人教版九年级上册数学第二十二章 二次函数 培优测试卷(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九上数学第二十二章二次函数培优测试卷
考试时间:120分钟满分:120分
一、选择题(本大题有12小题,每小题3分,共36分)
下面每小题给出的四个选项中,只有一个是正确的.
1.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()
A. 有最大值﹣1,有最小值﹣2
B. 有最大值0,有最小值﹣1
C. 有最大值7,有最小值﹣1
D. 有最大值7,有最小值﹣2
2.已知m>0,关于x的一元二次方程(x+1)(x﹣2)﹣m=0的解为x1,x2(x1<x2),则下列结论正确的是()
A. x1<﹣1<2<x2
B. ﹣1<x1<2<x2
C. ﹣1<x1<x2<2
D. x1<﹣1<x2<2
3.如图,抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中,错误的是()
A. B. C. D.
(第3题)(第10题)
4.把一个足球垂直于水平地面向上踢,该足球距离地面的高度(米)与所经过的时间(秒)之间的关系为. 若存在两个不同的的值,使足球离地面的高度均为(米),则的取值范围()
A. B. C. D.
5.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()
A. M=N-1或M=N+1
B. M=N-1或M=N+2
C. M=N或M=N+1
D. M=N或M=N-1
6.已知点A(t,y1),B(t+2,y2)在抛物线y= 的图象上,且-2<t<2,则线段AB长的最大值、最小值分别是( )
A. ,2
B. ,
C. ,2
D. ,
7.已知二次函数y=ax2+bx+c(a≠0)的图象过点(O,m)(2,m)(m>0),与x轴的一个交点为(x1,0),且﹣1<x1<0.则下列结论:①若点()是函数图象上一点,则y>0;②若点是函数图象上一点,则y>0;③(a+c)2<b2.其中正确的是()
A. ①
B. ①②
C. ①③
D. ②③
8.已知抛物线与y轴交于点A,与直线(k为任意实数)相交于B,C两点,则下列结论错误的是()
A. 存在实数k,使得为等腰三角形
B. 存在实数k,使得的内角中有两角分别为30°和60°
C. 任意实数k,使得都为直角三角形
D. 存在实数k,使得为等边三角形
9.四位同学在研究函数y1=ax2+ax-2a (a是非零常数)时,甲发现该函数图象总经过定点;乙发现若抛物线y1=ax2+ax-2a总不经过点P(x0-3,x02-16),则符合条件的点P有且只有2个;丙发现若直线y2=kx+b与函数y1交于x轴上同一点,则b=-k;丁发现若直线y3=m (m≠0)与抛物线有两个交点(x1,y1)(x2,y2),则x1+x2+1=0.已知这四位同学中只有一位发现的结论是错误的,则该同学是( )
A. 甲
B. 乙
C. 丙
D. 丁
10.二次函数的图象如图,下列四个结论:
;;关于x的一元二次方程
11.如图,抛物线y=-x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个判断:①当x>0时,y>0;②若a=-1,则b=3;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④点C关于抛物线对称轴的对称点为E,点G、F分别在x轴和y轴上,当m=2时,四边形EDGF周长的最小值为.其中,判断正确的序号是()
A. ①②
B. ②③
C. ①③
D. ②③④
12.已知如图,抛物线y=-x2-2x+3交x轴于A、B两点,顶点为C,CH⊥AB交x轴于H,在CH右侧的抛物线上有一点P,已知PQ⊥AC,垂足为Q,当∠ACH=∠CPQ时,此时CP的长为()
A. B. C. D.
(第11题)(第12题)(第14题)(第15题)
二、填空题(本大题有6小题,每小题3分,共18分)
要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.
13.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为________元时,该服装店平均每天的销售利润最大.
14.为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD的面积最大值是________m2.
15.已知函数,若使y=k成立的x值恰好有三个,则k的值为________.
16.如图,矩形中,,,点是矩形的边上的一动点,以
为边,在的右侧构造正方形,连结,则的最小值为________.
17.已知关于的方程 ( 为实数)两非负实数根,则的最小值是________.
18.二次函数y=ax2+bx+c(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:
①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;
④若△ABC是等腰三角形,则b=﹣.其中正确的有________(请将结论正确的序号全部填上)
19.(8分)在平面直角坐标系xOy中,抛物线y=x2-2mx+m2-m+2的顶点为D.线段AB的两个端点分别为A(-3,m),B(1,m).
(1)求点D的坐标(用含m的代数式表示);
(2)若该抛物线经过点B(1,m),求m的值;
(3)若线段AB与该抛物线只有一个公共点,结合函数的图象,求m的取值范围.
20.(10分)已知抛物线y=x2+bx+c的图象如图所示,它与x轴的一个交点的坐标为A(﹣1,0),与y轴的交点坐标为C(0,﹣3).
(1)求抛物线的解析式及与x轴的另一个交点B的坐标;
(2)根据图象回答:当x取何值时,y<0?
(3)在抛物线的对称轴上有一动点P,求PA+PB的值最小时的点P的坐标.
21.(8分)某百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件.
(1)若想要这种童装销售利润每天达到1200元,同时又能让顾客得到更多的实惠,每件童装应降价多少元?
(2)当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?
22.(10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x (m2)的函数关系式为,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).
(1)请直接写出k1、k2和b的值;
(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;
(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W 的最小值.
23.(10分)如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P 是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.
(1)分别求出直线AB和这条抛物线的解析式.
(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.
(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
24.(10分)已知抛物线y=x2+bx+c与x轴交于点A(-3,0)、B(1,0),C为顶点,直线y=x+m经过点A,与y轴交于点D.
(1)求b、c的值;
(2)求∠DAO的度数和线段AD的长;
(3)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C′,若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.
25.(10分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.
(1)求抛物线的解析式;
(2)过点A的直线交直线BC于点M.
①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;
②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.
(参考答案)
一、选择题(本大题有12小题,每小题3分,共36分)
下面每小题给出的四个选项中,只有一个是正确的.
1. D
2. A
3. C
4. C
5. C
6. C
7. C
8. D
9. C 10. D 11. B 12. D
二、填空题(本大题有6小题,每小题3分,共18分)
要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.
13.22
14. 300
15. 3
16.
17. -15
18. ①③
三、解答题(本大题有7小题,共66分)
解答应写出文字说明,证明过程或推演步骤.
19.解:(1)∵y=x2-2mx+m2-m+2=(x-m)2-m+2,∴D点的坐标为(m,-m+2).
(2)∵抛物线经过点B(1,m),∴m=1-2m+m2-m+2,解得m=3或m=1.
(3)根据题意,∵A点的坐标为(-3,m),B点的坐标为(1,m),∴线段AB为y=m(-3≤x≤1),与y=x2-2mx+m2-m+2联立得x2-2mx+m2-2m+2=0,令y'=x2-2mx+m2-2m+2,若抛物线y=x2-2mx+m2-m+2与线段AB只有1个公共点,即函数y'在-3≤x≤1范围内只有一个零点,当x=-3时,y'=m2+4m+11<0,
∵Δ>0,∴此种情况不存在,当x=1时,y'=m2-4m+3≤0,解得1≤m≤3.
20. (1)解:由二次函数y=x2+bx+c的图象经过(﹣1,0)和(0,﹣3)两点,
得,
解得.
则抛物线的解析式为y=x2﹣2x﹣3;
∵抛物线的解析式为y=x2﹣2x﹣3=(x﹣3)(x+1),
则该抛物线与x轴的交点坐标是:A(﹣1,0),B(3,0);
(2)根据图象知,当﹣1<x<3时,y<0;
(3)∵A(﹣1,0),B(3,0),
∴对称轴是直线x=1.
当A、
B、P三点共线时,PA+PB的值最小,此时点P是对称轴与x轴的交点,即P(1,0).
21. (1)解:设要想平均每天销售这种童装盈利1200元,那么每件童装应降价x元,
(40﹣x)(20+2x)=1200,
解得,x1=10,x2=20
∵当x=20时,卖出的多,库存比x=10时少,
∴要想平均每天销售这种童装盈利1200元,那么每件童装应降价20元;
y=(40﹣x)(20+2x)=﹣2(x﹣15)2+1250,
∴当x=15时,y取得最大值,此时y=1250,
即每件童装降价15元时,每天销售这种童装的利润最高,最高利润是1250元.22. (1)解:将x=600、y=18000代入y1=k1x,得:18000=600k1,解得:k1=30;将x=600、y=18000和x=1000、y=26000代入y2=k2x+b,得:,解得:
(2)解:当0≤x<600时,
W=30x+(﹣0.01x2﹣20x+30000)=﹣0.01x2+10x+30000,
∵﹣0.01<0,W=﹣0.01(x﹣500)2+32500,
∴当x=500时,W取得最大值为32500元;
当600≤x≤1000时,
W=20x+6000+(﹣0.01x2﹣20x+30000)=﹣0.01x2+36000,
∵﹣0.01<0,
∴当600≤x≤1000时,W随x的增大而减小,
∴当x=600时,W取最大值为32400,
∵32400<32500,
∴W取最大值为32500元
(3)解:由题意得:1000﹣x≥100,解得:x≤900,
由x≥700,
则700≤x≤900,
∵当700≤x≤900时,W随x的增大而减小,
∴当x=900时,W取得最小值。

即W最小值=﹣0.01x2+36000=﹣0.01×9002+36000=27900(元)
23. (1)解:把A(3,0)B(0,-3)代入y=x2+mx+n,得
解得,
所以抛物线的解析式是y=x2-2x-3.
设直线AB的解析式是y=kx+b,
把A(3,0)B(0,-3)代入y=kx+b,得,
解得,
所以直线AB的解析式是y=x-3;
(2)设点P的坐标是(t,t-3),则M(t,t2-2t-3),
因为p在第四象限,
当t=- = 时,二次函数的最大值,即PM最长值为= ,
则S△ABM=S△BPM+S△APM= = .
(3)存在,理由如下:
∵PM∥OB,
∴当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,
②当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3.②当P在第一象限:PM=OB=3,(t2-2t-3)-(t-3)=3,
解得t1= ,t2= (舍去),
所以P点的横坐标是;
③当P在第三象限:PM=OB=3,t2-3t=3,
④解得t1= (舍去),t2= ,
⑤所以P点的横坐标是.
综上所述,P点的横坐标是或.
24. (1)解:把A(-3,0)、B(1,0)代入y=x2+bx+c,得,解得
(2)解:把A(-3,0)代入y=x+m得到:-3+m=0,
解得m=3.
即直线方程为y=x+3.
令x=0,则y=3,
∴D(0,3).
∴OA=OD=3,
又∠AOD=90°,
∴△AOD是等腰直角三角形,
∴∠DAO=45°.
由A(-3,0),D(0,3)得到:AD= =3 .
综上所述,∠DAO=45°.AD=3 .
(3)解:设新抛物线对应的函数表达式为:y=x2+tx+3,
则点C′的坐标为(- ,3- ),
∵CC′平行于直线AD,且经过C(0,-3),
∴直线CC′的解析式为:y=x-3,
∴- -3=3- ,
解得,t1=-4,t2=6,
∴新抛物线对应的函数表达式为:y=x2-4x+3或y=x2+6x+3.
25. (1)解:当x=0时,y=x﹣5=﹣5,则C(0,﹣5),
当y=0时,x﹣5=0,解得x=5,则B(5,0),
把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;
(2)解:①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),
∵B(5,0),C(0,﹣5),
∴△OCB为等腰直角三角形,
∴∠OBC=∠OCB=45°,
∵AM⊥BC,
∴△AMB为等腰直角三角形,
∴AM AB 4=2 ,
∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,
∴PQ=AM=2 ,PQ⊥BC,
作PD⊥x轴交直线BC于D,如图1,
则∠PDQ=45°,
∴PD PQ 2 4,
2
当P点在直线BC下方时,
PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1,m2,
综上所述,P点的横坐标为4或或;
②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,
∵M1A=M1C,
∴∠ACM1=∠CAM1,
∴∠AM1B=2∠ACB,
∵△ANB为等腰直角三角形,
∴AH=BH=NH=2,
∴N(3,﹣2),
易得AC的解析式为y=5x﹣5,E点坐标为(,),
设直线EM1的解析式为y x+b,
把E(,)代入得 b ,解得b ,
∴直线EM1的解析式为y x ,
解方程组得,则M1(,);
在直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,
设M2(x,x﹣5),
∵3 ,
∴x ,
∴M2(,),
综上所述,点M的坐标为(,)或(,).。

相关文档
最新文档