九年级数学上册第二十三章旋转23.1图形的旋转第2课时旋转作图教案新版新人教版
2020九年级数学上册 23.1 图形的旋转(2)教案 (新版)新人教版
图形的旋转
本章学习第三种图形变换——旋转
着广泛的应用,特别是在解(证)有关等
学习,学生希望知道轴对称的性质,并利用性质解决问题,.掌握根据需要用旋转的知识设计出美丽的图案.应用已学的知识作图,设计出美
题或完成的任务
分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠
点旋转后的对应点:A′.
上图的两个旋转中,旋转中心不变.旋转角改变
中心,会出现不同
45°,得
90°、135°、
.
那么所画的图案就是绕
)选择不同的旋转中心、不同的旋转角,看
三:旋转的性质:。
23.1第2课时旋转作图+课件+2024-—2025学年人教版数学九年级上册
作图基本步骤
选择不同的旋转角和 旋转角图案不同
课堂训练
1.将图1绕O点顺时针旋转90°,得到图形是( B )
O
O
O
O
图1
A
B
C
课堂训练
2.将图2沿MN翻折180°,再旋转180°,所得图形是( D )
图2
A
B
C
D
课堂训练
3.下图为 4×4 的正方形网格,每个小正方形的边长均为 1,将
△OAB 绕点 O 逆时针旋转 90°, 你能画出△OAB 旋转后的图形 △O'A'B'吗?
a
β
αo
o
(2)两个旋转中,旋转中心不变,_旋__转__角_改变了,产生了不__同__的旋转效果.
新知探究
动手操作 下面的图形是某设计师设计图案的一部分,请你运用旋转 变换的方法,在方格纸中将图形绕点O顺时针依次旋转90°,180°, 270°,依次画出旋转后的图形,你会得到一个美丽的图案,涂色部 分不要涂错,否则不能出现理想的效果,你来试一试吧!B源自A'AB'
O
课堂训练
4. 画出下图所示的四边形 ABCD 以 O为中心,旋转角为 60°的
旋转图形.
A' D'
D B'
A
C
C'
B
O
课堂训练
5. 借助旋转我们可以设计出许多美丽的图案.请自己设计一幅作品.
第二十三章 旋转
23. 1 图形的旋转
第2课时 旋转作图
学习目标-新课导入-新知探究-课堂小结-课堂训练
学习目标
1.掌握旋转作图的一般步骤.(重点) 2.通过旋转设计美丽的图案.(难点)
九年级数学上册第二十三章旋转23.1图形的旋转第2课时图形的旋转—作图与设计教案新人教版(2021
2018-2019学年九年级数学上册第二十三章旋转23.1 图形的旋转第2课时图形的旋转—作图与设计教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学上册第二十三章旋转23.1 图形的旋转第2课时图形的旋转—作图与设计教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学上册第二十三章旋转23.1 图形的旋转第2课时图形的旋转—作图与设计教案(新版)新人教版的全部内容。
第2课时图形的旋转—-作图与设计※教学目标※【知识与技能】理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.【过程与方法】经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光看待生活中的有关问题,体验数学与现实生活的密切联系.【情感态度】进一步培养学生学习数学的兴趣和热爱生活的情感,体会生活中的旋转美,培养学生的美感,增强学生的艺术创作能力和艺术欣赏能力。
【教学重点】用旋转的有关知识画图。
【教学难点】根据需要设计美丽图案.※教学过程※一、情境导入提问(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?请同学独立完成下面的作图题.如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形。
分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心O;第二,旋转角∠BOG;第三,A点旋转后的对应点A′.二、探索新知从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.出示课件,展示月牙图案,教师手动鼠标,慢慢出现两片、三片……,形成图案,让学生通过观察,感受图案的形成过程,然后教师出示问题,让学生进行思考探究.问题:(1)你能说出上述图案是怎样得到的吗?(2)如果仅给你一片月牙形图案,你能设法得到图中的图案吗?(3)谈谈你对这些图案形成过程的认识?利用课件进一步展示“月牙”的旋转,让学生感受不同的旋转效果:(1)改变旋转角;(2)改变旋转中心.三、掌握新知例下面的图形是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图形绕点O顺时针依次旋转90°,180°,270°,依次画出旋转后的图形,你会得到一个美丽的图案,涂色部分不要涂错,否则不能出现理想的效果,你来试一试吧!分析:运用“对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角相等”等旋转的特征,很容易得到旋转后的图案.答案:四、活动操作把一个三角形进行旋转:(1)选择不同的旋转中心、不同的旋转角,看看旋转效果;(2)改变三角形的形状,看看旋转效果.五、巩固练习请以下列图形为基本图形,利用旋转进行图案设计.(1) (2) (3)六、归纳小结通过这节课的学习,你有哪些收获?你觉得利用旋转进行图案设计需要注意哪些问题?※布置作业※从教材习题23.1中选取.※教学反思※在现实世界中,广泛存在着物体的旋转,数学生研究图形的旋转,就是从抽象中而来的。
23.1 图形的旋转 第2课时 旋转作图
O
O
β
α
(1)旋转中心不变,改变旋转角(如图).
O1
α
O2
α
(2)旋转角不变,改变旋转中心.
(3)美丽的图案是这样形成的.
用旋转的知识设计图形
运用旋转作图应满足三要素:旋转中心、旋转方向、旋转角,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,选择不同的旋转中心、不同的旋转角会作出不同效果的图案.
轴对称:
下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
直线EF与GH相交于图形的中心O,且互相垂直,先把左边的两个“十字”作关于EF的轴对称图形,然后作这两部分关于GH的轴对称图形,这样就可以得到整个图形.
平移:
平移的方向
平移的距离
仅靠平移无法得到
旋转:
下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
整个图形可以看作是左边的两个小“十字”绕着图案的中心旋转3次,分别旋转90°、180°、270°前后图形组成的.
平移、 旋转相结合:
先平移
后旋转
下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
整个图形可以看作是左边的两个小“十字”先通过一次平移成图形右侧的部分,然后左、右部分一起绕图形的中心旋转90°前后图形组成的.
B
3. 如图,在Rt△ABC中,∠ACB=90°,∠A= 40°,以直角顶点C为旋转中心,将△ABC旋 转到△A′B′C的位置,其中A′、B′分别是A、 B的对应点,且点B在斜边A′B′上,直角边C A′交AB于点D,则旋转角等于( ) A.70° B.80° C.60° D.50°
九年级数学上册第二十三章旋转23.1图形的旋转教案2(新版)新人教版
与
态 度
经历对生活中旋转图形的观察、讨论、实践操作,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感;通过小组合作交流活动,培养学生合作学习的意识和研究探索的精神.
重 点
旋转的有关概念和旋转的基本性质
难 点
探索旋转的基本性质
教学流程安排
活动流程图
活动内容和目的
活动1:创设情境,导入新课
AD
E
BC
学生动手练习,教师及时展示学生练习结果,并及时给予点评.
通过例题讲解,让学生加深对新知识的理解,培养学生分析问题和解决问题的能力.
教 学 过 程 设 计
问题与情境
师生行为
设计意图
2、分析香港特别行政区的区徽图中的图形的旋转现象.
学生思考后,展示结果.
本次活动中,教师应重点关注:
(1)学生画出图形后,能否准确地运用旋转的基本性质表达出作图的理论依据.
(2)学生中作图的不同方法.
通过图形欣赏让学生感受数学图形的魅力,激发学生兴趣.
活动四 课堂练习 巩固提高
1、P64页练习
2、图形:线段、角、圆、梯形、正方形、菱形中绕一定点转动一定角度(小于360°)能与原图形重合的图形有( )
A、2个 B、3个
C、4个 D、5个
学生单独完成后及时反馈,教师及时点评.
教 学 过 程 设 计
问题与情境
师生行为
设计意图
2、动手做一做:
在一张半透明的薄纸与另一张纸片之间垫上一张复写纸,在薄纸上画ΔABC,并在ΔABC外面找一点0,再用一枚图钉在0处穿过.将薄纸绕点0旋转一个角度,再次把ΔABC复印在纸片上,并记成ΔA´B´C´.在纸片上分别连接0A、0B、0C、0A´、0B´、0C´.
2024年人教版九年级上册教学设计第23章 23.1 图形的旋转
第1课时旋转的概念及性质课时目标1.通过引入具体实例,让学生在发现、探索的过程中完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳,抽象概括的思维能力.2.通过对图形旋转的基本性质的探究,培养学生观察、操作、归纳、猜想的能力以及增强学生的合作意识,进一步发展空间观念的核心素养.3.通过让学生经历实验探究、知识应用等数学活动,进一步体会旋转的内涵,增强学生的数学应用意识,调动学生学习数学的主动性.学习重点旋转的概念及图形旋转的性质.学习难点旋转概念的形成过程及性质的探究过程.课时活动设计情境引入同学们都见过风车吧,小小的风车在风的吹动下不停的转动,生活中能够转动的物体还有很多,如风力发电机、飞机的螺旋桨、时钟的指针等,同学们知道它们所做的这种运动叫什么吗?设计意图:通过多媒体播放视频和图片,感受旋转现象,给学生产生视觉上的强烈冲击,产生强烈的求知欲,为下面探究新知识打下基础.让学生感悟数学来源于生活并应用于生活的辨证思想,初步感受旋转的概念.我们在前面的章节中已经学习了平移和轴对称两种图形的变化方式,分别研究了它们的定义、性质以及坐标表示等,类比它们的研究方式,你能获得旋转的有关知识吗?设计意图:通过设问使学生明确旋转和平移、轴对称一样都属于图形的变化,因此可以类比平移和轴对称去研究旋转,向学生渗透类比是发现解决问题方法的重要途径.另外一方面渗透获得定义的一种思想方法——从具体实例中归纳概括本质特征.探究新知如图1,钟表的指针在不停的转动,从3时到5时,时针转动了多少度?如图2,风车风轮的每个叶片在风的吹动下转动到新的位置.以上这些现象有什么共同特点呢?设计意图:让学生从具体实例中发现旋转现象,抽象出旋转的本质属性,类比图形平移的概念,给出旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.在此过程中培养学生的表达能力和总结能力,学会用数学语言表达现实世界,同时发展学生的抽象概括能力.新知讲解如图所示,在硬纸板上,挖一个三角形洞,再另挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A'B'C'),移开硬纸板.△A'B'C'是由△ABC绕点O旋转得到的.线段OA与OA'有什么关系?△AOA'与△BOB'有什么关系?△ABC与△A'B'C'的形状和大小有什么关系?设计意图:通过教师引导或者学生独立思考后小组交流,共同探究并归纳出旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.通过问题的形式展示知识的形成过程,让学生亲身经历性质的发现、猜想、验证、归纳概括的过程,发展学生的合情推理能力,归纳概括能力,培养学生的数学应用意识.典例精讲例1如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.解:因为点A是旋转中心,所以它的对应点是它本身.正方形ABCD中,AD=AB,△DAB=90°,所以旋转后点D与点B重合.设点E的对应点E'.因为旋转后的图形与旋转前的图形全等,所以△ABE'=△ADE=90°,BE'=DE.因此,在CB的延长线上取点E',使BE'=DE,则△ABE'为旋转后的图形.设计意图:通过在较为复杂的背景下,运用旋转的性质画出旋转后的图形,提高学生运用旋转性质的灵活性,进一步加深学生对旋转性质的理解.在解本题时,通过师生共同探讨,确定△ADE三个顶点的对应点,画出旋转后的图形,在活动中培养学生合作、交流、归纳的能力.课堂8分钟.1.教材第61页练习第2题,第62页习题23.1第2,10题.2.七彩作业.第1课时旋转的概念与性质一、旋转的概念.二、旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.三、例题讲解.教学反思第2课时旋转作图课时目标1.通过使学生亲身经历旋转的作图,感受旋转性质的内涵,促使学生由感性认识到理性思考的升华,提升学生学习数学的兴趣,发展学生的抽象思维能力.2.通过让学生从事自主学习、合作交流等数学活动,进一步体会旋转作图的依据,在动手实践中培养学生的空间观念,发展学生的数学思维.3.通过使学生经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光观察实际生活,感受数学与现实生活的密切联系,培养学生的应用意识.学习重点利用旋转的性质设计简单的图案.学习难点利用旋转性质进行旋转作图.课时活动设计回顾引入问题:如图,△AOB绕点O旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.设计意图:通过学生回顾前面所学过知识,并完成画图,既巩固了对旋转的性质的理解,又为新知学习作铺垫.教学时,教师应引导学生正确解读旋转性质,即按同一方向作出△AOA'=△BOG,且OA'=OA,这样达到由感性认识到理性思考,为利用旋转设计图案埋下伏笔.探究新知如图1,这是一片月牙形图案,把图1绕点O旋转,就会慢慢出现两片(图2、图3)、三片,……,最终形成图4中的图案,请同学们仔细观察,感受图案的形成过程,回答如下问题:(1)你能说出上述图案是怎样得到的吗?(2)如果仅给你一片月牙形图案,你能设法得到图中的图案吗?(3)谈谈你对这些图案形成过程的认识,与同伴交流.设计意图:通过观察这些美丽的图案,可激发学生的学习兴趣,增强动手画出类似美丽图案的欲望,发展学生的想象力、创造力,提高审美能力.同时通过思考,感受由旋转而得到美丽图案的形成过程,加深对旋转性质的理解,掌握利用旋转来设计美丽图案的方法.教学时,应让学生进行充分交流,并让学生自主画图感受新知,最终形成共识:选择不同的旋转中心,不同的旋转角旋转同一个图案,会出现不同的效果.新知讲解下图中的图形是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图中图形绕点P顺时针依次旋转90°,180°,270°,依次画出旋转后得到的图形,你会得到一个美丽的图案,涂阴影时不要涂错位置,否则不能出现理想的效果,你来试一试吧!(注:方格纸中小正方形的边长为1个单位长度)设计意图:运用“对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角相等”等旋转的特征,很容易得到旋转后的图案.设置这道问题的目的是进一步加深学生对旋转性质的内涵的准确把握,同时又为解决新问题寻求解题思路,既锻炼学生分析问题、解决问题的能力,又培养学生的应用意识.新知应用把一个三角形旋转.(1)选择某一固定点为旋转中心,旋转角分别为45°,90°和135°,请画出旋转后的图形,并观察旋转效果;(2)选取两个不同点为旋转中心,旋转角均为30°,请画出旋转后的图形,观察旋转效果;(3)改变三角形的形状,看看旋转的效果.设计意图:让学生动手操作,进一步理解旋转中心不变,改变旋转角,与旋转角不变,改变旋转中心产生不同效果的合理性,进而可激发学生利用旋转进行图案设计的欲望,锻炼学生的艺术创作力.典例精讲利用所学,请同学们思考如何将甲图案变成乙图案:设计意图:设置此题的目的在于让学生认识到已知两个全等图形,其中一个图形可由另一个图形经过一定的全等变换而得到,拓宽了学生的视野,加深了对旋转作图的理解及应用.拓展应用请以下列图形为基本图形,利用旋转进行图案设计,并与同伴交流效果.学生自主交流.设计意图:设置这道题目,一方面让学生通过画图感受数学的应用价值,另一方面由于学生各自审美观点不同,创造力不同,学生所画出的图案也各不相同.教学中,引导学生在动手操作,设计图案过程中深化对旋转性质的认知,培养学生的数学应用意识.课堂8分钟.1.教材第62页习题23.1第3,4,7,8题.2.七彩作业.第2课时旋转作图一、旋转的性质.二、旋转作图.选择不同的旋转中心,不同的旋转角旋转同一个图案,会出现不同的效果.三、例题讲解.教学反思。
人教版九年级上册数学23章旋转教案
第二十三章旋转23.1图形的旋转第1课时旋转的概念及性质1.掌握旋转的有关概念,理解旋转变换是图形的一种基本变换.2.理解旋转的性质.3.能综合运用旋转的性质解决有关代数、几何类问题.▲重点理解旋转的基本性质.▲难点1.探索旋转的基本性质.2.综合运用旋转的性质解决有关代数、几何类问题.◆活动1新课导入同学们,请欣赏下面几幅图案,并思考下列问题:在以前的学习中,我们已经学习了图形的平移和图形的轴对称,对于上述各图案,你能说出它们分别是由怎样的基本图形经过怎样的变换得到的吗?请同学们进入本章内容的学习.◆活动2探究新知1.教材P59思考.提出问题:(1)钟表的指针在不停地转动,指针都是绕着哪一点转动的?从3时到5时,时针由点P转到了哪一点?转动了多少度?旋转方向呢?(2)图中的风车的每一个叶片都是绕着哪一点转动的?若风车按顺时针方向转动一定的角度与自身重合,需要旋转多少度?(3)生活中还有类似的物体运动吗?观察这些现象?有什么共同特征?学生完成并交流展示.2.教材P60探究.根据探究内容,在横线上填上恰当的符号:OA__=__OA′,AB__=__A′B′,∠AOC__=__∠A′OC′,∠AOA′__=__∠BOB′,△ABC__≌__△A′B′C′.学生完成并交流展示.◆活动3知识归纳1.把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转.点O叫做__旋转中心__,转动的角叫做__旋转角__.2.旋转的三要素:__旋转中心__、__旋转方向__、__旋转角__.3.旋转的性质:(1)对应点到旋转中心的距离__相等__;(2)对应点与旋转中心所连线段的夹角等于__旋转角__;(3)旋转前、后的图形全等.◆活动4例题与练习例1在下列现象中,不属于旋转现象的是(C)A.方向盘的转动B.水龙头开关的转动C.电梯的上下移动D.钟摆的运动例2如图,图形甲变成图形乙,既能用平移,又能用旋转的是(C)例3如图,四边形ABCD是边长为4的正方形,DE=1,△ABF是△ADE旋转后的图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连接EF,那么△AEF是怎样的三角形?解:(1)旋转中心是点A;(2)∵△ABF是由△ADE旋转而成的,∴B是D的对应点.又∵∠DAB=90°,∴旋转了90°;(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17;(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.练习1.教材P59练习1,2,3题.2.教材P61练习1,2,3题.3.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C.若∠A=40°,∠B′=110°,则∠BCA′的度数是(B)A.110°B.80°C.40°D.30°◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结(1)旋转及旋转中心、旋转角的概念;(2)旋转的对应点及其应用;(3)旋转的基本性质;(4)旋转变换与平移、轴对称两种变换的共性与区别.1.作业布置(1)教材P62习题23.1第5,6题;(2)《名师测控》对应课时练习.2.教学反思第2课时旋转作图1.运用旋转的有关概念及旋转的基本性质作旋转后的图形及计算.2.经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光看待生活中的有关问题,体验数学与现实生活的密切关系.▲重点作旋转后的图形由旋转的三个条件确定.▲难点旋转的性质与几何性质的综合运用.◆活动1新课导入如图,将△ABO绕点O旋转得到△EFO,指出图中的旋转中心、旋转角、对应线段及对应角.解:旋转中心是点O;旋转角是∠AOE或∠BOF;对应线段:OA与OE,OB与OF,AB与EF;对应角:∠AOB与∠EOF,∠A与∠E,∠B与∠F.◆活动2探究新知1.教材P60例题.提出问题:(1)旋转中心是哪个点?点A,B的对应点分别是什么?(2)如何确定点E的对应点的位置?(3)讨论是否还有其他方法能画出旋转后的图形.学生完成并交流展示.2.教材P61.提出问题:(1)由例题的作图过程可以知道旋转作图应满足哪三个要素?如果选择不同的旋转中心、不同的旋转角旋转同一个图案,出现的效果会一样吗?(2)观察图23.1-7中的两个旋转,它们的旋转中心-样吗?旋转角呢?产生的效果一样吗?图23.1-8中的两个旋转,它们的旋转中心一样吗?旋转角呢?产生的效果一样吗?(3)我们可以利用旋转设计出许多美丽的图案,你能通过改变旋转中心或旋转角设计出与图23.1-9中不同的图案吗?◆活动3知识归纳1.旋转变换作图步骤:(1)确定__旋转中心__、__旋转角__和__旋转方向__;(2)找出能确定图形的__关键点__;(3)连接图形的各关键点与旋转中心,并按旋转方向分别将它们旋转一定的角度,得到各关键点的__对应点__;(4)按原图形的顺序连接这些对应点,得到旋转后的图形.2.选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.◆活动4例题与练习例如图,四边形ABCD绕点O旋转后,顶点A的对应点为E,试确定B,C,D的对应点的位置以及旋转后的四边形.解:如图,B,C,D的对应点分别是F,G,H,四边形EFGH是四边形ABCD旋转后得到的四边形.练习1.教材P62练习.2.在旋转过程中,确定一个三角形旋转的位置所需的条件是(A)①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角及旋转方向.A.①②④B.①②③C.②③④D.①③④3.在如图所示的网格中,画出“小旗”绕点O按顺时针方向旋转90°后得到的图案.解:如图所示.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结1.掌握图形旋转的基本作图,能综合运用平移、轴对称、旋转作图.2.熟练运用旋转的性质解决问题.1.作业布置(1)教材P63习题23.1第1,3,8题;(2)《名师测控》对应课时练习.2.教学反思23.2中心对称23.2.1中心对称1.认识两个图形关于某一点中心对称的本质.2.理解中心对称的性质,并可以判断两个图形是否成中心对称.3.会画某图形关于某点对称的图形,会确定对称中心.▲重点判断两个图形是否成中心对称.▲难点画某图形关于某点对称的图形,确定对称中心.◆活动1新课导入大家都知道,魔术表演很精彩.相信很多同学都看到过这样一个魔术:魔术师把三张扑克牌放在桌子上,如下图(上)所示,然后蒙住眼睛,请一个观众上台,把其中的一张旋转180°放好,魔术师解开蒙着眼睛的布后,看到四张牌如下图(下)所示,他很快确定了被旋转的那一张.聪明的同学们,你知道哪一张被观众旋转过吗?解:要确定哪张被旋转了,就要根据图形的性质进行判定,四张扑克牌中只有呈中心对称的那张牌被旋转后是看不出来的,这四张牌中只有第一张牌是中心对称图形,所以被观众旋转的牌为第一张.◆活动2探究新知1.教材P64思考.学生完成并交流展示.2.教材P64~65.提出问题:(1)图23.2-3中,△ABC与△A′B′C′全等吗?为什么?(2)分别连接对应点AA′,BB′,CC′,点O在线段AA′上吗?如果在,在什么位置?(3)由此你能得到中心对称的性质吗?学生完成并交流展示.◆活动3知识归纳1.把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点__对称__或__中心对称__;这个点叫做__对称中心__(简称中心);这两个图形在旋转后能重合的对应点叫做关于对称中心的__对称点__.2.中心对称的性质:(1)中心对称的两个图形,对称点所连线段都经过__对称中心__,而且被对称中心所__平分__;(2)中心对称的两个图形是__全等__图形.◆活动4例题与练习例1 如图,△A′B′C′与△ABC关于点O成中心对称,找出图中的对称点、对称线段.解:对称点:A与A′,B与B′,C与C′;对称线段:AB与A′B′,BC与B′C′,AC与A′C′.例2如图所示的四组图形中,左边图形与右边图形成中心对称的有(C)A.1组B.2组C.3组D.4组例3在等腰三角形ABC中,∠ACB=90°,BC=20 cm,如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在B′处,求点B′与点B的距离.解:连接BB′,由中心对称可知,BB′必过点O.∵△ABC为等腰三角形,∴AC=BC=20 cm.∴CO=12AC=10 cm.∴在Rt△BCO中,OB=OC2+BC2=102+202=105(cm).∴BB′=2OB=2×105=205(cm).答:点B′与点B的距离为20 5 cm.练习1.教材P66练习第1,2题.2.如图,△ABC与△A′B′C′是成中心对称的两个图形,则下列说法不正确的是(D)A.AO=A′O,BC=B′C′B.AC∥A′C′C.∠BAC=∠B′A′C′D.△ABC≌△A′OC′3.如图,已知△ABC和点O,画出△A′B′C′,使它与△ABC关于点O成中心对称.解:如图,△A′B′C′就是所求的三角形.4.如图所示的两个三角形是否成中心对称?若是,请画出对称中心.解:如图,点O是其对称中心.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结1.中心对称及对称中心的概念.2.中心对称的基本性质.(1)教材P69习题23.2第1,6题;(2)《名师测控》对应课时练习.2.教学反思23.2.2中心对称图形1.了解中心对称图形的概念及其性质.2.让学生掌握中心对称图形性质的应用.▲重点中心对称图形的概念、性质及其运用.▲难点中心对称图形性质的应用.◆活动1新课导入剪纸艺术是我国文化宝库中的优秀瑰宝.如右图是一幅剪纸作品,将它绕其中心点旋转180°后能与自身重合.我们把具有这样特征的图形叫做中心对称图形.观察下列图案,它们都具有这样的特征吗?本节课我们就学习中心对称图形的一些知识.◆活动2探究新知1.教材P66思考.提出问题:(1)线段AB绕点O旋转180°后的图形与它本身有什么关系?(2)▱ABCD绕点O旋转180°后,点A的对应点为__点C__,点C的对应点为__点A__,点B的对应点为__点D__,点D的对应点为__点B__,旋转后的图形与它本身有什么关系?学生完成并交流展示.2.(1)除了上面所讲的线段、平行四边形都是中心对称图形外,你还能说出一些其他的中心对称图形吗?(2)说说中心对称图形具有哪些特点?它与中心对称有什么区别和联系?学生完成并交流展示.◆活动3知识归纳1.把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形__重合__,那么这个图形叫做中心对称图形,该点就是__它的对称中心__.2.判断中心对称图形的“两个方法”:①若一个图形上,存在这样的一个点,使整个图形绕着这个点旋转180°后能够与原来的图形重合,则这个图形就是中心对称图形;②若图形中的对应点的连线都经过同一个点,并且被这个点平分,则这个图形就是中心对称图形.3.中心对称图形是指一个图形本身是中心对称的,它反映了一个图形的本质特征.而中心对称是指两个图形关于某一点对称,揭示的是两个全等图形之间的一种位置关系.◆活动4例题与练习例1随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是(A)例2判断下列图形是否为中心对称图形,如果是,请指出它们的对称中心.(1)线段;(2)等腰三角形;(3)平行四边形;(4)矩形;(5)圆;(6)角.解:(1)是中心对称图形,对称中心是线段的中点;(3)(4)是中心对称图形,对称中心是它们对角线的交点;(5)是中心对称图形,对称中心是圆心;(2)(6)不是中心对称图形.例3下列各图是中心对称图形吗?如果是,请画出它们的对称中心.解:三种图形都是中心对称图形,它们的对称中心如图中点A,B,C所示.练习1.教材P67练习第1,2题.2.下列商标图案中,既不是轴对称图形又不是中心对称图形的是(C),A),B),C),D) 3.下列四个图形中,既是轴对称图形又是中心对称图形的是(B),A),B),C),D) 4.如图,在矩形中挖去一个正方形,并用无刻度的直尺(即直尺只具有连线的功能),准确作出直线l,将剩下图形的面积平分.(保留作图痕迹)解:如图,直线l即为所求.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结1.中心对称的定义,会判断某个图形是否为中心对称图形.2.中心对称图形的性质及运用.1.作业布置.(1)教材P69习题23.2第2,8题;(2)《名师测控》对应课时练习.2.教学反思23.2.3关于原点对称的点的坐标1.会求关于原点对称的点的坐标.2.能运用关于原点成中心对称的点的坐标间的关系进行中心对称图形的变换.▲重点关于原点对称的点的坐标关系.▲难点关于原点对称的点的坐标关系的探索.◆活动1新课导入1.点P(3,-6)关于x轴对称的点的坐标为(B)A.(-3,6)B.(3,6)C.(-3,-6)D.(3,-6)2.在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位长度,得到线段O1A1,则点O1的坐标是__(3,0)__,点A1的坐标是__(4,3)__.3.点P(2 019,-2 020)关于y轴对称的点的坐标为__(-2__019,-2__020)__.在学习了平移变换和轴对称变换的时候,我们研究了在平面直角坐标系中点的平移规律和关于轴对称的点的坐标规律,那么关于原点对称的点的坐标有怎样的规律呢?请进入本课时的学习!◆活动2探究新知1.教材P68探究.提出问题:(1)填表:已知点的坐标A(4,0) B(0,-3) C(2,1) D(-1,2) E(-3,-4)关于原点O对称的点的坐标(2)观察上表:①它们的横坐标与横坐标的绝对值有什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间的符号又有什么特点?(3)你能由此归纳出关于原点对称的点的坐标特征吗? 学生完成并交流展示. 2.教材P 68 例2. 提出问题:(1)回顾不在坐标系中,作△ABC 关于点O 对称的图形是怎样作的?(2)由图可知A ,B ,C 三点的坐标分别是什么?A ,B ,C 三点关于原点对称的点的坐标分别是多少?把对称点标在坐标系内并顺次连接;(3)总结作一个图形关于原点对称的图形的步骤. 学生完成并交流展示. ◆活动3 知识归纳1.两个点关于原点对称时,它们的坐标符号相反,即P(x ,y)关于原点的对称点为__P′(-x ,-y)__. 2.在平面直角坐标系中,任一点A(x ,y)关于坐标轴、原点都存在对称点.关于x 轴的对称点的横坐标__相同__,纵坐标互为__相反数__.关于y 轴的对称点的横坐标__互为相反数__,纵坐标__相同__.关于原点对称的点的横、纵坐标都__互为相反数__.如:点A(x ,y)关于x 轴的对称点为A′__(x ,-y)__,关于y 轴的对称点为A′′__(-x ,y)__,关于原点对称的点为__(-x ,-y)__.◆活动4 例题与练习例1 (1)在平面直角坐标系中,点P(7,-8)关于原点的对称点P′的坐标是__(-7,8)__; (2)点P(2,n)与点Q(m ,-3)关于原点对称,则(m +n)2 020=__1__; (3)点M(5,-1)绕原点旋转180°后到达的位置是__(-5,1)__.例2 四边形ABCD 各顶点坐标分别为A(5,0),B(-2,3),C(-1,0),D(-1,-5),作出与四边形ABCD 关于原点O 对称的图形,并写出各点的对称点的坐标.解:如图,四边形A′B′C′D′即为所求.点A ,B ,C ,D 的对称点的坐标分别为:A′(-5,0),B′(2,-3),C′(1,0),D′(1,5).例3 已知点M(2-a ,b)与点N(-b -1,2)关于原点对称,求点M 的坐标. 解:∵点M(2-a ,b)与点N(-b -1,2)关于原点对称,∴⎩⎪⎨⎪⎧2-a =-(-b -1),b =-2,解得⎩⎪⎨⎪⎧a =3,b =-2.∴点M 的坐标为(-1,-2). 练习1.教材P 69 练习第1,2,3题.2.若点P(-20,a)与点Q(b ,13)关于原点对称,则a +b 的值是( D ) A .33 B .-33 C .-7 D .7。
精选-九年级数学上册第23章旋转23.1图形的旋转第2课时旋转作图课件新版新人教版
第 5 题答图
(3)证明:由旋转的过程可知,四边形 CC1C2C3 和四边形 AA1A2B 是正方形. ∵S 正方形 C C1C2C3=S 正方形 AA1A2B+4S△ABC, ∴a+b2=c2+4×12ab, 即 a2+2ab+b2=c2+2ab,∴a2+b2=c2.
例2答图
(2)如答图所示,画出对称点 D,连接 AD,AD 可以看作是由 AB 绕着点 A 逆时针旋转 90°得到的.
【点悟】 解答本题应熟练掌握平移、轴对称、旋转的特征.
当堂测评
1.[2017·广州]如图 23-1-16,将正方形 ABCD 中的阴影三角形绕点 A 顺时
针旋转 90°后,得到的图形为( A )
【点悟】 旋转作图的依据是图形上每一点都绕旋转中心沿相同的方向转动 了相同的角度,对应点到旋转中心的距离相等,这是旋转的基本规律,也是我 们作图的依据.对于旋转作图,应先确定图形的“关键点”,以局部带动整体 进行旋转.
类型之二 网格中的旋转作图 如图 23-1-15 所示,在边长为 1 个单位长度的小正方形组成的网格
2.在图 23-1-17 的网格图中,每个小正方形的边长均为
1,△ABC 的三个顶点都是网格线的交点,已知 B,C 两点的
坐标分别为(-1,-1),(1,-2),将△ABC 绕着点 C 顺时
针旋转 90°,则点 A 的对应点的坐标为 ( D )
A.(4,1)
B.(4,-1)
C.(5, 1)
D.(5,-1)
解:(1)如答图所示,△A1B1C1 为所求作的三角形; (2)如答图所示,△A2B2C2 为所求作的三角形.
4.[2017·宁波]在 4×4 的方格纸中,△ABC 的三个顶点都在格点上. (1)在图 23-1-24 中画出与△ABC 成轴对称且与△ABC 有公共边的格点三角 形(画出一个即可); (2)将图 23-1-25 中的△ABC 绕着点 C 按顺时针方向旋转 90°,画出经旋转 后的三角形.
第二十三章23.1旋转作图(教案)2023-2024学年九年级上册数学人教版(安徽)
一、教学内容
第二十三章23.1旋转作图,教学内容如下:
1.理解旋转的定义及性质;
2.学会使用旋转作图工具,如旋转尺、圆规等;
3.掌握旋转作图的基本步骤,并能运用到实际问题的解决中;
4.通过实际操作,提高空间想象能力和动手能力;
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《旋转作图》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,自行车的轮子转动、风扇的叶片旋转等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索旋转作图的奥秘。
2.教学难点
-理解旋转中心:学生在理解旋转中心的概念时可能会产生困惑,需要通过实际操作和讲解,使学生明确旋转中心的作用。
-旋转角度的度量:如何正确度量旋转角度,以及旋转角度与旋转后图形位置的关系,这是学生容易出错的地方。
-旋转作图的步骤:学生在操作过程中可能会忽略某些步骤,导致作图错源自。需要引导学生掌握正确的旋转作图步骤。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与旋转作图相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示旋转作图的基本原理,如使用旋转尺、圆规等工具进行作图。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
在总结回顾环节,我强调了对旋转作图知识点的掌握,并鼓励学生在生活中多观察、多思考旋转现象。我认为这一点非常重要,因为数学知识来源于生活,也应该服务于生活。
九年级数学上册23.1图形的旋转(第2课时)教案(新版)新人教版
图形的旋转教学内容23.1 图形的旋转(2).教学目标1.理解对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.2.用操作几何、实验,探究图形的旋转的基本性质.3.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.应用已学的知识作图,设计出美丽的图案.教学重点图形的旋转的基本性质及其应用.教学难点运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、导入新课学生活动:老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、新课教学1.上面的解题过程中,能否得出什么结论,请回答下面的问题:(1)A、B、C、D、E、F到O点的距离是否相等?(2)对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?(3)旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.2.探究:如图,在硬纸板上,挖一个三角形洞,再另挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC ),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A′B′C′ )移开硬纸板.△A'B'C'是由△ABC绕点O旋转得到的.线段OA与OA′有什么关系?∠AOA′与∠BOB′有什么关系?△ABC与△A′B′C′的形状和大小有什么关系?教师引导学生归纳旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.3.实例分析.例如右下图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,又由对应点到旋转中心的距离相等,即CB =CB′,就可确定B′的位置,如图所示.解:(1)连结CD,(2)以CB为一边作∠BCE,使得∠BCE=∠ACD,(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点.(4)连结DB′.则△DB′C就是△ABC绕C点旋转后的图形.4.旋转图形.在作图时,旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.下面就选择不同的旋转中心、不同的旋转角来进行研究.(1)旋转中心不变,改变旋转角.画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.(2)旋转角不变,改变旋转中心.画出以下图,四边形ABCD分别为O1、O2为中心,旋转角都为30°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.三、巩固练习1.教材第61页练习1、2.2.教材第62页练习.四、归纳小结今天你学习了什么?有什么收获?五、布置作业习题23.1 第5、6题.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
2019九年级数学上册 23.1 图形的旋转(2)教案 (新版)新人教版
图形的旋转
本章学习第三种图形变换——旋转
着广泛的应用,特别是在解(证)有关等
学习,学生希望知道轴对称的性质,并利用性质解决问题,.掌握根据需要用旋转的知识设计出美丽的图案.应用已学的知识作图,设计出美
题或完成的任务
分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠
点旋转后的对应点:A′.
上图的两个旋转中,旋转中心不变.旋转角改变
中心,会出现不同
45°,得
90°、135°、
.
那么所画的图案就是绕
)选择不同的旋转中心、不同的旋转角,看
三:旋转的性质:。
人教版九年级数学上册第二十三章旋转23.1图形的旋转第2课时图形的旋转_作图与设计教案新版
第 2 课时图形的旋转——作图与设计※授课目※【知与技术】理解不同样的旋中心、不同样的旋角度,会出不同样的收效,掌握依照需要用旋的知出美的案 .【程与方法】生活中旋象的察、推理和分析程,学会用数学的目光对待生活中的相关,体数学与生活的亲密系.【感情度】一步培养学生学数学的趣和生活的感情,领悟生活中的旋美,培养学生的美感,增学生的作能力和欣能力.【授课重点】用旋的相关知画.【授课点】依照需要美案.※授课程※一、情境入提(1)各点到旋中心的距离有何关系呢?(2)各点与旋中心所段的角与旋角有何关系?(3)两个形是旋前后的形,它全等?同学独立达成下面的作 .如,△ AOB O点旋后, G点是 B 点的点,作出△ AOB旋后的三角形.分析:要作出△ AOB旋后的三角形,找出三方面:第一,旋中心 O;第二,旋角∠ BOG;第三, A 点旋后的点 A′.二、研究新知从上面的作中,我知道,作足三要素:旋中心、旋角、点,而旋中心、旋角固定下来,点就自但是然地固定下来.因此,下面就不同样的旋中心、不同样的旋角来行研究.出示件,显现月牙案,教手鼠,慢慢出两片、三片⋯⋯,形成案,学生通察,感觉案的形成程,尔后教出示,学生行思虑研究.:( 1)你能出上述案是怎获取的?(2)若是你一片月牙形案,你能法获取中的案?(3)你些案形成程的?1)改旋利用件一步显现“月牙”的旋, 学生感觉不同样的旋收效:(角;( 2)改旋中心.三、掌握新知例下面的形是某案的一部分,你运用旋的方法,在方格中将形点O依次旋90°, 180°, 270°,依次画出旋后的形,你会获取一个美丽的图案,涂色部分不要涂错,否则不能够出现理想的收效,你来试一试吧!分析:运用“对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角相等”等旋转的特点,很简单获取旋转后的图案.答案:四、活动操作把一个三角形进行旋转:(1)选择不同样的旋转中心、不同样的旋转角,看看旋转收效;(2)改变三角形的形状,看看旋转收效.五、坚固练习请以以下列图形为基本图形,利用旋转进行图案设计.(1)(2)(3)六、概括小结经过这节课的学习,你有哪些收获?你感觉利用旋转进行图案设计需要注意哪些问题?※部署作业※从教材习题23.1 中采纳.※授课反省※在现实世界中,宽泛存在着物体的旋转,数学生研究图形的旋转,就是从抽象中而来的 . 当我们画一个经过旋转后的图形,在纸上毕竟是不能能再现其真切的搬动过程,这个过程只能存在于想象中,因此我们重视的是旋转后的结果,即经过旋转后的图形. 要准确画出一个经过旋转后的图形,特别是旋转构造复杂的图形,就需要必然的方法. 我们知道:点动成线,线动成面,面动成体 . 因此旋转图形的基本思路为:面的旋转经过线段(特殊线段)的旋转实现;线段的旋转经过点(特别点)的旋转实现.。
人教版九年级数学上册第二十三章旋转23.1图形的旋转第2课时旋转作图教案新版
第 2 课时旋转作图1授课目标1.理解选择不同样的旋转中心、不同样的旋转角度,会出现不同样的收效.2.掌握依照需要用旋转的知识设计出美丽的图案.2预习反应自学教材 P61,达成以下问题.1.回首思虑.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.学生独立达成作图题.如图,△ ABC绕 B点旋转后, O点是 A 点的对应点,作出△ABC旋转后的三角形.【点拨】要作出△ ABC旋转后的三角形,应找出三方面的关系:①旋转中心B;②旋转角∠ ABO;③ C 点旋转后的对应点C′.知识研究从上面的作图题中,我们知道,作图应知足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自但是然地固定下来.因此,下面就选择不同样的旋转中心、不同样的旋转角来进行研究.把一个图案以O 点为中心进行旋转,选择不同样的旋转中心,不同样的旋转角,会出现不同样的收效图形.1.旋转中心不变,改变旋转角.2.旋转角不变,改变旋转中心.我们能够设计成如图美丽的图案.因此,从以上的绘图中,我们能够获取旋转中心不变、改变旋转角与旋转角不变、改变旋转中心会产生不同样的收效,因此我们能够经过旋转设计出美丽的图案.03新课讲解A 的对应点为点D,试确定极点B 的对应点例 1如图,△ ABC绕C点旋转后,极点的地址,以及旋转后的三角形.【解答】图略.【点拨】绕 C 点旋转, A 点的对应点是 D 点,那么旋转角就是∠ACD,依照对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ ACD,又由对应点到旋转中心的距离相等,即CB= CB′,即可确定B′的地址.例 2 ( 23.1 第 2 课时习题 ) 如图,在平面直角坐标系中,△ABC的三个极点的坐标分别是A(-3,2),B(-1,4), C(0,2).(1) 将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;(2)平移△ ABC,若 A 的对应点 A2的坐标为(-5,-2),画出平移后的△ A2B2C2;(3)若将△ A2B2C2绕某一点旋转能够获取△ A1B1C,请直接写出旋转中心的坐标.【解答】(1) △A1B1C以以下列图.(2)△ A2B2C2以以下列图.(3)以以下列图,旋转中心为 ( - 1, 0) .绕点【追踪训练】B 逆时针旋转如图,直角坐标系中点 A 坐标为 (5 ,3) ,点90°获取点 C,则点 C的坐标为 ( - 2, 4) .B 坐标为(1 ,0) ,将点A4坚固训练1.将左图所示图案绕点O依照顺时针方向旋转90°,获取的图案是( C)2.如图,在正方形网格中,将△ABC绕点 A 旋转后获取△ ADE,则以下旋转方式中,符合题意的是 ( B)A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°3.如图,△ OAB绕点 O逆时针旋转80°到△ OCD的地址,已知∠ AOB=45°,则∠ AOD 等于 35°.4.如图,正方形 OABC的两边 OA, OC分别在 x 轴, y 轴上,点 D(4, 3) 在边 AB上,以C 为中心,把△ CDB旋转 90°,则旋转后点D 的对应点 D′的坐标是 ( - 1,0) 或 (1 ,8) .5讲堂小结1.旋转作图需要找到三要素,分别是什么?2.利用旋转作图我们能够设计出美丽的图案.。
九年级数学上册 23.1 图形的旋转 第2课时 旋转作图及变换教案1 (新版)新人教版
23.1 图形的旋转第2课时旋转作图及变换教学内容选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案.教学目标理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.重难点、关键1.重点:用旋转的有关知识画图.2.难点与关键:根据需要设计美丽图案.教具、学具准备小黑板教学过程一、复习引入1.(学生活动)老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.请同学独立完成下面的作图题.如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.(老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′.二、探索新知从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.1.旋转中心不变,改变旋转角画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.2.旋转角不变,改变旋转中心画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30•°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.例1.如下图是菊花一叶和中心与圆圈,现以O•为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.分析:只要以O为旋转中心、旋转角以上面为变化,•旋转长度为菊花的最长OA,按菊花叶的形状画出即可.解:(1)连结OA(2)以O点为圆心,OA长为半径旋转45°,得A.(3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A、A、A、A、A、A.(4)按菊花一叶图案画出各菊花一叶.那么所画的图案就是绕O点旋转后的图形.例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,•请同学画出图案,它还是原来的菊花吗?老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.三、巩固练习教材P65 练习.四、应用拓展例3.如图,如何作出该图案绕O点按逆时针旋转90°的图形.分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案.解:(1)连结OA,过O点沿OA逆时针作∠AOA′=90°,在射线OA′上截取OA′=OA;(2)用同样的方法分别求出B、C、D、E、F、G、H的对应点B′、C′、D′、E′、F′、G′、H′;(3)作出对应线段A′B′、B′C′、C′D′、D′E′、E′F′、F′A′、A•′G′、G′D′、D′H′、H′A′;(4)所作出的图案就是所求的图案.五、归纳小结(学生归纳,老师点评)本节课应掌握:1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;2.作出几个复合图形组成的图案旋转后的图案,•要先求出图中的关键点──线的端点、角的顶点、圆的圆心等.六、布置作业1.教材P67 综合运用7、8、9.1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.。
九年级数学上册第二十三章旋转23.1图形的旋转(第2课时)学案设计(新版)新人教版
第二十三章旋转23.1 图形的旋转23.1 图形的旋转(第2课时)学习目标1.掌握对应点到旋转中心的距离相等.2.掌握对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等以及三个以上图形的旋转的基本性质的运用.学习过程一、自主思考1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?二、学习新知【例1】如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形.【例2】如图,四边形ABCD是边长为1的正方形,且DE=,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连接EF,那么△AEF是怎样的三角形?三、课堂练习1.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()2.在旋转图形中,各对应点与旋转中心的距离.3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.四、自我检测1.如图 ,△ABC和△ADE均是顶角为 2°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转 2°后得到的图形是,它们之间的关系是,其中BD= .2.如图2,自正方形ABCD的顶点A引两条射线分别交BC,CD于E,F两点,∠EAF= 5°.在保持∠EAF= 5°的前提下,当点E、F分别在边BC,CD上移动时,BE+DF与EF的关系是.3.如图3,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?4.如图4,以△ABC的三个顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形的面积之和是多少?布置作业1.必做题:课本第61页练习第1,2题.2.选做题:课本第61页练习第3题.参考答案一、自主思考1.把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.2.旋转前后重合的点就是对应点.3.能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°, 20°, 80°,2 0°,300°形成的.二、学习新知例1:解:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD.根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB'=ACD,又由对应点到旋转中心的距离相等,即CB=CB',就可确定B'的位置,如图所示.例2:解:由△ABF是△ADE的旋转图形,可直接得出旋转中心为点A和旋转角为∠DAB=90°.根据旋转前后的对应线段相等,得AF=AE.由勾股定理很容易得到AE=,即AF=.因为△ABF与△ADE是完全重合的,所以△AEF是直角三角形.因为AE=AF,所以连接EF得△AEF为等腰直角三角形.三、课堂练习1.D2.相等3.解:∵四边形ABCD、四边形AKLM都是正方形,∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°,∴△ADM是以A为旋转中心、∠BAD为旋转角由△ABK旋转而成的,∴BK=DM.四、自我检测1.△ACE 全等CE2.相等3.全等4.2。
九年级数学上册第23章旋转23.1图形的旋转教案新版新人教版
图形的旋转旋转前后能够重合的点叫做时钟上的秒针在不停地转动,大风车的转动给人们带来快乐,飞速转动的电风扇叶片给人们带来一丝丝的凉意.图15.2.1 教师提问 (1)上面的情景中,哪些零部件做转动? (1)在这些转动中有哪些共同特征? (1)在转动过程中,它们的形状、大小、和位置是否发生了改变? 提问预设在这里为避免学生对问题理解的偏差,可以引导学生和前面平移特征作类似的探讨。
二、学生活动学生先独立思考、然后交流讨论,形成共识,并回答老师三个提问。
这就是我们的今天所要研究的课题“图形的旋转”(板书)三、讲授新课 (一)旋转的定义如图15.2.2中的两个图形都可以看成是由一个或几个基本的平面图形转动而产生的奇妙画面.学生在独立思考、相互探讨、交流的过程中形成共识后,教师再归纳关板书旋转的定义: 在平面内,将一个图形绕一个定点沿某个方向转动一定的角度,这样的图形运动叫做图形的旋转。
这个定点叫旋转中心。
转动的角称为旋转角。
旋转不变图形的形状和大小〔强调〕(1)旋转过程中,旋转中心始终保持不动。
(2)旋转过程中,旋转的方向是相同的。
(3)旋转过程静止时,图形上的每一点的旋转 角是一样的。
2、增强学生的合作交流意识,形成共识,引入新课.3、教师归纳概括,使学生在原有认知的基础上,理解旋转的概念。
4、对旋转的概念加以巩固和深化。
5、动手操作,体会知识的形成过程,加深对旋转的理解。
OAAO B15.2.6图15.2.615.2.7(1),点M是线段AB上一点,将线段A顺时针方向旋转90°,旋转后的线段与原线?如果逆时针方向旋转图15.2.7、如图,△ABC按逆时针方向转动一个角后成为△AB′C′,图中哪一点是旋转中心?旋转了多少度(第3题)如图,△ABC与△都是等腰直角三角形,∠CA ED都是直角,点E针旋转后能与△ADE重合,那么哪一点是旋转中心(第4题)一、通过具体实例认识旋转,探索它的基本性质二、会找出旋转前后图形中的对应点、对应线段、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时旋转作图
01 教学目标
1.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.
2.掌握根据需要用旋转的知识设计出美丽的图案.
02 预习反馈
自学教材P61,完成下列问题.
1.回顾思考.
(1)各对应点到旋转中心的距离有何关系呢?
(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?
(3)两个图形是旋转前后的图形,它们全等吗?
2.学生独立完成作图题.
如图,△ABC绕B点旋转后,O点是A点的对应点,作出△ABC旋转后的三角形.
【点拨】要作出△ABC旋转后的三角形,应找出三方面的关系:①旋转中心B;②旋转角∠ABO;③C点旋转后的对应点C′.
知识探究
从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.
把一个图案以O点为中心进行旋转,选择不同的旋转中心,不同的旋转角,会出现不同的效果图形.
1.旋转中心不变,改变旋转角.
2.旋转角不变,改变旋转中心.
我们可以设计成如图美丽的图案.
因此,从以上的画图中,我们可以得到旋转中心不变、改变旋转角与旋转角不变、改变旋转中心会产生不同的效果,所以我们可以经过旋转设计出美丽的图案.
03 新课讲授
例1如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形.
【解答】图略.
【点拨】绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置.
例2(23.1第2课时习题)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-3,2),B(-1,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;
(2)平移△ABC,若A的对应点A2的坐标为(-5,-2),画出平移后的△A2B2C2;
(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.
【解答】(1)△A1B1C如图所示.
(2)△A2B2C2如图所示.
(3)如图所示,旋转中心为(-1,0).
【跟踪训练】如图,直角坐标系中点A坐标为(5,3),点B坐标为(1,0),将点A 绕点B逆时针旋转90°得到点C,则点C的坐标为(-2,4).
04 巩固训练
1.将左图所示图案绕点O按照顺时针方向旋转90°,得到的图案是(C)
2.如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是(B)
A.顺时针旋转90°
B.逆时针旋转90°
C.顺时针旋转45°
D.逆时针旋转45°
3.如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD 等于35°.
4.如图,正方形OABC的两边OA,OC分别在x轴,y轴上,点D(4,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是(-1,0)或(1,8).
05 课堂小结
1.旋转作图需要找到三要素,分别是什么?
2.利用旋转作图我们可以设计出美丽的图案.。