ADC输入级(缓冲器)问题与ESD

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实例:

/Analogpassive/20070506040237.htm /Analogpassive/200705201038441.htm /Analogpassive/200710271212531.htm

当开关设在位置1时,采样电容器被充电至采样节点的电压(在该例中为VS),然后开关切换至位置2,此时采样电容器上累积的电荷被转移至采样电路的其它部分。这一过程不断反复。

上述不带缓冲器的开关电容器输入可引起严重的系统级问题。例如,将采样电容器充电到适当电压所需的电流必须由连接到模数转换器输入端的外部电路提供。当电容器切换到采样节点(图1中的开关位置1)时,对电容器进行充电需要大电流。这一瞬态电流的大小是采样电容器容值、电容开关频率和采样节点电压的函数。

这个开关电流由下式表示:

Iin=CVf

其中,C为采样电容器的电容值,V为采样节点上的电压(本例中用VS表示),f为采样开关进行开关操作的频率。这个开关电流会在采样节点产生较高的电流尖峰(图1)。

当设计模数转换器前端的模拟电路时,必须考虑这个开关电流的影响。由于该电流可以通过任何电阻,所以将产生压降,在模数转换器的采样节点处产生电压误差。如果转换器的输入端有高阻抗传感器或高阻抗滤波器相连,那么这个误差将非常大。

例如,假设电阻器被放置在模数转换器的前端,以隔离传感器并增强静电放电(ESD)保护功能(图2)。在本例中,采样电容器的容值为10pF,开关频率为1MHz。利用上式计算可得,瞬态电流约为25?A。当这个瞬态电流通过10k?的电阻器时,采样节点上将会产生250mV 的电压误差。由于采样节点可能被安排在下一个采样周期之前,因此这是最差情况下的近似

值。该建立时间取决于由10kΩ电阻器和采样电容器构成的RC时间常数,以及模数转换器输入端的寄生电容。寄生电容可能是由模数转换器的导线、电路板上的走线长度以及内部MOS开关电容造成的。此外,可能需要一个外部缓冲器电路来提供必需电流,并确保采样节点能被正确设置,从而保持转换器的线性特性。

不过,当开关频率更高时,放大器输出阻抗将增大,因此必须仔细选择放大器和相关电路才能解决瞬态开关电流问题。

为尽可能减小外部电路的瞬态电流要求,可以设置一个内部缓冲器(图3)。在这个实现方案中,模拟开关构成三种不同的状态。在位置1处,采样电容器被快速充电至采样节点电压(在本例中为VS)加上(或减去)缓冲器偏差(VOS)。在这一阶段,对电容器充电所需的瞬态电流由内部缓冲器电路提供。内部缓冲器可被优化设计,以便在所要求的开关频率下提供低阻抗输出,利用该开关频率可在指定时间对电容器进行正确充电。然后,开关被重新配置,在图3位置2处形成连接。在此阶段,采样电容器直接与模数转换器的采样节点相连。

接着,采样电容器被充电或放电,以便电容器电压与采样节点上的电压相等。此时可能仍然存在少量开关电流,但外部电路所需的电流将减少,这是由于电容器电压已经被充电至内部缓冲器的偏置电压范围内。最后,模拟开关切换到位置3处,此时采样后的电压可被传送至采样电路的其余部分。带缓冲器的开关电容器输入能够大幅降低模数转换器外部电路的瞬态电流,这是它的优点之一。在前一个例子中,采样电容器的容值为10pF,开关频率为1MHz。假设内部缓冲器的电压偏置为10mV,这将产生仅100nA的瞬态电流,该数值比不带缓冲的采样输入的瞬态电流小250倍。

在某些情况下,一个固定或可编程增益放大器被集成到模数转换器前端的同一个硅片中,这个放大器不仅有助于减小必须由外部电路提供的开关电流,而且还能对模拟信号进行放大。另外,还可以设置一个斩波稳定放大器来减小1/f噪声,这种噪声有时也被称为“闪烁噪声”。这种低频噪声是由处理工艺固有的MOS晶体管通道中的表面态引起的。斩波可以消除1/f噪声,并减小外部电流要求。不过,由于MOS开关不匹配,电路中仍将存在少量输入瞬态电流。

无论采用何种采样架构,模数转换器都必须实现某种形式的ESD保护。对于CMOS方案来说,通常采用箝位二极管进行ESD保护,如图4所示。箝位二极管可有效限制加在转换器内部晶体管上的电压。如果输入电压与电源轨之差超过了二极管压降(通常为0.7V),则二极管将开始传导电流并限制电压。但是,箝位二极管同样会出现电流泄漏,在设计模拟输入电路时必须考虑这个问题。尽管这个泄漏电流通常都较小,也许只有几皮安培,但该电流会随着温度升高而按比例大幅增加。

为高速ADC选择最佳的缓冲放大器

大器应该按照输出电压和截点指标提供良好的线性度,例如缓冲放大器必须至少提供和ADC 的输入要求一致出输出,线性度应优于ADC的线性度,以避免降低ADC的SFDR指标。

考虑缓冲放大器和ADC相位误差对杂散特性的影响时,可以由下式计算:

SFDR System=-20log{10exp[(-SFDR ADC)/20]+10exp[(-SFDR Buffer)/20]}(dBc)

ADC中的输入采样结构

技术分类:模拟设计|2007-10-31

来源:与非网|作者:高级产品市场营销工程师Kevin Tretter

输入缓冲器的进一步优化

有些情况下,可将一个固定或可编程增益放大器集成到A/D转换器前端的器件中。集成的放大器不仅有助于减小必须由外部电路提供的开关电流,而且还能对模拟信号进行放大。此外,还可采用一个斩波稳定放大器来减小1/f噪声,即所谓的“闪烁噪声”。这种低频噪声是生产工艺固有的MOS晶体管通道表面状态引起的。斩波可以消除1/f噪声,并减小外部电流要求。然而,由于MOS开关的不匹配,电路中仍将存在少量输入瞬态电流。

无论是何种采样结构,A/D转换器都必须采取ESD保护。对于CMOS方案来说,一般采用钳位二极管提供ESD保护,如图4所示。钳位二极管可有效限制加在转换器内部晶体管上的电压。如果输入电压与电源轨的差值超过二极管压降(通常为0.7V),则二极管将导通,从而起到限制电压的作用。但钳位二极管同样会出现电流泄漏,在设计模拟输入电路时必须考虑这个问题。尽管这一泄漏电流通常较小,也许只有几皮安,但该电流会随着温度升高而大幅增加。

相关文档
最新文档