高中数学人教A版选修1-2第一章统计案例同步检测(2)

合集下载

(人教版)高中数学选修1-2检测第1章 统计案例1.2 Word版含答案

(人教版)高中数学选修1-2检测第1章 统计案例1.2 Word版含答案

第一章
一、选择题(每小题分,共分)
.观察下列各图,其中两个分类变量,之间关系最强的是( )
解析:在四幅图中,图中两个深色条的高相差最明显,说明两个分类变量之间关系最强,故选.
答案:
.下面是一个×列联表:
..
..
解析:由(\\(+=,+=,))得(\\(=,=.))
答案:
.通过随机询问名性别不同的大学生是否爱好某项运动,得到如下的列联表:
由=算得,
=≈.
附表:
.有以上的把握认为“爱好该项运动与性别有关”
.有以上的把握认为“爱好该项运动与性别无关”
.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别有关”
.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别无关”
解析:由>知,有-即以上的把握认为“爱好该项运动与性别有关”.故选.
答案:
.某班主任对全班名学生进行了作业量的调查,数据如下表:
..
..无充分根据
解析:由于随机变量的观测值=≈>,所以在犯错误概率不超过的前提下,可认为学生的性别与认为作业量的大小有关系,即有的把握,故选.
答案:
二、填空题(每小题分,共分)
.下列关于的说法中,正确的是.
①在任何相互独立的问题中都可以用于检验是否相关;
②越大,两个变量的相关性越大;

是用来判断两个相互独立事件相关与否的一个统计量,它可以用来判断两个事件是否相关这一类问题.
解析:反映的是两个分类变量相关的可能性的大小,而不是反映两个变量相关的程度,故①②错,只有③正确.
答案:③
.为研究某新药的疗效,给名患者服用此药,跟踪调查后得下表中的数据:
效果与患者的性别有关,这种判断出错的可能性为.。

(压轴题)高中数学选修1-2第一章《统计案例》测试题(有答案解析)(2)

(压轴题)高中数学选修1-2第一章《统计案例》测试题(有答案解析)(2)

一、选择题1.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为( ) A .12B .1C .56D .11122.“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo ,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( )A .分层抽样B .回归分析C .独立性检验D .频率分布直方图3.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?( ) A .5局3胜制B .7局4胜制C .都一样D .说不清楚4.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取出一个球放入乙罐,分别以1A ,2A ,3A 表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B 表示由乙罐取出的球是红球的事件,下列结论中不正确...的是( ) A .事件B 与事件1A 不相互独立 B .1A 、2A 、3A 是两两互斥的事件 C .17(|)11P B A =D .3()5P B =5.从混有4张假钞的10张一百元纸币中任意抽取3张,若其中一张是假币的条件下,另外两张都是真币的概率为( ) A .512B .58C .35D .126.从装有形状大小相同的3个黑球和2个白球的盒子中依次不放回地任意抽取3次,若第二次抽得黑球,则第三次抽得白球的概率等于( ) A .15B .14C .13D .127.下列关于回归分析的说法中错误的是( ) A .回归直线一定过样本中心(,)x yB .残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适C .两个模型中残差平方和越小的模型拟合的效果越好D .甲、乙两个模型的2R 分别约为0.98和0.80,则模型乙的拟合效果更好8.先后抛掷骰子两次,落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为x y +为偶数,事件B 为x y ≠ ,则概率(|)P B A =( )A .14B .13C .12D .239.在5道题中有3道理科题和2道文科题,如果一次性抽取 2道题,已知有一道是理科题的条件下,则另一道也是理科题的概率为A .13B .14C .12D .3510.已知()112P A =,()136P AB =,()512P B =,则()P B A 为( )A .12B .13C .115D .1511.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且 2.7567.3ˆ25yx =-+. ②y 与x 负相关且 3.47654ˆ.68y x =+ ③y 与x 正相关且 1.226 6.5ˆ78yx =-- ④y 与x 正相关且8.96786ˆ.13y x =+ 其中一定不正确的结论的序号是( ) A .①②B .②③C .③④D .①④12.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;二、填空题13.两个实习生加工一个零件,产品为一等品的概率分别为23和34,则这两个零件中恰有一个一等品的概率为__________.14.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为35和p,且甲、乙两人各射击一次得分之和为2的概率为920.假设甲、乙两人射击互不影响,则p 值为______. 15.某学校为了制定治理学校门口上学、放学期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查.根据从中随机抽取的50份调查问卷,得到了如下的列联表:同意限定区域停车不同意限定区域停车合计 男 20 5 25 女 10 15 25 合计302050则认为“是否同意限定区域停产与家长的性别有关”的把握约为__________.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2P K k ≥0.050 0.005 0.001 k 3.8417.87910.82816.三个元件正常工作的概率分别为,,,将两个元件并联后再和 串联接入电路,如图所示,则电路不发生故障的概率为_________.17.给出下列结论:(1)在回归分析中,可用相关指数R 2的值判断模型的拟合效果,R 2越大,模型的拟合效果越好;(2)某工产加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量; (3)随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度,它们越小,则随机变量偏离于均值的平均程度越小;(4)若关于x 的不等式2x x a a -+-≥在R 上恒成立,则a 的最大值是1;(5)甲、乙两人向同一目标同时射击一次,事件A :“甲、乙中至少一人击中目标”与事件B :“甲,乙都没有击中目标”是相互独立事件.其中结论正确的是 .(把所有正确结论的序号填上)18.某校高三年级要从5名男生和2名女生中任选3名代表参加数学竞赛(每人被选中的机会均等),则在男生甲被选中的情况下,男生乙和女生丙至少一个被选中的概率是______.19.给出下列命题:①线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱;②由变量x 和y 的数据得到其回归直线方程ˆ:l ybx a =+,则l 一定经过点(,)P x y ; ③从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;④将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;⑤在回归直线方程ˆ0.1104yx =+中,当解释变量x 每增加一个单位时,预报变量y 平均增加0.1个单位,其中真命题的序号是_________.20.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.三、解答题21.为落实中央“坚持五育并举,全面发展素质教育,强化体育锻炼”的指示精神,小明和小亮两名同学每天利用课余时间进行羽毛球比赛.规定每一局比赛中获胜方记2分,失败方记0分,没有平局,谁先获得10分就获胜,比赛结束.假设每局比赛小明获胜的概率都是23. (1)求比赛结束时恰好打了7局的概率;(2)若现在是小明6:2的比分领先,记X 表示结束比赛还需打的局数,求X 的分布列及期望.22.2020年10月份黄山市某开发区一企业顺利开工复产,该企业生产不同规格的一种产品,根据检测标准,其合格产品的质量y (单位:g )与尺寸x (单位:mm )之间近似满足关系式b y c x =⋅(b 、c 为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间,97e e ⎛⎫⎪⎝⎭内时为优等品.现随机抽取6件合格产品,测得数据如下:()现从抽取的件合格产品中再任选件,记为取到优等品的件数试求随机变量的分布列和期望;(2)根据测得数据作了初步处理,得相关统计量的值如下表:②已知优等品的收益z (单位:千元)与x ,y 的关系为20.32z y x =-,则当优等品的尺寸x 为何值时,收益z 的预报值最大?(精确到0.1) 附:对于样本(),(1,2,,)i i v u i n =,其回归直线u b v a =⋅+的斜率和截距的最小二乘估计公式分别为:()()()1122211ˆnniii i i i nniii i v v u u v unvu bv v vnv ====---==--∑∑∑∑,ˆˆa u bv=-, 2.7182e ≈. 23.一网络公司为某贫困山区培养了100名“乡土直播员”,以帮助宣传该山区文化和销售该山区的农副产品,从而带领山区人民早日脱贫致富.该公司将这100名“乡土直播员”中每天直播时间不少于5小时的评为“网红乡土直播员”,其余的评为“乡土直播达人”.根据实际评选结果得到了下面22⨯列联表:(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,在这6人中选2人作为“乡土直播推广大使”.求这两人中恰有一男一女的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.24.2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人(其中450人为女性)的得分(满分:100分)数据,统计结果如表所示:(1)由频数分布表可以认为,此次问卷调查的得分Z 服从正态分布,210N ,近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求()50.594P Z <<;(2)把市民分为对垃圾分类“比较了解”(不低于60分的)和“不太了解”(低于60分的)两类,请完成如下22⨯列联表,并判断是否有99%的把握认为市民对垃圾分类的了解程度与性别有关?10名.再从这10人中随机抽取3人,求抽取的3人中男性人数的分布列及数学期望.参考数据:14.5≈;②若()2,XN μσ,则()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=;③()()()()()22n ad bc K a b c d a c b d -=++++, .n a b c d =+++ 25.近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在M 省的发展情况,M 省某调查机构从该省抽取了5个城市,分别收集和分析了网约车的A ,B 两项指标数,(1,2,3,4,5)i i x y i =,数据如下表所示:==2s ==. (1)试求y 与x 间的相关系数r ,并利用r 说明y 与x 是否具有较强的线性相关关系(若0.75r >,则线性相关程度很高,可用线性回归模型拟合);(2)建立y 关于x 的回归方程,并预测当A 指标数为7时,B 指标数的估计值; (3)若城市的网约车A 指标数x 落在区间(3,3)x s x s -+之外,则认为该城市网约车数量过多,会对城市交通管理带来较大的影响,交通管理部门将介入进行治理,直至A 指标数x 回落到区间(3,3)x s x s -+之内.现已知2018年11月该城市网约车的A 指标数为13,问:该城市的交通管理部门是否要介入进行治理?试说明理由.附:相关公式:()()niix x y y r --=∑,121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-.0.55≈0.95≈.26.某种疾病可分为Ⅰ、Ⅱ两种类型.为了解该疾病类型与性别的关系,在某地区随机抽取了患该疾病的病人进行调查,其中女性是男性的2倍,男性患Ⅰ型病的人数占男性病人的56,女性患Ⅰ型病的人数占女性病人的13. (1)若在犯错误的概率不超过0.005的前提下认为“所患疾病类型”与“性别”有关,求男性患者至少有多少人?(2)某药品研发公司欲安排甲乙两个研发团队来研发此疾病的治疗药物.两个团队各至多安排2个接种周期进行试验.甲团队研发的药物每次接种后产生抗体的概率为p ,每人每次接种花费()0m m >元,每个周期至多接种3次,第一个周期连续2次出现抗体则终止本接种周期进入第二个接种周期,否则需依次接种至第一周期结束,再进入第二周期;第二接种周期连续2次出现抗体则终止试验,否则需依次接种至至试验结束;乙团队研发的药物每次接种后产生抗体的概率为q ,每人每次花费()0n n >元,每个周期接种3次,每个周期必须完成3次接种,若一个周期内至少出现2次抗体,则该周期结束后终止试验,否则进入第二个接种周期.假设两个研发团队每次接种后产生抗体与否均相互独立.①若甲团队的试验平均花费大于乙团队的试验平均花费,求p 、q 、m 、n 满足的关系式;②若m n =,2p q =,从两个团队试验的平均花费考虑,该公司应选择哪个团队进行药品研发?附:()()()()()22n ad bc K a b c d a c b d -=++++,【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A 的对立事件的概率,再利用对立事件的概率公式可得出事件A 的概率. 【详解】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中, 则事件:A 甲乙两人各自射击同一目标一次,两人都未击中目标, 由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭, ()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.2.C解析:C【解析】 【分析】根据“性别”以及“反对与支持”这两种要素,符合,从而可得出统计方法。

人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答高中数学选修1-2课后题答案第一章统计案例1.1 回归分析的基本思想及其初步应用回归分析是一种统计分析方法,用于探究自变量与因变量之间的关系。

它的基本思想是通过建立数学模型,利用已知数据进行拟合,从而预测或解释未知数据。

回归分析的初步应用包括简单线性回归和多元线性回归。

1.2 独立性检验的基本思想及其初步应用独立性检验是一种用于检验两个变量之间是否存在关联的方法。

其基本思想是通过观察两个变量之间的频数或频率分布,来判断它们是否相互独立。

独立性检验的初步应用包括卡方检验和Fisher精确检验。

第二章推理证明2.1 合情推理与演绎推理合情推理是指根据已知事实和常识,推断出可能的结论。

演绎推理是指根据已知的前提和逻辑规则,推导出必然的结论。

两种推理方法都有其适用的场合,需要根据具体情况进行选择。

2.2 直接证明与间接证明直接证明是指通过逻辑推理,直接证明所要证明的命题成立。

间接证明是指采用反证法或归谬法,证明所要证明的命题的否定不成立,从而推出所要证明的命题成立。

第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念数系的扩充是指在实数系的基础上引入新的数,使得一些原来不可解的方程可以得到解。

复数是指由实部和虚部组成的数,可以表示在平面直角坐标系中的点。

复数的引入扩充了数系,使得一些原本无解的方程可以得到解。

3.2 复数的代数形式的四则运算复数的代数形式是指将复数表示为实部和虚部的和的形式。

复数的四则运算包括加减乘除四种运算,可以通过对实部和虚部分别进行运算来得到结果。

第四章框图4.1 流程图流程图是一种用图形表示算法或过程的方法。

它由各种基本符号和连线构成,用于描述算法或过程的各个步骤及其执行顺序。

流程图可以帮助人们更好地理解算法或过程,从而提高效率。

4.2 结构图结构图是一种用于描述程序结构的图形表示方法。

它包括顺序结构、选择结构和循环结构三种基本结构,可以用来表示程序的控制流程。

高中数学选修1-2(人教A版)第一章统计案例1.2知识点总结含同步练习及答案

高中数学选修1-2(人教A版)第一章统计案例1.2知识点总结含同步练习及答案

为研究不同的给药方式(口服或注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查结果 如表所示.根据所选择的
193
个病人的数据,能否作出药的效果与给药方式有关的结论? 有效 口服 注射 合计
58 64 122
无效
40 31 71
合计
98 95 193
解:提出假设
H 0 :药的效果与给药方式没有关系.
) 的前提下,认为"爱好该项运动与性别有关" 的前提下,认为"爱好该项运动与性别无关"
以上的把握认为"爱好该项运动与性别有关" 以上的把握认为"爱好该项运动与性别无关"
0.01 = 1% 1%
的机会错误,即有
99%
以上的把握认为“爱好这项运动与性别有
关”.同时,在犯错误的概率不超过
的前提下,认为“爱好该项运动与性别有关”.
答案: C 解析: 由题意
K 2 = 7.8 > 6.635 ,有 0.01 = 1% 的机会错误,即有 99% 以上的把握认为“爱好这项运 动与性别有关”.同时,在犯错误的概率不超过 1% 的前提下,认为“爱好该项运动与性别有关”;
高考不提分,赔付1万元,关注快乐学了解详情。
≈ 7.8
附表:
P (K 2 ⩾ k) k 0.050 3.841 0.010 6.635 0.001 10.828
参照附表,得到的正确结论是( A.在犯错误的概率不超过 B.在犯错误的概率不超过 C.有 D.有 解:C 由题意
K 2 = 7.8 > 6.635 ,有 99% 99% 0.1% 0.1%
答案: A
B.①③
C.②③
D.①②③
3. 分类变量 X 和 Y 的列联表如下:
则下列说法中正确的是 (

高中数学第1章统计案例测评含解析新人教A版选修1_2

高中数学第1章统计案例测评含解析新人教A版选修1_2

第一章测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知下面的2×2列联表:则a+b+c等于()B.97C.98D.99,可得a+b+c+22=120,所以a+b+c=120-22=98.2.以下关于线性回归的判断,正确的个数是()①若散点图中所有点都在一条直线附近,则这条直线为回归直线;②散点图中的绝大多数点都线性相关,个别特殊点不影响线性回归,如图中的A,B,C点;③已知直线方程为=0.50x-0.81,则x=25时,y的估计值为11.69;④回归直线方程的意义是它反映了样本整体的变化趋势.A.0B.1D.3,由回归方程的定义知,只有按最小二乘法求得回归系数a,b得到的直线=ax+b才是回归方程,∴①错误;散点图中的绝大多数点都线性相关,个别特殊点不会影响线性回归,故②正确;将x=25代入=0.50x-0.81,解得=11.69,∴③正确;散点图中所有点都在回归直线的附近,因此回归直线方程反映了样本整体的变化趋势,故④正确.综上所述,正确的有3个.故选D.3.已知某种产品的支出广告额x(单位::万元)之间有如下对应数据:则回归直线必过点()A.(5,36)B.(5,35)D.(4,30),即(5,36).4.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名居民是否能做到“光盘”行动,得到如下的列联表:附:K2=参照附表,得到的正确结论是()A.在犯错误的概率不超过0.01的前提下认为“该市居民能否做到‘光盘’与性别有关”B.在犯错误的概率不超过0.01的前提下认为“该市居民能否做到‘光盘’与性别无关”C.在犯错误的概率不超过0.1的前提下认为“该市居民能否做到‘光盘’与性别有关”0.1的前提下认为“该市居民能否做到‘光盘’与性别无关”a=45,b=10,c=30,d=15.所以K2的观测值k=≈3.030 3.又2.706<3.030 3<3.841,所以由附表可知,在犯错误的概率不超过0.1的前提下认为“该市居民能否做到‘光盘’与性别有关”.5.若两个分类变量x和y的列联表为:则x与y之间有关系该推断犯错误的概率不超过()A.0.01B.0.005C.0.025D.0.001K2=≈6.11>5.024,查表可得,P(K2≥5.024)=0.025,故x与y之间有关系该推断犯错误的概率不超过0.025.6.已知方程=0.85x-85.7是根据女大学生的身高预报体重的回归方程,其中x,的单位分别是cm,kg,则该方程在样本(165,57)处的残差是()B.2.45C.-2.45D.111.55(165,57)处的残差为57-(0.85×165-85.7)=2.45.7.某考察团对全国某10个城市进行职工人均工资水平x(单位:千元)与居民人均消费水平y(单位:千元)统计调查发现,y与x具有相关关系,回归方程为=0.66x+1.562.若某城市居民人均消费水平为7.675(单位:千元),估计该城市人均消费额占人均工资收入的百分比约为()B.72%C.67%D.66%7.675时,则7.675=0.66x+1.562,即职工人均工资水平x≈9.262,∴人均消费额占人均工资收入的百分比为×100%≈83%.故选A.8.有下列说法:①若某商品的销售量y(单位:件)关于销售价格x(单位:元/件)的线性回归方程为=-5x+350,当销售价格为10元时,销售量一定为300件;②线性回归直线x+一定过样本点中心();③在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关;④在线性回归模型中,相关指数R2表示解释变量对于预报变量变化的贡献率,R2越接近于1,表示回归的效果越好.其中正确的结论有()B.2个C.3个D.4个当销售价格为10元时,销售量的预估值为300件,但预估值与实际值未必相同,①错误;②由最小二乘法可知,回归直线必过(),②正确;③残差图中,带状区域越窄,模型拟合度越高,③错误;④相关指数R2越接近1,拟合度越高,则在线性回归模型中,回归效果越好,④正确.可知正确的结论共2个.9.为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:若计算得到的线性回归方程为x+250,则等于()B.30C.-20D.-30=8.5,=80,因为+250,所以80=8.5+250,解得=-20.10.已知x与y之间的几组数据如下表:假设根据上表数据所得线性回归方程为x+.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b'x+a',则以下结论正确的是()A.>b',>a'B.>b',<a'>a' D.<b',<a',代入公式求得=-.将(1,0)和(2,2)分别代入y=b'x+a',得b'=2,a'=-2,所以<b',>a'.故选C.11.已知变量x,y之间的线性回归方程为=-0.7x+10.3,且变量x,y之间的一组相关数据如下表所示,则下列说法错误的是()A.变量x,y之间呈现负相关关系B.m=4C.可以预测,当x=11时,y=2.6(9,4)=9,=-0.7×9+10.3=4,所以=4,所以m=5.12.已知两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数分别是a=10,b=21,c+d=35,若“X和Y有关系”此推断犯错误的概率不超过0.1,则c等于()B.5C.6D.7a=10,b=21,c+d=35,可得n=66,d=35-c,a+b=31,a+c=10+c,b+d=56-c,ad=10(35-c),bc=21c.由于“X和Y有关系”此推断犯错误的概率不超过0.1,则随机变量K2的观测值3.841>k>2.706,得3.841>>2.706,代入检验,得c=5符合题意.二、填空题(本大题共4小题,每小题5分,共20分)13.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),75现发现表中有一个数据看不清,请推断出该数据的值为.m,由表中数据得=30,,由最小二乘法求得回归方程54.9,将=30,代入回归方程,得m=68.14.根据如下样本数据:得到的回归方程为x+,若=7.9,则x每增加1个单位,y就平均个单位.=5,=0.9,因为x+一定经过点(5,0.9),所以0.9=5+7.9,可得=-1.4,因此x每增加1个单位,y就平均减少1.4个单位.1.415.独立性检验显示:在犯错误的概率不超过0.1的前提下认为性别与是否喜爱喝酒有关系.则下列说法正确的是 .①在100名男性中约有90人爱喝酒;②若某人爱喝酒,那么此人为男性的可能性为90%;③认为性别与是否喜爱喝酒有关判断出错的可能性为0.1;④有90%的把握认为10名男性中有9人爱喝酒..16.某种产品的广告费支出x (单位:万元万元)之间有如下的对应数据:已知y 与x 之间具有线性相关关系,若实际销售额不低于82.5万元,则广告费支出最少是 万元.y 关于x 的回归直线方程为=6.5x+17.5,令6.5x+17.5≥82.5,得x ≥10,故广告费支出最少是10万元.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)某工业基地对在生产同一产品的甲、乙两个厂区,选择了乙厂区进行改革试点,一段时间后,工业基地为了检查甲、乙两个厂区的生产情况,随机地从这两厂区生产的大量产品中各抽取100件作为样本,得到关于产品质量指标值的频数分布表(已知合格产品的质量指标值应在区间(2.55,2.70]内,否则为不合格产品):(1)将频率视为概率,由表中的数据分析,若在某个时间段内甲、乙两个厂区均生产了2 000件产品,则在此时间段内甲、乙两个厂区生产出的不合格产品分别为多少件?(2)根据样本数据写出下面2×2列联表中a ,b ,c ,d 的值,能否在犯错误的概率不超过0.15的前提下认为“该工业基地的产品质量与改革有关”,并说明理由.甲厂区(不改革) 乙厂区(改革) 总计附:K2=(其中由表格可知,甲厂区生产的产品的合格率为×100%=70%,乙厂区生产的产品的合格率为×100%=80%,所以甲、乙两厂区生产的产品的合格率分别为70%,80%,则在该时间段内,甲厂区生产的2 000件产品中,不合格产品有2 000×(1-70%)=600件, 乙厂区生产的2 000件产品中,不合格产品有2 000×(1-80%)= 400件.(2)依题意知a=70,b=80,c=30,d=20,则K2=≈2.667>2.072,所以在犯错误的概率不超过0.15的前提下,可以认为“该工业基地的产品质量与改革有关”.18.(本小题满分12分)x和判断力y进行统计分析,得下表数据:(1)请画出上表数据的散点图;,求出y关于x的线性回归方程x+.散点图如下:(2)由于=9,=4,x i y i=6×2+8×3+10×5+12×6=158,=62+82+102+122=344,=0.7,=4-0.7×9=-2.3,故线性回归方程为y=0.7x-2.3.19.(本小题满分12分)网购已成为当今消费者最喜欢的购物方式之一,某机构对A,B,C,D四家同类运动服装网店的关注人数x(单位:千人)与其商品销售件数y(单位:百件)进行统计对比,得到表格:y 1112217由散点图得知,可以用线性回归方程x+来近似刻画它们之间的关系.(1)试建立y关于x的回归方程;(2)在(1)的回归模型中,请用R2说明销售件数的差异有多大程度是由关注人数引起的.(精确到由表中数据可得=5,=15,x i y i=320,=110,=2,所以=15-2×5=5,故线性回归方程为=2x+5.(2)(y i-)2=54,(y i-)2=14,R2=1-=1-≈0.74,说明销售件数的差异有74%是由关注人数引起的.20.(本小题满分12分)为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务的时间的统计数据如下表:(1)求m,n;(2)能否在犯错误的概率不超过0.05的前提下认为该校学生一周参加社区服务时间是否超过1小时与性别有关?附:2(n=a+b+c+d).由已知可得该校有女生400人,根据题意可得,解得m=20,所以n=20+8+12+8=48.(2)计根据表中的数据得k=≈0.686<3.841,所以在犯错误的概率不超过0.05的前提下不能认为该校学生一周参加社区服务时间是否超过1小时与性别有关系.21.(本小题满分12分)二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/:(1)试求y关于x的回归直线方程;(2)已知每辆该型号汽车的收购价格为w=0.05x2-1.75x+17.2(单位:万元),根据(1)中所求的回归方程,预测当x为何值时,小王销售一辆该型号汽车所获得的利润z最大?由表中数据得×(2+4+6+8+10)=6,×(16+13+9.5+7+4.5)=10,由最小二乘法求得=-1.45,=10-(-1.45)×6=18.7,所以y关于x的回归直线方程为=-1.45x+18.7.(2)根据题意,利润函数为z=y-w=(-1.45x+18.7)-(0.05x2-1.75x+17.2)=-0.05x2+0.3x+1.5,所以当x=-=3时,二次函数z取得最大值;即预测当x=3时,小王销售一辆该型号汽车所获得的利润z最大.22.(本小题满分12分)对某班学生是爱好体育还是爱好文娱进行调查,根据调查得到的数据,所绘制的条形图如下图所示.(1)根据图中数据,制作2×2列联表;(2)若要采用分层抽样的方法从男生中共抽取5名候选人,再从5人中选两人分别做文体活动协调人,求选出的两人恰好是一人爱好文娱,另一人爱好体育的学生的概率;0.10的前提下认为性别与是否爱好体育有关系?根据图中数据,作出2×2列联表:(2)要采用分层抽样的方法从男生中共抽取5名候选人,得到5人中有3人爱好体育,2人爱好文娱,再从5人中选两人分别做文体活动协调人,恰好是一人爱好文娱,另一人爱好体育的概率是P=.(3)K2==≈2.666 7<2.706,所以在犯错误的概率不超过0.10的前提下不能判断性别与是否爱好体育有关系.。

【名师一号】高中数学 第一章 统计案例单元同步测试(含解析)新人教A版选修1-2

【名师一号】高中数学 第一章 统计案例单元同步测试(含解析)新人教A版选修1-2

【名师一号】2014-2015学年高中数学第一章统计案例单元同步测试(含解析)新人教A版选修1-2(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.两个变量x与y的回归模型中分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的模型是( )A.模型1的相关指数R2为0.98B.模型2的相关指数R2为0.80C.模型3的相关指数R2为0.50D.模型4的相关指数R2为0.25答案 A2.下列结论正确的是( )①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法A.①②B.①②③C.①②④D.①②③④答案 C3.下列有关线性回归的说法不正确的是( )A.变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在平面直角坐标系中用描点的方法得到具有相关关系的两个变量的一组数据的图形叫做散点图C.线性回归直线得到具有代表意义的回归直线方程D.任何一组观测值都能得到具有代表意义的回归直线方程答案 D4.预报变量的值与下列哪些因素有关( )A.受解释变量的影响与随机误差无关B.受随机误差的影响与解释变量无关C.与总偏差平方和有关与残差无关D.与解释变量和随机误差的总效应有关答案 D5.“回归”一词是研究子女身高与父母身高之间的遗传关系时由高尔顿提出的,他的研究结果是子代的平均身高向中心回归.根据他的结论,在儿子的身高y 与父亲的身高x的回归方程y ^=a +bx 中,b ( )A .在(-1,0)内B .等于0C .在(0,1)内D .在(1,10)内解析 由题设知,b >0,且b <1. 答案 C6.为研究变量x 和y 的线性相关性,甲、乙两人分别作了研究,利用线性回归方程得到回归直线l 1和l 2,两人计算知x 相同,y 也相同,下列说法正确的是( )A .l 1与l 2重合B .l 1与l 2平行C .l 1与l 2交于点(x ,y )D .无法判定l 1与l 2是否相交解析 由线性回归方程必过样本中心(x -,y -)知,应选C.答案 C7.在回归分析中,残差图中的纵坐标为( ) A .残差 B .样本编号 C.x D.e ^n答案 A8.身高与体重的关系可以用( )来分析( ) A .残差分析 B .回归分析 C .二维条形图 D .独立检验答案 B9.对于P (K 2>k ),当k >2.706时,就约有________的把握认为“x 与y 有关系”( ) A .99% B .95% C .90% D .以上都不对答案 C10.在2×2列联表中,两个比值相差越大,两个分类变量有关系的可能性就越大,那么这两个比值为( )A.a a +b 与c c +d B.a c +d 与c a +b C.aa +d 与cb +cD.a b +d 与ca +c解析 由2×2列联表,二维条形图知,aa +b 与cc +d相差越大,两个分类变量有相关关系的可能性越大.答案 A11.变量x 、y 具有线性相关关系,当x 的取值为8,12,14,16时,通过观测知y 的值分别为5,8,9,11,若在实际问题中,y 的预报值最大是10,则x 的最大取值不能超过( )A .16B .15C .17D .12解析 因为x =16时,y =11;当x =14时,y =9,所以当y 的最大值为10时,x 的最大值应介于区间(14,16)内,所以选B.答案 B12.为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生,得到下面列联表:A .0.5%B .1%C .2%D .5%解析 由表中数据代入公式得K 2=-2122×178×72×228≈4.514>3.84,∴有95%的把握认为数学成绩与物理成绩有关,因此判断出错率为5%. 答案 D二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中横线上)13.已知一个回归方程为y ^=1.5x +4.5,x ∈{1,5,7,13,19},则y -=________.解析 x -=9,∴y -=1.5×9+4.5=18.答案 1814.如果由一个2×2列联表中的数据计算得k =4.073,那么有__________的把握认为两变量有关系,已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.解析 ∵K 2=k =4.073>3.841,又P (K 2≥3.841)≈0.05, ∴有95%的把握认为两变量有关系. 答案 95%15.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K 2≈3.918,经查对临界值表知P (K 2≥3.918)≈0.05,对此,四名同学作出了以下的判断:p :有95%的把握认为“能起到预防感冒的作用”;q :如果某人未使用该血清,那么他在一年中有95%的可能性得感冒; r :这种血清预防感冒的有效率为95%; s :这种血清预防感冒的有效率为5%.则下列结论中,正确结论的序号是__________.(把你认为正确的都填上) (1)p ∧綈q ;(2)綈p ∧q ;(3)(綈p ∧綈q )∧(r ∨s );(4)(p ∨綈r )∧(綈q ∨s ).解析 由题意,K 2≈3.918,P (K 2≥3.918)≈0.05,所以只有第一位同学判断正确.即有95%的把握认为“这种血清能起到预防感冒的作用”由真值表知(1),(4)为真命题.答案 (1)(4)16.已知某化妆品的广告费用x (万元)与销售额y (百万元)的统计数据如下表所示:从散点图分析,y 与x 有较强的线性相关性,且y =0.95x +a ^,若投入广告费用为5万元,预计销售额为________百万元.解析 由表中数据求得x -=2,y -=4.5.所以a ^=4.5-0.95×2=2.6.所以回归方程为y ^=0.95x +2.6.当x =5时,y ^=0.95×5+2.6=7.35. 答案 7.35三、解答题(本大题共6个小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)某高校调查询问了56名男女大学生在课余时间是否参加运动,得到下表所示的数据.从表中数据分析,有多大把握认为大学生的性别与参加运动之间有关系.24,c +d =28,n =a +b +c +d =56.则K 2=-232×24×28×28≈4.667.因为4.667>3.841,所以有95%的把握认为大学生的性别与参加运动之间有关系.18.(12分)我校数学老师这学期分别用A 、B 两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学时数学平均分数和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名学生的数学期末考试成绩,得到茎叶图:(1)依茎叶图判断哪个班的平均分高?(2)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;(3)学校规定:成绩不低于85分的为优秀,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”(参考公式:K2=a +b c+d a+c b+d,其中n=a+b+c+d) 解(1)甲班数学成绩集中于60~90分之间,而乙班数学成绩集中于80~100分之间,所以乙班的平均分高.(2)记成绩为86分的同学为A,B,其他不低于80分的同学为C,D,E,F,“从甲班数学成绩不低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15个.“抽到至少有一个86分的同学”所组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F)共9个.故P=915=35.(3)由茎叶图可得2×2列联表如下:所以K2=13×27×20×20≈5.584>5.024,因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关.19.(12分)有人发现了一个有趣的现象,中国人的邮箱名称里含有数字的比较多,而外国人邮箱名称里含有数字的比较少.为了研究国籍和邮箱名称里是否含有数字的关系,他收集了124个邮箱名称,其中中国人的有70个,外国人的有54个,中国人的邮箱中有43个含数字,外国人的邮箱中有21个含数字.(1)根据以上数据建立一个2×2列联表;(2)他发现在这组数据中,外国人邮箱名称里含数字的也不少,他不能断定国籍和邮箱名称里是否含有数字有无关系,你能帮他判断一下吗?解 (1)2×2列联表如下:K 2=-270×54×64×60≈6.201.因为K 2>5.024,所以有理由认为“国籍和邮箱名称里是否含有数字无关”是不合理的,即有97.5%的把握认为“国籍和邮箱名称里是否含有数字有关”.20.(12分)某班5名学生的数学和物理成绩如表:(1)(2)求物理成绩y 对数学成绩x 的线性回归方程; (3)一名学生的数学成绩是96分,试预测他的物理成绩. 解 (1)散点图如下图所示:(2)x -=15×(88+76+73+66+63)=73.2.y -=15×(78+65+71+64+61)=67.8.∑i =15x i y i =88×78+76×65+73×71+66×64+63×61=25054.∑i =15x 2i =882+762+732+662+632=27174. 则b ^=∑i =15x i y i -5x -·y-∑i =15x 2i -5x -2≈0.625.a ^=y --b ^x -=67.8-0.625×73.2=22.05.所以y 对x 的线性回归方程是 y ^=0.625x +22.05.(3)当x =96, 则y ^=0.625×96+22.05≈82. 所以预测他的物理成绩是82分.21.(12分)某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:(1)少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由?解 (1)积极参加班级工作的学生有24人,总人数为50人.概率为2450=1225;不太主动参加班级工作且学习积极性一般的学生有19人,概率为1950.(2)由表中数据可得K 2=-225×25×24×26=15013≈11.5>10.828故有99.9%的把握说学习积极性与对待班级工作的态度有关系.22.(12分)研究“刹车距离”对于安全行车及分析交通事故责任都有一定的作用,所谓“刹车距离”就是指行驶中的汽车,从刹车开始到停止,由于惯性的作用而又继续向前滑行的一段距离.为了测定某种型号汽车的刹车性能(车速不超过140 km/h),对这种汽车进行测试,测得的数据如下表:(2)观察散点图,估计函数的类型,并确定一个满足这些数据的函数表达式; (3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5 m ,请推测刹车时的速度为多少?请问在事故发生时,汽车是超速行驶还是正常行驶?解 (1)散点图如图表示:(2)由图象,设函数的表达式为y =ax 2+bx +c (a ≠0),将(0,0),(10,0.3)(20,1.0)代入,得⎩⎪⎨⎪⎧c =0,100a +10b +c =0.3,400a +20b +c =1.0,解得a =0.002,b =0.01,c =0. 所以,函数的表达式为y =0.002x 2+0.01x (0≤x ≤140).经检验,表中其他各值也符合此表达式. (3)当y =46.5时,即0.002x 2+0.01x =46.5, 所以x 2+5x -23250=0.解得x 1=150,x 2=-155(舍去).故可推测刹车时的速度为150 km/h ,而150>140, 因此发生事故时,汽车属于超速行驶.。

高中数学选修1-2第一章统计案例同步练习(二).docx

高中数学选修1-2第一章统计案例同步练习(二).docx

高中数学学习材料马鸣风萧萧*整理制作第一章 统计案例 同步练习(二)说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分)1、下面的各图中,散点图与相关系数r 不符合的是 ( )A 、B 、C 、D 、2、相关的一组数据如右表所示,它们的线性回归方程为,5.10ˆ+=x y则当解释变量1=x 时,预测变量=y ( )x1 2 3 4 5 y1.3 1.71.7 1.3 1.5A 、1.5B 、1.3C 、1.4D 、1.553、给定y 与x 的一组样本数据,求得相关系数,990.0-=r 则( ) A 、y 与x 的线性相关性很强B 、y 与x 的相关性很强x y o 01<<-r x y o 0=r x y o 5.0=r x y o 1-=rC 、y 与x 正线性相关D 、y 与x 负线性相关4、下列关系中是相关关系的是:( )A 、位移与速度、时间的关系B 、烧香的次数与成绩的关系C 、广告费支出与销售额的关系D 、物体的加速度与力的关系5、下表是性别与喜欢数学与否的统计列联表,依据表中的数据,得到 ( )不喜欢看电视 喜欢看电视 总计 男生 24 31 55 女生 8 26 34 总计 32 57 89 A 、317.72≈χB 、689.32≈χC 、706.22<χD 、879.72≈χ6、家庭收入x 与家庭消费支出y 如下表: 收入x 880 2000 7000 9000 12000 支出y7701300380039006600则y 与x 的线性回归方程是 ( )A 、x y4845.0530.380ˆ+= B 、x y2109.0442ˆ+= C 、x y4867.06972.275ˆ+= D 、x y 50.00.150ˆ+= 7、根据下面的列联表:吸烟 不吸烟 合计 患慢性气管炎 43 13 56 未患慢性气管炎 162 121 283合计 205 134 339得到了下列四个判断:①有99.9%的把握认为患慢性气管炎与吸烟有关;②有99.0%的把握认为患慢性气管炎与吸烟有关;③认为患慢性气管炎与吸烟有关的出错的可能为0.1%;④认为患慢性气管炎与吸烟有关的出错的可能为1.0% .其中正确的命题个数是 ( )A 、0B 、1C 、2D 、38、对两个变量的相关系数r ,下列说法中正确的是 ( ) A 、||r 越大,相关程度越大B 、||r 越小,相关程度越大C 、||r 趋近于0时,没有非线性相关关系D 、||r 越接近于1时,线性相关程度越强9、统计假设)()()(:0B P A P AB P H ⋅=成立时,以下判断:①)()()(B P A P B A P ⋅=②)()()(B P A P B A P ⋅=③)()()(B P A P B A P ⋅=其中正确的命题个数是 ( )A 、0B 、1C 、2D 、310、加工零件的个数x 与加工时间y (分钟)的相关数据如下表:零件数x (个) 10 20 30 40 50 60 70 80 90 100 加工时间y (分钟)62 68 75 81 89 95 102 108 115 122则每天工作8小时,预测加工零件的个数是 ( )A 、635.87B 、375.81C 、650.82D 、628.39第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分)11、为考虑广告费用x 与销售额y 之间的关系,随机地抽取5家超市,得到如下表所示的数据:广告费用x (千元) 1.0 4.0 6.0 10.0 14.0 销售额y (千元)19.042.046.052.053.0现要使销售额达到10万元,则广告费用约为__________千元. 12、在0H 成立时,若,10.0)(2=≥k P χ则=k __________.13、独立性检验常作的图形是__________和__________.14、为了考察某种药物预防疾病的效果,进行动物试验,得到了如下的列联表:患病 未患病 总计 服用药 10 46 56 没服用药22 32 54总计32 78 110认为这种药物对预防疾病有效果的把握有_________________.三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15、(本小题满分8分)保险公司统计的资料表明:居民住宅区到最近消防站的距离x(单位:千米)和火灾所造成的损失数额y(单位:千元)有如下的统计资料:距消防距离x(千米) 1.80 2.60 3.10 4.30 5.50 6.1017.8 19.6 27.5 31.3 36.0 43.2 火灾损失费用y(千元)如果统计资料表明y与x有线性相关关系,试求:(1)用计算器计算线性回归方程及相关系数r;(2)若发生火灾的某居民区与最近的消防站相距7.8千米,评估一下火灾的损失.16、(本小题满分10分)打鼾不仅影响别人休息,而且可能患某种疾病.下表是一次调查所得的数据的列联表.试判断每晚都打鼾与患心脏病是否有关,判断的把握有多大?患心脏病未患心脏病总计每晚都打鼾32 226 258 不打鼾24 1352 1376总计56 1578 163417、(本小题满分12分)某省1994~2005年国内生产总值和固定资产投资完成额的资料如下表:20 20 26 35 52 56固定资产投资完成额x亿元195 210 244 264 294 314 国内生产总值GDP y亿元xy3900 4200 6344 9240 15288 17584 x的平方400 400 676 1225 2704 313681 131 149 163 232 202 固定资产投资完成额x亿元360 432 481 567 655 704 国内生产总值GDP y亿元xy29160 56592 71669 92421 151960 142208 x的平方6561 17161 22201 26569 53824 40804求出y与x的线性回归方程中的估计参数baˆ,ˆ的值,并写出线性回归方程.18、(本小题满分12分)对200个接受心脏搭桥手术的病人和200个接受血管清障手术的病人进行了5年的跟踪研究,调查他们是否又发作过心脏病,列联表如下:又发作过心脏病未发作过心脏病总计心脏搭桥手术40 160 200血管清障手术30 170 200 总计70 330 400试画出列联表的三维柱形图和二维条形图,并结合图形判断选择手术的方式与心脏病的又发作是否有关?19、(本小题满分12分) 某学生6次考试的数学、物理成绩在班中的排名如下表: 数学成绩名次x 1 2 3 5 6 7物理成绩名次y24691113对上述数据分别用a bx y +=与d cx y +=2来拟合y 与x 之间的关系,并用残差分析两者的拟合效果.参考答案第Ⅰ卷(选择题 共30分)1-10 BADCB CCDDA第Ⅱ卷(非选择题 共70分)11、31.8564 12、2.70613、三维柱形图,二维条形图 14、99%15、(1),9778.0,3333.7ˆˆ,6154.5)())((ˆ61261=≈-=≈---=∑∑==r x b y ax xy y x xbj jj j j线性回归方程为,3333.76154.5ˆ+=x y,75.09778.0>=r ∴y 与x 有很强的相关关系(2)当x =7.8,代入回归方程有:1334.513333.78.76154.5ˆ≈+⨯=y(千元) 16、828.105798.741376258157856)22624135232(163422>≈⨯⨯⨯⨯-⨯⨯=χ,有99.9%的把握认为每晚都打鼾与患心脏病有关. 17、2767.21167175661124720116760056612)(12121212ˆ21211212212112112112122121≈-⨯⨯-⨯=--=--=∑∑∑∑∑∑∑=======i i i i i i i i i i i i i i ii x x y x y x xx yx yx b,9243.1711211672767.212472012ˆ12ˆ121121≈⨯-≈⨯-=∑∑==i ii ixbya所求的回归方程是:x y2767.29243.171ˆ+= 18、从二维条形图和三维柱形图(图略)可以判断选择手术方式与心脏病的又发作有关系 19、用a bx y +=来拟合y 与x 之间的关系,由于,5.7,4==y x,28)(,50))((61261=-=--∑∑==i i i i ix x y y x x则,3571.0428505.7ˆ,7857.12850ˆ≈⨯-=≈=a b此时得线性回归方程为,3571.07857.1ˆ+=x y它的残差平方和,214.0)ˆ(2611≈-=∑=i i i yy Q 再用d cx y +=2来拟合y 与x 之间的关系,令2x t =,则对应表中数据为:t 1 4 9 25 36 49 y2 4 6 9 11 13由于,5.7,6667.20=≈y t ,3333.1857)(,400))((61261≈-≈--∑∑==i i i i it t y y t t,0492.36667.203333.18574005.7ˆ,2154.03333.1857400ˆ≈⨯-≈'≈≈'a b此时拟合为0492.32154.0ˆ2+=x y,残差平方和,355.3)ˆ(2612≈'-=∑=i i i y y Q 由于,21Q Q <所以由用a bx y +=来拟合效果更好.。

(易错题)高中数学选修1-2第一章《统计案例》检测题(包含答案解析)(2)

(易错题)高中数学选修1-2第一章《统计案例》检测题(包含答案解析)(2)

一、选择题1.某单位对某村的贫困户进行“精准扶贫”,若甲、乙贫困户获得扶持资金的概率分别为37和27,两户是否获得扶持资金相互独立,则这两户中至少有一户获得扶持资金的概率为( ) A .2949B .649C .2349D .43492.下列说法:①对于独立性检验,2χ的值越大,说明两事件相关程度越大;②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1B .2C .3D .43.小红和小明利用体育课时间进行投篮游戏,规定双方各投两次,进球次数多者获胜.已知小红投篮命中的概率为35,小明投篮命中的概率为12,且两人投篮相互独立,则小明获胜的概率为( ) A .1225B .25C .825D .6254.为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A .34B .58C .116D .9165.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数,若有的把握认为是否喜欢抖音和性别有关,则男生至少有( )参考公式:0.100.050.0250.0100.0050.0012.7063.841 5.024 6.635 7.879 10.828A .12人B .18人C .24人D .30人6.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由2222()110(40302030),7.8()()()()60506050n ad bc K K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得 附表:2()P K k ≥0.0500.0100.001k3.8416.63510.828参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”7.某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:做不到 能做到 高年级 45 10 低年级3015则下列结论正确的是( ) 附参照表:参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++A .在犯错误的概率不超过90%的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”B .在犯错误的概率不超过1%的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”C .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”D .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”8.从345678910,1112,,,,,,,,中不放回地依次取2个数,事件A = “第一次取到的数可以被3整除”,B = “第二次取到的数可以被3整除”,则()P B|?A =( ) A .59B .23C .13D .299.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ). A .0.378B .0.3C .0.58D .0.95810.已知,x y 的取值如下表:( )若依据表中数据所画的散点图中,所有样本点()(,)1,2,3,4,5i i x y i =都在曲线212y x a =+附近波动,则a =( ) A .1B .12C .13D .12-11.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:总计 36 36 72参考公式:22()()()()()n ad bc K a b c d a c b d -=++++20()P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系; 12.甲、乙两人独立地破译一份密码,破译的概率分别为11,32,则密码被破译的概率为( ) A .16B .23C .56D .1二、填空题13.掷三个骰子,出现的三个点数的乘积为偶数的概率是________.14.从包括甲乙两人的6名学生中选出3人作为代表,记事件A :甲被选为代表,事件B :乙没有被选为代表,则()P BA │等于_________. 15.从某高校在校大学生中随机选取5名女大学生,由她们身高和体重的数据得到的回归直线方程为ˆ0.7973.56yx =-,数据列表是:则其中的数据a =__________.16.如图, A, B, C 表示3种开关,设在某段时间内它们正常工作的概率是分别是0.9 , 0.8 , 0.7 , 如果系统中至少有1个开关能正常工作,则该系统就能正常工作, 那么该系统正常工作的概率是____________17.某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表的数据,可以有_____%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.(注:独立性检验临界值表参考第9题,K 2=2()()()()()n ad bca b c d a c b d-++++.)18.已知某种高炮在它控制的区域内击中敌机的概率为0.2,要使敌机一旦进入这个区域后有0.9以上的概率被击中,需要至少布置___________门高炮?(用数字作答,已知lg20.3010=,lg30.4771=)19.某校高三年级要从5名男生和2名女生中任选3名代表参加数学竞赛(每人被选中的机会均等),则在男生甲被选中的情况下,男生乙和女生丙至少一个被选中的概率是______.20.下列说法:①线性回归方程y bx a=+必过(),x y;②命题“21,34x x∀≥+≥”的否定是“21,34x x∃<+<”③相关系数r越小,表明两个变量相关性越弱;④在一个22⨯列联表中,由计算得28.079K=,则有99%的把握认为这两个变量间有关系;其中正确..的说法是__________.(把你认为正确的结论都写在横线上)本题可参考独立性检验临界值表:三、解答题21.某县为了在全县营造“浪费可耻、节约为荣”的氛围,制定施行“光盘行动”有关政策,为进一步了解此项政策对市民的影响程度,县政府在全县随机抽取了100名市民进行调查,其中男士比女士少20人,表示政策无效的25人中有10人是女士.(1)完成下列22⨯列联表,并判断是否有99%的把握认为“政策是否有效与性别有关”;政策有效政策无效总计女士10男士5名市民中任意抽取2名,对政策的有效性进行调研分析,求抽取的2人中有男士的概率.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++(n a b c d =+++)22.2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人(其中450人为女性)的得分(满分:100分)数据,统计结果如表所示:(1)由频数分布表可以认为,此次问卷调查的得分Z 服从正态分布,210N μ,近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求()50.594P Z <<;(2)把市民分为对垃圾分类“比较了解”(不低于60分的)和“不太了解”(低于60分的)两类,请完成如下22⨯列联表,并判断是否有99%的把握认为市民对垃圾分类的了解程度与性别有关?10名.再从这10人中随机抽取3人,求抽取的3人中男性人数的分布列及数学期望.参考数据:14.5≈;②若()2,XN μσ,则()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=;③()()()()()2n ad bc K a b c d a c b d -=++++, .n a b c d =+++ 23.在我国抗疫期间,素有“南抖音,北快手”之说的小视频除了给人们带来生活中的快乐外,更在于传递了一种正能量,为抗疫起到了积极的作用,但一个优秀的作品除了需要有很好的素材外,更要有制作上的技术要求,某同学学习利用“快影”软件将已拍摄的素材进行制作,每次制作分三个环节来进行,其中每个环节制作合格的概率分别为34,45,23,只有当每个环节制作都合格才认为一次成功制作,该小视频视为合格作品. (1)求该同学进行3次制作,恰有一次合格作品的概率;(2)若该同学制作10次,其中合格作品数为X ,求X 的数学期望与方差;(3)该同学掌握技术后制作的小视频被某广告公司看中,聘其为公司做广告宣传,决定试用一段时间,每天制作小视频(注:每天可提供素材制作个数至多40个),其中前7天制作合格作品数y 与时间t 如下表:(第t 天用数字t 表示) 其中合格作品数(y )与时间(t )具有线性相关关系,求y 关于t 的线性回归方程(精确到0.01),并估算第14天能制作多少个合格作品(四舍五入取整)?(参考公式()()()1221121niii nnin i i ii ii xy nx y b n x x x xy x xy ====-=---=-∑∑∑∑,a y bx =-,参考数据:71163i ii t y==∑.)24.高三(1)班班主任李老师为了了解本班学生喜爱中国古典文学是否与性别有关,对全班50人进行了问卷调查,得到如下列联表:已知从全班50人中随机抽取1人,抽到喜欢中国古典文学的学生的概率为35. (1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜欢中国古典文学与性别有关?请说明理由;(3)已知在喜欢中国古典文学的10位男生中,1A ,2A ,3A 还喜欢数学,1B ,2B 还喜欢绘画,1C ,2C 还喜欢体育.现从喜欢数学、绘画和体育的男生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.25.H 市某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x (吨)与相应的生产总成本y (万元)的五组对照数据. ˆˆˆybx a =+;参考公式:1221ˆni ii nii x y nxyb xnx ==-=-∑∑,ˆˆay bx =-. (2)记第(1)问中所求y 与x 的线性回归直线方程ˆˆˆybx a =+为模型①,同时该企业科研人员利用计算机根据数据又建立了y 与x 的回归模型②:2112ˆyx =+.其中模型②的残差图(残差=实际值-预报值)如图所示:请完成模型①的残差表与残差图,并根据残差图,判断哪一个模型更适宜作为y 关于x 的回归方程?并说明理由;(3)根据模型①中y 与x 的线性回归方程,预测产量为6吨时生产总成本为多少万元? 26.2019年4月,甲乙两校的学生参加了某考试机构举行的大联考,现对这两校参加考试的学生的数学成绩进行统计分析,数据统计显示,考生的数学成绩X 服从正态分布(110,144)N ,从甲乙两校100分及以上的试卷中用系统抽样的方法各抽取了20份试卷,并将这40份试卷的得分制作成如图所示的茎叶图:(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有90%的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关?(3)从所有参加此次联考的学生中(人数很多)任意抽取3人,记数学成绩在134分以上的人数为ξ,求ξ的数学期望.附:若随机变量X 服从正态分布2(,)N μσ,则()0.6826P X μσμσ-<≤+=,(2P X μσμ-<≤+2)0.9544σ=,(33)0.9974P X μσμσ-<+=≤.参考公式与临界值表:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P K k ≥0.100 0.050 0.025 0.010 0.001 0k2.7063.8415.0246.63510.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】考虑都没有获得扶持资金的情况,再计算对立事件概率得到答案. 【详解】根据题意:32291117749p ⎛⎫⎛⎫=---=⎪⎪⎝⎭⎝⎭. 故选:A . 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.2.C解析:C 【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断. 【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kxy ce =,两边取自然对数,可得ln ln y c kx =+,令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确; 对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C. 【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.3.D解析:D 【分析】由题意可知,用(,)x y 表示小明、小红的进球数 ,所以当小明获胜时,进球情况应该是(2,0),(2,1),(1,0),由相互独立事件同时发生的乘法公式以及互斥事件的概率加法公式,即可求得. 【详解】由题意可知,用(,)x y 表示小明、小红的进球数 ,所以当小明获胜时,进球情况应该是(2,0),(2,1),(1,0),小明获胜的概率是22222112213133131326111252552525252525P C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯⨯⨯-+⨯⨯-=++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故选D . 【点睛】本题主要考查相互独立事件同时发生的乘法公式以及互斥事件的概率加法公式的应用,意在考查学生分类讨论思想意识以及运算能力.4.D解析:D 【分析】分两种情况讨论:第2球投进和第2球投不进,利用独立事件的概率公式可得出所求事件的概率. 【详解】分以下两种情况讨论: (1)第2球投进,其概率为3311544448⨯+⨯=,第3球投进的概率为53158432⨯=; (2)第2球投不进,其概率为53188-=,第3球投进的概率为3138432⨯=. 综上所述:第3球投进的概率为1539323216+=,故选D. 【点睛】本题考查概率的求法,考查独立事件概率乘法公式的应用,同时也考查对立事件概率公式的应用,解题时要注意对事件进行分类讨论,考查运算求解能力,属于中等题.5.B解析:B 【解析】 【分析】设男生人数为,女生人数为,完善列联表,计算解不等式得到答案.【详解】设男生人数为,女生人数为喜欢抖音 不喜欢抖音 总计 男生女生总计男女人数为整数 故答案选B 【点睛】本题考查了独立性检验,意在考查学生的计算能力和应用能力.6.A解析:A 【详解】由27.8 6.635K ≈>,而()26.6350.010P K ≥=,故由独立性检验的意义可知选A7.C解析:C 【解析】分析:根据列联表中数据,利用公式求得2 3.03K ≈,参照临界值表即可得到正确结论. 详解:由公式()()()()()22n d bc k a b c d a c b d -=++++可得2 3.03K ≈,参照临界值表,2.7063.030 3.841<<,∴0090以上的把握认为,“学生能否做到‘扶跌倒老人’与年级高低有关”,故选C.点睛:本题考查了独立性检验的应用,属于基础题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.8.C解析:C 【解析】分析:先求()P AB ,()P A ,再根据()(|)()P AB P B A P A =得结果. 详解:因为214421101022(),()155C C P AB P A C C ====, 所以2()115(|)2()35P AB P B A P A ===, 选C.点睛:本题考查条件概率,考查基本求解能力.9.D解析:D 【详解】分析:分别利用独立事件的概率公式求出恰在第一次、恰在第二次、恰在第三次落地打破的概率,然后由互斥事件的概率公式求解即可.详解:透镜落地3次,恰在第一次落地打破的概率为10.3P =, 恰在第二次落地打破的概率为20.70.40.28P =⨯=, 恰在第三次落地打破的概率为30.70.60.90.378P =⨯⨯=, ∴落地3次以内被打破的概率1230.958P P P P =++=.故选D .点睛:本题主要考查互斥事件、独立事件的概率公式,属于中档题. 解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.10.A解析:A 【解析】 设2t x = ,则11(014916)6,(1 1.3 3.2 5.68.9)455t y =++++==++++=,所以点(6,4)在直线12y t a =+上,求出1a =,选A. 点睛:本题主要考查了散点图,属于基础题.样本点的中心(),x y 一定在直线回归直线上,本题关键是将原曲线变形为12y t a =+,将点(6,4)代入,求出值. 11.C解析:C 【解析】2272(1682028)=8.427.87944283636K ⨯⨯-⨯≈⨯⨯⨯>∴性别和读营养说明之间有99.5%的可能性. 本题选择C 选项.12.B解析:B 【分析】密码被破译分三种情况:甲破译出密码乙未破译,乙破译出密码甲未破译,甲乙都破译出密码,根据相互独立事件的概率和公式可求解出答案. 【详解】设 “甲独立地破译一份密码” 为事件A , “乙独立地破译一份密码” 为事件B , 则()13P A =,()12P B =,()12133P A =-=,()11122P B =-=, 设 “密码被破译” 为事件C ,则()()()()P C P AB P AB P AB =++11211123232323=⨯+⨯+⨯=, 故选:B. 【点睛】本题以实际问题为背景考查相互独立事件的概念及其发生的概率的计算,考查分析问题和解决问题的能力,属于中档题.二、填空题13.【分析】若点数的乘积为偶数此至少有一个骰子的点数为偶数考虑反面情况:三个骰子全部是奇数的概率用减去此概率即可得到结果【详解】因为三个点数的乘积为偶数时则至少有一个点数为偶数若三个点数均为奇数此时对应解析:78【分析】若点数的乘积为偶数,此至少有一个骰子的点数为偶数,考虑反面情况:三个骰子全部是奇数的概率,用1减去此概率即可得到结果. 【详解】因为三个点数的乘积为偶数时,则至少有一个点数为偶数,若三个点数均为奇数,此时对应的概率为:31128⎛⎫= ⎪⎝⎭, 所以至少有一个点数为偶数的概率为:17188P =-=. 故答案为:78.【点睛】本题考查相互独立事件的概率计算,难度一般.概率计算时,若出现至多、至少这样的描述,可考虑从问题的反面解决问题.14.【解析】因为所以应填答案解析:35【解析】因为()()2254336613,210C C P A P AB C C ====,所以3(|)5P B A =。

人教A版数学高二选修1-2单元测试第一章统计案例2

人教A版数学高二选修1-2单元测试第一章统计案例2

阶段质量检测(一)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.有下列关系:①人的年龄与他拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中有相关关系的是() A.①②③B.①②C.②③D.①③④2.对于回归分析,下列说法中错误的是()A.在回归分析中,若变量间的关系是非确定性关系,则因变量不能由自变量唯一确定B.相关系数可以是正的也可以是负的C.回归分析中,如果R2=1,说明变量x与y之间是完全线性相关D.样本相关系数r∈(-∞,+∞)3.在一次调查后,根据所得数据绘制成如图所示的等高条形图,则()A.两个分类变量关系较弱B.两个分类变量无关系C.两个分类变量关系较强D.无法判断4.设两个变量x和y之间具有线性相关关系,它们的相关系数是r,y关于x的回归直线的斜率是b,纵轴上的截距是a,那么必有()A.b与r的符号相同B.a与r的符号相同C.b与r的符号相反D.a与r的符号相反5.下表显示出样本中变量y随变量x变化的一组数据,由此判断它最可能是()x 45678910y 14181920232528A.C.指数函数模型D.对数函数模型6.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x 1 2 3 4 用水量y4.5432.5由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是y ^=-0.7x +a ^,则a ^=( )A .10.5B .5.15C .5.2D .5.257.在研究吸烟与患肺癌的关系中,通过收集数据并整理、分析,得到“吸烟与患肺癌有关”的结论,并且有99%的把握认为这个结论成立.下列说法正确的个数是( )①在100个吸烟者中至少有99个人患肺癌;②如果一个人吸烟,那么这个人有99%的概率患肺癌;③在100个吸烟者中一定有患肺癌的人;④在100个吸烟者中可能一个患肺癌的人也没有.A .4B .3C .2D .18.下表是某小卖部一周卖出热茶的杯数与当天气温的对比表:气温(℃) 18 13 10 4 -1 杯数2434395163若热茶杯数y ( ) A.y ^=x +6 B.y ^=x +42 C.y ^=-2x +60 D.y ^=-3x +789.如图,5个(x ,y )数据,去掉D (3,10)后,下列说法错误的是( )A .相关系数r 变大B .残差平方和变大C .相关指数R 2变大D .解释变量x 与预报变量y 的相关性变强10.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高(单位:cm)对年龄(单位:岁)的线性回归方程为y ^=7.19x +73.93,若用此方程预测儿子10岁时的身高,有关叙述正确的是( )A .身高一定为145.83 cmB .身高大于145.83 cmC .身高小于145.83 cmD .身高在145.83 cm 左右11.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:( ) A .没有充足的理由认为课外阅读量大与作文成绩优秀有关 B .有0.5%的把握认为课外阅读量大与作文成绩优秀有关 C .有99.9%的把握认为课外阅读量大与作文成绩优秀有关 D .有99.5%的把握认为课外阅读量大与作文成绩优秀有关12.两个分类变量X 和Y ,值域分别为{x 1,x 2}和{y 1,y 2},其样本频数分别是a =10,b =21,c +d =35.若X 与Y 有关系的可信程度不小于97.5%,则c 等于( )A .3B .4C .5D .6 附:二、填空题(本大题共) 13.下面是一个2×2列联表:则表中b -a =________.14.已知样本容量为11,计算得∑i =111x i =510,∑i =111y i =214,回归方程为y ^=0.3x +a ^,则x≈________,a ^≈________.(精确到0.01)15.某单位为了了解用电量y (度)与气温x (℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表,由表中数据得线性回归方程y ^=b ^x +a ^,其中b ^=-2.现预测当气温为-4℃时,用电量的度数约为________.16.某部门通过随机调查89名工作人员的休闲方式是读书还是健身,得到的数据如下表:三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)x与y有如下五组数据,试分析x与y由.18.(本小题12分)有两个分类变量x与y,其一组观测值如下面的2×2列联表所示:其中a,15-a0.1的前提下认为x与y之间有关系?19.(本小题12分)某学校高三年级有学生1000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中共抽取100名同学,如果以身高达165 cm 作为达标的标准,对抽取的100名学生,得到以下列联表:(1)(2)能否在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系(K2的观测值精确到0.001)?20.(本小题12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了4次试验,得到数据如下:加工的时间y (小时) 2.5 3 4 4.5(1)(2)求y 关于x 的线性回归方程y ^=b ^x +a ^; (3)试预测加工10个零件需要的时间.21.(本小题12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:[50,60),[60,70), [70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?P (K 2≥k )0.100 0.050 0.010 0.001 k2.7063.8416.63510.82822.(本小题)之间的一组数据如下表:价格x 1.4 1.6 1.8 2 2.2 需求量1210753(1)画出散点图;(2)求出y 对x 的线性回归方程,并在(1)的图形上画出它的图象; (3)如果价格定为1.9万元,预测需求量大约是多少.(结果精确到0.01 t).答案1.解析:选D 曲线上的点与该点的坐标之间是确定关系——函数关系,故②不正确.其余均为相关关系.2.解析:选D 在回归分析中,样本相关系数r 的范围是|r |≤1,故选D.3.解析:选C 从条形图中可以看出,在x 1中y 1比重明显大于x 2中y 1的比重,所以两个分类变量的关系较强.4.解析:选A 因为b >0时,两变量正相关,此时r >0;b <0时,两变量负相关,此时r <0.5.解析:选A 画出散点图(图略)可以得到这些样本点在某一条直线上或该直线附近,故最可能是线性函数模型.6.解析:选D 样本点的中心为(2.5,3.5),将其代入线性回归方程可解得a ^=5.25. 7.解析:选D 有99%的把握认为“吸烟与患肺癌有关”,指的是“吸烟与患肺癌有关”这个结论成立的可能性或者可信程度有99%,并不表明在100个吸烟者中至少有99个人患肺癌,也不能说如果一个人吸烟,那么这个人就有99%的概率患肺癌;更不能说在100个吸烟者中一定有患肺癌的人,反而有可能在100个吸烟者中,一个患肺癌的人也没有.故正确的说法仅有④,选D.8.解析:选C 由表格可知,气温与杯数呈负相关关系.把x =4代入y =-2x +60得y =52,e ^=52-51=1.把x =4代入y =-3x +78得y =66,e ^=66-51=15.故应选C.9.解析:选B 由散点图知,去掉D 后,x 与y 的相关性变强,且为正相关,所以r 变大,R 2变大,残差平方和变小.10.解析:选D 用线性回归方程预测的不是精确值,而是估计值.当x =10时,y =145.83,只能说身高在145.83 cm 左右.11.解析:选D 根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.12.解析:选A 列2×2列联表如下:故K 2的观测值k =66×[10(35-c )-21c ]31×35×(10+c )(56-c )≥5.024. 把选项A ,B ,C ,D 代入验证可知选A. 13.解析:b -a =8. 答案:814.解析:由题意得x =111∑i =111x i =51011≈46.36,y =111∑i =111y i =21411,因为y =0.3x +a ^,所以21411=0.3×51011+a ^,可得a ^≈5.55.答案:46.36 5.5515.解析:由题意可知x =14(18+13+10-1)=10,y =14(24+34+38+64)=40,b ^=-2.又回归直线y ^=-2x +a ^过点(10,40),故a ^=60, 所以当x =-4时,y ^=-2×(-4)+60=68. 答案:6816.解析:由列联表中的数据,得K 2的观测值为 k =89×(24×26-31×8)255×34×32×57≈3.689>2.706,因此,在犯错误的概率不超过0.10的前提下认为性别与休闲方式有关系. 答案:0.1017.解:作出散点图,如图所示:由散点图可以看出,x 与y 不具有线性相关关系.18.解:查表可知,要使在犯错误的概率不超过0.1的前提下认为x 与y 之间有关系,则k ≥2.706,而k =65×[a (30+a )-(20-a )(15-a )]220×45×15×50=65×(65a -300)220×45×15×50=13×(13a -60)260×90. 由k ≥2.706得a ≥7.19或a ≤2.04.又a >5且15-a >5,a ∈Z ,解得a =8或9,故a 为8或9时,在犯错误的概率不超过0.1的前提下认为x 与y 之间有关系. 19.解:(1)填写列联表如下:身高达标 身高不达标总计 经常参加体育锻炼 40 35 75 不经常参加体育锻炼101525总计5050100(2)2k=100×(40×15-35×10)275×25×50×50≈1.333<3.841.所以不能在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系.20.解:(1)散点图如图所示:(2)由表中数据得x=3.5,y=3.5,∑i=14(x i-x)(y i-y)=3.5,∑i=14(x i-x)2=5,由公式计算得b^=0.7,a^=y--b^x-=1.05,所以所求线性回归方程为y^=0.7x+1.05.(3)当x=10时,y^=0.7×10+1.05=8.05,所以预测加工10个零件需要8.05小时.21.解:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A1,A2,A3;25周岁以下组工人有40×0.05=2(人),记为B1,B2.从中随机抽取2名工人,所有的可能结果共有10种,它们是(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).故所求的概率P=710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),“25周岁以下组”中的生产能手有40×0.375=15(人),据此可得2×2列联表如下:生产能手非生产能手合计25周岁以上组15456025周岁以下组152540合计3070100所以得K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=100×(15×25-15×45)260×40×30×70=2514≈1.79.因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.22.解:(1)散点图如图所示.(2)x-=1.8,y-=7.4,∑i=15x i y i=62,∑i=15x2i=16.6,b^=∑i=15x i y i-5x-y-∑i=15x2i-5x-2=62-5×1.8×7.416.6-5×1.82=-4.60.4=-11.5,a^=y--b^x-=7.4+11.5×1.8=28.1.所以y对x的线性回归方程为y^=-11.5x+28.1.画出图象如图.(3)当价格定为1.9万元,即x=1.9时,y=-11.5×1.9+28.1=6.25.所以商品价格定为1.9万元时,需求量大约是6.25t.。

【配套K12】高中数学人教A版选修1-2习题:第一章统计案例检测

【配套K12】高中数学人教A版选修1-2习题:第一章统计案例检测

第一章检测(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知x与y之间的几组数据如下表:则y与x的线性回归方程过点A.(0,1)B.(1,4)C.(2,5)D.(5,9)2.已知某车间加工零件的个数x与所花费的时间y(单位:h)之间的线性回归方程为则加工个零件大约需要A.6.5 hB.5.5 hC.3.5 hD.0.5 h,当x=600时故选3.已知x,y的值如下表所示,若y与x呈线性相关,且回归直线方程为则等于x468y5a6A.4B.5C.6D.7解得4.对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(x n,y n),其回归方程中的截距为()AC中截距的计算公式是故选5.下表是样本中变量y随变量x变化的一组数据,由此判断它最可能是()A.线性函数模型B.二次函数模型C.指数函数模型D.对数函数模型(图略)可以得到这些样本点在某一条直线上或在该直线附近,故最可能是线性函数模型.6.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y对x的线性回归方程为()AC7.在一个线性回归模型中,计算得R2=0.96,下面说法不够妥当的是()A.该线性回归方程的拟合效果较好B.解释变量对于预报变量变化的贡献率约为96%C.随机误差对预报变量的影响约占4%D.有96%的样本点在回归直线上R2表示的意义可知A,B,C三种说法都很妥当,R2=0.96,其值较大,说明残差平方和较小,绝大部分样本点分布在回归直线附近,不一定有96%的样本点在回归直线上.故选D.8.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高(单位:cm)对年龄(单位:岁)的线性回归方程为若用此方程预测儿子岁时的身高有关叙述正确的是A.身高一定为145.83 cmB.身高大于145.83 cmC.身高小于145.83 cmD.身高在145.83 cm左右,而是估计值.当x=10时,y=145.83,只能说身高在145.83 cm左右.故选D.9.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:附:K2-参照附表,得到的正确结论是()A.在犯错误的概率不超过0.01的前提下认为“该市居民能否做到‘光盘’与性别有关”B.在犯错误的概率不超过0.01的前提下认为“该市居民能否做到‘光盘’与性别无关”C.在犯错误的概率不超过0.1的前提下认为“该市居民能否做到‘光盘’与性别有关”D.在犯错误的概率不超过0.1的前提下认为“该市居民能否做到‘光盘’与性别无关”a=45,b=10,c=30,d=15.所以K2的观测值k-≈3.030 3.又2.706<3.030 3<3.841,所以由附表可知,可以在犯错误的概率不超过0.1的前提下认为“该市居民能否做到‘光盘’与性别有关”.10.有两个分类变量X和Y,其一组观测值如下2×2列联表所示:,其中c+d=35.若在犯错误的概率不超过0.1的前提下认为X与Y有关系,则c可能等于() A.5 B.6 C.7 D.82×2列联表如下:≥2.706.把选项A,B,C,D代入验证可知选A.故K2的观测值k---二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其断面直径与高度之间的关系;⑤学生与他(她)的学号之间的关系.其中有相关关系的是(填序号)..①③④是不确定的关系;②曲线上的点与该点的坐标是一种对应关系,即每一个点对应一个坐标,是确定关系;⑤学生与其学号之间也是确定的对应关系.12.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程为由回归直线方程可知家庭年收入每增加万元年饮食支出平均增加万元x1万元,对应的年饮食支出为y1万元,家庭年收入每增加1万元,则年饮食支出平均万元).增加---.25413.若由一个2×2列联表中的数据计算得K2的观测值k≈4.013,则认为两个变量有关系的判断正确的概率为.≈4.013>3.841,查表知在犯错误的概率不超过0.05的前提下认为两个变量有关,故所求概率为0.95..9514.若两个分类变量X与Y的列联表如下:则在犯错误的概率不超过的前提下认为X与Y有关系.,得K2的观测值k-≈7.227>6.635.故在犯错误的概率不超过0.01的前提下,认为X与Y有关系..0115.某商场为了了解某品牌羽绒服的月销售量y(单位:件)与月平均气温x(单位:℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,数据如下表:由表中数据算出线性回归方程中的≈-2.气象部门预测下个月的平均气温约为6 ℃,据此估计该商场下个月该品牌羽绒服的销售量为件.由题表得即样本点中心为(10,38),代入结合≈-2,得故当x=6时,得三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了四次试验,所得数据如下:(1)在给定坐标系中画出表中数据的散点图;(2)求y关于x的线性回归方程(3)试预测加工10个零件需要的时间.-附-画出的散点图如图:(2所以--所以回归直线方程为(3)当x=10时,y=0.7×10+1.05=8.05,故预测加工10个零件需要8.05 h.17.(8分)为了调查服用某种新药是否会患某种慢性病,调查了200名服用此种新药和100名未服用此种新药的人,调查结果如下表,能否在犯错误的概率不超过0.15的前提下认为患慢性病与服用新药有关系?2×2列联表中的数据,可以求得K2的观测值k-≈2.246.因为2.246>2.072,所以在犯错误的概率不超过0.15的前提下认为患慢性病与服用新药有关系.18.(9分)某同学为研究“网络游戏对当代青少年的影响”作了一次调查,共调查了50名同学,其中男生26人,有8人不喜欢玩电脑游戏,而调查的女生中有9人喜欢玩电脑游戏.(1)根据以上数据建立一个2×2的列联表;(2)根据以上数据,在犯错误的概率不超过0.025的前提下,能否认为喜欢玩电脑游戏与性别有关系?2列联表如下所示:(2)K2的观测值k-≈5.06,又5.06>5.024,故在犯错误的概率不超过0.025的前提下,可以认为喜欢玩电脑游戏与性别有关系.19.(10分)下表是一位母亲给儿子作的成长记录:(1)年龄(解释变量)和身高(预报变量)之间具有怎样的相关关系?(2)若年龄相差5岁,则身高有多大差异?(年龄在3~16周岁之间)(3)如果身高相差20 cm,那么其年龄相差多少?散点图如图所示.由散点图可知样本点落在一条直线附近.设年龄x(单位:周岁)与身高y(单位:cm)之间的回归直线方程是由公式计算得-≈6.314≈72.003,-所以(2)若年龄相差5岁,则身高相差6.314×5=31.57(cm).(3)如果身高相差20 cm,年龄相差≈3.168≈3(岁).20.(10分)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程其中(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)因为所以从而回归直线方程为(2)设工厂获得的利润为L元,依题意得L=x(-20x+250)-4(-20x+250)=-20x2+330x-1 000=-2-当且仅当x时取得最大值故当单价定为元时工厂可获得最大利润。

(压轴题)高中数学选修1-2第一章《统计案例》测试(含答案解析)(2)

(压轴题)高中数学选修1-2第一章《统计案例》测试(含答案解析)(2)

一、选择题1.下列命题不正确的是( )A .研究两个变量相关关系时,相关系数r 为负数,说明两个变量线性负相关B .研究两个变量相关关系时,相关指数R 2越大,说明回归方程拟合效果越好.C .命题“∀x ∈R ,cos x ≤1”的否定命题为“∃x 0∈R ,cos x 0>1”D .实数a ,b ,a >b 成立的一个充分不必要条件是a 3>b 32.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为( ) A .12B .25C .35D .453.“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo ,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( )A .分层抽样B .回归分析C .独立性检验D .频率分布直方图4.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( ) A .25B .1225C .1625D .455.为了解某班学生喜爱打篮球是否与性别有关,对该班60名学生进行问卷调查,得到如下图所示的22⨯列联表,则至少有( )的把握认为喜爱打篮球与性别有关.喜爱打篮球 不喜爱打篮球 合计男生 25530女生 151530 合计40 2060附参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.20()P K k ≥0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.78910.828A.99.9%B.99.5%C.99%D.97.5%6.从混有4张假钞的10张一百元纸币中任意抽取3张,若其中一张是假币的条件下,另外两张都是真币的概率为()A.512B.58C.35D.127.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是()A.35B.14C.12D.138.以下四个命题,其中正确的个数有()①由独立性检验可知,有99%的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程^0.212y x=+中,当解释变量x每增加一个单位时,预报变量ˆy平均增加0.2个单位;④对分类变量X与Y,它们的随机变量2K的观测值k来说,k越小,“X与Y有关系”的把握程度越大.A.1 B.2 C.3 D.49.在5道题中有3道理科题和2道文科题,如果一次性抽取 2道题,已知有一道是理科题的条件下,则另一道也是理科题的概率为A.13B.14C.12D.3510.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下22⨯列联表:附:()()()()()22n ad bc K a b c d a c b d -=++++参照附录,得到的正确结论是( ) A .在犯错误的概率不超过5%的前提下,认为“该市居民能否做到‘光盘’与性别有关” B .在犯错误的概率不超过2.5%的前提下,认为“该市居民能否做到‘光盘’与性别有关” C .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关” D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关” 11.已知,x y 的取值如下表:( )若依据表中数据所画的散点图中,所有样本点()(,)1,2,3,4,5i i x y i =都在曲线212y x a =+附近波动,则a =( ) A .1B .12C .13D .12-12.袋中有6个黄色、4个白色的乒乓球,做不放回抽样,每次任取1个球,取2次,则关于事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率说法正确的是( )A .事件“直到第二次才取到黄色球”与事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率都等于23 B .事件“直到第二次才取到黄色球”与事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率都等于415C .事件“直到第二次才取到黄色球”的概率等于23,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于415D .事件“直到第二次才取到黄色球”的概率等于415,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于23二、填空题13.国产杀毒软件进行比赛,每个软件进行四轮考核,每轮考核中能够准确对病毒进行查杀的进入下一轮考核,否则被淘汰.已知某个软件在四轮考核中能够准确杀毒的概率依次是56,35,34,13,且各轮考核能否通过互不影响.则该软件至多进入第三轮考核的概率为______.14.某一部件由四个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3或元件4正常工作,则部件正常工作.设四个电子元件的使用寿命(单位:小时)均服从正态分布2(1000,50)N ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为__________.15.科目二,又称小路考,是机动车驾驶证考核的一部分,是场地驾驶技能考试科目的简称.假设甲每次通过科目二的概率均为34,且每次考试相互独立,则甲第3次考试才通过科目二的概率为__________.16.甲、乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23,没有平局,若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于__________. 17.以下4个命题中,正确命题的序号为_________.①“两个分类变量的独立性检验”是指利用随机变量2K 来确定是否能以给定的把握认为“两个分类变量有关系”的统计方法;②将参数方程cos sin x y θθ=⎧⎨=⎩(θ是参数,[]0,θπ∈)化为普通方程,即为221x y +=;③极坐标系中,22,3A π⎛⎫⎪⎝⎭与()3,0B 19 ④推理:“因为所有边长相等的凸多边形都是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形”,推理错误在于“大前提”错误.18.甲、乙、丙三人各自独立的破译一个密码,假定它们译出密码的概率都是15,且相互独立,则至少两人译出密码的概率为___________. 19.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,1,1,3b x y ===则1a =.正确的序号是________________.20.某人在公园进行射击气球游戏,排除其它因素的影响,各次射击相互独立,每次击中气球的概率均为0.8,若连续射击10次,记击中气球的次数为ξ,则D (ξ)=______.三、解答题21.在我国,大学生就业压力日益严峻,伴随着政府政策的引导与社会观念的转变,大学生的创业意识与就业方向也悄然发生转变.某大学生在国家提供的税收,担保贷款等多方面的政策扶持下选择加盟某专营店自主创业,该专营店统计了近五年来创收利润数i y (单位:万元)与时间i t (单位:年)的数据,列表如下:(1)依据表中给出的数据,是否可用线性回归模型拟合y 与t 的关系,请计算相关系数r 并加以说明(计算结果精确到0.01).(若0.75r >,则线性相关程度很高,可用线性回归模型拟合)(2)该专营店为吸引顾客,特推出两种促销方案. 方案一:每满500元可减50元;方案二:每满500元可抽奖一次,每次中奖的概率都为25,中奖就可以获得100元现金奖励,假设顾客每次抽奖的结果相互独立.(ⅰ)某位顾客购买了1050元的产品,该顾客选择参加两次抽奖,求该顾客换得100元现金奖励的概率(ⅱ)某位顾客购买了2000元的产品,作为专营店老板,是希望该顾客直接选择方案一返回200元现金,还是选择方案二参加四次抽奖?说明理由.附:相关系数公式:()()nnii i itt y y t yntyr---==∑∑,7.547≈,5185.2i i i t y ==∑,=22.下表是我国大陆地区从2013年至2019年国内生产总值(GDP )近似值(单位:万亿元人民币)的数据表格:以x 为解释变量,y 为预报变量,若以11y b x a =+为回归方程,则相关指数210.9808R ≈;若以22ln y a b x =+为回归方程,则相关指数220.8457R ≈.(1)判断11y b x a =+与22ln y a b x =+哪一个更适宜作为国内生产总值(GDP )近似值y 关于年份代号x 的回归方程,并说明理由;(2)根据(1)的判断结果及表中数据,求出y 关于年份代号x 的回归方程(系数精确到0.01);(3)党的十九大报告中指出:从2020年到2035年,在全面建成小康社会的基础上,再奋斗15年,基本实视社会主义现代化.若到2035年底我国人口增长为14.4亿人,假设到2035年世界主要中等发达国家的人均国民生产总值的频率直方图如图所示.以(2)的结论为依据,预测我国在2035年底人均国民生产总值是否可以超过假设的2035年世界主要中等发达国家的人均国民生产总值平均数的估计值. 参考数据:71537.2ii y==∑,712333.5i i i x y ==∑.参考公式:回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为:()()()1122211ˆn niii ii i nni ii i x x y y x y nxybx x xnx ====---==--∑∑∑∑,ˆˆay bx =-. 23.为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下:女生: 睡眠时间(小时)[4,5)[5,6)[6,7)[7,8)[8,9]人数24842男生: 睡眠时间(小时)[4,5) [5,6) [6,7) [7,8) [8,9](1)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取3人,求此3人中恰有一人为“严重睡眠不足”的概率;(2)完成下面2x2列联表,并回答是否有90%的把握认为“睡眠时间与性别有关”?(()()()()()22n ad bc K a b c d a c b d -=++++,其中n=a+b+c+d )24.某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量()g y 与尺寸(mm)x 之间近似满足关系式b y c x =⋅(b ,c 为大于0的常数).按照某指标测定,当产品质量与尺寸的比在区间(0.302,0.388)内时为优等品.现随机抽取6件合格产品,测得数据如下:(1)现从抽取的6件合格产品中再任选2件,求选中的2件均为优等品的概率; (2)根据测得数据作了初步处理,得相关统计量的值如下表:根据所给统计量,求y 关于x 的回归方程. 附:对于样本(),(1,2,,6)i i v u i =,其回归直线u b v a =⋅+的斜率和截距的最小二乘法估计公式分别为:()()()1122211ˆnniii i i i nni ii i v v u u v u nvubv v vnv ====---==--∑∑∑∑,ˆˆa u bv=-, 2.7183e ≈. 25.在一定范围内,植物的生长受到空气、水、温度、光照和养分等因素的影响,某试验小组为了研究光照时长对某种植物增长高度的影响,在保证其他因素相同的条件下,对该植物进行不同时长的光照试验,经过试验,得到6组该植物每日的光照时间x (单位:h )和每日平均增长高度y (单位:mm )的数据.(1)该小组分别用模型①ˆˆˆybx a =+和模型②ˆˆˆmx n y e +=对以上数据进行拟合,得到回归模型,并计算出模型的残差如下表:(模型①和模型②的残差分别为1ˆe 和2ˆe ,残差ˆˆi i i ey y =-)根据上表的残差数据,应选择哪个模型来刻画该植物每日的光照时间与每日平均增长高度的关系较为合适,简要说明理由;(2)为了优化模型,将(1)中选择的模型残差绝对值最大所对应的一组数据(),x y 剔除,根据剩余的5组数据,求该模型的回归方程,并预测光照时间为11h 时,该植物的平均增长高度.(剔除数据前的参考数据:7.5x =, 5.9y =,61299.8i ii x y==∑,621355i i x ==∑,ln z y =,141z ≈.,6173.10i i i x z =≈∑,n10.7l 2.37≈, 4.03456.49e ≈.)参考公式:()()()1122211ˆn niii ii i nni ii i x x y y x y nxybx x xnx ====---==--∑∑∑∑,ˆˆay bx =-. 26.为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了2018年下半年该市100名农民工(其中技术工、非技术工各50名)的月工资,得到这100名农民工的月工资均在[]25,55(百元)内,且月工资收入在[45,50)(百元)内的人数为15,并根据调查结果画出如图所示的频率分布直方图:(1)求n 的值;(2)已知这100名农民工中月工资高于平均数的技术工有31名,非技术工有19名. ①完成如下所示22⨯列联表技术工 非技术工 总计 月工资不高于平均数 50 月工资高于平均数50 总计5050100②则能否在犯错误的概率不超过0.001的前提下认为是不是技术工与月工资是否高于平均数有关系?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据相关系数、相关指数的知识、全称命题的否定的知识,充分、必要条件的知识对四个选项逐一分析,由此得出命题不正确的选项. 【详解】相关系数r 为负数,说明两个变量线性负相关,A 选项正确. 相关指数2R 越大,回归方程拟合效果越好,B 选项正确.根据全称命题的否定是特称命题的知识可知C 选项正确.对于D 选项,由于33a b a b >⇔>,所以33a b >是a b >的充分必要条件,故D 选项错误.所以选D. 【点睛】本小题主要考查相关系数、相关指数的知识,考查全称命题的否定是特称命题,考查充要条件的判断,属于基础题.2.B解析:B 【分析】先求出女生甲被选中的情况下的基本事件总数1215C C n =,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C m =,结合条件概率的计算方法,可得m P n=. 【详解】女生甲被选中的情况下,基本事件总数1215C C 10n ==,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C 4m ==,则在女生甲被选中的情况下,男生乙也被选中的概率为42105m P n ===. 故选B. 【点睛】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.3.C解析:C 【解析】 【分析】根据“性别”以及“反对与支持”这两种要素,符合,从而可得出统计方法。

人教版选修【1-2】第一章《统计案例》章末过关检测卷及答案

人教版选修【1-2】第一章《统计案例》章末过关检测卷及答案

数学·选修1-2(人教A版)章末过关检测卷(一)第一章统计案例(测试时间:120分钟评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.炼钢时钢水的含碳量与冶炼时间有()A.确定性关系B.相关关系C.函数关系D.无任何关系答案:B2.下列说法正确的有()①回归方程适用于一切样本和总体;②回归方程一般都有时间性;③样本取值的范围会影响回归方程的适用范围;④回归方程得到的预报值是预报变量的精确值A.①②B.②③C.③④D.①③答案:B3.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为y^=0.85 x-85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(x,y)C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD.若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg解析:根据线性回归方程中各系数的意义求解.由于线性回归方程中x的系数为0.85,因此y与x具有正的线性相关关系,故A正确.又线性回归方程必过样本中心点(x,y),因此B正确.由线性回归方程中系数的意义知,x每增加1 cm,其体重约增加0.85 kg,故C正确.当某女生的身高为170 cm时,其体重估计值是58.79 kg,而不是具体值,因此D不正确.答案:D4.身高与体重有关系可以用________分析来分析()A.残差B.回归C.二维条形图D.独立检验答案:B5.设有一个回归方程为y=2-2.5x,则变量x增加一个单位时()A.y平均增加2.5个单位B.y平均增加2个单位C.y平均减少2.5个单位D.y平均减少2个单位答案:C6.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是()A.y^=1.23x+4B.y^=1.23x+5C.y^=1.23x+0.08D.y^=0.08x+1.23答案:C7.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50[已知P(K2≥3.841)=0.025]根据表中数据,得到K2=50×(13×20-10×7)223×27×20×30≈4.844,则认为选修文科与性别有关系出错的可能性为()A.5% B.95% C.25% D.97.5%解析:∵P(K2≥3.841)=0.05,∴认为选修文科与性别有关系出错的可能性为5%.故选A.答案:A8.已知x与y则y与x的线性回归方程y=b x+a必过()A.点(2,2) B.点(1.5,0) C.点(1,2) D.点(1.5,4)答案:D9.有人发现,多看电视容易使人变冷漠,下表是一个调查机构() A.99.9% B.97.5% C.95% D.99%解析:可计算K2=11.377>10.828.答案:A10.为考虑广告费用x与销售额y之间的关系,抽取了5家餐厅,万元(保留两位有效数字)()A.1.8 B.1.7 C.1.6 D.1.5答案:D二、填空题(本大题共4小题,每小题5分,共20分;将正确答案填在题中的横线上)11.回归直线方程为y =0.575x -14.9,则x =100时,y 的估计值为____________.答案:42.612.若由一个2×2列联表中数据计算得K 2=4.073,那么有__________的把握认为两变量有关系[已知P (K 2≥3.841)=0.05,P (K 2≥5.024)=0.025].解析:∵K 2=4.073>3.841,∴有95%的把握认为两变量有关系. 答案:95%13.在两个变量的回归分析中,作散点图的目的是________________________________.答案:①判断两变量是否线性相关;②判断两变量更近似于什么函数关系14.为预测某种产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取了8组观测值.计算知∑i =18xi =52,∑i =18yi =228,∑i =18x 2i =478,∑i =18xiyi =1 849,则y 对x 的线性回归方程是______________.解析:b ^=1 849-8×6.5×28.5478-8×6.52≈2.62,a ^=11.47, ∴y ^=2.62x +11.47.答案:y ^=2.62x +11.47三、解答题(本大题共6小题,共80分;解答时应写出必要的文字说明、证明过程及演算步骤)15.(12分)在回归分析中,通过模型由解释变量计算预报变量时,应注意什么问题?解析:应注意:①回归模型只适用于所研究的总体;②回归方程具有时效性;③样本的取值范围影响回归方程的适用范围;④预报值是预报变量可能取值的平均值.16.(14分)为考察性别与是否喜欢喝酒之间的关系,在某地随机地抽取160人,其中男性80人,女性80人,女性中有20人喜欢喝酒,另外60人不喜欢喝酒,男性中有50人喜欢喝酒,另外30人不喜欢喝酒.(1)根据以上数据建立一个2×2的列联表;(2)判断性别与喝酒是否有关系.解析:(1)=22.857>10.828.(2)K2的观测值k=70×90×80×80利用列联表的独立性检验,有99.9%的把握认为性别与喝酒有关系.17.(14分)某市5年的煤气消耗量y与使用煤气户数x的历史资料如下:(1)(2)求y关于x的线性回归方程;(3)若市政府下一步再扩大2 000煤气用户,试预测该市煤气消耗量将达到多少.解析:(1)作散点图如下,观察呈线性正相关.(2)x -=75,y -=9,∑i =15x 2i =10.26,∑i =15x i y i =66.4, b ^=66.4-5×75×910.26-5×4925=17023, a ^=9-17023×75=-3123. ∴回归方程为y ^=17023x -3123. (3)当x =2时,y =17023×2-3123=30923≈13.4.∴煤气量约达13.4万立方米.18.(12分)(2013·东莞二模)今年春节黄金周,记者通过随机询问某景区110游客对景区的服务是否满意,得到如下的列联表:性别与(1)从这50抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?(2)从(1)中的5名女游客样本中随机选取两名作深度访谈,求选到满意与不满意的女游客各一名的概率;(3)根据以上列联表,问有多大把握认为“游客性别与对景区的服务满意”有关.解析:(1)由题意知,样本中满意的女游客为550×30=3名,不满意的女游客为550×20=2名.(2)记样本中对景区的服务满意的3名女游客分别为a 1,a 2,a 3;对景区的服务不满意的2名女游客分别为b 1,b 2.从5名女游客中随机选取两名,共有10个基本条件,分别为:(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2).其中事件A :选到满意与不满意的女游客各一名包含了6个基本事件,分别为(a 1,b 1)(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2).所以所求概率P (A )=610=35.(3)假设H 0:该景区游客性别与对景区的服务满意无关,则k 2应该很小.根据题目中列联表得:k 2=110×(50×20-30×10)280×30×60×50=53972≈7.486.由P (k 2≥6.635)=0.010可知:有99%的把握认为:该景区游客性别与对景区的服务满意有关.19.(14分)为研究重量x (单位:g)对弹簧长度y (单位:cm)的影响,对不同重量的6根弹簧进行测量,得如下数据:(1)(2)判断y 与x 之间是否有相关关系.若有,求出回归方程.(参考数据:∑i =16x i y i =1 076.2,∑i =16x 2i =2 275)解析:(1)散点图如下图所示:(2)∑i =16x i y i =1 076.2,∑i = 16x 2i = 2 275,x = 17.5,y = 9.487,b ^ =∑i =16x i y i -6x -·y -∑i =16x 2i -6x 2=1 076.2-6×17.5×9.4872 275-6×17.5×17.5=80.065437.5 = 0.183.a ^ = y --b ^x -= 9.487-0.183×17.5=6.285. 回归方程是y ^=6.285+0.183x .20.(14(1)做出 (2)利用所得模型,预报x =40时y 的值.解析:(1)作散点图(如下图):(2)从图中可以看出,样本点并没有分布在某个带状区域内,因此两个变量不呈线性相关关系,故不能直接利用线性回归方程来建立两个变量之间的关系.但是根据已有的函数知识,由类比推理,可以发现样本点分布在某一条指数函数曲线y =a e bx 的附近,其中a ,b 为待定参数.此时我们就可以通过对数变换把指数型关系转化为线性关系:令z =ln y ,则变换后样本点分布在直线z =cx +d (c =b ,d =ln a )的附近,这样我们就可以利用线性回归建立y 与x 的非线性回归方程了.数据转化为:由图象可以看出,x 与z 的散点图分布在一条直线的周围,故猜测其具有线性相关关系,下面给予证明:r =∑i =17(x i -x )(y i -y )∑i =17(x i -x )2∑i =17(y i -y )2=L xyL xx ·L yy=0.992 583.因为r >0.75,说明x 和z 具有很强的线性相关关系. 故求得回归直线方程为z ^=0.272x -3.843, ∴y ^=e 0.272x -3.843.相关指数R 2=1-∑i =17(y i -y ^i )2∑i =17(y i -y )2=0.981 4,说明x 可以解释y的98.14%的变化.因此可以用回归方程y ^=e 0.272x -3.843描述x 和y 之间的关系. 所以当x =40时,y ^=e 0.272×40-3.843=1 137.97.。

(好题)高中数学选修1-2第一章《统计案例》测试卷(包含答案解析)(2)

(好题)高中数学选修1-2第一章《统计案例》测试卷(包含答案解析)(2)

一、选择题1.下列说法:①对于独立性检验,2χ的值越大,说明两事件相关程度越大;②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1B .2C .3D .42.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为( ) A .12B .1C .56D .11123.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1154.从装有形状大小相同的3个黑球和2个白球的盒子中依次不放回地任意抽取3次,若第二次抽得黑球,则第三次抽得白球的概率等于( ) A .15B .14C .13D .125.某商品的售价x (元)和销售量y (件)之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,且回归直线方程是3.ˆ2yx a =-+,则实数a =( ) A .30B .35C .38D .406.在一次独立性检验中,得出列表如下:合计 190 400a + 590a +且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720 B .360C .180D .907.工人月工资(元)关于劳动生产率x(千元)的回归方程为,下列说法中正确的个数是( )①劳动生产率为1000元时,工资为730元; ②劳动生产率提高1000元,则工资提高80元; ③劳动生产率提高1000元,则工资提高730元; ④当月工资为810元时,劳动生产率约为2000元. A .1B .2C .3D .48.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .149.甲乙丙三位同学独立的解决同一个问题,已知三位同学单独正确解决这个问题的概率分别为12,13,15,则有人能够解决这个问题的概率为( ) A .130 B .415C .1115D .131510.甲、乙两位同学各自独立地解答同一个问题,他们能够正确解答该问题的概率分别是23和12,在这个问题至少被一个人正确解答的条件下,甲、乙两位同学都能正确解答该问题的概率为( )A .27B .25C .15D .1911.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:及格 不及格 合计 很少使用手机 20 5 25 经常使用手机 10 15 25 合计302050则有( )的把握认为经常使用手机对数学学习成绩有影响.参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中n a b c d =+++()2P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.001 k 2.0722.7063.8415.0246.6357.87910.828A .97.5%B .99%C .99.5%D .99.9%12.甲、乙两人独立地破译一份密码,破译的概率分别为11,32,则密码被破译的概率为( ) A .16B .23C .56D .1二、填空题13.有甲、乙两台机床生产某种零件,甲获得正品乙不是正品的概率为14,乙获得正品甲不是正品的概率为16,且每台获得正品的概率均大于12,则甲乙同时生产这种零件,至少一台获得正品的概率是___________.14.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.15.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)16.设甲、乙两套方案在一次试验中通过的概率均为0.3,且两套方案在试验过程中相互之间没有影响,则两套方案在一次试验中至少有一套通过的概率为___________. 17.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________.18.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.19.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A ;“抽出的学生英语口语测试成绩不低于85分”记为事件B .则P (A|B )的值是_____.20.2020年新型冠状病毒疫情期间,大学生小白同学在家里根据某款运动软件安排的训练计划进行运动,每天训练一次,连续3天为一个运动周期,若小白每天不能参加训练的概率为14,假设小白每天的训练是相互独立的,若一个训练周期内出现2次不能参加训练,则停止该训练计划,则这个训练计划在第二个完整周期后结束的概率为______.三、解答题21.一网络公司为某贫困山区培养了100名“乡土直播员”,以帮助宣传该山区文化和销售该山区的农副产品,从而带领山区人民早日脱贫致富.该公司将这100名“乡土直播员”中每天直播时间不少于5小时的评为“网红乡土直播员”,其余的评为“乡土直播达人”.根据实际评选结果得到了下面22⨯列联表:网红乡土直播员 乡土直播达人 合计 男 10 40 50 女 20 30 50 合计3070100(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,在这6人中选2人作为“乡土直播推广大使”.求这两人中恰有一男一女的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.00122.近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在M省的发展情况,M省某调查机构从该省抽取了5个城市,分别收集和分析了网约车的A,B两项指标数,(1,2,3,4,5)i ix y i=,数据如下表所示:==2s==.(1)试求y与x间的相关系数r,并利用r说明y与x是否具有较强的线性相关关系(若0.75r>,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测当A指标数为7时,B指标数的估计值;(3)若城市的网约车A指标数x落在区间(3,3)x s x s-+之外,则认为该城市网约车数量过多,会对城市交通管理带来较大的影响,交通管理部门将介入进行治理,直至A指标数x回落到区间(3,3)x s x s-+之内.现已知2018年11月该城市网约车的A指标数为13,问:该城市的交通管理部门是否要介入进行治理?试说明理由.附:相关公式:()()ni ix x y yr--=∑,121()()()ni iiniix x y ybx x==--=-∑∑,a y bx=-.0.55≈0.95≈.23.随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户按年龄分组进行访谈,统计结果如下表.(1)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,则各组应分别抽取多少人?(2)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.(3)按以上统计数据填写下面2×2列联表,并判断以50岁为分界点,能否在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关;参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.24.目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如下图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关:(3)研究发现,有5种药物对新冠病毒有一定的抑制作用,其中有2种特别有效,现在要通过逐一试验直到把这2种特别有效的药物找出来为止,每一次试验花费的费用是500元,设所需要的试验费用为X ,求X 的分布列与数学期望. 附表及公式:()20P K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82822()()()()()n ad bc K a b c d a c b d -=++++25.支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.(1)通过现场调查12位市民得知,其中有10人使用支付宝.现从这12位市民中随机抽取3人,求至少抽到2位使用支付宝的市民的概率;(2)为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一次,分别有12,13,16的概率获得0.1,0.2,0.3元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一天内使用了2次支付宝,记X 为这一天他获得的奖励金数,求X 的概率分布和数学期望.26.新能源汽车已经走进我们的生活,逐渐为大家所青睐.现在有某品牌的新能源汽车在甲市进行预售,预售场面异常火爆,故该经销商采用竞价策略基本规则是:①竞价者都是网络报价,每个人并不知晓其他人的报价,也不知道参与竞价的总人数;②竞价采用“一月一期制”,当月竞价时间截止后,系统根据当期汽车配额,按照竞价人的出价从高到低分配名额.某人拟参加2020年6月份的汽车竞价,他为了预测最低成交价,根据网站的公告,统计了最近5个月参与竞价的人数(如下表) 月份2020.012020.022020.032020.042020.05(1)由收集数据的散点图发现,可用线性回归模型拟合竞价人数y (万人)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:ˆ bt y a =+,并预测2020年6月份(月份编号为6)参与竞价的人数;(2)某市场调研机构对200位拟参加2020年6月份汽车竞价人员的报价进行了一个抽样调查,得到如表所示的频数表:(i )求这200位竞价人员报价的平均值x 和样本方差s 2(同一区间的报价用该价格区间的中点值代替)(ii )假设所有参与竞价人员的报价X 可视为服从正态分布()2,,N μσ且μ与σ2可分别由(i )中所示的样本平均数x 及s 2估计.若2020年月6份计划提供的新能源车辆数为3174,根据市场调研,最低成交价高于样本平均数x ,请你预测(需说明理由)最低成交价. 参考公式及数据:①回归方程ˆˆˆy bx a =+,其中1221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-⋅==--∑∑ ②5521155, 2.6;ii i i i tx y ====≈∑∑③若随机变量X 服从正态分布()2,,N μσ则()()0.6826,220.9544,P X P X μσμσμσμσ-<<+=-<<+= ()330.9974P X μσμσ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断. 【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kxy ce =,两边取自然对数,可得ln ln y c kx =+,令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确; 对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C. 【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.2.D解析:D 【分析】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A 的对立事件的概率,再利用对立事件的概率公式可得出事件A 的概率. 【详解】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中, 则事件:A 甲乙两人各自射击同一目标一次,两人都未击中目标, 由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭, ()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.3.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案.详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.4.D解析:D 【解析】分析:这是一个条件概率,可用古典概型概率公式计算,即从5个球中取三个排列,总体事件是第二次是黑球,可在第二次是黑球的条件下抽排第一次和第三次球.详解:111223122412C C C P C A ==. 点睛:此题是一个条件概率,条件是第二次抽取的是黑球,不能误以为是求第二次抽到黑球,第三次抽到白球的概率,如果那样求得错误结论为1132353310C C A ⨯=. 5.D解析:D 【解析】由表中数据知,199.51010.511105x =⨯++++=(),1111086585y =⨯++++=(),代入回归直线方程 3.ˆ2yx a =-+中,求得实数 3.28 3.21040a y x =+=+⨯=,故选D. 6.B解析:B 【解析】∵两个分类变量A 和B 没有任何关系,∴()()()()2259010090400 2.70219040090500a a K a a +-⨯=<⨯++,代入验证可知360a =满足,故选B.7.C解析:C 【解析】对于①当劳动生产率为1000元时,工资为65080730y =+=元,故①正确;对于②劳动生产率提高1000元,则工资提高80元正确;故③错误;对于④当月工资为810元时,由81065080x =+得2x =,即劳动生产率约为2000元,故④正确;故选C.8.A解析:A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36−6=30, 事件B:出现一个5点,有10种,∴()101303|P B A ==, 本题选择A 选项.点睛:条件概率的计算方法:(1)利用定义,求P (A )和P (AB ),然后利用公式进行计算;(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),然后求概率值.9.C解析:C 【分析】先利用相互独立事件的概率乘法公式求出“三人都未解答这个问题”的概率,利用对立事件的概率公式得到“有人能够解决这个问题”的概率即可. 【详解】三人都未解答这个问题的概率为 (112-)(113-)(115-)415=,故有人能够解决这个问题的概率为14111515-=, 故选:C . 【点睛】本题考查了相互独立事件的概率乘法公式、互斥事件和对立事件的概率公式,考查了正难则反的原则,属于中档题.10.B解析:B 【分析】先计算“这个问题至少被一个人正确解答”和“甲、乙两位同学都能正确解答该问题”概率,再利用条件概率公式计算即可. 【详解】由已知,不妨设A =“这个问题至少被一个人正确解答”,B =“甲、乙两位同学都能正确解答该问题”,因为甲、乙两位同学各自独立正确解答该问题的概率分别是23和12, 故215()111326P A ⎛⎫⎛⎫=---= ⎪⎪⎝⎭⎝⎭,121()233P B =⨯=,易知1()()3P AB P B ==.故()1()235()56P AB P BA P A ===∣. 故选:B. 【点睛】本题考查了条件概率的应用,属于中档题.11.C解析:C 【分析】根据2×2列联表,求出k 的观测值2K ,结合题中表格数据即可得出结论. 【详解】 由题意,可得:222()50(2015105)258.3337.879()()()()302025253n ad bc K a b c d a c b d -⨯⨯-⨯===≈>++++⨯⨯⨯,所以有99.5%的把握认为经常使用手机对数学学习成绩有影响. 故选C. 【点睛】本题考查了独立性检验的应用,考查了计算能力,属于基础题.12.B解析:B 【分析】密码被破译分三种情况:甲破译出密码乙未破译,乙破译出密码甲未破译,甲乙都破译出密码,根据相互独立事件的概率和公式可求解出答案. 【详解】设 “甲独立地破译一份密码” 为事件A , “乙独立地破译一份密码” 为事件B , 则()13P A =,()12P B =,()12133P A =-=,()11122P B =-=, 设 “密码被破译” 为事件C ,则()()()()P C P AB P AB P AB =++11211123232323=⨯+⨯+⨯=, 故选:B. 【点睛】本题以实际问题为背景考查相互独立事件的概念及其发生的概率的计算,考查分析问题和解决问题的能力,属于中档题.二、填空题13.【分析】设甲乙两台机床生产正品的概率分别为则根据题意列方程组解得甲乙同时生产这种零件至少一台获得正品为甲获得正品乙不是正品乙获得正品甲不是正品以及甲乙均获得正品根据概率加法公式求解即可【详解】设甲乙 解析:1112【分析】设甲乙两台机床生产正品的概率分别为p ,q ,则112p <≤,112q <≤,根据题意列方程组()()114116p q q p ⎧-=⎪⎪⎨⎪-=⎪⎩,解得3423p q ⎧=⎪⎪⎨⎪=⎪⎩,“甲乙同时生产这种零件,至少一台获得正品”为甲获得正品乙不是正品,乙获得正品甲不是正品,以及甲乙均获得正品,根据概率加法公式求解即可. 【详解】设甲乙两台机床生产正品的概率分别为p ,q ,则112p <≤,112q <≤. 甲获得正品乙不是正品的概率为14()114p q ∴-=① 又乙获得正品甲不是正品的概率为16()116q p ∴-=② ①②联立得()()114116p q q p ⎧-=⎪⎪⎨⎪-=⎪⎩,解得3423p q ⎧=⎪⎪⎨⎪=⎪⎩则甲乙均获得正品的概率为321432p q ⋅=⨯= 即甲乙同时生产这种零件,至少一台获得正品的概率是1111146212++= 故答案为:1112【点睛】本题考查概率的加法与乘法公式,属于中档题.14.【解析】分析:组成的并联电路可从反面计算即先计算发生故障的概率然后用对立事件概率得出不发生故障概率详解:由题意故答案为点睛:零件不发生故障的概率分别为则它们组成的电路中如果是串联电路则不发生故障的概解析:【解析】分析:23,T T 组成的并联电路可从反面计算,即先计算发生故障的概率,然后用对立事件概率得出不发生故障概率. 详解:由题意11115(1)24432P =⨯-⨯=. 故答案为1532. 点睛:零件12,,,k a a a 不发生故障的概率分别为12,,,k p p p ,则它们组成的电路中,如果是串联电路,则不发生故障的概率易于计算,即为12k p p p ,如果组成的是并联电路,则发生故障的概率易于计算,即为12(1)(1)(1)k p p p ---.15.③④【解析】①为了了解800名学生对学校某项教改试验的意见打算从中抽取一个容量为40的样本考虑用系统抽样则分段的间隔为800÷40=20故①错误;②已知如图所示:长方形面积为2以O 为圆心1为半径作圆解析:③④ 【解析】①为了了解800名学生对学校某项教改试验的意见, 打算从中抽取一个容量为40的样本,考虑用系统抽样, 则分段的间隔为800÷40=20,故①错误; ②已知如图所示:长方形面积为2,以O 为圆心,1为半径作圆, 在矩形内部的部分(半圆)面积为π2. 因此取到的点到O 的距离大于1的概率22P 124ππ-==-; 故②错误; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 23sin263y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象, 故③正确,④∵回归直线为ˆybx a =+, 的斜率的值为1.23, ∴方程为 1.23ˆyx a =+,∵直线过样本点的中心(4,5), ∴a=0.08,∴回归直线方程是为=1.23x+0.08; ∴故④正确. 故答案为:③④.16.51【解析】由于两套方案互不影响故至少有一套方案通过的概率是解析:51 【解析】由于两套方案互不影响,故至少有一套方案通过的概率是2120.3C 0.3(10.3)0.51+⋅⋅-=.17.-【解析】所有样本点都在直线上说明这两个变量间完全负相关故其相关系数为-1故填-1解析:-1 【解析】所有样本点都在直线上,说明这两个变量间完全负相关,故其相关系数为-1,故填-1.18.【解析】表示在已经发生事件的情况下事件发生的概率又事件恰有一次出现正面包含于事件至少一次出现反面所以所以解析:37【解析】(/)P B A 表示在已经发生事件A 的情况下,事件B 发生的概率,又事件B = “恰有一次出现正面”包含于事件A =“至少一次出现反面”,所以()()(/)()()P AB P B P B A P A P A ==,37(),()88P B P A ==,所以()3()7P B P A =. 19.【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种其中抽出的学生为甲小组学生的事件有5种所以概率为考点:条件概率 解析:【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种,其中抽出的学生为甲小组学生”的事件有5种,所以概率为59. 考点:条件概率.20.【分析】由题意求得一个周期内就停止训练的概率再结合相互独立事件的概率计算公式即可求解【详解】由题意小白每天不能参加训练的概率为若一个训练周期内出现2次不能参加训练可得一个周期内就停止训练的概率为这个 解析:811024【分析】由题意,求得一个周期内就停止训练的概率,再结合相互独立事件的概率计算公式,即可求解.【详解】由题意,小白每天不能参加训练的概率为14,若一个训练周期内出现2次不能参加训练,可得一个周期内就停止训练的概率为221135244432⎛⎫⎛⎫+⨯⨯=⎪ ⎪⎝⎭⎝⎭,这个训练计划持续两个周期的概率为2513811232441024⎛⎫⎛⎫-⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭.故答案为:81 1024.【点睛】本题主要考查了相互独立事件的概率的计算,其中解答中正确理解题意,结合独立事件的概率计算公式求得一个周期内就停止训练的概率是解答的关键,着重考查分析问题和解答问题的能力.三、解答题21.(1)有95%的把握认为“网红乡土直播员”与性别有关系;(2)8 15.【分析】(1)由题中22⨯列联表中的数据代入()()()()()22n ad bcKa b c d a c b d-=++++然后与所给表值进行比较可得答案;(2)列出从这6人中随机抽取2人的所有可能情况,选中的2人中恰有一男一女的所有可能情况可得答案.【详解】(1)由题中22⨯列联表,可得()22100103020404.762 3.84150503070K⨯-⨯=≈>⨯⨯⨯.∴有95%的把握认为“网红乡土直播员”与性别有关系.(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,男性人数为106230⨯=人,记为A,B;女性人数为206430⨯=人,记为a,b,c,d.则从这6人中随机抽取2人的所有可能情况有以下“A,B;A,a;A,b;A,c;A,d;B ,a ; B ,b ; B ,c ; B ,d ;a ,b ; a ,c ; a ,d ; b ,c ; b ,d ; c ,d ”共15种.其中,选中的2人中恰有一男一女的所有可能情况有以下“A ,a ; A ,b ; A ,c ; A ,d ; B ,a ; B ,b ; B ,c ; B ,d ”共8种. ∴选中的2人中恰有一男一女的概率815P =. 【点睛】古典概型的概率的计算方法,首先计算所有基本事件数,再计算事件A 包含的基本事件数,应用古典概率公式计算求解.22.(1)0.95r ≈,y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系;(2)35102y x =+,当7x =时, 4.6y =;(3)要介入进行治理. 【分析】(1)由已知数据可得,x y ,利用公式,求得相关系数r ,即可作出判断,得到结论;(2)由(1),求得b 和ˆa,求得回归直线的方程,代入7x =,即可求得回归方程; (3)由(3,3)(1,11)x s x s -+=-,而1311>,即可得到结论. 【详解】(1)由已知数据可得2456855x ++++==,3444545y ++++==.所以相关系数5()x x y y r --=0.95==≈. 因为0.75r >,所以y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系.(2)由(1)可知()51521()632ˆ010()i i i i i x x y y b x x ==--===-∑∑,354ˆ2ˆ510a y bx =-=-⨯=, 所以y 与x 之间线性回归方程为35102ˆy x =+. 当7x =时,3576102ˆ 4.y=⨯+=. (3)()()3,31,11x s x s -+=-,而1311>,故2018年11月该城市的网约车已对城市交通带来较大的影响,交通管理部门将介入进行治理. 【点睛】本题主要考查了回归直线方程的求解及应用问题,其中解答中,认真审题,正确理解题意,利用公式准确计算是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.23.(1)各组分别为5人,6人,4人;(2)35;(3)在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 【解析】试题分析:(1)三组一共有30人,抽取15人,故两个人抽一人,由此得到抽取的人数分别为5,6,4人.(2)利用列举法列举出所有可能性有15种,其中符合题意的有9种,故概率为35.(3)根据题意填写好表格后,计算29.979 6.635K ≈>,故有在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 试题解:(1)因为1012815=5,15=615=4303030,⨯⨯⨯,所以第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,各组分别为5人,6人,4人.(2)设第5组中不愿意选择此款“流量包”套餐A,B,C,D,愿意选择此款“流量包”套餐人为a,b,则愿意从6人中选取2人有:,,,,,,,,,,,,,,,AB AC AD Aa Ab BC BD Ba Bb CD Ca Cb Da Db ab 共15个结果,其中至少有1人愿意选择此款“流量包”,,,,,,,,,Aa Ab Ba Bb Ca Cb Da Db ab 共9个结果,所以求2人中至少有1人愿意选择此款“流量包”套餐的概率93155P ==. (3)2×2列联表∴()()()()25010310279.979 6.63510271031010273K ⨯⨯-⨯=≈>++++∴在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 24.(1)平均数为6,“长潜伏者”的人数为250人(2)列联表见解析, 有97.5%的把握认为潜伏期长短与年龄有关 (3)分布列见解析,()1750E X = 【分析】(1)由频率分布直方图可计算出潜伏期的均值,再由频率分布直方图可得“长潜伏者”的频率,从而得人数;(2)由所给数据计算出2K 后可得结论;(3)由题意知所需要的试验费用X 所有可能的取值为1000,1500,2000,分别计算出概率得概率分布列,再由期望公式得期望.。

高中数学人教A版选修1-2同步练习第一章 统计案例章末总结 Word版含解析

高中数学人教A版选修1-2同步练习第一章 统计案例章末总结 Word版含解析

第一章统计案例章末总结新人教版选修回归方程及其应用对所抽取的样本数据进行分析,分析两个变量之间的关系——线性关系或非线性关系,并由一个变量的变化去推测另一个变量的变化,这就是对样本进行回归分析.某商场经营一批进价是元台的小商品,在市场试验中发现,此商品的销售单价(取整数)元与日销售量台之间有如下对应数据:()(方程的斜率保留一个有效数字).()设经营此商品的日销售利润为元,根据()写出关于的函数关系式,并预测当销售单价为多少元时,才能获得最大日销售利润.分析:作出散点图,根据散点图观察是否具有线性相关关系.解析:()散点图如图所示:从图中可以看出这些点大致分布在一条直线附近,因此两个变量具有线性相关关系.()设回归直线方程为=+.∵=,=,∴=错误!=-错误!≈-,错误!=错误!-错误!=-(-)×=.∴=-.()由题意,有=(-)(-)=-+- .∴当=≈时,有最大值.即预测销售单价为元时,能获得最大日销售利润.判断两个变量之间是否有线性相关关系一般有两种方法:一是计算样本相关系数;二是画散点图.两种方法要结合题目的要求合理选取,也可同时使用,则判断更加准确.►变式训练.从某居民区随机抽取个家庭,获得个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,算得=.()求家庭的月储蓄对月收入的线性回归方程=+;()判断变量与之间是正相关还是负相关;()若该居民区某家庭月收入为千元,预测该家庭的月储蓄.附:线性回归方程=+中,=-(,\(-))),=-,其中,为样本平均值,线性回归方程也可写为=+.解析:()由题意知:=,===,===.又=-(,\(-))=-×=,=∑=)-=-××=,。

(易错题)高中数学选修1-2第一章《统计案例》检测(含答案解析)(2)

(易错题)高中数学选修1-2第一章《统计案例》检测(含答案解析)(2)

一、选择题1.如图是九江市2019年4月至2020年3月每月最低气温与最高气温(℃)的折线统计图:已知每月最低气温与最高气温的线性相关系数r=0.83,则下列结论错误的是()A.每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关B.月温差(月最高气温﹣月最低气温)的最大值出现在10月C.9﹣12月的月温差相对于5﹣8月,波动性更大D.每月最高气温与最低气温的平均值在前6个月逐月增加2.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为()A.12B.25C.35D.453.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计课外阅读量较大221032课外阅读量一般82028总计303060由以上数据,计算得到2K的观测值9.643k ,根据临界值表,以下说法正确的是() P(K2≥k0)0.500.400.250.150.100.050.050.0100.005 k00.4550.708 1.323 2.072 2.706 3.841 5.024 6.6357.879A.在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”B .在犯错误的概率不超过0.001的前提下,认为作文成绩优秀与课外阅读量大有关C .在犯错误的概率不超过0.05的前提下,认为作文成绩优秀与课外阅读量大有关D .在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关 4.一个盒子里有7个红球,3个白球,从盒子里先取一个小球,然后不放回的再从盒子里取出一个小球,若已知第1个是红球的前提下,则第2个是白球的概率是( ) A .310B .13C .710D .235.已知变量,X Y ,由它们的样本数据计算得到2K 的观测值 4.328k ≈,2K 的部分临界值表如下:以下判断正确的是( )A .在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系B .在犯错误的概率不超过0.05的前提下认为变量,X Y 没有关系C .有97.5%的把握说变量,X Y 有关系D .有97.5%的把握说变量,X Y 没有关系6.某射手射击一次命中的概率为0.8,连续两次射击均命中的概率是0.6,已知该射击手某次射中,则随后一次射中的概率是( ) A .34B .45C .35D .7107.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ). A .0.378B .0.3C .0.58D .0.9588.甲、乙两人抢答竞赛题,甲答对的概率为15,乙答对的概率为14,则两人中恰有一人答对的概率为 A .720B .12 20C .120D .2209.随机变量a 服从正态分布()21,N σ,且()010.3000P a <<=.已知0,1a a >≠,则函数1xy a a =+-图象不经过第二象限的概率为( ) A .0.3750B .0.3000C .0.2500D .0.200010.在5道题中有3道代数题和2道几何题.如果不放回地依次抽取2道题,则在第1次抽到代数题的条件下,第2次抽到代数题的概率为 ( )A .15B .25C .12D .3511.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .1412.为了解学生对街舞的喜欢是否与性别有关,在全校学生中进行抽样调查,根据数据,求得2K 的观测值0 4.804k ≈,则至少有( )的把握认为对街舞的喜欢与性别有关.参考数据:A .90%B .95%C .97.5%D .99%二、填空题13.国产杀毒软件进行比赛,每个软件进行四轮考核,每轮考核中能够准确对病毒进行查杀的进入下一轮考核,否则被淘汰.已知某个软件在四轮考核中能够准确杀毒的概率依次是56,35,34,13,且各轮考核能否通过互不影响.则该软件至多进入第三轮考核的概率为______.14.甲、乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23,没有平局,若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于__________. 15.以下四个命题,其中正确的序号是____________________.①从匀速传递的产品生产流水线上,每20分钟从中抽取一件产品进行检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程0.212ˆyx =+中,当解释变量x 每增加一个单位时,预报变量ˆy 平均增加0.2个单位;④分类变量X 与Y ,它们的随机变量2K 的观测值为k ,当k 越小,“X 与Y 有关系”的把握程度越大.16.在2017年3月15日,某市物价部门对本市的5家商场的某种商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,其线性回归方程是:3.2y x a =-+,则a =__________.17.下列说法中,正确的有_______.①回归直线ˆˆˆy bx a =+恒过点(),x y ,且至少过一个样本点;②根据22⨯列列联表中的数据计算得出2 6.635K ≥,而()26.6350.01P K ≥≈,则有99%的把握认为两个分类变量有关系;③2k 是用来判断两个分类变量是否相关的随机变量,当2k 的值很小时可以推断两个变量不相关;18.某班主任对全班50名学生的积极性和对待班级工作的态度进行了调查,统计数据如下表所示:则至少有________的把握认为学生的学习积极性与对待班级工作的态度有关.(请用百分数表示).注:独立性检验界值表19.某质检员检验一件产品时,把正品误判为次品的概率是0.1,把次品误判为正品的概率是0.05.如果一箱产品中含有8件正品,2件次品,现从中任取1件让该质检员检验,那么出现误判的概率为___________.20.甲、乙两人独立地破译一密码,他们能单独破译该密码的概率分别是21,53,假设他们破译密码彼此没有影响,则该密码被破译的概率为____.三、解答题21.为落实中央“坚持五育并举,全面发展素质教育,强化体育锻炼”的指示精神,小明和小亮两名同学每天利用课余时间进行羽毛球比赛.规定每一局比赛中获胜方记2分,失败方记0分,没有平局,谁先获得10分就获胜,比赛结束.假设每局比赛小明获胜的概率都是23. (1)求比赛结束时恰好打了7局的概率;(2)若现在是小明6:2的比分领先,记X 表示结束比赛还需打的局数,求X 的分布列及期望.22.奶茶是年轻人非常喜欢的饮品.某机构对于奶茶的消费情况在一商圈附近做了一些调查,发现女性喜欢奶茶的人数明显高于男性,每月喝奶茶的次数也比男性高,但单次奶茶消费金额男性似乎明显高于女性.针对每月奶茶消费是否超过百元进行调查,已知在调查的200人中女性人数是男性人数的4倍,统计如下:22⨯关?(2)在月消费超百元的调查者中,同时进行对于品牌喜好的调查.发现喜欢A 品牌的男女均为3人,现从喜欢A 品牌的这6人中抽取2人送纪念品,求这两人恰好都是女性的概率. 附:()()()()()22n ad bc K a b c d a c b d -=++++. 23.某花圃为提高某品种花苗质量,开展技术创新活动,在A ,B 实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80分及以上的花苗为优质花苗.(1)用样本估计总体,以频率作为概率,若在A ,B 两块实验地随机抽取3株花苗,求所抽取的花苗中优质花苗数的分布列和数学期望;(2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.优质花苗 非优质花苗 合计甲培育法 20乙培育法 10合计附:下面的临界值表仅供参考.20()P K k ≥0.050 0.010 0.001 0k3.8416.63510.828(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)24.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时,设甲、乙两人停车时间(小时)与取车概率如表所示: 停车时间 取车概率 停车人员(0,2](2,3](3,4](4,5](1)求甲、乙两人所付车费相同的概率;(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的分布列和数学期望()E ξ. 25.某种疾病可分为Ⅰ、Ⅱ两种类型.为了解该疾病类型与性别的关系,在某地区随机抽取了患该疾病的病人进行调查,其中女性是男性的2倍,男性患Ⅰ型病的人数占男性病人的56,女性患Ⅰ型病的人数占女性病人的13. (1)若在犯错误的概率不超过0.005的前提下认为“所患疾病类型”与“性别”有关,求男性患者至少有多少人?(2)某药品研发公司欲安排甲乙两个研发团队来研发此疾病的治疗药物.两个团队各至多安排2个接种周期进行试验.甲团队研发的药物每次接种后产生抗体的概率为p ,每人每次接种花费()0m m >元,每个周期至多接种3次,第一个周期连续2次出现抗体则终止本接种周期进入第二个接种周期,否则需依次接种至第一周期结束,再进入第二周期;第二接种周期连续2次出现抗体则终止试验,否则需依次接种至至试验结束;乙团队研发的药物每次接种后产生抗体的概率为q ,每人每次花费()0n n >元,每个周期接种3次,每个周期必须完成3次接种,若一个周期内至少出现2次抗体,则该周期结束后终止试验,否则进入第二个接种周期.假设两个研发团队每次接种后产生抗体与否均相互独立.①若甲团队的试验平均花费大于乙团队的试验平均花费,求p 、q 、m 、n 满足的关系式;②若m n =,2p q =,从两个团队试验的平均花费考虑,该公司应选择哪个团队进行药品研发?附:()()()()()22n ad bc K a b c d a c b d -=++++,26.某科研单位研究人员对某种细菌的繁殖情况进行了研究,发现该细菌繁殖的个数y (单位:个)随时间x (单位:天)的变化情况如表l :x1 23 4 5 6y 5 10 26 50 96 195 表1令ln w y =,w 与y 对应关系如表2:y 510 26 50 96 195w 1.61 2.30 3.26 3.91 4.56 5.27表2根据表1绘制散点图如下:(1)根据散点图判断,y bx a =+与dxy ce =,哪一个更适合作为细菌的繁殖数量y 关于时间x 的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程(系数精确到0.01); (3)若要使细菌的繁殖数量不超过4030个,请根据(2)的结果预测细菌繁殖的天数不超过多少天?参考公式:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121nii i nii uu v v uu β==--=-∑∑,v u αβ=-.参考数据: 3.50x =,63.67y =, 3.49w =,()621117.50i x x =-=∑,()62119.49i w w =-=∑,()()6112.87i i i w w x x =--=∑,()()61519.01i i i x x y y =--=∑,ln 40308.30≈,ln16407.40≈【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据相关系数的性质判断A ;根据所给折线图,对B ,C ,D 逐项进行判断. 【详解】每月最低气温与最高气温的线性相关系数r =0.83,比较接近于1,则每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关,则A 正确;由所给的折线图可以看出月温差(月最高气温﹣月最低气温)的最大值出现在10月,则B 正确;5﹣8月的月温差分别为18,17,16,16,9﹣12月的月温差分别为20,31,24,21,则9﹣12月的月温差相对于5﹣8月,波动性更大,C 正确;每月的最高气温与最低气温的平均值在前5个月逐月增加,第六个月开始减少,所以A 正确,则D 错误; 故选:D 【点睛】本题主要考查了根据折线图解决实际问题以及相关系数的性质的应用,对于相关系数r ,r 越接近于1,两个变量的线性相关程度越强,属于中档题. 2.B解析:B 【分析】先求出女生甲被选中的情况下的基本事件总数1215C C n =,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C m =,结合条件概率的计算方法,可得m P n=. 【详解】女生甲被选中的情况下,基本事件总数1215C C 10n ==,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C 4m ==,则在女生甲被选中的情况下,男生乙也被选中的概率为42105m P n ===. 故选B. 【点睛】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.3.D解析:D 【解析】分析:根据临界值表,确定犯错误的概率详解:因为根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关. 选D.点睛:本题考查卡方含义,考查基本求解能力.4.B解析:B 【解析】分析:设已知第一次取出的是红球为事件A ,第二次是白球为事件B ,先求出P AB ()的概率,然后利用条件概率公式进行计算即可.详解:设已知第一次取出的是红球为事件A ,第二次是白球为事件B .则由题意知,77371010930PA P AB ⨯===⨯(),(), 所以已知第一次取出的是白球,则第二次也取到白球的概率为7130|.7310PB A ()== . 故选B .点睛:本题主要考查条件概率的求法,熟练掌握条件概率的概率公式是关键. 5.A解析:A 【解析】分析:根据所给的观测值,对照临界值表中的数据,即可得出正确的结论. 详解:∵观测值 4.328 3.841k ≈>, 而在观测值表中对应于3.841的是0.05,∴在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系. 故选:A .点睛:本题考查了独立性检验的应用问题,是基础题.6.A解析:A 【解析】分析:某次射中,设随后一次射中的概率为p ,利用相互独立事件概率乘法公式能求出p 的值.详解:某次射中,设随后一次射中的概率为p ,∵某射击手射击一次命中的概率为0.8,连续两次均射中的概率是0.5,0.80.6p ,∴= 解得34p =.故选:A .点睛:本题考查概率的求法,涉及到相互独立事件概率乘法公式的合理运用,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想,是基础题.7.D解析:D 【详解】分析:分别利用独立事件的概率公式求出恰在第一次、恰在第二次、恰在第三次落地打破的概率,然后由互斥事件的概率公式求解即可.详解:透镜落地3次,恰在第一次落地打破的概率为10.3P =, 恰在第二次落地打破的概率为20.70.40.28P =⨯=, 恰在第三次落地打破的概率为30.70.60.90.378P =⨯⨯=, ∴落地3次以内被打破的概率1230.958P P P P =++=.故选D .点睛:本题主要考查互斥事件、独立事件的概率公式,属于中档题. 解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.8.A解析:A 【解析】第一种:甲答对,乙答错,此时概率为11315420⎛⎫⨯-=⎪⎝⎭;第二种:甲答错,乙答对,此时的概率为11415420⎛⎫-⨯=⎪⎝⎭. 综上,两人中恰有一人答对的概率为347202020+=. 故选A.9.C解析:C 【解析】1x y a a =+-图象不经过第二象限,11,2a a ∴-≤-∴≥,随机变量ξ服从正态分布()21,N σ,且()()()()1010.3000,120.3000,210.60000.20002P a P a P a <<=∴<<=∴>=-=,∴函数1x y a a =+-图象不经过第二象限的概率为0.20.250010.2=-,故选C. 10.C解析:C 【解析】记事件A: 第1次抽到代数题,事件B:第2次抽到代数题,P(A)=35,63()2010P AB ==,r 则在第1次抽到代数题的条件下,第2次抽到代数题的概率为3P(AB)110P(B |A)3P(A)25===.选C. 11.A解析:A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36−6=30, 事件B:出现一个5点,有10种,∴()101303|P B A ==, 本题选择A 选项.点睛:条件概率的计算方法:(1)利用定义,求P (A )和P (AB ),然后利用公式进行计算;(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),然后求概率值.12.B解析:B 【解析】因为4.804>3.841,所以有95%的把握认为对街舞的喜欢与性别有关.二、填空题13.【分析】将题目分为只进入第一轮第二轮和第三轮三种情况分别计算概率相加得到答案【详解】设事件表示该软件能通过第轮考核由已知得设事件表示该软件至多进入第三轮则故答案为【点睛】本题考查了概率的计算分类利用解析:58【分析】将题目分为只进入第一轮,第二轮和第三轮三种情况,分别计算概率相加得到答案. 【详解】设事件()1,2,3,4i A i =表示“该软件能通过第i 轮考核”, 由已知得()156P A =,()235P A =,()334P A =,()413P A =, 设事件C 表示“该软件至多进入第三轮”,则()()()()()112123112123P C P A A A A A A P A P A A P A A A =++=++1525315 6656548 =+⨯+⨯⨯=.故答案为5 8【点睛】本题考查了概率的计算,分类利用独立性是解题的关键.14.【解析】甲队获胜分2种情况①第12两局中连胜2场概率为;②第12两局中甲队失败1场而第3局获胜概率为因此甲队获胜的概率为解析:20 27【解析】甲队获胜分2种情况①第1、2两局中连胜2场,概率为1224 339P=⨯=;②第1、2两局中甲队失败1场,而第3局获胜,概率为1222228 133327P C ⎛⎫=-⨯=⎪⎝⎭因此,甲队获胜的概率为1220 27P P P=+=.15.②③【分析】利用系统抽样的定义判断①利用独立性检验判断④;利用相关系数的性质判断②;由回归方程的性质判断③【详解】①为系统抽样①不正确;④分类变量与它们的随机变量的观测值为当越小与有关系的把握程度越解析:②③【分析】利用系统抽样的定义判断①利用独立性检验判断④;利用相关系数的性质判断②;由回归方程的性质判断③.【详解】①为系统抽样, ①不正确;④分类变量X与Y,它们的随机变量2K的观测值为k,当k 越小,“X与Y有关系”的把握程度越小,④不正确;根据相关系数的性质可知②正确;由回归方程的性质可知③正确.故答案为②③.【点睛】本题通过对多个命题真假的判断,综合考查系统抽样、相关系数、回归方程、独立性检验,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.16.40【解析】根据题意:解析:40根据题意:99.51010.511105x ++++==,111086585y ++++==,3.2y x a =-+, 3.210840a ∴=⨯+=17.②【分析】利用回归直线独立性检验的概念进行判断【详解】①回归直线一定过中心点可能不过任何一个样本点①错;②根据列列联表中的数据计算得出而则有99的把握认为两个分类变量有关系有1的可能性使得两个变量有解析:② 【分析】利用回归直线,独立性检验的概念进行判断. 【详解】①回归直线一定过中心点(,)x y ,可能不过任何一个样本点,①错;②根据22⨯列列联表中的数据计算得出2 6.635K ≥,而()26.6350.01P K ≥≈,则有99%的把握认为两个分类变量有关系,有1%的可能性使得“两个变量有关系”的推断出现错误.②正确;③2k 是用来判断两个分类变量是否相关的随机变量,2k 的值的大小用来判断两变量相关性的可能性的大小,不是用来判断两变量是否相关,③错误 故答案为:②. 【点睛】本题考查线性回归直线的性质,考查独立性检验的概念,属于基础题.18.【分析】根据列联表计算可得由可得结果【详解】由题意得:至少有的把握认为学生的学习积极性与对待班级工作的态度有关故答案为:【点睛】本题考查独立性检验问题的求解考查基础公式的应用 解析:99.9%【分析】根据22⨯列联表计算可得2K ,由210.828K >可得结果. 【详解】由题意得:()225018197611.53810.82825252426K ⨯⨯-⨯=≈>⨯⨯⨯, ∴至少有10.1%99.9%-=的把握认为学生的学习积极性与对待班级工作的态度有关.故答案为:99.9%. 【点睛】本题考查独立性检验问题的求解,考查基础公式的应用.19.09【解析】取得正品的概率为则取得正品且误判的概率为;取得次品的概率为则取得次品且误判的概率为故出现误判的概率是解析:09取得正品的概率为80.810=,则取得正品且误判的概率为0.10.80.08⨯=;取得次品的概率为20.210=,则取得次品且误判的概率为0.050.20.01⨯=,故出现误判的概率是0.080.010.09+=.20.【解析】分析:首先根据题意可以得到密码破译出的对立事件是密码不能被译出而密码不能被译出的情况是:两个人同时不能破译这个密码由此利用对立事件概率计算公式能求出密码被译出的概率详解:两人独立地破译一个密解析:3 5【解析】分析:首先根据题意可以得到,密码破译出的对立事件是密码不能被译出,而密码不能被译出的情况是:两个人同时不能破译这个密码,由此利用对立事件概率计算公式能求出密码被译出的概率.详解:两人独立地破译一个密码,能译出的概率分别为21,53,密码被译出的对立事件是密码不能被译出,而密码不能被译出的情况是:两个人同时不能破译这个密码,所以密码被译出的概率为213231(1)(1)153535P=---=-⨯=,故答案是35.点睛:该题考查的是有关相互独立事件同时发生的概率以及对立事件发生的概率求解问题,在解题的过程中,也可以用加法来算,分析密码被破译应该有三种情况:甲破译而乙没有破译、乙破译而甲没有破译、甲乙同时破译,当对应的情况较多时,可以用其对立事件的概率来求解.三、解答题21.(1)2081;(2)分布列见解析,()23681E X=.【分析】(1)利用事件的独立性,分两种情况,恰好打了7局小明获胜和恰好打了7局小亮获胜,再概率相加即可.(2)X的可能取值为2,3,4,5,利用二项分布,分别求出其相应的概率,列出分布列即可.【详解】(1)恰好打了7局小明获胜的概率是525416721152C333P⨯⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,恰好打了7局小亮获胜的概率为252426721152333P C⨯⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,∴比赛结束时恰好打了7局的概率为5212715215220381P P P ⨯+⨯=+==. (2)X 的可能取值为2,3,4,5,()224239P X ⎛⎫=== ⎪⎝⎭,()2312321283C 33327P X ⎛⎫==⨯⨯== ⎪⎝⎭,()2241434421113134C C 333381P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2341344521212485C C 3333381P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 或()334421885C 33381P X ⎛⎫==⨯⨯==⎪⎝⎭. ∴X 的分布列如下:()2345927818181E X =⨯+⨯+⨯+⨯=.【点睛】方法点睛:求解离散型随机变量X 的分布列的步骤:①理解X 的意义,写出X 可能取的全部值;②求X 取每个值的概率;③写出X 的分布列.求离散型随机变量的分布列的关键是求随机变量所取值对应的概率. 22.(1)表格见解析,有;(2)15. 【分析】(1)设男性每月奶茶消费未超过百元的人数为x ,根据题中条件得出关于x 的方程,解出x 的值,进而可完善22⨯列联表,计算出2K 的观测值,结合临界值表可得出结论;(2)设喜欢A 品牌的女性为1A 、2A 、3A ,男性为1B 、2B 、3B ,利用列举法列举出所有的基本事件,并确定事件“这两人恰好都是女性”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率. 【详解】(1)设男性每月奶茶消费未超过百元的人数为x ,则()848200x x +++=,32x ∴=,2K的观测值()20081443216100 3.030 2.706401602417633k ⨯-⨯==≈>⨯⨯⨯, 因此,有90%的把握认为月消费奶茶超过百元与性别有关.(2)设喜欢A 品牌的女性为1A 、2A 、3A ,男性为1B 、2B 、3B ,从喜欢A 品牌的这6人中抽取2人送纪念品,所有的基本事件有:()12,A A 、()13,A A 、()11,A B 、()12,A B 、()13,A B 、()23,A A 、()21,A B 、()22,A B 、()23,A B 、()31,A B 、()32,A B 、()33,A B 、()12,B B 、()13,B B 、()23,B B ,共15种,设“这两人恰好都是女性”为事件M ,则事件M 包含的基本事件有:()12,A A 、()13,A A 、()23,A A ,共3种,()31155P M ∴==, 因此,抽取的这两人恰好都是女性的概率为15. 【点睛】方法点睛:求解古典概型概率的方法如下: (1)列举法; (2)列表法; (3)数状图法; (4)排列组合数的应用. 23.(1)分布列见解析,95;(2)列联表见解析,有99%的把握认为优质花苗与培育方法有关系. 【分析】(1)先求优质花苗的频率也即是概率,利用二项分布计算公式计算概率,列出分布列,并求得数学期望.(2)完善22⨯列联表,计算出2K 的观测值,根据临界值表得出结论. 【详解】(1)由频率分布直方图可知,优质花苗的频率为(0.040.02)100.6+⨯=,即概率为0.6. 设所抽取的花苗为优质花苗的株数为X ,则3~(3,)5X B ,于是3328(0)()5125==⨯=P X C ;1233236(1)()55125==⨯⨯=P X C ;2233254(2)()55125==⨯⨯=P X C ;333327(3)()5125==⨯=P X C .其分布列为:所以,所抽取的花苗为优质花苗的数学期望39()355E X =⨯= (2)频率分布直方图,优质花苗的频率为(0.040.02)100.6+⨯=,则样本中优质花苗的株数为60株,列联表如下表所示:可得22100(2010-3040)16.667 6.63560405050⨯⨯⨯=≈>⨯⨯⨯K所以,有99%的把握认为优质花苗与培育方法有关系. 【点睛】本题考查了二项分布分布列和期望的计算,完善22⨯列联表以及利用独立性检验的思想解决实际问题,考查了数据分析的能力和运算求解的能力,属于中档题目. 24.(1)29;(2)详见解析. 【分析】(1)根据概率的性质由1312x +=,解x ,由11163y ++=,解y ,然后利用独立事件和互斥事件的概率公式求解.(2)设甲、乙两人所付停车费之和为随机变量ξ,随机变量ξ可能取值为:0,1,2,3,4,5,然后利用独立事件和互斥事件的概率公式分别求得其相应的概率,列出分布列再求期望. 【详解】 (1)由题意得1312x +=,解得16x =,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1、在下列各量之间存在相关关系的是( )
①正方体的体积与棱长间的关系;
②一块农田的水稻产量与施肥量之间的关系;
③人的身高与年龄;
④家庭的支出与收入;
⑤某户家庭用电量与电价间的关系.
A .②③
B .③④
C .④⑤
D .②③④
2、回归分析中,相关指数R 2的值越大,说明残差平方和( ) A .越小 B .越大 C .可能大也可能小
D .以上都不对 3、一位母亲记录了她儿子3周岁到9周岁的身高,建立了她儿子身高y 与年龄x 的回归模型y ^=73.93+
7.19x ,她用这个模型预测她儿子10周岁时的身高,则下面的叙述正确的是( )
A .她儿子10周岁时的身高一定是145.83cm
B .她儿子10周岁时的身高在145.83cm 以上
C .她儿子10周岁时的身高在145.83cm 左右
D .她儿子10周岁时的身高在145.83cm 以下
6、为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据: 作文成绩优秀 作文成绩一般 总计
课外阅读量较大 22 10 32
课外阅读量一般 8 20 28
总计 30 30 60
由以上数据,计算得到K 2的观测值k ≈9.643,根据临界值表,以下说法正确的是( ).
A .在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”
B .在犯错误的概率不超过0.001的前提下认为作文成绩优秀与课外阅读量大有关
C .在犯错误的概率不超过0.05的前提下认为作文成绩优秀与课外阅读量大有关
D .在犯错误的概率不超过0.005的前提下认为作文成绩优秀与课外阅读量大有关
二、填空题
7、下表是关于出生男婴与女婴调查的列联

那么,A= ,B= ,C= ,
D= ,E= ;
8、调查者通过随机询问72名男女中学生喜欢文科还是理科,得到如下列联表(单位:名)
性别与喜欢文科还是理科列联表
喜欢文科 喜欢理科 总计
男生 8 28 36
女生 20 16 36。

相关文档
最新文档