪堤坝的体积是(50a 2+50ab )立方米.方法总结:本题要知道梯形的面积公式及堤坝的体积(堤坝体积=梯形面积×长度)的计算方法,同时掌握单项式乘以多项式的运算法则是解题的关键.【类型三】利用单项式乘以多项式化简求值先化简,再求值:5a(2a2-5a+3)-2a2(5a+5)+7a2,其中a=2.解析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解:5a(2a2-5a+3)-2a2(5a+5)+7a2=10a3-25a2+15a-10a3-10a2+7a2=-28a2+15a,当a=2时,原式=-82.方法总结:本题考查了整式的化简求值.在计算时要注意先化简然后再代值计算.整式的加减运算实际上就是去括号与合并同类项.三、板书设计1.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.2.单项式与多项式乘法的应用本节课在已学过的单项式乘以单项式的基础上,学习单项式乘以多项式.教学中注意发挥学生的主体作用,让学生积极参与课堂活动,并通过不断纠错而提高解题水平第3课时多项式与多项式相乘1.理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算;(重点)2.掌握多项式与多项式的乘法法则的应用.(难点)一、情境导入某地区在退耕还林期间,将一块长m米、宽a米的长方形林区的长、宽分别增加n米和b米.用两种方法表示这块林区现在的面积.学生积极思考,教师引导学生分析,学生发现:这块林区现在长为(m+n)米,宽为(a+b)米,因而面积为(m+n)(a+b)平方米.另外,如图,这块地由四小块组成,它们的面积分别为ma平方米,mb平方米、na平方米,nb平方米,故这块地的面积为(ma+mb+na+nb)平方米.由此可得(m+n)(a+b)=ma+mb+na+nb.今天我们就学习多项式乘以多项式.二、合作探究探究点一:多项式与多项式相乘【类型一】直接利用多项式乘多项式法则进行计算计算:(1)(3x+2)(x+2);(2)(4y-1)(5-y).解析:利用多项式乘以多项式法则计算,即可得到结果.解:(1)原式=3x2+6x+2x+4=3x2+8x+4;(2)原式=20y-4y2-5+y=-4y2+21y-5.方法总结:多项式乘以多项式,按一定的顺序进行,必须做到不重不漏;多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.【类型二】多项式乘以多项式的混合运算计算:(3a+1)(2a-3)-(6a-5)(a-4).解析:根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.解:(3a+1)(2a-3)-(6a-5)(a-4)=6a2-9a+2a-3-6a2+24a+5a-20=22a-23.方法总结:在计算时要注意混合运算的顺序和法则以及运算结果的符号.探究点二:多项式与多项式相乘的化简求值及应用【类型一】 多项式乘以多项式的化简求值先化简,再求值:(a -2b )(a 2+2ab +4b 2)-a (a -5b )(a +3b ),其中a =-1,b =1. 解析:先将式子利用整式乘法展开,合并同类项化简,再代入计算.解:(a -2b )(a 2+2ab +4b 2)-a (a -5b )(a +3b )=a 3-8b 3-(a 2-5ab )(a +3b )=a 3-8b 3-a 3-3a 2b +5a 2b +15ab 2=-8b 3+2a 2b +15ab 2.当a =-1,b =1时,原式=-8+2-15=-21.方法总结:化简求值是整式运算中常见的题型,一定要注意先化简,再求值,不能先代值,再计算.【类型二】 多项式乘以多项式与方程的综合解方程:(x -3)(x -2)=(x +9)(x +1)+4.解析:方程两边利用多项式乘以多项式法则计算,移项、合并同类项,将x 系数化为1,即可求出解.解:去括号后得x 2-5x +6=x 2+10x +9+4,移项、合并同类项得-15x =7,解得x =-715. 方法总结:解答本题就是利用多项式的乘法,将原方程转化为已学过的方程解答.【类型三】 多项式乘以多项式的实际应用千年古镇杨家滩的某小区的内坝是一块长为(3a +b )米,宽为(2a +b )米的长方形地块,物业部门计划将内坝进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的正方形),则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.解析:根据长方形的面积公式,可得内坝、景点的面积,根据面积的差,可得答案. 解:由题意,得(3a +b )(2a +b )-(a +b )2=6a 2+5ab +b 2-a 2-2ab -b 2=5a 2+3ab (平方米).当a =3,b =2时,5a 2+3ab =5×32+3×3×2=63(平方米),故绿化的面积是63平方米.方法总结:掌握长方形的面积公式和多项式乘多项式法则是解题的关键.【类型四】 根据多项式乘以多项式求待定系数的值已知ax 2+bx +1(a ≠0)与3x -2的积不含x 2项,也不含x 项,求系数a 、b 的值. 解析:首先利用多项式乘法法则计算出(ax 2+bx +1)(3x -2),再根据积不含x 2项,也不含x 项,可得含x 2项和含x 项的系数等于零,即可求出a 与b 的值.解:(ax 2+bx +1)(3x -2)=3ax 3-2ax 2+3bx 2-2bx +3x -2.∵积不含x 2项,也不含x 项,∴-2a +3b =0,-2b +3=0,解得b =32,a =94,∴系数a 、b 的值分别是94,32. 方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答.三、板书设计1.多项式与多项式的乘法法则:多项式和多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.2.多项式与多项式乘法的应用本节知识的综合性较强,要求学生熟练掌握前面所学的单项式与单项式相乘及单项式与多项式相乘的知识,同时为了让学生理解并掌握多项式与多项式相乘的法则,教学中一定要精讲精练,让学生从练习中再次体会法则的内容,为以后的学习奠定基础1.5 平方差公式1.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解;(重点) 2.掌握平方差公式的应用.(重点)一、情境导入1.教师引导学生回忆多项式与多项式相乘的法则.学生积极举手回答.多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.二、合作探究探究点:平方差公式【类型一】 直接运用平方差公式进行计算利用平方差公式计算:(1)(3x -5)(3x +5);(2)(-2a -b )(b -2a );(3)(-7m +8n )(-8n -7m );(4)(x -2)(x +2)(x 2+4).解析:直接利用平方差公式进行计算即可.解:(1)(3x -5)(3x +5)=(3x )2-52=9x 2-25;(2)(-2a -b )(b -2a )=(-2a )2-b 2=4a 2-b 2;(3)(-7m +8n )(-8n -7m )=(-7m )2-(8n )2=49m 2-64n 2;(4)(x -2)(x +2)(x 2+4)=(x 2-4)(x 2+4)=x 4-16.方法总结:应用平方差公式计算时,应注意以下几个问题:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a 和b 可以是具体的数,也可以是单项式或多项式.【类型二】 利用平方差公式进行简便运算利用平方差公式计算:(1)2013×1923; (2)13.2×12.8. 解析:(1)把2013×1923写成(20+13)×(20-13),然后利用平方差公式进行计算;(2)把13.2×12.8写成(13+0.2)×(13-0.2),然后利用平方差公式进行计算.解:(1)2013×1923=(20+13)×(20-13)=202-(13)2=400-19=39989; (2)13.2×12.8=(13+0.2)×(13-0.2)=132-0.22=169-0.04=168.96.方法总结:熟记平方差公式的结构是解题的关键.【类型三】 化简求值先化简,再求值:(2x -y )(y +2x )-(2y +x )(2y -x ),其中x =1,y =2.解析:利用平方差公式展开并合并同类项,然后把x 、y 的值代入进行计算即可得解. 解:(2x -y )(y +2x )-(2y +x )(2y -x )=4x 2-y 2-(4y 2-x 2)=4x 2-y 2-4y 2+x 2=5x 2-5y 2.当x =1,y =2时,原式=5×12-5×22=-15.方法总结:利用平方差公式先化简再求值,切忌代入数值直接计算.【类型四】 平方差公式的几何背景如图①,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下部分拼成一个梯形(如图②),利用这两幅图形的面积,可以验证的乘法公式是______________.解析:∵图①中阴影部分的面积是a 2-b 2,图②中梯形的面积是12(2a +2b )(a -b )=(a +b )(a -b ),∴a 2-b 2=(a +b )(a -b ),即可验证的乘法公式为(a +b )(a -b )=a 2-b 2.方法总结:通过几何图形面积之间的数量关系可对平方差公式做出几何解释.【类型五】 平方差公式的实际应用王大伯家把一块边长为a 米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续原价租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?解析:根据题意先求出原正方形的面积,再求出改变边长后的面积,然后比较二者的大小即可.解:李大妈吃亏了.理由如下:原正方形的面积为a 2,改变边长后面积为(a +4)(a -4)=a 2-16.∵a 2>a 2-16,∴李大妈吃亏了.方法总结:解决实际问题的关键是根据题意列出算式,然后根据公式化简解决问题.三、板书设计1.平方差公式:两数和与这两数差的积等于它们的平方差.即(a +b )(a -b )=a 2-b 2.2.平方差公式的应用学生通过“做一做”发现平方差公式,同时通过“试一试”用几何方法证明公式的正确性.通过这两种方式的演算,让学生理解平方差公式.本节教学内容较多,因此教材中的练习可以让学生在课后完成。
北师大版数学七年级下册全册教案
北师大版数学七年级下册全册教案第一章整式的乘除同底数幂的乘法【教学目标】1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力。
【教学重难点】幂的运算性质。
【教学过程】一、运用实例导入新课引例:一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?要解方程(x+3)(x+5)=x(x+2)+39必须将(x+3)(x+5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要用到整式的乘法。
(写出课题:第七章整式的乘除)本章共有三个单元,整式的乘法、乘法公式、整式的除法。
这与前面学过的整式的加减法一起,称为整式的四则运算。
学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备。
为了学习整式的乘法,首先必须学习幂的运算性质。
在此我们先复习乘方、幂的意义。
二、复习提问2.指出下列各式的底数与指数:(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?三、讲授新课1.利用乘方的意义,提问学生,引出法则计算103×102.解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=105.2.引导学生建立幂的运算法则将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即a m·a n=a m+n。
北师大版七年级下册数学教案全册word精品文档46页
以上的计算是什么运算?能否叙述这种运算的法则?
)利用抽象出的几何图形分三个层次提出问题,进行探究。
件的圆心角的度数吗?你能说出所量角是多少度吗?你的根据是什么?
你知道吗?打台球的游戏中,台球击到桌沿又反弹回来的路线,就和光的反射定律中入射下图中是一个经过改造的台球桌面示意图,图中的阴影为
,圆锥的体积也随之而发生了
)如果圆柱底面半径为r(厘米),圆柱的体积v
厘米时,v由_______ 变化到_________新课:
、某地某天温度变化的情况如下图示:观察上表回答下列问题:
、这一天的最高温度是多少?
、在什么时间范围内温度在上升?
你能预测次日凌晨1时的温度吗?说说你的理由。
,你知道关于骆驼的一些趣事吗?例:它的体温随时间的变白天,随沙漠温度的骤升,骆驼的体温也升高,当体温达到40℃时,骆驼开始出汗,体温也开
大约在凌晨4时,骆驼的体温达到最低点。
C
.观察三角形,并把它们的标号填入相应的括号内:
OA,PE⊥OB,垂足分别是D、E,PD=4cm,
体验数学的应
并回顾知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。 2.完成课本习题 1.4 中所有习题。
1.2 幂的乘方与积的乘方(一)
- 51 -
教学目标:1.经历探索幂的乘方运算性质的过程,进一步体会幂的意义。了解幂的乘方的运算性质,并
能解决实际问题。 2.在探索幂的乘方的运算性质的过程中,发展推理能力和有条理的表达能力。学习幂的乘方
(2)等号两边的底数有什么关系?
(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么
(5)当三个以上同底数幂相乘时,上述法则是否成立?
要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.
三、应用提高
活动内容:1.完成课本“想一想”: a m a n a p 等于什么?
3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系, 增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。
教学重点:同底数幂乘法的运算性质,并能解决一些实际问题。 教学过程:
一、复习回顾
活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:
二、情境引入
(二) a m a n a mn . (m、n 为正整数)
同底数幂相乘,底数不变,指数相加。
二、情境引入
活动内容:根据已经学习过的知识,带领学生回忆并探讨以下实际问题
1. 乙正方体的棱长是 2 cm, 则乙正方体的体积 V 乙 = cm3 。
甲正方体的棱长是乙正方体的 5 倍,则甲正方体的体积 V 甲 = cm3 。
(5) 67 63
(6) 55 53 54 . (7) a b2 a bBiblioteka (8) b a2 a b
(9)x5·x6·x3
(10)-b3·b3
(11)-a·(-a)3
(12)(-a)2·(-a)3·(-a)
五、课堂小结
活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不 够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。
- 50 -
=10×10×10×10×10 (乘法的结合律)
=105.
2.引导学生建立幂的运算法则:
将上题中的底数改为a,则有 a3·a2=(aaa)·(aa)
=aaaaa
=a5,
即a3·a2=a5=a3+2.
用字母m,n表示正整数,则有
即am·an=am+n.
3.引导学生剖析法则
(1)等号左边是什么运算?
(3) (am)2 ;
(4) (am)n .
仿照前面,来研究以上四个题目的运算情况,实际上做到(3)题时可以猜想(4)题的结果,也为后 面幂的乘方的法则推导带来指导性。完成本节课的主要教学任务。
通过上面的探索活动,发现了什么?
幂的乘方,底数__________,指数__________。
四、落实基础
北师大版 2017 初中七年级(下册)数学全册教案
【160 页,57068 字,宋体,小四+五号】
第一章 整式的乘除
1.1同底数幂的乘法
教学目标:1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。
2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质 过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。
的运算性质,提高解决问题的能力。 3.在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣,培养学习数学的信心,
感爱数学的内在美。
教学重点:会进行幂的乘方的运算。
教学难点:幂的乘方法则的总结及运用。
教学方法:尝试练习法,讨论法,归纳法。
教学过程:
一、复习回顾
活动内容:复习已学过的幂的意义及幂运算的运算法则 (一) 幂的意义
2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。 3.独立处理例 2,从实际情境中学会处理问题的方法。 4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。
四、拓展延伸
活动内容:计算:(1)-a2·a6
(2)(-x)·(-x)3
(3)ym·ym+1
(4) 78 73
- 52 -
活动内容:一、完成教科书例题 1 【例 1】计算:
(1) (102)3
(2) (b5)5
(3) (an)3
(4) -(x2)m 二、随堂练习 1.计算:
(1) (103)3
(5) (y2)3 · y (2) -(a2)5
(6) 2(a2)6 - (a3)4 (3) (x3)4 · x2
活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时 遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学 生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。
三、讲授新课
1.利用乘方的意义,提问学生,引出法则:计算103×102. 解:103×102=(10×10×10)×(10×10)(幂的意义)
(4) [(-x)2 ]3
(5) (-a)2(a2)2
(6) x·x4 – x2 · x3 .
2.判断下面计算是否正确?如果有错误请改正:
(1) (x3)3 = x6
(2)a6 · a4 = a24
五、联系拓广
活动内容:把所学知识面拓广,幂的运算都在指数上做文章,这节课的拓广题,也是以指数变化为主。 ⑴ a12 =(a3)( ) =(a2)( )=a3 a( )=( )3 =( )4
倍和
倍.
三、探究新知
活动内容:1.通过问题情境继续研究:为什么 102 3 106 ?让学生清楚运算之间的关系,题目所描
述的是 10 的 2 次幂的三次方,其底数是幂的形式,然后根据幂的意义展开运算,去探究运算的过程。 2.计算下列各式,并说明理由 .
(1) (62)4 ; (2) (a2)3 ;
2. 乙球的半径为 3 cm, 则乙球的体积 V 乙 =
cm3
甲球的半径是乙球的 10 倍,则甲球的体积 V 甲 =
cm3 .
如果甲球的半径是乙球的 n 倍,那么甲球体积是乙球体积的
倍。
地球、木星、太阳可以近似地看作球体。木星、太阳的半径分别约是地球的 10 倍和 102 倍,它们
的体积分别约是地球的