上海市松江区2018届高考二模数学试题含答案

合集下载

2018学年上海高三数学二模分类汇编——三角

2018学年上海高三数学二模分类汇编——三角

1(2018金山二模). 函数3sin(2)3y x π=+的最小正周期T =3(2018虹口二模). 已知(0,)απ∈,3cos 5α=-,则tan()4πα+=3(2018青浦二模). 若1sin 3α=,则cos()2πα-= 4(2018黄浦二模). 已知ABC ∆的三内角A B C 、、所对的边长分别为a b c 、、,若2222sin a b c bc A =+-,则内角A 的大小是4(2018宝山二模). 函数()2sin 4cos4f x x x =的最小正周期为 5(2018奉贤二模). 已知△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 所对的边. 若222b c a +-=,则A ∠=5(2018普陀二模). 在锐角三角形ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若222()tan b c a A bc +-=,则角A 的大小为7(2018静安二模). 方程cos2x =的解集为 7(2018黄浦二模). 已知函数2sin cos 2()1cos x x f x x-=,则函数()f x 的单调递增区间是7(2018徐汇二模). 函数2(sin cos )1()11x x f x +-=的最小正周期是8(2018浦东二模). 函数2()cos 2f x x x =,x ∈R 的单调递增区间为 9(2018杨浦二模). 若3sin()cos cos()sin 5x y x x y x ---=,则tan2y 的值为11(2018杨浦二模). 在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,2a =,2sin sin A C =. 若B 为钝角,1cos24C =-,则ABC ∆的面积为12(2018虹口二模). 函数()sin f x x =,对于123n x x x x <<<⋅⋅⋅<且12,,,[0,8]n x x x π⋅⋅⋅∈(10n ≥),记1223341|()()||()()||()()||()n M f x f x f x f x f x f x f x -=-+-+-+⋅⋅⋅+()|n f x -,则M 的最大值等于12(2018奉贤二模). 已知函数()5sin(2)f x x θ=-,(0,]2πθ∈,[0,5]x π∈,若函数()()3F x f x =-的所有零点依次记为123,,,,n x x x x ,且1231n n x x x x x -<<<<<,n ∈*N , 若123218322222n n n x x x x x x π--++++++=,则θ=12(2018金山二模). 若2018100922sin (2cos )(3cos cos )(1cos cos )αββαβα--≥---+,则sin()2βα+=13(2018杨浦二模). 已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为( )A.4π B. 2π C. 2π- D. 3π-15(2018静安二模). 函数()sin()f x A x ωϕ=+(0,0)A ω>>的部分图像如图所示,则()3f π的值为( )A.B.C. D. 015(2018崇明二模). 将函数sin(2)3y x π=-图像上的点(,)4P t π向左平移s (0s >)个单位长度得到点P ',若P '位于函数sin 2y x =的图像上,则( )A. 12t =,s 的最小值为6πB. 2t =,s 的最小值为6πC. 12t =,s 的最小值为3πD. 2t =,s 的最小值为3π16(2018奉贤二模). 设a ∈R ,函数()cos cos f x x ax =+,下列三个命题: ① 函数()cos cos f x x ax =+是偶函数;② 存在无数个有理数a ,函数()f x 的最大值为2; ③ 当a 为无理数时,函数()cos cos f x x ax =+是周期函数. 以上命题正确的个数为( )A. 3B. 2C. 1D. 017(2018静安二模). 某峡谷中一种昆虫的密度是时间t 的连续函数(即函数图像不间断). 昆虫密度C 是指每平方米的昆虫数量,已知函数21000(cos(4)2)990,816()2,081624t t C t m t t ππ⎧-+-≤≤⎪=⎨⎪≤<<≤⎩或,这里的t 是从午夜开始的小时数,m 是实常数,(8)m C =.(1)求m 的值;(2)求出昆虫密度的最小值并指出出现最小值的时刻. 17(2018长嘉二模). 已知函数2()2sin sin(2)6f x x x π=++.(1)求函数()f x 的最小正周期和值域;(2)设A 、B 、C 为ABC ∆的三个内角,若1cos 3B =,()2f A =,求sin C 的值. 18(2018松江二模).已知函数()cos f x x x ωω=+. (1)当()03f π-=,且||1ω<,求ω的值;(2)在ABC ∆中,a 、b 、c 分别是角A 、B 、C的对边,a =3b c +=,当2ω=,()1f A =时,求bc 的值.18(2018普陀二模). 已知函数2()sin cos sin f x x x x =-,x ∈R . (1)若函数()f x 在区间[,]16a π上递增,求实数a 的取值范围;(2)若函数()f x 的图像关于点11(,)Q x y 对称,且1[,]44x ππ∈-,求点Q 的坐标.18(2018虹口二模). 已知ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,cos sin z A i A =+⋅(i 是虚数单位)是方程210z z -+=的根,3a =.(1)若4B π=,求边长c 的值; (2)求ABC ∆面积的最大值.18(2018浦东二模). 在ABC ∆中,边a 、b 、c 分别为角A 、B 、C 所对应的边.(1)若2(2)sin 0(2)sin 1sin (2)sin c a b Ab a BC a b A-=-+-,求角C 的大小; (2)若4sin 5A =,23C π=,c =ABC ∆的面积.18(2018青浦二模). 已知向量(cos ,1)2x m =-u r,2,cos )22x xn =r ,设函数()1f x m n =⋅+u r r.(1)若[0,]2x π∈,11()10f x =,求x 的值;(2)在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c且满足2cos 2b A c ≤-,求()f B的取值范围.18(2018青浦二模). 如图,某快递小哥从A 地出发,沿小路AB →BC 以平均时速20公里/小时,送快件到C 处,已知10BD =公里,45DCB ︒∠=,30CDB ︒∠=,△ABD 是等腰三角形,120ABD ︒∠=.(1)试问,快递小哥能否在50分钟内将快件送到C 处?(2)快递小哥出发15分钟后,快递公司发现快件有重大问题,由于通讯不畅,公司只能派车沿大路AD →DC 追赶,若汽车平均时速60公里/小时,问,汽车能否先到达C 处?19(2018奉贤二模). 某旅游区每年各个月份接待游客的人数近似地满足周期性规律,因而第n 个月从事旅游服务工作的人数()f n 可近似地用函数()cos()f n A wn k θ=++来刻画,其中正整数n 表示月份且[1,12]n ∈,例如1n =表示1月份,A 和k 是正整数,0w >,(0,)θπ∈. 统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律:① 每年相同的月份,该地区从事旅游服务工作的人数基本相同;② 该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差400人; ③ 2月份该地区从事旅游服务工作的人数为100人,随后逐月递增直到8月份达到最多. (1)试根据已知信息,求()f n 的表达式;(2)一般地,当该地区从事旅游服务工作的人数在400或400以上时,该地区也进入了一年中的旅游“旺季”,那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.19(2018崇明二模). 如图,某公园有三条观光大道AB 、BC 、AC 围成直角三角形,其中直角边200BC m =,斜边400AB m =,现有甲、乙、丙三位小朋友分别在AB 、BC 、AC 大道上嬉戏,所在位置分别记为点D 、E 、F .(1)若甲乙都以每分钟100m 的速度从点B 出发在各自的大道上奔走,到大道的另一端时 即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲乙两人之间的距离; (2)设CEF θ∠=,乙丙之间的距离是甲乙之间距离的2倍,且3DEF π∠=,请将甲乙之间的距离y 表示为θ的函数,并求甲乙之间的最小距离.。

松江区2018学年度第一学期期末质量监控试卷高三数学及答案

松江区2018学年度第一学期期末质量监控试卷高三数学及答案

松江区2018学年度第一学期期末质量监控试卷高三数学及答案(满分150分,完卷时间120分钟) 2018.12考生注意:1.本考试设试卷和答题纸两部分,试卷包括试题与答题要求,所有答题必须涂(选择题)或写(非选择题)在答题纸上,做在试卷上一律不得分。

2.答题前,务必在答题纸上填写座位号和姓名。

3.答题纸与试卷在试题编号上是一一对应的,答题时应特别注意,不能错位。

一、填空题(本大题满分54分)本大题共有12题,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分. 1.设集合{1}A x x =>,{0}3xB xx =<-,则A B = ▲ . 2.若复数z 满足(34)43i z i -=+,则z = ▲ .3.已知函数()y f x =的图像与函数xy a =(0,1)a a >≠的图像关于直线y x =对称,且点(4,2)P 在函数()y f x =的图像上,则实数a = ▲ .4.已知等差数列{}n a 的前10项和为30,则14710a a a a +++= ▲ . 5.若增广矩阵为⎪⎪⎭⎫⎝⎛+m m m m 2111的线性方程组无解,则实数m 的值为 ▲ . 6.已知双曲线标准方程为2213x y -=,则其焦点到渐近线的距离为 ▲ .7.若向量a ,b 满足()7a b b +⋅=,且3a =,2b =,则向量a 与b 夹角为 ▲ . 8.在ABC ∆中,内角A 、B 、C 所对的边分别是a 、b 、c ,若()22π6,3c a b C =-+=,则ABC ∆的面积= ▲ . 9.若函数lg(1)1()sin 0x x f x xx ⎧->=⎨<⎩,则()x f y =图像上关于原点O 对称的点共有 ▲对.10.已知A 、B 、C 是单位圆上三个互不相同的点,若||||AB AC =,则AB AC ⋅的最小值是 ▲ .11.已知向量1e ,2e 是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当21e y e x +=时,则称有序实数对()y x ,为点P 的广义坐标.若点B A 、的广义坐标分别为()()2211,,y x y x 、.对于下列命题: ①线段B A 、的中点的广义坐标为⎪⎭⎫⎝⎛++2,22121y y x x ; ②B A 、两点间的距离为()()221221y y x x -+-;③向量OA 平行于向量OB 的充要条件是1221y x y x =; ④向量OA 垂直于向量OB 的充要条件是02121=+y y x x . 其中的真命题是 ▲ .(请写出所有真命题的序号)12.已知函数)(x f 的定义域为R ,且()()1f x f x ⋅-=和(1)(1)4f x f x +⋅-=对任意的x R ∈都成立.若当]1,0[∈x 时,)(x f 的值域为]2,1[,则当[100,100]x ∈-时,函数)(x f 的值域为 ▲ .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,选对得5分,否则一律得零分.13.过点 (0,1) 且与直线210x y -+=垂直的直线方程是A . 210x y +-=B . 210x y ++=C . 220x y -+=D . 210x y --= 14.若0a >,0b >,则x y a b x y a b +>+⎧⎨⋅>⋅⎩是x a y b >⎧⎨>⎩的A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件 15.将函数()2sin(3)4f x x π=+的图像向下平移1个单位,得到()g x 的图像,若12()()9g x g x ⋅=,其中[]12,0,4x x π∈,则12x x 的最大值为 A .9B .375C .3D .116.对于平面上点P 和曲线C ,任取C 上一点Q ,若线段PQ 的长度存在最小值,则称该值为点P 到曲线C 的距离,记作()C P d ,.若曲线C 是边长为6的等边三角形,则点集(){}1,|≤=C P d P D 所表示的图形的面积为A .36B .3336-C .π+36D .π+-3336三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分已知向量(3sin ,1)a x =, (cos ,1)b x =-. (1)若a ∥b ,求tan2x 的值;(2)若()()f x a b b =+⋅,求函数)(x f 的最小正周期及当]2,0[π∈x 时的最大值.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分已知函数2()21x f x a =-+ (常数a R ∈) (1)讨论函数)(x f 的奇偶性,并说明理由;(2)当)(x f 为奇函数时,若对任意的[2,3]x ∈,都有()2x mf x ≥成立,求m 的最大值.19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分某科技创新公司投资400万元研发了一款网络产品,产品上线第1个月的收入为40万元,预计在今后若干个月内,该产品每月的收入平均比上一月增长50%.同时,该产品第1个月的维护费支出为100万元,以后每月的维护费支出平均比上一个月增加50万元. (1) 分别求出第6个月该产品的收入和维护费支出,并判断第6个月该产品的收入是否足够支付第6个月的维护费支出?(2) 从第几个月起,该产品的总收入首次超过总支出?(总支出包括维护费支出和研发投资支出)20. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分已知曲线Γ上的任意一点到两定点1(1,0)F -、2(1,0)F 的距离之和为l 交曲线Γ于A 、B 两点,O 为坐标原点. (1)求曲线Γ的方程;(2)若l 不过O 点且不平行于坐标轴,记线段AB 的中点为M .求证:直线OM 的斜率与l 的斜率的乘积为定值;(3)若OA OB ⊥,求AOB ∆面积的取值范围.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分对于给定数列{}n a ,若数列{}n b 满足:对任意*N n ∈,都有()()011<--++n n n n b a b a ,则称数列{}n b 是数列{}n a 的“相伴数列”.(1)若n n n b a c =+,且数列{}n b 是{}n a 的“相伴数列”,试写出{}n c 的一个通项公式,并说明理由;(2)设12-=n a n ,证明:不存在等差数列{}n b ,使得数列{}n b 是{}n a 的“相伴数列”;(3)设12-=n n a ,1-⋅=n n q b b (其中0q <),若{}n b 是{}n a 的“相伴数列”,试分析实数qb 、的取值应满足的条件.2018.12松江区2018学年度第一学期高三期末考试 数学试卷参考答案一、填空题1.{13}x x << ; 2. 1 ; 3. 2 ; 4. 12;5. -1; 6. 1 ; 7. 6π8. 29.4; 10.12-; 11.①③; 12. 100100[2,2]-;二、选择题13.A 14.B 15.A 16.D17.解:(1)由//a b r r得, cos x x =, ……………………………………2分∴tan x =……………………………………………4分∴22tan tan 1tan xx x==- ……………………………………………6分(2)2()()cos cos f x a b b x x x =+⋅=+r r r………………………………………8分1112cos2sin(2)2262x x x π=++=++ …………………………………10分 ∴函数)(x f 的最小正周期为22T ππ== …………………………………12分当]2,0[π∈x 时,72666x πππ≤+≤∴当262x ππ+=,即6x π=时,max 3()()62f x f π== …………………………………14分18.解:(1)若)(x f 为奇函数,必有(0)10f a =-= 得1a =,……………………2分当1a =时,221()12121x x x f x -=-=++,2112()()2121x xx x f x f x -----===-++∴当且仅当1a =时,)(x f 为奇函数 ………………………4分又2(1)3f a =-,4(1)3f a -=-,∴对任意实数a ,都有(1)(1)f f -≠∴)(x f 不可能是偶函数 ………………………6分 (2)由条件可得:222()2(1)(21)32121x x xx xm f x ≤⋅=-=++-++恒成立, ……8分 记21x t =+,则由[2,3]x ∈ 得[5,9]t ∈, ………………………10分此时函数2()3g t t t=+-在[5,9]t ∈上单调递增, ………………………12分 所以()g t 的最小值是12(5)5g =, ………………………13分所以125m ≤ ,即m 的最大值是125 ………………………14分19.解:记产品从第一个月起,每个月的收入为数列{}n a ,每个月的维护费支出为数列{}n b , 则1340()2n n a -=⋅,10050(1)n b n =+- ………………………4分(1) 第6个月的收入为:56340()303.752a =⋅≈万元,第6个月的维护费为:610050(61)350b =+⋅-=万元,………………………6分∴第6个月的收入还不足以支付第6个月的维护费 ………………………7分(2)到第n 个月,该产品的总收入为340[1()]3280()803212n n n S ⋅-==⋅-- …………9分 该产品的总支出为2(1)1005040025754002n n n T n n n -=+⨯+=++ …………11分由题意知,只需 0n n S T ->,即23515()(6)021616n n n -++> …………12分由计算器解得满足上述不等式的最小正整数n=10.∴从第10个月起,该产品的总收入首次超过总支出 ………………14分注:921023515()38.44,99639.75216163515()57.66,1010646.6321616≈⋅+⋅+≈≈⋅+⋅+≈20. 解:(1)由题意知曲线Γ是以原点为中心,长轴在x 轴上的椭圆, …………1分设其标准方程为22221x y a b+=,则有1a c ==,所以2221b a c =-=,∴2212x y += …………4分 (2)证明:设直线l 的方程为(0,0)y kx b k b =+≠≠, ……………………5分 设112200(,),(,),(,)A x y B x y M x y则由2212y kx b x y =+⎧⎪⎨+=⎪⎩ 可得222()2x kx b ++=,即222(12)4220k x kbx b +++-=∴122412kb x x k +=-+,∴12022212x x kbx k +==-+ ……………………8分 2002221212k b by kx b b k k=+=-+=++, 0012OM y k x k==-, ……………………9分∴直线OM 的斜率与 l 的斜率的乘积=1122OM k k k k ⋅=-⋅=-为定值 …………10分 (3)解法一:设1122(,),(,)A x y B x y则由OA OB ⊥知,12120x x y y +=,即1212x x y y =-,∴22221212x x y y = ………11分AOB S ∆==………12分因A 、B 两点在椭圆上,有221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 即221122222222x y x y ⎧+=⎨+=⎩ 也即 22221122(2)(2)4x y x y ++= 得222222122112522x y x y x x +=-∴AOB S ∆= …………………13分 又由221122221212x y x y ⎧=-⎪⎪⎨⎪=-⎪⎩ 得2222222222121212121211(1)(1)1()2224x x y y x x x x x x =--=-++=∴22221212122()434x x x x x x +=-≥ ∴ 2212409x x ≤≤ …………………15分∴2[,32AOB S ∆= …………………………………………16分 解法二:当直线OA 、OB 分别与坐标轴重合时,易知AOB ∆的面积2AOB S ∆=,…11分 当直线OA 、OB 的斜率均存在且不为零时,设直线OA 、OB 的方程为:y kx =、 1y x k=-, 点1122(,),(,)A x y B x y ,由2212y kx x y =⎧⎪⎨+=⎪⎩ 可得22222x k x +=, ∴212221x k =+,代入y kx = 得2212221k y k =+ …………………………………12分 同理可得222222k x k =+,2222y =∴12AOB S OA OB ∆=⋅= …………………………………………13分 令21t k =+,[1,)t ∈+∞,则12AOB S OA OB ∆=⋅===………14分由[1,)t ∈+∞知2[,32AOB S ∆∈ …………………………………………15分综上可知,2[,32AOB S ∆∈ …………………………………………16分 21. 解:(1)(1)nn c =-, …………………………………………2分此时,1211111()()[(1)][(1)](1)0n n n n n n n n n n n a b a b a a a a ++++++--=------=-< 所以{}n b 是数列{}n a 的“相伴数列”. …………………………………………4分 注:答案不唯一,{}n c 只需是正负相间的数列.(2)证明,假设存在等差数列{}n b 是{}n a 的“相伴数列”,则有11b ≠ …………5分 若11b <,则由12(1)(3)0b b --< 得23b >…①, 又由23(3)(5)0b b --< 得35b <又因为{}n b 是等差数列,所以13226b b b +=<,得23b <,与①矛盾 …………7分 同理,当11b >,则由12(1)(3)0b b --< 得23b <…②, 又由23(3)(5)0b b --< 得35b >又因为{}n b 是等差数列,所以13226b b b +=>,得23b >,与②矛盾 ……………9分所以,不存在等差数列{}n b ,使得数列{}n b 是{}n a 的“相伴数列” ………………10分(3)由于12-=n n a ,易知0≠b 且1≠b ,①当1>b 时,11a b >,由于对任意*N n ∈,都有()()011<--++n n n n b a b a ,故只需2221210k k k k a b a b ++->⎧⎨-<⎩*()k N ∈, ………………12分由于0q <,所以当*,2N k k n ∈=时,n k n a bqb <<=-012, 故只需当*,12N k k n ∈+=时,n k k n a bq b =>=222,即b q k<⎪⎪⎭⎫ ⎝⎛22对*N k ∈恒成立,得2-≤q ; ………………13分 ②当10<<b 时,11a b <,220a bq b <<=,与()()02211<--b a b a 矛盾,不符合题意; ……14分 ③当1-<b 时,11a b <,当*,12N k k n ∈+=时,n k n a bq b <<=02,故只需当*,2N k k n ∈=时,n k k n a bqb =>=--12122, 即b q k >⎪⎪⎭⎫ ⎝⎛-122对*N k ∈恒成立,得2-≤q ; ……………15分 ④当01<≤-b 时,11a b <,则222=>=a bq b ,下证只需2>bq : 若2>bq ,则bq 2<,当*,12N k k n ∈+=时,n kn a bq b <<=02,当*,2N k k n ∈=时,n k k k k k n a bb b bqb =≥⋅=⎪⎭⎫ ⎝⎛⋅>=-----12122212122212, 符合题意. ……………17分综上所述,实数q b 、的取值应满足的条件为:()()(]2,,,11-∞-∈+∞-∞-∈q b ,或[)2,0,1>-∈bq b ………………18分12.令1t x =+,则有()(2)4f t f t ⋅-=,即4(2)()f t f t -=当[0,1]t ∈时,2[1,2]t -∈,又()[1,2]f t ∈,∴4[2,4]()f t ∈ 即当[1,2]x ∈时,()f x 的值域为[2,4] ∴当[0,2]x ∈时,()f x 的值域为[1,4]∵)(4)2()2(4)()(1)(4)1()1(1)()(x f x f x f x f x f x f x f x f x f x f =+⇒⎪⎪⎩⎪⎪⎨⎧+=-=-⇒⎩⎨⎧=-⋅+=-⋅∴当[2,4]x ∈时,()f x 的值域为[4,16],[4,6]x ∈时,()f x 的值域为6[16,2],依此类推可知,当[2,22]x k k ∈+时,()f x 的值域为222[2,2]k k +, ∴当[0,100]x ∈时,()f x 的值域为100[1,2]又,1()()f x f x =-,当[100,0]x ∈-时,[0,100]x -∈,100()[1,2]f x -∈∴100()[2,1]f x -∈ 综上,当[100,100]x ∈-时,函数)(x f 的值域为100100[2,2]-.。

松江区高中2018-2019学年上学期高三数学期末模拟试卷含答案

松江区高中2018-2019学年上学期高三数学期末模拟试卷含答案

松江区高中2018-2019学年上学期高三数学期末模拟试卷含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A B . C . D .2. 若函数1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩则(3)f -的值为( )A .5B .1-C .7-D .2 3. 抛物线y=4x 2的焦点坐标是( )A .(0,1)B .(1,0)C .D .4. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)5. 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A .92%B .24%C .56%D .5.6%6. 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( ) A .2日和5日 B .5日和6日C .6日和11日D .2日和11日7. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用. 8. 已知全集U={0,1,2,3,4},集合A={0,1,3},B={0,1,4},则(∁U A )∪B 为( ) A .{0,1,2,4} B .{0,1,3,4} C .{2,4} D .{4}9. 已知命题p :2≤2,命题q :∃x 0∈R ,使得x 02+2x 0+2=0,则下列命题是真命题的是( ) A .¬p B .¬p ∨qC .p ∧qD .p ∨q10.已知AC ⊥BC ,AC=BC ,D 满足=t+(1﹣t ),若∠ACD=60°,则t 的值为( )A .B .﹣C .﹣1D .11.如图所示,阴影部分表示的集合是( )A .(∁UB )∩A B .(∁U A )∩BC .∁U (A ∩B )D .∁U (A ∪B ) 12.已知命题“p :∃x >0,lnx <x ”,则¬p 为( )A .∃x ≤0,lnx ≥xB .∀x >0,lnx ≥xC .∃x ≤0,lnx <xD .∀x >0,lnx <x二、填空题13.已知tan β=,tan (α﹣β)=,其中α,β均为锐角,则α= .14.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin2,则该数列的前16项和为 .15.在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC=5,CD=5,BD=2AD ,则AD 的长为 .16.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 . 17.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=48x 的准线上,则双曲线的方程是 .18.阅读如图所示的程序框图,则输出结果S 的值为 .【命题意图】本题考查程序框图功能的识别,并且与数列的前n 项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.三、解答题19.(本小题满分12分)在ABC 中,内角C B A ,,的对边为c b a ,,,已知1cos )sin 3(cos 2cos 22=-+C B B A. (I )求角C 的值;(II )若2b =,且ABC ∆的面积取值范围为,求c 的取值范围. 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.20.一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V 与x 的函数关系式,并求出函数的定义域.21.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ;(2)设(){}1nn n b a --是等比数列,且257,71b b ==,求数列{}n b 的前n 项和n T .【命题意图】本题考查等差数列与等比数列的通项与前n 项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.22.已知函数f(x)=x|x﹣m|,x∈R.且f(4)=0(1)求实数m的值.(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围.23.(本小题满分10分)已知曲线22:149x yC+=,直线2,:22,x tly t=+⎧⎨=-⎩(为参数).(1)写出曲线C的参数方程,直线的普通方程;(2)过曲线C上任意一点P作与夹角为30的直线,交于点A,求||PA的最大值与最小值.24.已知函数f(x)=lnx﹣kx+1(k∈R).(Ⅰ)若x轴是曲线f(x)=lnx﹣kx+1一条切线,求k的值;(Ⅱ)若f(x)≤0恒成立,试确定实数k的取值范围.松江区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1. 【答案】A 【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系. 2. 【答案】D111] 【解析】试题分析:()()()311112f f f -=-==+=. 考点:分段函数求值. 3. 【答案】C【解析】解:抛物线y=4x 2的标准方程为 x 2=y ,p=,开口向上,焦点在y 轴的正半轴上,故焦点坐标为(0,),故选C .【点评】本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x 2的方程化为标准形式,是解题的关键.4. 【答案】B【解析】解:∵直线l ⊥平面α,α∥β,∴l ⊥平面β,又∵直线m ⊂平面β,∴l ⊥m ,故(1)正确; ∵直线l ⊥平面α,α⊥β,∴l ∥平面β,或l ⊂平面β,又∵直线m ⊂平面β,∴l 与m 可能平行也可能相交,还可以异面,故(2)错误;∵直线l ⊥平面α,l ∥m ,∴m ⊥α,∵直线m ⊂平面β,∴α⊥β,故(3)正确;∵直线l ⊥平面α,l ⊥m ,∴m ∥α或m ⊂α,又∵直线m ⊂平面β,则α与β可能平行也可能相交,故(4)错误; 故选B .【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.5. 【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.032×10+0.024×10=0.56故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是.6.【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C.【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.7.【答案】B8.【答案】A【解析】解:∵U={0,1,2,3,4},集合A={0,1,3},∴C U A={2,4},∵B={0,1,4},∴(C U A)∪B={0,1,2,4}.故选:A.【点评】本题考查集合的交、交、补集的混合运算,是基础题.解题时要认真审题,仔细解答.9.【答案】D【解析】解:命题p:2≤2是真命题,方程x2+2x+2=0无实根,故命题q:∃x0∈R,使得x02+2x0+2=0是假命题,故命题¬p,¬p∨q,p∧q是假命题,命题p∨q是真命题,故选:D10.【答案】A【解析】解:如图,根据题意知,D在线段AB上,过D作DE⊥AC,垂足为E,作DF⊥BC,垂足为F;若设AC=BC=a,则由得,CE=ta,CF=(1﹣t)a;根据题意,∠ACD=60°,∠DCF=30°;∴;即;解得.故选:A.【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义.11.【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A,但不属于集合B的元素构成,∴对应的集合表示为A∩∁U B.故选:A.12.【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题“p:∃x>0,lnx<x”,则¬p为∀x>0,lnx≥x.故选:B.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.二、填空题13.【答案】.【解析】解:∵tanβ=,α,β均为锐角,∴tan(α﹣β)===,解得:tanα=1,∴α=.故答案为:.【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题.14.【答案】546.【解析】解:当n=2k﹣1(k∈N*)时,a2k+1=a2k﹣1+1,数列{a2k﹣1}为等差数列,a2k﹣1=a1+k﹣1=k;当n=2k(k∈N*)时,a2k+2=2a2k,数列{a2k}为等比数列,.∴该数列的前16项和S16=(a1+a3+…+a15)+(a2+a4+…+a16)=(1+2+...+8)+(2+22+ (28)=+=36+29﹣2=546.故答案为:546.【点评】本题考查了等差数列与等比数列的通项公式及前n项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题.15.【答案】5.【解析】解:如图所示:延长BC,过A做AE⊥BC,垂足为E,∵CD⊥BC,∴CD∥AE,∵CD=5,BD=2AD,∴,解得AE=,在RT△ACE,CE===,由得BC=2CE=5,在RT△BCD中,BD===10,则AD=5,故答案为:5.【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.16.【答案】+=1.【解析】解:设动圆圆心为B,半径为r,圆B与圆C的切点为D,∵圆C:(x+4)2+y2=100的圆心为C(﹣4,0),半径R=10,∴由动圆B与圆C相内切,可得|CB|=R﹣r=10﹣|BD|,∵圆B经过点A(4,0),∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10,∵|AC|=8<10,∴点B的轨迹是以A、C为焦点的椭圆,设方程为(a>b>0),可得2a=10,c=4,∴a=5,b2=a2﹣c2=9,得该椭圆的方程为+=1.故答案为:+=1.17.【答案】【解析】解:因为抛物线y 2=48x 的准线方程为x=﹣12,则由题意知,点F (﹣12,0)是双曲线的左焦点, 所以a 2+b 2=c 2=144,又双曲线的一条渐近线方程是y=x ,所以=,解得a 2=36,b 2=108, 所以双曲线的方程为.故答案为:.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c 和a 2的值,是解题的关键.18.【答案】20172016【解析】根据程序框图可知,其功能是求数列})12)(12(2{+-n n 的前1008项的和,即 +⨯+⨯=532312S =-++-+-=⨯+)2017120151()5131()311(201720152 20172016. 三、解答题19.【答案】 【解析】(I )∵1cos )sin 3(cos 2cos 22=-+C B B A, ∴0cos sin 3cos cos cos =-+C B C B A , ∴0cos sin 3cos cos )cos(=-++-C B C B C B ,∴0cos sin 3cos cos sin sin cos cos =-++-C B C B C B C B , ∴0cos sin 3sin sin =-C B C B ,因为sin 0B >,所以3tan =C又∵C 是三角形的内角,∴3π=C.20.【答案】【解析】解:如图,设所截等腰三角形的底边边长为xcm ,在Rt △EOF中,,∴,∴依题意函数的定义域为{x|0<x <10}【点评】本题是一个函数模型的应用,这种题目解题的关键是看清题意,根据实际问题选择合适的函数模型,注意题目中写出解析式以后要标出自变量的取值范围.21.【答案】【解析】(1)设等差数列{}n a 的首项为1a ,公差为d , 则由990S =,15240S =,得119369015105240a d a d +=⎧⎨+=⎩,解得12a d ==,……………3分所以2(n 1)22n a n =+-⨯=,即2n a n =,(1)22(1)2n n n S n n n -=+⨯=+,即1n S n n =+().……………5分22.【答案】【解析】解:(1)∵f(4)=0,∴4|4﹣m|=0∴m=4,(2)f(x)=x|x﹣4|=图象如图所示:由图象可知,函数在(﹣∞,2),(4,+∞)上单调递增,在(2,4)上单调递减.(3)方程f(x)=k的解的个数等价于函数y=f(x)与函数y=k的图象交点的个数,由图可知k∈(0,4).23.【答案】(1)2cos 3sin x y θθ=⎧⎨=⎩,26y x =-+;(2)5,5.【解析】试题分析:(1)由平方关系和曲线C 方程写出曲线C 的参数方程,消去参数作可得直线的普通方程;(2)由曲线C 的参数方程设曲线上C 任意一点P 的坐标,利用点到直线的距离公式求出点P 直线的距离,利用正弦函数求出PA ,利用辅助角公式进行化简,再由正弦函数的性质求出PA 的最大值与最小值. 试题解析:(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩,(为参数),直线的普通方程为26y x =-+.(2)曲线C 上任意一点(2cos ,3sin )P θθ到的距离为4cos 3sin 6|d θθ=+-.则|||5sin()6|sin 305d PA θα==+-,其中α为锐角,且4tan 3α=,当sin()1θα+=-时,||PA 取.当sin()1θα+=时,||PA 考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程. 24.【答案】【解析】解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=﹣k=0,∴x=,由ln ﹣1+1=0,可得k=1;(2)当k ≤0时,f ′(x )=﹣k >0,f (x )在(0,+∞)上是增函数;当k>0时,若x∈(0,)时,有f′(x)>0,若x∈(,+∞)时,有f′(x)<0,则f(x)在(0,)上是增函数,在(,+∞)上是减函数.k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1﹣k>0,f(x)≤0不成立,故k>0,∵f(x)的最大值为f(),要使f(x)≤0恒成立,则f()≤0即可,即﹣lnk≤0,得k≥1.【点评】本题考查导数的几何意义,考查函数单调区间的求法,确定实数的取值范围,渗透了分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.。

高三数学-2018届上海高三年级八校联考(第二次)数学试卷含答案含答案 精品

高三数学-2018届上海高三年级八校联考(第二次)数学试卷含答案含答案 精品

2018届上海高三年级八校联考(第二次)数学试卷(松江二中、青浦、七宝、育才、市二、行知、进才、位育)一、 填空题:1、 已知复数z 满足i z z 31--=,则=z i 34+ 。

2、 方程()()52log 124log 22++=+x x 的解是=x 2 。

3、 抛物线x x y -=2的焦点坐标为 ⎪⎭⎫ ⎝⎛0,21 。

4、 在极坐标系中,直线3cos =θρ截圆θρcos 4=所得的弦长为 32 。

5、 某校要组建一个20人的志愿者服务队,全校18个班级每班至少有1人参加,则志愿者服务队中有3人来自同一个班级的概率为192 。

(结果用分数表示) 6、 若()61x -的展开式的中间项为25,则()=+++∞→nn x x x 2lim 31- 。

7、 对一切正整数n ,不等式112+>-n nx x 恒成立,则实数x 的取值范围是 1≥x 。

8、 已知24x y --=在区间M 上的反函数是其本身,则区间M 可以为 []0,2- 。

(或()0,2-等)9、 在ABC ∆中,已知31cos =A ,且3=BC ,则ABC ∆面积的最大值为 423 。

10、已知函数()()()0sin2>+=A x A x f ϕω的最大值为2,其相邻两对称轴间的距离为2,则()()++21f f()()=+++1003f f 100 。

11、已知()x f 是定义在()+∞∞-,上的函数,∈n m ,()+∞∞-,,请给出能使命题:“若0>+n m ,则()+m f ()()()n f m f n f -+->+”成立的一个充分条件:()()上单调递增在函数+∞∞-,x f 。

12、哥德巴赫(Goldbach.C.德 1690-1764)曾研究过“所有形如()()为正整数m n n m ,111++的分数之和”问题。

为了便于表述,引入记号:()++⎪⎭⎫⎝⎛++++⎪⎭⎫ ⎝⎛+++=+∑∑+== 43243211131313*********m xm x n n()()() +⎪⎪⎭⎫ ⎝⎛++++++432111111n n n ,写出你对此问题的研究结论:()111111=+∑∑+∞=∞=m m n n 。

松江区2018学年度第二学期月考试卷及答案 高三数学(理)

松江区2018学年度第二学期月考试卷及答案 高三数学(理)

松江区2018学年度第二学期月考试卷高三数学(理科)(满分150分,完卷时间120分钟)一、填空题 (每小题4分,满分56分)1.若复数z 满足i i z 2)1(=+,则z = ▲ .2.已知向量)2,3(-=a ,)4,(-=k b ,若//,则k = ▲ .3.若函数()y g x =的图像与2()log (2)f x x =+的图像关于直线y x =对称, 则()g x = ▲ .4.函数32cos 2sin )(xx x f =的最大值为 ▲ .5.一组数据中每个数据都减去20构成一组新数据,若这组新数据的平均数是2.5,方差是12.1,则原来一组数的方差为 ▲ .6.不等式01>-x x的解集为 ▲ . 7.已知锐角ABC ∆的内角,,A B C 所对的边分别为,,a b c ,若22cos cos 20A A +=,a =3c =,则b = ▲ . 8.按右边的程序框图运行后,输出S 的值为 ▲ . 9.记n a 为1(1)n x ++的展开式中含1n x-项的系数,则数列1{}na 的各项和为 ▲ . 10.直线0=+y x 与曲线⎩⎨⎧+==θθ2sin 1cos y x 为参数θ()的交点坐标为 ▲ .11.如右图,底面直径为20的圆柱被与底面成 60二面角的平面所截,截面是一个椭圆,则此椭圆的焦距为 ▲ .12.动点P 在平面区域|)||(|2:221y x y x C +≤+内,动点Q 在曲线222:(4)(4)2C x y -+-= 上,则||PQ 的最小值为 ▲ .13.用)(A C 表示非空集合A 中元素的个数,定义⎩⎨⎧--=*),()(),()(A C B C B C A C B A )()()()(B C A C B C A C <≥若1{=A ,}2,)({2ax x x B +=}0)2(2=++ax x ,且1=*B A ,设实数a 的所有可能取值构成集合S ,则)(S C = ▲ .14.已知函数)0(12)(≠+⋅=k k x f x,定义函数⎩⎨⎧<->=0)(0)()(x x f x x f x F ,给出下列命题:①)()(x f x F =; ②函数)(x F 是奇函数;③当0<k 时,若0<⋅n m ,且0>+n m ,则有0)()(<+n F m F 成立, 其中所有正确命题的序号是 ▲ .二、选择题 (每小题5分,共20分)15. 已知α、β是不同的两个平面,直线α⊂a ,直线β⊂b ,则“a 与b 没有公共点”是“βα//”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.若直线02=+-a y x 与圆04222=--+y x y x 有公共点,则实数a 的取值范围是A .55≤≤-aB .05a ≤≤C . 5a ≤-或5a ≥D .5a ≠±17.甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。

上海松江区高三数学二模试卷及答案

上海松江区高三数学二模试卷及答案

松江区2016学年度第二学期期中质量监控试卷高三数学(满分150分,完卷时间120分钟)一.填空题(本大题满分54分)本大题共有12题,考生必须在答题纸相应编号的空格内直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分.1.已知()21x f x =-,则1(3)f -= ▲ .2.已知集合{}{}11,1,0,1,M x x N =+≤=-则M N =I ▲ .3.若复数122,2z a i z i =+=+(i 是虚数单位),且12z z 为纯虚数,则实数a = ▲ . 4.直线23x y ⎧=--⎪⎨=+⎪⎩(t 为参数)对应的普通方程是 ▲ .5.若()1(2),3n n n x x ax bx c n n -*+=++++∈≥N L ,且4b c =,则a 的值为 ▲ .6.某空间几何体的三视图如图所示,则该几何体的侧面积是 ▲ .7.若函数()2()1x f x x a =+-在区间[]0,1上有零点,则实数a 的取值范围是 ▲ .8.在约束条件123x y ++-≤下,目标函数2z x y =+的最大值为 ▲ .9.某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是 ▲ . 10.已知椭圆()222101y x b b +=<<的左、右焦点分别为12F F 、,记122F F c =.若此椭圆上存在点P ,使P 到直线1x c=的距离是1PF 与2PFb 的最大值为 ▲ .11.如图同心圆中,大、小圆的半径分别为2和1,点P 在大圆上,PA 与小圆相切于点A ,Q 为小圆上的点,则PA PQ ⋅u u u r u u u r 的取值范围是 ▲ .12.已知递增数列{}n a 共有2017项,且各项均不为零,20171a =,如果从{}n a 中任取两项,i j a a ,当i j <时,j i a a -仍是数列{}n a 中的项,则数列{}n a 的各项和2017S = ▲ .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.设a b r r 、分别是两条异面直线12l l 、的方向向量,向量a b r r 、夹角的取值范围为A ,12l l 、所成角的取值范围为B ,则“A α∈”是“B α∈”的(A) 充要条件(B) 充分不必要条件(C) 必要不充分条件(D) 既不充分也不必要条件14. 将函数sin 12y x π⎛⎫=- ⎪⎝⎭图像上的点,4P t π⎛⎫ ⎪⎝⎭向左平移(0)s s >个单位,得到点P ',若P '位于函数的图像上,则(A) 12t =,s 的最小值为6π (B) t =,s 的最小值为6π(C) 12t =,s 的最小值为12π (D) 2t =,s 的最小值为12π 15.某条公共汽车线路收支差额y 与乘客量x 的函数关系如图所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则(A) ①反映了建议(Ⅱ),③反映了建议(Ⅰ)(B) ①反映了建议(Ⅰ),③反映了建议(Ⅱ)(C) ②反映了建议(Ⅰ),④反映了建议(Ⅱ)(D) ④反映了建议(Ⅰ),②反映了建议(Ⅱ)16.设函数()y f x =的定义域是R ,对于以下四个命题:(1) 若()y f x =是奇函数,则(())y f f x =也是奇函数;(2) 若()y f x =是周期函数,则(())y f f x =也是周期函数;(3) 若()y f x =是单调递减函数,则(())y f f x =也是单调递减函数;(4) 若函数()y f x =存在反函数1()y f x -=,且函数1()()y f x f x -=-有零点,则函数()y f x x =-也有零点.其中正确的命题共有(A) 1个(B) 2个 (C) 3个 (D) 4个三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分;第1小题6分,第2小题8分)直三棱柱111C B A ABC -中,底面ABC 为等腰直角三角形,AC AB ⊥,2==AC AB ,41=AA ,M 是侧棱1CC 上一点,设h MC =.(1) 若C A BM 1⊥,求h 的值;(2) 若2h =,求直线1BA 与平面ABM 所成的角.18.(本题满分14分;第1小题6分,第2小题8分)设函数()2xf x =,函数()g x 的图像与函数()f x 的图像关于y 轴对称.(1)若()4()3f x g x =+,求x 的值;(2)若存在[]0,4x ∈,使不等式3)2()(≥--+x g x a f 成立,求实数a 的取值范围.19.(本题满分14分;第1小题6分,第2小题8分)如图所示,PAQ ∠是某海湾旅游区的一角,其中ο120=∠PAQ ,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸AP 和AQ 上分别修建观光长廊AB 和AC ,其中AB 是宽长廊,造价是800元/米,AC 是窄长廊,造价是400元/米,两段长廊的总造价为120万元,同时在线段BC 上靠近点B 的三等分点D 处建一个观光平台,并建水上直线通道AD (平台大小忽略不计),水上通道的造价是1000元/米.(1) 若规划在三角形ABC 区域内开发水上游乐项目,要求ABC △的面积最大,那么AB和AC 的长度分别为多少米(2) 在(1)的条件下,建直线通道AD 还需要多少钱20.(本题满分16分;第1小题4分,第2小题6分,第3小题6分)设直线l 与抛物线24y x =相交于不同两点A 、B ,与圆)0()5(222>=+-r r y x相切于点M ,且M 为线段AB 中点.(1) 若AOB △是正三角形(O 是坐标原点),求此三角形的边长;(2) 若4r =,求直线l 的方程;(3) 试对()0,r ∈+∞进行讨论,请你写出符合条件的直线l 的条数(直接写出结论).21.(本题满分18分;第1小题4分,第2小题6分,第3小题8分)对于数列{}n a ,定义12231n n n T a a a a a a +=+++L ,*n N ∈.(1) 若n a n =,是否存在*k N ∈,使得2017k T =请说明理由;(2) 若13a =,61n n T =-,求数列{}n a 的通项公式; (3) 令21*112122,n n n n T T n b T T T n n N +--=⎧=⎨+-≥∈⎩,求证:“{}n a 为等差数列”的充要条件是“{}n a 的前4项为等差数列,且{}n b 为等差数列”.松江区二模考试数学试卷题(印刷稿)(参考答案)一.填空题(本大题共54分)第1~6题每个空格填对得4分,第7~5题每个空格填对得5分1. 2 2.{1,0}- 3.1 4.10x y +-= 5.16 6. 7. 1[,1]2- 8.9 9.2910.2 11.[3-+ 12.1009二、选择题 (每小题5分,共20分)13. C 14.A 15. B 16.B三.解答题(共78分)17.(1)以A 为坐标原点,以射线AB 、AC 、1AA 分别为x 、y 、z 轴建立空间直角坐标系,如图所示,则)0,0,2(B ,)4,0,0(1A ,)0,2,0(C ,),2,0(h M ……………………2分 ),2,2(h BM -=,)4,2,0(1-=C A ……………………4分 由C A BM 1⊥得01=⋅A ,即0422=-⨯h解得1=h . ……………………6分(2) 解法一:此时(0,2,2)M()()()12,0,0,0,2,2,2,0,4AB AM BA ===-u u u r u u u u r u u u r ……………8分设平面ABM 的一个法向量为(,,)n x y z =r由00n AB n AM ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u u r 得00x y z =⎧⎨+=⎩所以(0,1,1)n =-r ……………………10分设直线1BA 与平面ABM 所成的角为θ则11sin n BA n BA θ⋅===⋅r u u u r r u u u r ……………12分 所以直线1BA 与平面ABM所成的角为sinarc ………………14分 解法二:联结1A M ,则1A M AM ⊥,1,AB AC AB AA ⊥⊥Q ,AB ∴⊥平面11AAC C …………………8分 1AB A M ∴⊥ 1A M ∴⊥平面ABM所以1A BM ∠是直线1BA 与平面ABM 所成的角; ……………………10分在1A BM Rt △中,11AM A B ==所以111sin A M A BM A B ∠===……………………12分所以1arcsin A BM ∠= 所以直线1BA 与平面ABM所成的角为sinarc ………………14分18.(1)由()4()3f x g x =+得2423x x -=⋅+ ……………………2分 223240x x ⇒-⋅-=所以21x =-(舍)或24x =, ……………………4分 所以2x = ……………………6分(2)由()(2)3f a x g x +--≥得2223a x x +-≥ ……………………8分 2223a x x +≥+2232a x x -⇒≥+⋅ ……………………10分而232x x -+⋅≥[]4232,log 30,4x x x -=⋅=∈即时取等号…12分所以2a ≥211log 32a ≥+.………………………………14分19.(1)设AB 长为x 米,AC 长为y 米,依题意得8004001200000x y +=, 即23000x y +=, ………………………………2分1sin1202ABC S x y ∆=⋅⋅o y x ⋅⋅=43 …………………………4分 y x ⋅⋅=28322283⎪⎭⎫ ⎝⎛+≤y x=2m 当且仅当y x =2,即750,1500x y ==时等号成立,所以当ABC △的面积最大时,AB 和AC 的长度分别为750米和1500米……6分(2)在(1)的条件下,因为750,1500AB m AC m ==. 由2133AD AB AC =+u u u r u u u r u u u r …………………………8分 得222133AD AB AC ⎛⎫=+ ⎪⎝⎭u u u r u u u r u u u r 22919494+⋅+= …………………………10分 2244117507501500()15009929=⨯+⨯⨯⨯-+⨯250000= ||500AD ∴=u u u r , …………………………12分1000500500000⨯=元所以,建水上通道AD 还需要50万元. …………………………14分 解法二:在ABC ∆中,ο120cos 222AC AB AC AB BC ⋅-+=7750= ………8分在ABD ∆中,ACAB AC BC AB B ⋅-+=2cos 222775075021500)7750(750222⨯⨯-+=772= …………………………10分 在ABD ∆中,B BD AB BD AB AD cos 222⋅-+=772)7250(7502)7250(75022⋅⨯⨯-+==500 …………12分 1000500500000⨯=元所以,建水上通道AD 还需要50万元. …………………………14分解法三:以A 为原点,以AB 为x 轴建立平面直角坐标系,则)0,0(A ,)0,750(B )120sin 1500,120cos 1500(οοC ,即)3750,750(-C ,设),(00y x D ………8分 由2CD DB =u u u r u u u r ,求得⎪⎩⎪⎨⎧==325025000y x ,所以(D …………10分 所以,22)03250()0250(||-+-=AD 500=……………………12分 1000500500000⨯=元所以,建水上通道AD 还需要50万元. …………………………14分20. (1)设AOB △的边长为a ,则A的坐标为1,)22a a ±………2分所以214,22a ⎛⎫±=⋅ ⎪⎝⎭所以a =此三角形的边长为 ……………………………4分(2)设直线:l x ky b =+当0k =时,1,9x x ==符合题意 ……………………………6分当0k ≠时,224404x ky b y ky b y x =+⎧⇒--=⎨=⎩…………………8分 222121216()0,4,42(2,2)k b y y k x x k b M k b k ∆=+>+=+=+⇒+ 11,AB CM AB k k k k⋅=-=Q 2223225CM k k k b k k b ∴==-⇒=-+- 22216()16(3)003k b k k ∴∆=+=->⇒<<4r ===Q ()230,3k ∴=∉,舍去综上所述,直线l 的方程为:1,9x x == ……………………………10分(3)(][)0,24,5r ∈U 时,共2条;……………………………12分 ()2,4r ∈时,共4条; ……………………………14分 [)5,r ∈+∞时,共1条. ……………………………16分21.:(1)由0n a n =>,可知数列{}n T 为递增数列,……………………………2分 计算得1719382017T =<,1822802017T =>, 所以不存在*k N ∈,使得2017k T =; ………………………4分(2)由61n n T =-,可以得到当*2,n n N ≥∈时,1111(61)(61)56n n n n n n n a a T T --+-=-=---=⋅, ……………………6分又因为1215a a T ==,所以1*156,n n n a a n N -+=⋅∈, 进而得到*1256,n n n a a n N ++=⋅∈,两式相除得*26,n na n N a +=∈, 所以数列21{}k a -,2{}k a 均为公比为6的等比数列, ……………………8分 由13a =,得253a =, 所以1*22*23621,562,3n n n n k k N a n k k N --⎧⋅=-∈⎪=⎨⎪⋅=∈⎩; ………… …………10分(3)证明:由题意12123122b T T a a a a =-=-,当*2,n n N ≥∈时,111212n n n n n n n n b T T T a a a a +-+++=+-=-,因此,对任意*n N ∈,都有121n n n n n b a a a a +++=-. …………12分必要性(⇒):若{}n a 为等差数列,不妨设n a bn c =+,其中,b c 为常数, 显然213243a a a a a a -=-=-,由于121n n n n n b a a a a +++=-=2212()222n n n a a a b n b bc ++-=++,所以对于*n N ∈,212n n b b b +-=为常数,故{}n b 为等差数列; …………14分 充分性(⇐):由于{}n a 的前4项为等差数列,不妨设公差为d 当3(1)n k k ≤+=时,有4131213,2,a a d a a d a a d =+=+=+成立。

2018高三二模汇编(精)(带参考答案)

2018高三二模汇编(精)(带参考答案)

2018届高三数学二模典题库一、填空题1.集合1.设全集R U =,若集合{}2,1,0=A ,{}21|<<-=x x B ,()B C A U ⋂= . 【答案】{}2 【来源】18届宝山二模1 【难度】集合、基础题2.集合⎭⎬⎫⎩⎨⎧<-=02x xxA ,{|}B x x Z =∈,则A B ⋂等于 .【答案】{}1或{}1=x x 【来源】18届奉贤二模1 【难度】集合、基础题3. 已知(,]A a =-∞,[1,2]B =,且A B ≠∅,则实数a 的范围是【答案】1a ≥ 【来源】18届虹口二模1 【难度】集合、基础题4.已知集合{}{}1,2,31,A B m ==,,若3m A -∈,则非零实数m 的数值是 .【答案】2 【来源】18届黄浦二模1 【难度】集合、基础题5.已知集合},2,1{m A =,}4,2{=B ,若}4,3,2,1{=B A ,则实数=m _______. 【答案】3【来源】18届长嘉二模1 【难度】集合、基础题6. 设集合1|,2xM y y x R ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,()()()1|1112,121N y y x m x x m ⎧⎫⎛⎫==+-+--≤≤⎨⎬ ⎪-⎝⎭⎩⎭,若N M ⊆,则实数m 的取值范围是 .【答案】(1,0)- 【来源】18届普陀二模11 【难度】集合、中档题7.已知全集R U =,集合{}0322>--=x x x A ,则=A C U . 【答案】]3,1[- 【来源】18届徐汇二模1 【难度】集合、基础题8. 已知集合{|(1)(3)0}P x x x =+-<,{|||2}Q x x =>,则P Q =【答案】(2,3) 【来源】18届金山二模3 【难度】集合、基础题9.已知集合{1,0,1,2,3}U =-,{1,0,2}A =-,则U C A =【答案】{1,3} 【来源】18届崇明二模1 【难度】集合、基础题2.命题、不等式1.不等式|1|1x ->的解集是 .【答案】(,0)(2,)-∞+∞【来源】18届黄浦二模2 【难度】不等式、基础题2.已知函数2()(02)f x ax bx c a b =++<<对任意R x ∈恒有()0f x ≥成立,则代数式(1)(0)(1)f f f --的最小值是 .【答案】3【来源】18届黄浦二模2 【难度】不等式、压轴题3.不等式|3|2x -<的解集为__________________. 【答案】{}15x x <<或()1,5 【来源】18届青浦二模1 【难度】不等式、基础题4.若为等比数列,0n a >,且2018a =,则2017201912a a +的最小值为 .{}n a【答案】4【来源】18届杨浦二模10 【难度】不等式、中档题5. 函数9y x x=+,(0,)x ∈+∞的最小值是 【答案】6 【来源】18届金山二模4 【难度】不等式、基础题3.函数1.给出下列函数:①1y x x=+;②x x y +=2;③2x y =;④23y x =;⑤x y tan =;⑥()sin arccos y x =;⑦(lg lg 2y x =-.从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是 . 【答案】37【来源】18届奉贤二模9 【难度】函数、中档题2.已知函数()()θ-=x x f 2sin 5,⎥⎦⎤⎝⎛∈2,0πθ,[]π5,0∈x ,若函数()()3-=x f x F 的所有零点依次记为n x x x x ,,,,321 ,且n n x x x x x <<<<<-1321 ,*N n ∈若π283222212321=++++++--n n n x x x x x x ,则=θ . 【答案】9π【来源】18届奉贤二模12 【难度】函数、压轴题3.已知函数20()210x x x f x x -⎧-≥=⎨-<⎩,则11[(9)]f f ---=【答案】-2【来源】18届虹口二模5 【难度】函数、基础题4.若函数()f x =是偶函数,则该函数的定义域是 . 【答案】[2,2]- 【来源】18届黄浦二模3 【难度】函数、基础题5.已知函数)1lg()(2ax x x f ++=的定义域为R ,则实数a 的取值范围是_________.【答案】]1,1[-【来源】18届长嘉二模10 【难度】函数、中档题6.若函数1()21f x x m =-+是奇函数,则实数m =________.【答案】12【来源】18届普陀二模2 【难度】函数、基础题7.若函数()f x =()g x ,则函数()g x 的零点为________.【答案】x =【来源】18届普陀二模3 【难度】函数、基础题8.已知()f x 是定义在[2,2]-上的奇函数,当(0,2]x ∈时,()21xf x =-,函数 2()2g x x x m =-+. 如果对于任意的1[2,2]x ∈-,总存在2[2,2]x ∈-,使得12()()f xg x ≤,则实数m 的取值范围是 .【答案】5m ≥- 【来源】18届青浦二模10 【难度】函数、中档题9.若函数222(1)sin ()1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 1g x M m x M m x =+++-⎡⎤⎣⎦图像的一个对称中心是 .【答案】114⎛⎫⎪⎝⎭,【来源】18届徐汇二模11 【难度】函数、中档题10.设()f x 是定义在R 上以2为周期的偶函数,当[0,1]x ∈时,2()log (1)f x x =+,则函数()f x 在[1,2]上的解析式是 【答案】2()log (3)f x x =- 【来源】18届崇明二模9 【难度】函数、中档题4.指数函数、对数函数1.方程33log (325)log (41)0x x ⋅+-+=的解x = . 【答案】2【来源】18届黄浦二模6 【难度】对数函数、基础题2.[]x 是不超过x 的最大整数,则方程271(2)[2]044x x -⋅-=满足1x <的所有实数解是【答案】12x =或1x =- 【来源】18届虹口二模11 【难度】指数函数、中档题3.若实数x 、y 满足112244+++=+y x yx,则y x S 22+=的取值范围是____________.【答案】]4,2(【来源】18届长嘉二模12 【难度】指数函数、压轴题4.函数()lg(32)x xf x =-的定义域为_____________. 【答案】(0,)+∞ 【来源】18届徐汇二模3 【难度】对数函数、基础题5.定义在R 上的函数()21x f x =-的反函数为1()y f x -=,则1(3)f -=【答案】2【来源】18届松江二模4 【难度】指数函数、基础题6.若函数2()log (1)a f x x ax =-+(0a >且1a ≠)没有最小值,则a 的取值范围 【答案】()[)0,12,+∞【来源】18届松江二模10 【难度】指数函数、中档题7.函数lg 1y x =-的零点是 . 【答案】10x = 【来源】18届杨浦二模1 【难度】对数函数、基础题8.函数lg y x =的反函数是【答案】1()10xf x -=【来源】18届金山二模2 【难度】对数函数、基础题5. 三角函数1.已知在ABC ∆中,a ,b ,c 分别为AB ∠∠,,C ∠所对的边.若222b c a +-=,则A ∠= .【答案】4π或045 【来源】18届奉贤二模5 【难度】三角函数、基础题2.已知ABC ∆的三内角A B C 、、所对的边长分别为a b c 、、,若2222sin a b c bc A =+-,则内角A 的大小是 . 【答案】4π【来源】18届黄浦二模4 【难度】三角函数、基础题3.若1sin 3α=,则cos 2πα⎛⎫-= ⎪⎝⎭_______________.【答案】13【来源】18届青浦二模3 【难度】三角函数、基础题4.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若222()tan b c a A bc +-=,则角A 的大小为________.【答案】6π 【来源】18届普陀二模5 【难度】三角函数、基础题5..函数()x x x f 4cos 4sin 2=的最小正周期为 . 【答案】4π 【来源】18届宝山二模4 【难度】三角函数、基础题6.已知22s 1(,,0)cos 1a a in M a a a a θθθ-+=∈≠-+R ,则M 的取值范围是 .【答案】⎣⎦【来源】18届青浦二模12 【难度】三角函数、压轴题7. 函数3sin(2)3y x π=+的最小正周期T =【答案】π【来源】18届金山二模1 【难度】三角函数、基础题8.若53sin )cos(cos )sin(=---x y x x y x ,则y 2tan 的值为 【答案】2424.77-或 【来源】18届杨浦二模9 【难度】三角函数、中档题9.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,2a =,2sin sin A C =. 若B 为钝角,412cos -=C ,则ABC ∆的面积为 .【来源】18届杨浦二模11 【难度】三角函数、中档题 10. 若2018100922sin(2cos )(3cos cos )(1cos cos )αββαβα--≥---+,则sin()2βα+=【答案】-1或1【来源】18届金山二模12 【难度】三角函数、压轴题题6. 数列1.已知数列{}n a 是公比为q 的等比数列,且2a 、4a 、3a 成等差数列,则q = 【答案】1或12-【来源】18届虹口二模7 【难度】数列、基础题2.已知数列{}n a 是共有k 个项的有限数列,且满足11(2,,1)n n nna a n k a +-=-=-,若1224,51,0k a a a ===,则k = .【答案】50【来源】18届黄浦二模11 【难度】数列、中档题3.设函数()log m f x x =(0m >且1m ≠),若m 是等比数列{}n a (*N n ∈)的公比,且2462018()7f a a a a =,则22221232018()()()()f a f a f a f a ++++的值为_________.【答案】1990-【来源】18届普陀二模9 【难度】数列、中档题4.在等比数列{}n a 中,公比2q =,前n 项和为n S ,若51S =,则10S = . 【答案】33【来源】18届青浦二模5 【难度】数列、基础题7. 向量1.如图,已知O 为矩形4321P P P P 内的一点,满足7,543131===P P OP OP ,,则24OP OP ⋅的值为 .【答案】-4 【来源】18届宝山二模11 【难度】向量、中档题2.已知向量a 在向量b 方向上的投影为2-,且3b =,则a b ⋅= .(结果用数值表示) 【答案】-6 【来源】18届黄浦二模5 【难度】向量、基础题3.在△ABC 中,M 是BC 的中点,︒=∠120A ,21-=⋅AC AB ,则线段AM 长的最小值为____________. 【答案】21 【来源】18届长嘉二模114.已知曲线29C y x =--:,直线2l y =:,若对于点(0,)A m ,存在C 上的点P 和l 上的点Q ,使得0AP AQ +=,则m 取值范围是 .11、 【答案】1,12⎡⎤-⎢⎥⎣⎦【来源】18届青浦二模11 【难度】向量、中档题5.已知向量a 、b 的夹角为60°,||1a =,||2b =,若(2)()a b xa b +⊥-,则实数x 的值为 【答案】3【来源】18届松江二模7 【难度】向量、基础题6.点1F ,2F 分别是椭圆22:12x C y +=的左、右两焦点,点N 为椭圆C 的上顶点,若动点M 满足:2122MNMF MF =⋅,则122MF MF +的最大值为__________.【答案】6【来源】18届普陀二模12 【难度】向量、压轴题7.已知两个不同向量(1,)OA m =,(1,2)OB m =-,若OA AB ⊥,则实数m =____________. 【答案】1【来源】18届青浦二模48.已知非零向量OP 、OQ 不共线,设111m OM OP OQ m m =+++,定义点集{|}||||FP FM FQ FMA F FP FQ ⋅⋅==. 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ 上时,不等式12||||F F k PQ ≤恒成立,则实数k 的最小值为 . 【答案】34【来源】18届杨浦二模12 【难度】向量、压轴题9.已知向量,a b 的夹角为锐角,且满足||a =、||b =,若对任意的{}(,)(,)||1,0x y x y xa yb xy ∈+=>,都有||1x y +≤成立,则a b ⋅的最小值为 . 【答案】815【来源】18届徐汇二模12 【难度】向量、压轴题10. 在平面四边形ABCD 中,已知1AB =,4BC =,2CD =,3DA =,则AC BD ⋅的值为 【答案】10【来源】18届崇明二模12 【难度】向量、压轴题8. 解析几何1.设抛物线的焦点坐标为()01,,则此抛物线的标准方程为 . 【答案】24y x = 【来源】18届宝山二模2【难度】解析几何、基础题2.抛物线2y x =的焦点坐标是 .【答案】(0,14) 【来源】18届奉贤二模3 【难度】解析几何、基础题3.椭圆的长轴长等于m ,短轴长等于n ,则此椭圆的内接矩形的面积的最大值为【答案】2mn【来源】18届虹口二模10 【难度】解析几何、中档题4.角的始边是x 轴正半轴,顶点是曲线2522=+y x 的中心,角的终边与曲线2522=+y x 的交点A 的横坐标是3-,角的终边与曲线2522=+y x 的交点是B ,则过B 点的曲线2522=+y x 的切线方程是 .(用一般式表示)11、 【答案】7241250x y ±+= 【来源】18届奉贤二模11 【难度】解析几何、压轴题5.直线(1)10ax a y +-+=与直线420x ay +-=互相平行,则实数a = 【答案】2 【来源】18届虹口二模2 【难度】解析几何、基础题ααα26.已知平面直角坐标系xOy 中动点),(y x P 到定点)0,1(的距离等于P 到定直线1-=x 的距离,则点P 的轨迹方程为______________. 【答案】x y 42= 【来源】18届长嘉二模4 【难度】解析几何、基础题7. 抛物线212x y =的准线方程为_______. 【答案】3y =- 【来源】18届普陀二模1 【难度】解析几何、基础题8.双曲线22219x y a -=(0a >)的渐近线方程为320x y ±=,则a =【答案】2a = 【来源】18届松江二模1 【难度】解析几何、基础题9.已知直线12:0,:20l mx y l x my m -=+--=.当m 在实数范围内变化时,1l 与2l 的交点P 恒在一个定圆上,则定圆方程是 . 【答案】2220x y x y +--= 【来源】18届徐汇二模10 【难度】解析几何、中档题10.已知抛物线2x ay =的准线方程是14y =-,则a = . 【答案】1【来源】18届徐汇二模4 【难度】解析几何、基础题11.若双曲线222161(0)3x y p p-=>的左焦点在抛物线22y px =的准线上,则p = .【答案】4【来源】18届杨浦二模8 【难度】解析几何、中档题12.平面上三条直线210x y -+=,10x -=,0x ky +=,如果这三条直线将平面化分为六个部分,则实数k 的取值组成的集合A = 【答案】{2,1,0}-- 【来源】18届金山二模10 【难度】解析几何、中档题13.已知双曲线22:198x y C -=,左、右焦点分别为1F 、2F ,过点2F 作一直线与双曲线C 的右半支交于P 、Q 两点,使得190F PQ ∠=︒,则1F PQ ∆的内切圆的半径r = 【答案】2【来源】18届金山二模11 【难度】解析几何、中档题14.已知圆锥的母线长为5,侧面积为15π,则此圆锥的体积为 (结果保留π) 【答案】12π【来源】18届崇明二模6 【难度】解析几何、基础题15. 已知椭圆2221x y a +=(0a >)的焦点1F 、2F ,抛物线22y x =的焦点为F ,若123F F FF =,则a =【来源】18届崇明二模8 【难度】解析几何、中档题9. 复数1.设z 是复数,()a z 表示满足1nz =时的最小正整数n ,i 是虚数单位,则⎪⎭⎫⎝⎛-+i i a 11=______. 【答案】4【来源】18届奉贤二模7 【难度】复数、基础题2.已知α是实系数一元二次方程22(21)10x m x m --++=的一个虚数根,且||2α≤,则实数m 的取值范围是 .【答案】3(4- 【来源】18届黄浦二模8 【难度】复数、中档题3.已知复数z 满足i 342+=z (i 为虚数单位),则=||z ____________. 【答案】5【来源】18届长嘉二模3 【难度】复数、基础题4.若复数z 满足2315i z -=+(i 是虚数单位),则=z _____________. 【答案】512i -【来源】18届青浦二模2 【难度】复数、基础题5.设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m = 【答案】-1【来源】18届松江二模3 【难度】复数、基础题6.若复数z 满足1z =,则z i -的最大值是 . 【答案】2【来源】18届杨浦二模6 【难度】复数、中档题7.i 是虚数单位,若复数(12)()i a i -+是纯虚数,则实数a 的值为 【答案】-2【来源】18届崇明二模3 【难度】复数、基础题10. 立体几何1.已知球的俯视图面积为π,则该球的表面积为 . 【答案】4π 【来源】18届宝山 二模5 【难度】立体几何、基础题2.已知半径为2R 和R 的两个球,则大球和小球的体积比为 .【答案】8或1:8 【来源】18届奉贤 二模2 【难度】立体几何、基础题3.长方体的对角线与过同一个顶点的三个表面所成的角分别为α、β、γ,则222cos cos cos αβγ++= 4.2【答案】2【来源】18届虹口 二模4 【难度】立体几何、中档题4.如图,长方体1111ABCD A B C D -的边长11AB AA ==,AD =O ,则A 、1A 这两点的球面距离等于【答案】3π 【来源】18届虹口 二模9 【难度】立体几何、中档题5.将圆心角为32π,面积为π3的扇形围成一个圆锥的侧面,则此圆锥的体积为___________.【答案】π322【来源】18届长嘉二模7【难度】立体几何、中档题6.三棱锥ABCP-及其三视图中的主视图和左视图如下图所示,则棱PB的长为________.【答案】24【来源】18届长嘉二模8【难度】立体几何、中档题7.如图所示,一个圆柱的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个圆柱的体积为__________.【答案】4π【来源】18届青浦二模7【难度】立体几何、中档题8.若一个球的体积为323π,则该球的表面积为_________.【答案】16π【来源】18届徐汇二模5【难度】立体几何、基础题9.若一圆锥的底面半径为3,体积是12π,则该圆锥的侧面积等于 .【答案】15π【来源】18届徐汇二模8【难度】立体几何、中档题10.若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为【答案】16π【来源】18届松江二模8 【难度】立体几何、中档题11.若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形, 则该圆锥的体积是 .【来源】18届杨浦二模7 【难度】立体几何、中档题12.记球1O 和2O 的半径、体积分别为1r 、1V 和2r 、2V ,若12827V V =,则12r r = 【答案】23【来源】18届金山二模6 【难度】立体几何、中档题11. 排列组合、概率统计、二项式定理1.某次体检,8位同学的身高(单位:米)分别为68.1,71.1,73.1,63.1,81.1,74.1,66.1,78.1,则这组数据的中位数是 (米).【答案】1.72 【来源】18届宝山二模3 【难度】统计、基础题2.若B A 、满足()()()525421===AB P B P A P ,,,则()()P AB P AB -= . 【答案】310【来源】18届宝山二模9 【难度】概率、中档题3.在报名的8名男生和5名女生中,选取6人参加志愿者活动,要求男、女都有,则不同的选取方式的种数为 (结果用数值表示) 【答案】1688 【来源】18届宝山二模7 【难度】排列组合、中档题4.从集合{1,1,2,3}-随机取一个为m ,从集合{2,1,1,2}--随机取一个为n ,则方程221x y m n+=表示双曲线的概率为 【答案】12【来源】18届虹口二模6 【难度】概率、中档题5.若将函数6()f x x =表示成23601236()(1)(1)(1)(1)f x a a x a x a x a x =+-+-+-+⋅⋅⋅+-,则3a 的值等于 【答案】20 【来源】18届虹口二模8 【难度】二项式、中档题6.已知某市A社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是人.【答案】140【来源】18届黄浦二模9【难度】概率统计、中档题7.将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是.(结果用数值表示) 10.【答案】5 16【来源】18届黄浦二模10 【难度】概率统计、中档题8.nxx⎪⎭⎫⎝⎛+1的展开式中的第3项为常数项,则正整数=n___________.【答案】4【来源】18届长嘉二模2【难度】二项式、基础题9.某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0、1、2、3的四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球编号相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.则顾客抽奖中三等奖的概率为____________.9.【答案】167【难度】概率统计、中档题10.代数式2521(2)(1)x x+-的展开式的常数项是 .(用数字作答) 【答案】3【来源】18届奉贤二模10 【难度】二项式、中档题11.书架上有上、中、下三册的《白话史记》和上、下两册的《古诗文鉴赏辞典》,现将这五本书从左到右摆放在一起,则中间位置摆放中册《白话史记》的不同摆放种数为_______(结果用数值表示). 【答案】24【来源】18届普陀二模4 【难度】二项式、基础题12.若321()nx x-的展开式中含有非零常数项,则正整数n 的最小值为_________.5 【答案】5【来源】18届普陀二模6 【难度】二项式、基础题13.某单位年初有两辆车参加某种事故保险,对在当年内发生此种事故的每辆车,单位均可获赔(假设每辆车最多只获一次赔偿).设这两辆车在一年内发生此种事故的概率分别为120和121,且各车是否发生事故相互独立,则一年内该单位在此种保险中获赔的概率为_________(结果用最简分数表示).【答案】221【难度】概率统计、中档题14.设1234,,,{1,0,2}x x x x ∈-,那么满足12342||||||||4x x x x ≤+++≤的所有有序数对1234(,,,)x x x x 的组数为【答案】45【来源】18届松江二模11 【难度】排列组合、压轴题15.设*n N ∈,n a 为(4)(1)n nx x +-+的展开式的各项系数之和,324c t =-,t ∈R1222[][][]555n n n na a ab =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t b c -++的最小值为【答案】25【来源】18届松江二模12 【难度】二项式、压轴题16.在61x x ⎛⎫+ ⎪⎝⎭的二项展开式中,常数项是 .【答案】20【来源】18届徐汇二模2 【难度】二项式、基础题 17.621(1)(1)x x++展开式中2x 的系数为______________.8、30【答案】30【来源】18届青浦二模8 【难度】二项式、中档题18.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A +的概率分别为78、34、512,这三门科目考试成绩的结果互不影响,则这位考生至少得2个A +的概率是 .【答案】151192【来源】18届青浦二模9 【难度】概率统计、中档题19.将两颗质地均匀的骰子抛掷一次,记第一颗骰子出现的点数是m ,记第二颗骰子出现的点数是n ,向量()2,2a m n =--,向量()1,1b =,则向量a b ⊥的概率..是 . 【答案】16【来源】18届徐汇二模9 【难度】概率统计、中档题20.若的二项展开式中项的系数是,则n = . 【答案】4【来源】18届杨浦二模3 【难度】概率统计、基础题21.掷一颗均匀的骰子,出现奇数点的概率为 .()13nx +2x 542【来源】18届杨浦二模4 【难度】概率统计、基础题22.若一个布袋中有大小、质地相同的三个黑球和两个白球,从中任取两个球,则取出的两球中恰是一个白球和一个黑球的概率是【答案】11322535C C C ⋅=【来源】18届金山二模8 【难度】概率统计、中档题23.(12)nx +的二项展开式中,含3x 项的系数等于含x 项的系数的8倍, 则正整数n = 【答案】5【来源】18届金山二模9 【难度】二项式、中档题24.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 石(精确到小数点后一位数字) 【答案】169.1【来源】18届崇明二模5 【难度】统计、基础题25. 若二项式7(2)ax x+的展开式中一次项的系数是70-,则23lim()n n a a a a →∞+++⋅⋅⋅+=3【来源】18届崇明二模7 【难度】二项式、基础题26.某办公楼前有7个连成一排的车位,现有三辆不同型号的车辆停放,恰有两辆车停放在 相邻车位的概率是【答案】47【来源】18届崇明二模10 【难度】概率、中档题12. 行列式、矩阵、程序框图1.若某线性方程组对应的增广矩阵是421m m m ⎛⎫⎪⎝⎭,且此方程组有唯一一组解,则实数m的取值范围是 【答案】0D ≠,即2m ≠±【来源】18届金山二模7 【难度】矩阵、中档题2.三阶行列式13124765x -中元素5-的代数余子式为()x f ,则方程()0f x =的解为____. 【答案】2log 3x = 【来源】18届奉贤二模6 【难度】矩阵、中档题3.若二元一次方程组的增广矩阵是121234c c ⎛⎫ ⎪⎝⎭,其解为100x y =⎧⎨=⎩,则12c c += 【答案】 40【来源】18届松江二模2 【难度】矩阵、基础题4.函数()2sin cos 1()11x x f x +-=的最小正周期是___________.【答案】π【来源】18届徐汇二模7 【难度】矩阵、基础题5.若线性方程组的增广矩阵为⎪⎪⎭⎫ ⎝⎛210221c c 的解为⎩⎨⎧==31y x ,则=+21c c . 【答案】9【来源】18届宝山二模6 【难度】矩阵、基础题6.已知函数2sin cos 2()1cos x x f x x-=,则函数()f x 的单调递增区间是 . 【答案】3[,],Z 88k k k ππππ-+∈【来源】18届黄浦二模7 【难度】矩阵、基础题7.已知一个关于x 、y 的二元一次方程组的增广矩阵是111012-⎛⎫⎪⎝⎭,则x y +=【答案】5【来源】18届崇明二模2【难度】矩阵、基础题8.若2log 1042x -=-,则x =【答案】4【来源】18届崇明二模4 【难度】行列式、基础题13. 数学归纳法、极限1.已知数列{}n a ,其通项公式为31n a n =+,*n N ∈,{}n a 的前n 项和为n S ,则limnn nS n a →∞=⋅【答案】12【来源】18届松江二模6 【难度】极限、基础题2.计算:=+∞→142limn nn .【答案】12【来源】18届杨浦二模2 【难度】极限、基础题14. 参数方程、线性规划1.已知实数,x y 满足20102x y x y -≤⎧⎪-≤⎨⎪+≥⎩,则目标函数2u x y =+的最大值是 .【答案】4 【来源】18届奉贤二模4 【难度】线性规划、中档题2.设变量x 、y 满足条件⎪⎩⎪⎨⎧≤+-≤-+≥,043,04,1y x y x x 则目标函数y x z -=3的最大值为_________.【答案】4 【来源】18届长嘉二模6 【难度】线性规划、基础题3.在平面直角坐标系xOy 中,直线l的参数方程为24x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C的参数方程为cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩(θ为参数),则直线l 与椭圆C 的公共点坐标为__________.【答案】(24-【来源】18届普陀二模8 【难度】参数方程、中档题4.设变量x 、y 满足条件0220x y x y y x y m-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,若该条件表示的平面区域是三角形,则实数m 的取值范围是__________. 【答案】4(0,1][,)3+∞ 【来源】18届普陀二模10 【难度】参数方程、中档题5.若,x y 满足2,10,20,x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩则2z x y =-的最小值为____________.【答案】12-【来源】18届青浦二模6 【难度】参数方程、中档题6.已知实数x y ,满足001x y x y ≥⎧⎪≥⎨⎪+≤⎩,,. 则目标函数z x y =-的最小值为___________.【答案】-1【来源】18届徐汇二模6 【难度】线性规划、基础题7.若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为 .【答案】3【来源】18届杨浦二模5 【难度】线性规划、基础题8.直线l 的参数方程为112x ty t =+⎧⎨=-+⎩(t 为参数),则l 的一个法向量为【答案】()2,1- 【来源】18届松江二模5 【难度】线性规划、基础题9.若平面区域的点(,)x y 满足不等式||||14x y k +≤(0k >),且z x y =+的最小值为5-,则常数k = 【答案】5k =【来源】18届松江二模9 【难度】线性规划、中档题10.已知,x y ∈R,且满足00y y y +≤-≥≥⎪⎩,若存在θ∈R 使得cos sin 10x y θθ++=成立,则点(,)P x y 构成的区域面积为【答案】6π【来源】18届崇明二模11 【难度】线性规划、中档题15.其它1.函数()sin f x x =,对于123n x x x x <<<⋅⋅⋅<且12,,,[0,8]n x x x π⋅⋅⋅∈(10n ≥),记1223341|()()||()()||()()||()()|n n M f x f x f x f x f x f x f x f x -=-+-+-+⋅⋅⋅+-,则M的最大值等于 【答案】16【来源】18届虹口二模12 【难度】其它、压轴题 二、选择题1.命题、不等式)(C 充要条件. )(D 既不充分也不必要条件.【答案】 B 【来源】18届宝山二模13 【难度】命题与条件、基础题2.在给出的下列命题中,是假命题的是 答( ). (A )设O A B C 、、、是同一平面上的四个不同的点,若(1)(R)OA m OB m OC m =⋅+-⋅∈, 则点A B C 、、必共线(B )若向量a b 和是平面α上的两个不平行的向量,则平面α上的任一向量c 都可以表示为(R)c a b λμμλ=+∈、,且表示方法是唯一的(C )已知平面向量OA OB OC 、、满足||||(0)OA OB OC r r ==>|=|,且0OA OB OC ++=, 则ABC ∆是等边三角形(D )在平面α上的所有向量中,不存在这样的四个互不相等的非零向量a b c d 、、、,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直【答案】D【来源】18届黄浦二模16 【难度】命题与条件、压轴题3.唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。

上海市松江区2018届高三下学期质量监控(二模)数学试卷

上海市松江区2018届高三下学期质量监控(二模)数学试卷
闵行区、松江区 2017-2018 学年第二学期高三年级质 量调研考试 数学试卷
注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 3. .考试结束后保留试卷方便讲解,只交答卷 一、填空题 (本大题共有 12 题,满分 54 分,第 1~6 题每题 4 分,第 7~ 12 题每题 5 分 )考
.
n n an
7.已知向量 a 、 b 的夹角为 60 , a 1 , b 2 ,若 (a 2b) ( xa b) ,则实数 x 的值

.
8.若球的表面积为 100 ,平面


与球心的距离为 3 ,则平面
截球所得的圆面面积
x 9.若平面区域的点 ( x, y) 满足不等式
k
y 1 ( k 0) ,且 z x y 的最小值为 5,则
.
12.设 n N* , an 为 ( x 4)n ( x 1)n 的展开式的各项系数之和,
3 c t 2,t R,
4
bn
a1
5
2a2 52
nan 5n
( x 表示不 超过实数 x 的 最大 整数 ) . 则
(n t) 2 (bn c)2 的最小值为
.
二、选择题(本大题共有 4 题,满分 20 分,每题 5 分)每题有且只有一个正确选项.考生 应在答题纸的相应位置,将代表正确选项的小方格涂黑.
13.“ x y 0 ”是“ x 0 且 y 0 ”成立的 (
).
(A)充分非必要条件 (C)充要条件
(B)必要非充分条件 (D)既非充分也非必要条件
14.如图,点 A、B、C 分别在空间直角坐标系 O xyz 的三条坐标轴上, OC (0, 0, 2) ,

上海市松江、闵行区2018届高三下学期质量监控(二模)数学---精校解析Word版

上海市松江、闵行区2018届高三下学期质量监控(二模)数学---精校解析Word版

闵行区、松江区2017-2018学年第二学期高三年级质量调研考试数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. 双曲线的渐近线方程为,则_____________.【答案】【解析】试题分析:双曲线的渐近线为,因为与重合,所以.考点:双曲线的渐近线.2. 若二元一次方程组的增广矩阵是,其解为则______.【答案】【解析】由题意可知,二元一次方程组的解为:,即:,据此可得:.3. 设,若复数在复平面内对应的点位于实轴上,则______.【答案】【解析】,复数在复平面内对应的点位于实轴上,则复数的虚部为零,,解得:.4. 定义在上的函数的反函数为,则________.【答案】【解析】求解指数方程:可得:,由反函数的定义与性质可得.5. 直线的参数方程为(为参数),则的一个法向量为__________.【答案】不唯一【解析】消去参数可得直线的普通方程为:,整理为一般式即:,则直线的法向量可以是(不唯一,与之平行即可).6. 已知数列,其通项公式为,,的前项和为,则_________.【答案】【解析】由数列的通项公式可得数列为等差数列,且,则其前n项和,故,则.7. 已知向量、的夹角为,,,若,则实数的值为___________.【答案】【解析】由题意可得:,且,则:,据此有:,解得:.8. 若球的表面积为,平面与球心的距离为,则平面截球所得的圆面面积为__________.【答案】【解析】设球的半径为,则,解得:,设截面圆的半径为,则,则平面截球所得的圆面面积.9. 若平面区域的点满足不等式,且的最小值为,则常数_______. 【答案】【解析】绘制不等式表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点处取得最小值,即:.若约束条件中含参数,可行域无法确定,此时一般是依据所提供的可行域的面积或目标函数的最值,来确定含有参数的某不等式所表示的坐标系中的某区域,从而确定参数的值10. 若函数没有最小值,则的取值范围是____________.【答案】【解析】分类讨论:当时,,函数没有最小值,当时,应满足有解,故,综上可得,的取值范围是.11. 设,那么满足的所有有序数组的组数为___________.【答案】【解析】分类讨论:①,则这四个数为或,有组;②,则这四个数为或,有组;③,则这四个数为或或,有组;综上可得,所有有序数组的组数为.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.12. 设,为的展开式的各项系数之和,,,表示不超过实数的最大整数.则的最小值为___________. 【答案】【解析】利用赋值法,令可得:,,利用数学归纳法证明:,当时,成立,假设当时不等式成立,即,当时:据此可知命题成立,则,,,故,的几何意义为点到点的距离,如图所示,最小值即到的距离,由点到直线距离公式可得的最小值为.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。

上海徐汇、松江、金山区2019年高三下学期二模-数学(理)

上海徐汇、松江、金山区2019年高三下学期二模-数学(理)

上海徐汇、松江、金山区2019年高三下学期二模-数学(理)上海市徐汇、松江、金山区 2018届高三下学期二模数学〔理〕试题〔考试时间:120分钟,总分值150分〕 2018.4一、填空题〔本大题总分值56分〕本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否那么一律得零分.1、假设函数()(0,1)x f x a a a =>≠的反函数图像过点(2,1)-,那么a = .2、函数[]13(),8,64f x x x =∈的值域为A ,集合43|01x x B x x ⎧-⎫=<⎨⎬⎩⎭,那么A B = .3、(,0)2πα∈-,且4cos 5α=,那么tan 2α=___________.4、圆锥的母线长为5,侧面积为π15,那么此圆锥的体积为__________〔结果保留π〕.5、32i x =--〔i 为虚数单位〕是一元二次方程20x ax b ++= (,a b 均为实数)的一个根,那么a b +=__________.6、如图给出的是计算1111352013++++的值的一个程序框图, 图中空白执行框内应填入i = .7. 在极坐标系中,过圆6cos ρθ=的圆心,且垂直于极轴的直线的极坐标方程是__________. 8. 将参数方程212cos x y θθ⎧=⎪⎨=+⎪⎩〔θ为参数,R θ∈〕化为普通方程,所得方程是_____ _____. 9. 在二项式63()()ax a R x+∈的展开式中,常数项的值是20-,第6题图第12题图A 02013那么23lim()n n a a a a →∞++++= .10、一质地均匀的正方体三个面标有数字0,另外三个面标有数字1.将此正方体连续抛掷两次,假设用随机变量ξ表示两次抛掷后向上面所标有的数字之积,那么数学期望ξE =___________.11、椭圆2212516x y +=内有两点()()1,3,3,0,A B P 为椭圆上一点, 那么PA PB+的最大值为 .12.如图,O 为直线02013A A 外一点,假设0123452013,,,,,,,A A A A A A A 中任意相邻两点的距离相等, 设02013,OA a OA b==,用,a b 表示01220O A O A O A O A ++++u u ur u u ur u u uru u u u ur L L ,其结果为 . 13.设函数()f x x x=,将()f x 向左平移a (0)a >个单位得到函数()g x ,将()f x 向上平移a (0)a > 个单位得到函数()h x ,假设()g x 的图像恒在()h x 的图像的上方,那么正数a 的取值范围为 .14.如图,现将一张正方形纸片进行如下操作:第一步,将纸片以D 为顶点,任意向上翻折,折痕与BC 交于点1E ,然后复原,记11CDE α∠=;第二步,将纸片以D 为顶点向下翻折,使AD 与1E D重合,得到折痕2E D ,然后复原,记22ADE α∠=;第三步,将纸片以D 为顶点向上翻折,使CD与2E D 重合,得到折痕3E D ,然后复原,记33CDE α∠=;按此折法从第二步起重复以上步骤……, 得到12,,,,n ααα,那么lim n n α→∞=.二、选择题〔本大题总分值20分〕本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否那么一律得零分.第18题图A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 16、函数()1,00,01,0x f x x x >⎧⎪==⎨⎪-<⎩,设2()()F x x f x =⋅,那么()F x 是〔〕A.奇函数,在(,)-∞+∞上单调递减B.奇函数,在(,)-∞+∞上单调递增C.偶函数,在(),0-∞上递减,在()0,+∞上递增D.偶函数,在(),0-∞上递增,在()0,+∞上递减17、气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22(0C)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据〔记录数据都是正整数〕: ①甲地:5个数据的中位数为24,众数为22;②乙地:5个数据的中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8; 那么肯定进入夏季的地区有() A.0个B.1个C.2个D.3个18.如下图,向量BC 的模是向量AB 的模的t 倍,AB BC 与的夹角为θ,那么我们称向量AB 经过一次(),t θ变换得到向量BC .在直角坐标平面内,设起始向量()14,0OA =,向量1OA 经过1n -次12,23π⎛⎫ ⎪⎝⎭变换得到的向量为()1*,1n n A A n N n -∈>,其中*12,,()i i i A A A i N ++∈为逆时针排列,记iA 坐标为()(),*i i a b i N ∈,那么以下命题中不.正确的选项是......〔〕A.2b =B.3130k k bb +-=()*k N ∈C.31310k k a a +--=()*k N ∈D.()()43180k k k k a a a a +++-+-=()*k N ∈三、解答题〔本大题总分值74分〕本大题共有5题,解答以下各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19、(此题总分值12分)在ABC ∆中,,,a b c 分别是角,,A B C 的对边,且sin cos cos sin 2A C A C +=,假设b =ABC ∆的面积ABCS ∆=a c +的值. 20、(此题总分值14分)此题共有2个小题,第1小题总分值6分,第2小题总分值8分.某轮船公司的一艘轮船每小时花费的燃料费与轮船航行速度的平方成正比,比例系数为k .轮船的最大速度为15海里/小时.当船速为10海里/小时,它的燃料费是每小时96元,其余航行运作费用〔不论速度如何〕总计是每小时150元.假定运行过程中轮船以速度v 匀速航行、 〔1〕求k 的值;〔2〕求该轮船航行100海里的总费用W 〔燃料费+航行运作费用〕的最小值.21、(此题总分值14分)此题共有2个小题,第1小题总分值6分,第2小题总分值8分.如图,111ABC A B C -是正三棱柱,它的底面边长和侧棱长都是2,D 为侧棱1CC 的中点、〔1〕求异面直线1A D 与BC 所成角的大小〔结果用反三角函数值表示〕;〔2〕求直线11A B 到平面DAB 的距离. 22、(此题总分值16分)此题共有3个小题,第1小题总分值4分,第2小题总分值6分,第3小题总分值6分.数列{}*()n a n N ∈的前n 项和为n S ,数列n S n ⎧⎫⎨⎬⎩⎭是首项为0,公差为12的等差数列. DBCAB 1C 1A 1第21题图〔1〕求数列{}n a 的通项公式;〔2〕设()*42()15n a n b n N =⋅-∈,对任意的正整数k ,将集合{}21221,,k k k b b b -+中的三个元素排成一个递增的等差数列,其公差为kd ,求证:数列{}k d 为等比数列;〔3〕对〔2〕题中的kd ,求集合{}1,k k x d x d x Z +<<∈的元素个数.23、(此题总分值18分)此题共有3个小题,第1小题总分值4分,第2小题总分值6分,第3小题有三个问题情形,每位考生只能选择一个作答,假设多答,只对所答情形中最前面的一个记分,情形【一】【二】三总分值依次为5分、6分、8分.双曲线C 的中心在原点,()1,0D 是它的一个顶点,d =是它的一条渐近线的一个方向向量.(1) 求双曲线C 的方程;(2) 假设过点(3,0-)任意作一条直线与双曲线C 交于,A B 两点(,A B 都不同于点D ),求证:DA DB ⋅为定值; (3) 对于双曲线Γ:22221(0,0,)x y a b a b a b -=>>≠,E 为它的右顶点,,M N 为双曲线Γ上的两点(都不同于点E ),且E M E N ⊥,那么直线MN 是否过定点?假设是,请求出此定点的坐标;假设不是,说明理由.然后在以下三个情形中选择一个,写出类似结论〔不要求书写求解或证明过程〕.情形一:双曲线22221(0,0,)x y a b a b a b -=>>≠及它的左顶点; 情形二:抛物线22(0)y px p =>及它的顶点; 情形三:椭圆22221(0)x y a b a b +=>>及它的顶点.参考答案一、填空题:(此题共有14题,每题4分) 1、122.[)2,3 3.247- 4.12π5.196、2i +7.cos 3ρθ=8.23y x =-+(x ≤≤)9.14-10.1411.1512.1007()a b +13.2a >14.6π二、选择题:〔此题共有4小题,每题5分〕15.B16.B17.C18.D 三、解答题 19、〔此题12分〕 解:由条件可得sin()A C +=2分即sin 2B =,……………4分1sin 2ABCS ac B ∆= 3.ac ∴=………………………………8分 由余弦定理B ac c a b cos 2222-+=,得22()22cos ,b a c ac ac B =+--………………10分于是,217()23(1).2a c =+-⋅+4a c ∴+=.………………………………………12分 20.〔此题14分〕此题共有2小题,第〔1〕小题6分,第〔2〕小题8分. 解:〔1〕由题意得燃料费21W kv =,………………………………2分把v =10,196W =代入得0.96k =.………………………………………………6分〔2〕21001001500.96W v v v⨯=⋅+,……………………………………9分=15000962400v v+≥=,………………………11分cos5θ==其中等号当且仅当1500096vv=时成立,解得12.515v==<, (13)分所以,该轮船航行100海里的总费用W的最小值为2400〔元〕 (14)分21、〔此题14分〕此题共有2题,第(1)小题6分,第(2)小题8分.解:〔1〕方法一:以11A B中点O为坐标原点,如图建立空间直角坐标系.………1分由题意得()(()(11,0,0,,1,2,0,A DB C-那么()(11,1,3,A D BC=-=..............3分设θ为向量1A D C与,.....5分1A D与BC所成角的大异面小为arccos.......6分方法二:取1B B中点E,连结1,A E DE.//DE CB………………………………….2分1A DE∴∠〔或其补角〕为异面直线1A D BC与所成的角.……3分由题意得:在11Rt A B E∆中,1A E=;在11Rt A C D∆中,1A D; (4)分在等腰三角形1A DE中,………5分所以异面直线1A D与BC所成角的大小为〔2〕方法一:由题意可得11//A B ABD平面,所以,11A B到平面DAB的距离即为1A到平面DAB的距离,设为h.…………….8分设平面ABD的法向量为n,(),,1n x y=r,EDBCAB1C1A11222,2ABD S ∆=⋅⋅=由()(()1(1,0,0),1,2,0,,1,2,0A A D B -得()()(1200113AB AD A D =-=--=-,,,,,,,…………………11分, 即()0,3,1n =.……………………………………………………12分所以线11A B 到平面D A B的距离为故直.…………………………………14分方法二:由题意可得11//A B ABD 平面,所以,11A B 到平面DAB 的距离即为1A 到平面DAB 的距离,设为h .…………….8分由题意得12A D AD BD AB ====,等腰ADB ∆底边AB 2=, 12AA BS ∆=,那么11ABB A 的距离为且D 到平面,………………………………………12分由11A ABD D A AB V V --=得……………………………………………………………13分,那么h =所以,直线11A B 到平面DAB .……………14分22、(此题总分值16分)此题共有3个小题,第〔1〕小题总分值4分,第〔2〕小题总分值6分,第〔3〕小题总分值6分. 解:(1)由条件得10(1)2nSn n =+-,即(1)2n nS n =-,…………………………..2分 所以,*1()n a n n N =-∈.……………………………………………………..4分(2)由〔1〕可知1*4(2)()15n n b n N -=⋅-∈10n A D h n+⋅===所以,22222144(2)21515k k k b ---=-=⋅,2121244(2)21515k k k b --=-=-⋅, 222144(2)21515kk k b +=-=⋅,…………………………..7分 由212212k k k b b b -+=+及22121k k k b b b -+<<得22121,,k k k b b b -+依次成递增的等差数列,……………..8分 所以22221214442215155k k k k k k d b b -+-=-=⋅-⋅=,…………………………..9分 满足14k kd d +=为常数,所以数列{}k d 为等比数列.…………………………..10分〔3〕①当k 为奇数时,112211223101555(1)4(51)55515555(1)5k k k k k k kk k k k k k k k k k C C d C C C --------+-+--====-+-+--,…………………………..12分同样,可得111122011114(51)15555(1)555k k k k k k kk k k k d C C C ++--++++-===-+-+-+,所以,集合{}1,kk x dx d x Z +<<∈的元素个数为111()()155k k d d +--++ 133(41)55k k k d d ++=-+=;……..13分②当k 为偶数时,同理可得集合{}1,k k x d x d x Z+<<∈的元素个数为3(41)5k ⋅-..…..16分23、(此题总分值18分)此题共有3个小题,第1小题总分值4分,第2小题总分值6分,第3小题有三个问题情形,每位考生只能选择一个作答,假设多答,只对所答情形中最前面的一个记分,情形【一】【二】三总分值依次为5分、7分、8分。

2018学年上海高三数学二模分类汇编——矩阵、行列式、算法框图

2018学年上海高三数学二模分类汇编——矩阵、行列式、算法框图

2(2018松江二模). 若二元一次方程组的增广矩阵是121234c c ⎛⎫ ⎪⎝⎭
,其解为100x y =⎧⎨=⎩,则12c c += 2(2018崇明二模). 已知一个关于x 、y 的二元一次方程组的增广矩阵是111012-⎛⎫
⎪⎝⎭,则
x y +=
6(2018宝山二模). 若线性方程组的增广矩阵为121220c c ⎛⎫ ⎪⎝⎭
的解为13x y =⎧⎨=⎩,则12c c += 6(2018奉贤二模). 三阶行列式56
742103
1
x
-中元素5-的代数余子式为()f x ,则方程()0f x =的解为 9(2018静安二模). 秦九韶是我国南宋时期数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,右边的流程图是秦九韶算法的一个实例. 若输入n 、x 的值分别为4、2,则输出q 的值为
(在算法语言中用“*”表示乘法运算符号,例如5210*=)。

上海市松江区2018-2019学年高二数学下学期期末考试试题(含解析)

上海市松江区2018-2019学年高二数学下学期期末考试试题(含解析)

【答案】3
【解析】
【分析】
先求出样本的平均数,再求出其标准差.
x 3 70 3 67 1 64 1 61 67
【详解】这八个人生物成绩的平均分为
8

所以这八个人生物成绩的标准差为
s
1 8
3 70
672
3 67
672
64
672
61
672
3
故得解.
【点睛】本题考查样本的标准差,属于基础题.
7.已知正三棱锥底面边长为 2 ,侧棱长为 3 ,则它的侧面与底面所成二面角的余弦值为
33 【答案】 6
【解析】 【分析】
在四面体中找出与 AB 垂直的面,在旋转的过程中 CD 在面 内的射影始终与 AB 垂直求解.
【详解】 ABD 和 ABC 都是等边三角形,取 AB 中点 M , 易证 MD AB , MC AB ,即 AB 平面 CDM ,所以 AB CD . 设 CD 在平面 内的投影为 CD ,则在四面体 ABCD 绕着 AB 旋转时,恒有 CD AB . 因为 AB∥ 平面 ,所以 AB 在平面 内的投影为 AB AB 2 . 因此,四面体 ABCD 在平面 内的投影四边形 ABCD 的面积
cos x
所以,
3 sin x cos x
2
f
(x)
0
,化简得,
f
(x)
1 2
sin
2x
6
1 4


sin
2x
6
1
时,
f
(x)
1 2
sin
2x
6
1 4
取得最大值为
1 4
.
【点睛】本题考查向量的 数量积运算和三角函数的最值,属于基础题.

2018学年上海高三数学二模分类汇编——集合与命题

2018学年上海高三数学二模分类汇编——集合与命题

1(2018静安二模).已知集合{1,3,5,7,9}A =,{0,1,2,3,4,5}B =,则图中阴影部分集合用列举法表示的结果是 1(2018虹口二模). 已知(,]A a =-∞,[1,2]B =,且AB ≠∅,则实数a 的范围是1(2018崇明二模). 已知集合{1,0,1,2,3}U =-,{1,0,2}A =-,则U C A = 1(2018奉贤二模). 集合{|0}2xA x x =<-,{|}B x x =∈Z ,则A B = 1(2018黄浦二模). 已知集合{}{}1,2,31,A B m ==,,若3m A -∈,则非零实数m 的数值是1(2018徐汇二模). 已知全集U =R ,集合2{|230}A x x x =-->,则U C A = 1(2018长嘉二模). 已知集合{1,2,}A m =,{2,4}B =,若{1,2,3,4}AB =,则实数m =1(2018宝山二模). 设全集U =R ,若集合{0,1,2}A =,{|12}B x x =-<<,()U A C B =3(2018金山二模). 已知集合{|(1)(3)0}P x x x =+-<,{|||2}Q x x =>,则P Q =13(2018崇明二模). “1x >”是“21>”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件D. 既不充分也不必要条件13(2018长嘉二模). “2x =”是“1x ≥”的( ) A. 充分非必要条件 B. 必要非充分条件C. 充分必要条件D. 既非充分也非必要条件13(2018青浦二模). 设α、β是两个不同的平面,b 是直线且b β,则“b α⊥”是“αβ⊥”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分又不必要条件13(2018松江二模). “0xy =”是“0x =且0y =”成立的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件D. 既非充分也非必要条件14(2018杨浦二模). 设A 、B 是非空集合,定义:{|A B x x A B ⨯=∈U 且}x A B ∉I .已知{|A x y =,{|1}B x x =>,则A B ⨯等于( )A.[0,1](2,)+∞UB. [0,1)(2,+∞U C.[0,1] D. [0,2] 15(2018徐汇二模). 在△ABC 中,“cos sin cos sin A A B B +=+”是“90C ︒∠=”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既不充分也不必要15(2018浦东二模). 唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。

2018学年上海高三数学二模分类汇编——向量与复数

2018学年上海高三数学二模分类汇编——向量与复数

向量:4(2018青浦二模). 已知两个不同向量(1,)OA m =uu r ,(1,2)OB m =-uu u r ,若OA AB ⊥u u r u u u r ,则实数m =5(2018黄浦二模). 已知向量a r 在向量b r 方向上的投影为2-,且||3b =r ,则a b ⋅r r =(结果用数值表示)7(2018松江二模). 已知向量a r 、b r 的夹角为60°,||1a =r ,||2b =r ,若(2)()a b x a b +⊥-r r r r ,则实数x 的值为 11(2018宝山二模). 如图,已知O 为矩形1234PP P P 内的一点,满足14OP =,35OP=,137PP =,则24OPOP ⋅uuu r uuu r 的值为11(2018长嘉二模). 在ABC ∆中,M 是BC 的中点,120A ∠=︒,12AB AC ⋅=-uu u r uuu r ,则线段AM 长的最小值为11(2018静安二模). 在直角三角形ABC 中,2A π∠=,3AB =,4AC =,E 为三角形ABC 内一点,且AE =AE AB AC λμ=+uu u r uu u r uuu r ,则34λμ+的最大值等于 12(2018崇明二模). 在平面四边形ABCD 中,已知1AB =,4BC =,2CD =,3DA =,则AC BD ⋅uuu r uu u r 的值为12(2018杨浦二模). 已知非零向量OP uu u r 、OQ uuu r 不共线,设111m OM OP OQ m m =+++uuu r uu u r uuu r ,定义点集{|}||||FP FM FQ FM A F FP FQ ⋅⋅==uu r uuu r uu u r uuu r uu r uu u r . 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ 上时,不等式12||||F F k PQ ≤uuu u r uu u r 恒成立,则实数k 的最小值为13(2018金山二模). 若向量(2,0)a =r ,(1,1)b =r ,则下列结论中正确的是( )A. 1a b ⋅=r rB. ||||a b =r rC. ()a b b -⊥r r rD. a r ∥b r14(2018虹口二模). 在Rt ABC ∆中,AB AC =,点M 、N 是线段AC 的三等分点,点P在线段BC 上运动且满足PC k BC =⋅uu u r uu u r ,当PM PN ⋅uuu r uuu r 取得最小值时,实数k 的值为( )A. 12B. 13C. 14D. 18 16. (2018青浦二模) 如图所示,将一圆的八个等分点分成相间的两组,连接每组的四个点得到两个正方形,去掉两个正方形内部的八条线段后可以形成一正八角星,设正八角星的中心为O ,并且1OA e =uur u r ,2OB e =uu u r u r ,若将点O 到正八角星16个顶点的向量都写成12e e λμ+u r u r ,,λμ∈R 的形式,则λμ+的取值范围为( )A. [-B. [-+C. [1-+D. [1-16(2018青浦二模). 如图,圆C 分别与x 轴正半轴、y 轴正半轴相切于点A 、B ,过劣弧AB 上一点T 作圆C 的切线,分别交x 轴正半轴,y 轴正半轴于点M 、N ,若点(2,1)Q 是切线上一点,则△MON 周长的最小值为( )A. 10B. 8C. D. 1216(2018黄浦二模). 在给出的下列命题中,是假命题的是( )A. 设O A B C 、、、是同一平面上四个不同的点,若(1)(R)OA m OB m OC m =⋅+-⋅∈u u r u u u r u u u r ,则点A B C 、、必共线B. 若向量a b r r 和是平面α上的两个不平行的向量,则平面α上的任一向量c r 都可以表示为(R)c a b λμμλ=+∈r r r 、,且表示方法是唯一的C. 已知平面向量OA uu r 、OB uu u r 、OC uuu r 满足|||||(0)OA OB OC r r ===>uu r uu u r uuu r |,且0OA OB OC ++=uu r uu u r uuu r r ,则ABC ∆是等边三角形D. 在平面α上的所有向量中,不存在这样的四个互不相等的非零向量a r 、b r 、c r 、d u r ,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直复数:2(2018静安二模). 若复数z 满足(1)2z i i -=(i 是虚数单位),则||z = 2(2018青浦二模). 若复数z 满足2315z i -=+(i 是虚数单位),则z =3(2018崇明二模). i 是虚数单位,若复数(12)()i a i -+是纯虚数,则实数a 的值为3(2018闵松二模). 设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m =3(2018长嘉二模). 已知复数z 满足243z i =+(i 为虚数单位),则||z = 6(2018杨浦二模). 若复数z 满足1z =,则z i -的最大值是7(2018奉贤二模). 设z 是复数,()a z 表示满足1n z =时的最小正整数n ,i 是虚数单位,则1()1i a i+=- 8(2018黄浦二模). 已知α是实系数一元二次方程22(21)10x m x m --++=的一个虚数根,且||2α≤,则实数m 的取值范围是12(2018徐汇二模). 已知向量a r 、b r 满足||a =r ||b =r ,若对任意的(,){(,)|||1,0}x y x y xa yb xy ∈+=>r r ,都有||1x y +≤成立,则a b ⋅的最小值为 13(2018青浦二模). 若向量(2,0)a =r ,(1,1)b =r ,则下列结论中正确的是( )A. 1a b ⋅=r rB. ||||a b =r rC. ()a b b -⊥r r rD. a b r r ∥13(2018普陀二模). 已知i 为虚数单位,若复数2()a i i +为正实数,则实数a 的值为( )A. 2B. 1C. 0D. 1- 13(2018青浦二模). 在四边形ABCD 中,AB DC =uu u r uuu r ,且0AC BD ⋅=uuu r uu u r ,则四边形ABCD是( )A. 菱形B. 矩形C. 直角梯形D. 等腰梯形13(2018浦东二模). 已知方程210x px -+=的两虚根为1x 、2x ,若12||1x x -=,则实数p 的值为( )A. B. C. D.14(2018静安二模). 若实系数一元二次方程20z z m ++=有两虚数根α,β,且||3αβ-=,那么实数m 的值是( ) A. 52 B. 1 C. 1- D. 52-14(2018崇明二模). 若1是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A. 2b =,3c =B. 2b =,1c =-C. 2b =-,3c =D. 2b =-,1c =-14(2018浦东二模). 在复数运算中下列三个式子是正确的:(1)1212||||||z z z z +≤+;(2)1212||||||z z z z ⋅=⋅;(3)123123()()z z z z z z ⋅⋅=⋅⋅,相应的在向量运算中,下列式子:(1)||||||a b a b +≤+r r r r ;(2)||||||a b a b ⋅=⋅r r r r ;(3)()()a b c a b c ⋅⋅=⋅⋅r r r r r r ,正确的个数是( )A. 0B. 1C. 2D. 318(2018金山二模). 复数21()2z =是一元二次方程210mx nx ++=(,m n ∈R )的一个根.(1)求m 和n 的值;(2)若()m ni u u z ++=(u C ∈),求u .18(2018宝山二模). 设1z +为关于x 的方程20x mx n ++=,,m n ∈R 的虚根,i 为虚数单位.(1)当1z i =-+时,求m 、n 的值;(2)若1n =,在复平面上,设复数z 所对应的点为P ,复数24i +所对应的点为Q ,试求||PQ 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市松江区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 双曲线22219x y a -=(0a >)的渐近线方程为320x y ±=,则a = 2. 若二元一次方程组的增广矩阵是121234c c ⎛⎫ ⎪⎝⎭,其解为100x y =⎧⎨=⎩,则12c c += 3. 设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m = 4. 定义在R 上的函数()21x f x =-的反函数为1()y f x -=,则1(3)f -= 5. 直线l 的参数方程为112x ty t=+⎧⎨=-+⎩(t 为参数),则l 的一个法向量为6. 已知数列{}n a ,其通项公式为31n a n =+,*n N ∈,{}n a 的前n 项和为n S ,则li m nn nS n a →∞=⋅7. 已知向量a 、b 的夹角为60°,||1a =,||2b =,若(2)()a b xa b +⊥-,则实数x 的值为 8. 若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为 9. 若平面区域的点(,)x y 满足不等式||||14x y k +≤(0k >),且z x y =+的最小值为5-, 则常数k =10. 若函数2()log (1)a f x x ax =-+(0a >且1a ≠)没有最小值,则a 的取值范围是 11. 设1234,,,{1,0,2}x x x x ∈-,那么满足12342||||||||4x x x x ≤+++≤的所有有序数对1234(,,,)x x x x 的组数为12. 设*n N ∈,n a 为(4)(1)n n x x +-+的展开式的各项系数之和,324c t =-,t ∈R , 1222[][][]555n n n na a ab =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t bc -++的最小值为二. 选择题(本大题共4题,每题5分,共20分) 13. “0xy =”是“0x =且0y =”成立的( ) A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件14. 如图,点A 、B 、C 分别在空间直角坐标系O xyz - 的三条坐标轴上,(0,0,2)OC =,平面ABC 的法向量为(2,1,2)n =,设二面角C AB O --的大小为θ,则cos θ=( )A.43B. 3C. 23D. 23-15. 已知等比数列{}n a 的前n 项和为n S ,则下列判断一定正确的是( ) A. 若30S >,则20180a > B. 若30S <,则20180a < C. 若21a a >,则20192018a a > D. 若2111a a >,则20192018a a < 16. 给出下列三个命题:命题1:存在奇函数()f x (1x D ∈)和偶函数()g x (2x D ∈),使得函数()()f x g x (12x D D ∈)是偶函数;命题2:存在函数()f x 、()g x 及区间D ,使得()f x 、()g x 在D 上均是增函数,但()()f x g x 在D 上是减函数;命题3:存在函数()f x 、()g x (定义域均为D ),使得()f x 、()g x 在0x x =(0x D ∈)处均取到最大值,但()()f x g x 在0x x =处取到最小值; 那么真命题的个数是( )A. 0B. 1C. 2D. 3三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是AB 、1CC 的中点. (1)求三棱锥E DFC -的体积;(2)求异面直线1A E 与1D F 所成的角的大小.18. 已知函数()cos f x x x ωω=+. (1)当()03f π-=,且||1ω<,求ω的值;(2)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,a =,3b c +=,当2ω=,()1f A =时,求bc 的值.19. 某公司利用APP 线上、实体店线下销售产品A ,产品A 在上市20天内全部售完,据统计,线上日销售量()f t 、线下日销售量()g t (单位:件)与上市时间t (*t N ∈)天的关 系满足:10110()102001020t t f t t t ≤≤⎧=⎨-+<≤⎩,2()20g t t t =-+(120t ≤≤),产品A 每件的销售利润为40115()201520t h t t ≤≤⎧=⎨<≤⎩(单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A 的日销售利润为()F t ,写出()F t 的函数解析式; (2)产品A 上市的哪几天给该公司带来的日销售利润不低于5000元?20. 已知椭圆2222:1x y a bΓ+=(0a b >>),其左、右焦点分别为1F 、2F ,上顶点为B ,O为坐标原点,过2F 的直线l 交椭圆Γ于P 、Q两点,1sin BF O ∠=. (1)若直线l 垂直于x 轴,求12||||PF PF 的值; (2)若b =l 的斜率为12,则椭圆Γ上是否存在一点E ,使得1F 、E 关于直线l成轴对称?如果存在,求出点E 的坐标,如果不存在,请说明理由;(3)设直线1:l y =上总存在点M 满足2OP OQ OM +=,当b 的取值最小时,求直线l 的倾斜角α.21. 无穷数列{}n a (*n N ∈),若存在正整数t ,使得该数列由t 个互不相同的实数组成,且对于任意的正整数n ,12,,,n n n t a a a +++⋅⋅⋅中至少有一个等于n a ,则称数列{}n a 具有性质T ,集合*{|,}n P p p a n N ==∈.(1)若(1)n n a =-,*n N ∈,判断数列{}n a 是否具有性质T ;(2)数列{}n a 具有性质T ,且11a =,43a =,82a =,{1,2,3}P =,求20a 的值; (3)数列{}n a 具有性质T ,对于P 中的任意元素i p ,k i a 为第k 个满足k i i a p =的项,记1k k k b i i +=-(*k N ∈),证明:“数列{}k b 具有性质T ”的充要条件为“数列{}n a 是周期为t 的周期数列,且每个周期均包含t 个不同实数”.上海市松江区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 双曲线22219x y a -=(0a >)的渐近线方程为320x y ±=,则a = 【解析】2a =2. 若二元一次方程组的增广矩阵是121234c c ⎛⎫ ⎪⎝⎭,其解为100x y =⎧⎨=⎩,则12c c += 【解析】12103040c c +=+=3. 设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m = 【解析】虚部为零,101m m +=⇒=-4. 定义在R 上的函数()21x f x =-的反函数为1()y f x -=,则1(3)f -= 【解析】1213(3)2x f --=⇒=5. 直线l 的参数方程为112x ty t =+⎧⎨=-+⎩(t 为参数),则l 的一个法向量为【解析】12(1)230y x x y =-+-⇒--=,法向量可以是(2,1)-6. 已知数列{}n a ,其通项公式为31n a n =+,*n N ∈,{}n a 的前n 项和为n S ,则li m nn nS n a →∞=⋅【解析】2352n n nS +=,1lim 2n n nS n a →∞=⋅7. 已知向量a 、b 的夹角为60°,||1a =,||2b =,若(2)()a b xa b +⊥-,则实数x 的值为【解析】(2)()0(21)803a b xa b x x x +⋅-=⇒+--=⇒=8. 若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为 【解析】5R =,4r =,16S π= 9. 若平面区域的点(,)x y 满足不等式||||14x y k +≤(0k >),且z x y =+的最小值为5-, 则常数k = 【解析】数形结合,可知图像||||14x y k +=经过点(5,0)-,∴5k = 10. 若函数2()log (1)a f x x ax =-+(0a >且1a ≠)没有最小值,则a 的取值范围是 【解析】分类讨论,当01a <<时,没有最小值,当1a >时,即210x ax -+≤有解, ∴02a ∆≥⇒≥,综上,(0,1)[2,)a ∈+∞11. 设1234,,,{1,0,2}x x x x ∈-,那么满足12342||||||||4x x x x ≤+++≤的所有有序数对1234(,,,)x x x x 的组数为【解析】① 1234||||||||2x x x x +++=,有10组;② 1234||||||||3x x x x +++=, 有16组;③ 1234||||||||4x x x x +++=,有19组;综上,共45组 12. 设*n N ∈,n a 为(4)(1)n n x x +-+的展开式的各项系数之和,324c t =-,t ∈R , 1222[][][]555n n n na a ab =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t bc -++的最小值为【解析】52nnn a =-,2[][]155n n n n na n n n ⋅=-=-,22n n n b -=,22()()n n t b c -++的几何意义为点2(,)2n nn -()n ∈*N 到点3(,2)4t t -的距离,由图得,最小值即(2,1)到324y x =-的距离,为0.4二. 选择题(本大题共4题,每题5分,共20分) 13. “0xy =”是“0x =且0y =”成立的( ) A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件【解析】B14. 如图,点A 、B 、C 分别在空间直角坐标系O xyz -的三条坐标轴上,(0,0,2)OC =,平面ABC 的法向量为(2,1,2)n =,设二面角C AB O --的大小为θ,则cos θ=( )A.43B. 3C. 23D. 23-【解析】42cos 233||||OC n OC n θ⋅===⋅⋅,选C15. 已知等比数列{}n a 的前n 项和为n S ,则下列判断一定正确的是( ) A. 若30S >,则20180a > B. 若30S <,则20180a < C. 若21a a >,则20192018a a > D. 若2111a a >,则20192018a a < 【解析】A 反例,11a =,22a =-,34a =,则20180a <;B 反例,14a =-,22a =,31a =-,则20180a >;C 反例同B 反例,201920180a a <<;故选D16. 给出下列三个命题:命题1:存在奇函数()f x (1x D ∈)和偶函数()g x (2x D ∈),使得函数()()f x g x (12x D D ∈)是偶函数;命题2:存在函数()f x 、()g x 及区间D ,使得()f x 、()g x 在D 上均是增函数,但()()f x g x 在D 上是减函数;命题3:存在函数()f x 、()g x (定义域均为D ),使得()f x 、()g x 在0x x =(0x D ∈)处均取到最大值,但()()f x g x 在0x x =处取到最小值; 那么真命题的个数是( )A. 0B. 1C. 2D. 3【解析】命题1:()()0f x g x ==,x ∈R ;命题2:()()f x g x x ==,(,0)x ∈-∞; 命题3:2()()f x g x x ==-,x ∈R ;均为真命题,选D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是AB 、1CC 的中点. (1)求三棱锥E DFC -的体积;(2)求异面直线1A E与1D F 所成的角的大小. 【解析】(1)121233V =⨯⨯=(2)4cos 5θ==,所成角为4arccos 518.已知函数()cos f x x x ωω=+. (1)当()03f π-=,且||1ω<,求ω的值;(2)在ABC ∆中,a 、b 、c 分别是角A 、B 、C的对边,a =,3b c +=,当2ω=,()1f A =时,求bc 的值.【解析】(1)()2sin()6f x x πω=+,()0336f k πωπππ-=⇒-+=,||1ω<,∴12ω= (2)()1f A =⇒3A π=,由余弦定理,2bc =19. 某公司利用APP 线上、实体店线下销售产品A ,产品A 在上市20天内全部售完,据统计,线上日销售量()f t 、线下日销售量()g t (单位:件)与上市时间t (*t N ∈)天的关 系满足:10110()102001020t t f t t t ≤≤⎧=⎨-+<≤⎩,2()20g t t t =-+(120t ≤≤),产品A 每件的销售利润为40115()201520t h t t ≤≤⎧=⎨<≤⎩(单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A 的日销售利润为()F t ,写出()F t 的函数解析式; (2)产品A 上市的哪几天给该公司带来的日销售利润不低于5000元?【解析】(1)22240(30),110()40(10200),101520(10200),1520t t t F t t t t t t t ⎧-+≤≤⎪=-++<≤⎨⎪-++<≤⎩(2)()5000515F t t ≥⇒≤≤,第5天到第15天20. 已知椭圆2222:1x y a bΓ+=(0a b >>),其左、右焦点分别为1F 、2F ,上顶点为B ,O为坐标原点,过2F 的直线l 交椭圆Γ于P 、Q两点,1sin BF O ∠=. (1)若直线l 垂直于x 轴,求12||||PF PF 的值; (2)若b =l 的斜率为12,则椭圆Γ上是否存在一点E ,使得1F 、E 关于直线l成轴对称?如果存在,求出点E 的坐标,如果不存在,请说明理由;(3)设直线1:l y =上总存在点M 满足2OP OQ OM +=,当b 的取值最小时,求直线l 的倾斜角α.【解析】(1)22231x y b +=,:l x =,2PF =,1PF =,12||5||PF PF = (2)22231x y +=,1:(2)2l y x =-,1(2,0)F -,关于l 对称点216(,)55E --,不在椭圆上 (3)设:()l y k x =-,点差得1:3OM l y x k=-,联立1:l y =,得(M -, 代入直线l()k =-,∴6b k =-≥,3k =,56πα=21. 无穷数列{}n a (*n N ∈),若存在正整数t ,使得该数列由t 个互不相同的实数组成,且对于任意的正整数n ,12,,,n n n t a a a +++⋅⋅⋅中至少有一个等于n a ,则称数列{}n a 具有性质T ,集合*{|,}n P p p a n N ==∈.(1)若(1)n n a =-,*n N ∈,判断数列{}n a 是否具有性质T ;(2)数列{}n a 具有性质T ,且11a =,43a =,82a =,{1,2,3}P =,求20a 的值; (3)数列{}n a 具有性质T ,对于P 中的任意元素i p ,k i a 为第k 个满足k i i a p =的项,记1k k k b i i +=-(*k N ∈),证明:“数列{}k b 具有性质T ”的充要条件为“数列{}n a 是周期为t 的周期数列,且每个周期均包含t 个不同实数”.【解析】(1)2t =,对任意正整数n ,2n n a a +=恒成立,∴具有性质T (2)分类讨论,得结论,6n ≥,{}n a 有周期性,周期为3,∴2082a a == (3)略。

相关文档
最新文档