2020-2021初中数学图形的平移,对称与旋转的易错题汇编(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021初中数学图形的平移,对称与旋转的易错题汇编(1)
一、选择题
1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是( )
A .
B .
C .
D .
【答案】D
【解析】
【分析】 如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.
【详解】
A.是轴对称图形;
B.是轴对称图形;
C.是轴对称图形;
D.不是轴对称图形;
故选D.
【点睛】
本题考查的是轴对称图形,熟练掌握轴对称图形的概念是解题的关键.
2.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若
ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )
A .102o
B .112o
C .122o
D .92o
【答案】B
【解析】
【分析】 由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202
∠∠∠==
=o ,再由三角形内角和定理求出A ∠,即可得到结果.
【详解】 AD //BC Q ,
ADB DBC ∠∠∴=,
由折叠可得ADB BDF ∠∠=,
DBC BDF ∠∠∴=,
又DFC 40∠=o Q ,
DBC BDF ADB 20∠∠∠∴===o ,
又ABD 48∠=o Q ,
ABD ∴V 中,A 1802048112∠=--=o o o o ,
E A 112∠∠∴==o ,
故选B .
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.
3.如图,在边长为1522
的正方形ABCD 中,点E ,F 是对角线AC 的三等分点,点P 在正方形的边上,则满足PE+PF=55的点P 的个数是( )
A .0
B .4
C .8
D .16
【答案】B
【解析】
【分析】 作点F 关于BC 的对称点M ,连接EM 交BC 于点P ,则PE+PF 的最小值为EM ,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=55
【详解】
作点F 关于BC 的对称点M ,连接EM 交BC 于点P ,则PE+PF 的最小值为EM . ∵正方形ABCD 1522, ∴1522
2=15, ∵点E ,F 是对角线AC 的三等分点,
∴EC=10,FC=AE=5,
∵点M 与点F 关于BC 对称,
∴CF=CM=5,∠ACB=∠BCM=45°,
∴∠ACM=90°,
∴222210555EC CM +=+=
∴在BC 边上,只有一个点P 满足PE+PF=55, 同理:在AB ,AD ,CD 边上都存在一个点P ,满足PE+PF=55,
∴满足PE+PF=55的点P 的个数是4个.
故选B .
【点睛】
本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.
4.已知点P (a +1,12a -
+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )
A .
B .
C .
D . 【答案】C
【解析】
试题分析:∵P (1a +,12
a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102
a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .
考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.
5.如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是( )
A.(1,0)B.(0,0)C.(-1,2)D.(-1,1)
【答案】C
【解析】
【分析】
根据其中一个三角形是由另一个三角形绕着某点旋转一定的角度得到的,那么对应点到旋转中心的距离相等,找出这个点即可.
【详解】
解:如图所示,根据旋转的性质,对应点到旋转中心的距离相等,只有(-1,2)点到三角形的三顶点距离相等,故(-1,2)是图形的旋转中心,
故选:C.
【点睛】
此题主要考查了旋转的性质,根据旋转中心到对应点的距离相等,是解决问题的关键.
6.下列说法正确的是()
A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小
B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分
C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2
D.在平移和旋转图形中,对应角相等,对应线段相等且平行
【答案】B
【解析】
【分析】
分别利用图形的平移以及中心对称图形的性质和旋转的性质分别判断得出即可.
【详解】
A、平移不改变图形的形状和大小,旋转也不改变图形的形状和大小,故此选项错误;
B、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分,此选项正确;
C、在平面直角坐标系中,一点向右平移2个单位,横坐标加2,故此选项错误;
D、在平移中,对应角相等,对应线段相等且平行,旋转则对应线段有可能不平行,故此选项错误.
故选B.
7.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣7
b ,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20
【答案】C
【解析】
【分析】
由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.
【详解】
∵且|a-c=0,
∴a=c,b=7,
∴P(a,7),PQ∥y轴,
∴PQ=7-3=4,
∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,
∴4a=20,
∴a=5,
∴c=5,
∴a+b+c=5+7+5=17,
故选C.
【点睛】
本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.
8.下列图形中,不是中心对称图形的是()
A.平行四边形B.圆C.等边三角形D.正六边形
【答案】C
【解析】
【分析】
根据中心对称图形的定义依次判断各项即可解答.
【详解】
选项A、平行四边形是中心对称图形;
选项B、圆是中心对称图形;
选项C、等边三角形不是中心对称图形;
选项D、正六边形是中心对称图形;
故选C.
【点睛】
本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.
9.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是( )
A.30°B.60°C.72°D.90°
【答案】C
【解析】
【分析】
紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.
【详解】
解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,
故选:C.
【点睛】
正确认识旋转对称图形的性质,能够根据图形的特点观察得到一个图形可以看作几个全等的部分.
10.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()
A.B.C.D.
【答案】D
【解析】
【分析】
根据轴对称图形的概念对各选项分析判断即可得解.
【详解】
A、不是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项正确.
故选:D.
【点睛】
本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
11.有两条或两条以上对称轴的轴对称图形是()
A.等腰三角形 B.角 C.等边三角形 D.锐角三角形
【答案】C
【解析】A.等腰三角形只有一条对称轴;
B.角也只有一条对称轴,是角平分线所在的直线;
C.等边三角形有三条对称轴;
D.锐角三角形的对称轴数量不确定.
故选:C
12.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC 的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()
A.26 B.20 C.15 D.13
【答案】D
【解析】
【分析】
直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.
【详解】
解:∵将线段BD沿着BC的方向平移得到线段EF,
∴EF=DB=5,BE=6,
∵AB=AC,BC=9,
∴∠B=∠C,EC=3,
∴∠B=∠FEC,
∴CF=EF=5,
∴△EBF的周长为:5+5+3=13.
故选D.
【点睛】
本题考查了平移的性质,根据题意得出CF的长是解题关键.
13.如图所示,把一张矩形纸片对折,折痕为AB,再把以AB的中点O为顶点的平角
AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是( )
A .正三角形
B .正方形
C .正五边形
D .正六边形
【答案】D
【解析】
【分析】 对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
【详解】
由第二个图形可知:∠AOB 被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.
故选D .
【点睛】
本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.
14.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A .
B .
C .
D . 【答案】C
【解析】
【分析】
根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】
A 、是轴对称图形,不是中心对称的图形,故本选项不符合题意;
B 、不是轴对称图形,是中心对称的图形,故本选项不符合题意;
C 、既是轴对称图形,又是中心对称的图形,故本选项符合题意;
D 、是轴对称图形,不是中心对称的图形,故本选项不符合题意.
故选:C .
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
15.如图,将ABC V 沿射线BC 方向平移2 cm 得到DEF V .若ABC V 的周长为
13 cm,则四边形ABFD的周长为()
A.12 cm B.15 cm C.17 cm D.21 cm
【答案】C
【解析】
【分析】
根据平移的特点得AD=BE=CF=2,将四边形ABFE的周长分解为AB+BC+DF+AD+CF的形式,其中AB+BC+DF=AB+BC+AC为△ABC的周长.
【详解】
∵△DEF是△ABC向右平移2个单位得到
∴AD=CF=BE=2,AC=DF
四边形ABFD的周长为:AB+BC+DF+AD+CF=(AB+BC+AC)+(AD+CF)=13+2+2=17
故选:C.
【点睛】
本题考查平移的性质,需要注意,平移前后的图形是完全相同的,且对应点之间的线段长即为平移距离.
16.下列几何图形中,既是轴对称图形又是中心对称图形的是()
A.B.C.D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、是中心对称图形,不是轴对称图形,故本选项错误;
C、是中心对称图形,也是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误;
故选:C.
【点睛】
此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
17.下列图形中,是轴对称图形的是()
A.B.C.D.
【答案】D
【解析】
【分析】
根据轴对称图形的概念逐一判断即可.
【详解】
A、B、C都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;
D、是轴对称图形,符合题意.
【点睛】
本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
18.小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是()
A.21:10 B.10:21
C.10:51 D.12:01
【答案】C
【解析】
【分析】
利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
【详解】
根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51,
故选C.
【点睛】
本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.
19.下列图形中,不是轴对称图形的是()
A.有两个内角相等的三角形 B.有一个内角为45°的直角三角形
C.有两个内角分别为50°和80°的三角形 D.有两个内角分别为55°和65°的三角形
【答案】D
【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;
B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;
C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;
D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形.
故选:D.
20.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.
【答案】B
【解析】
根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,
A、是轴对称图形,不是中心对称图形,不符合题意;
B、是轴对称图形,也是中心对称图形,符合题意;
C、是轴对称图形,不是中心对称图形,不符合题意;
D、是轴对称图形,不是中心对称图形,不符合题意.
故选B.。

相关文档
最新文档