2013年广东省中考数学模拟试题二和答案
2013年广东省中考数学试题及答案-精编
2013年广东省中考数 学说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B 铅笔把对应号码的标号涂黑. 3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上. 4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2的相反数是A.21-B. 21C.-2D.2 2.下列几何体中,俯视图为四边形的是3.据报道,2013年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元 B. 1.26×1012元 C. 1.26×1011元 D. 12.6×1011元 4.已知实数a 、b ,若a >b ,则下列结论正确的是 A.55-<-b a B.b a +<+22 C.33ba < D.b a 33>5.数据1、2、5、3、5、3、3的中位数是 A.1 B.2 C.3 D.56.如题6图,AC ∥DF,AB ∥EF,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是A.30°B.40°C.50°D.60°7.下列等式正确的是 A.1)1(3=-- B. 1)4(0=- C. 6322)2()2(-=-⨯- D. 2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是9.下列图形中,不是..轴对称图形的是10.已知210k k <<,则是函数11-=x k y 和xk y 2=的图象大致是二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:92-x =________________.12.若实数a 、b 满足042=-++b a ,则=ba 2________.13.一个六边形的内角和是__________.14.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA=________.15.如题15图,将一张直角三角板纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置, 则四边形ACE ′E 的形状是________________.16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分) 17.解方程组⎩⎨⎧=++=821y x y x18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当3,6==b a 时该分式的值.①②19.如题19图,已知□ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD于点F,求证:△AFD≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表.(1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt △CBD 的面积为S 1, Rt △BFC 的面积为S 2, Rt △DCE 的面积为S 3 , 则S 1______ S 2+ S 3(用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如题23图,当2=m 时,该抛物线与y 轴交于点C,顶点为D, 求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P,使得PC+PD 最短?若P 点 存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O 是Rt △ABC 的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE ⊥DC 交DC 的延长线于点E. (1)求证:∠BCA=∠BAD; (2)求DE 的长;(3)求证:BE 是⊙O 的切线.25.有一副直角三角板,在三角板ABC 中,∠BAC=90°,AB=AC=6,在三角板DEF 中,∠FDE=90°,DF=4,DE=34.将这副直角三角板按如题25图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如题25图(2),当三角板DEF 运动到点D 与点A 重合时,设EF 与BC 交于点M, 则∠EMC=______度;(2)如题25图(3),在三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长; (3)在三角板DEF 运动过程中,设BF=x ,两块三角板重叠部分面积为y ,求y 与x 的函数解析式,并求出对应的x 取值范围.2013年广东省中考数学参考答案1、答案:C解析:2的相反数为-2,选C,本题较简单。
2013广东省中考模拟试题及答案
2013广东省年中考数学模拟试题及答案一、选择题:请把答案填涂在答题卡上.(本大题8小题,每题4分,共32分) 1. 2-的绝对值是( )A .2B .2-C .12D .12-2. 下列图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 3. 一个不透明的布袋装有4个只有颜色不同的球,其中2个红球,1个白球,1个黑球,搅匀后从布袋里摸出1个球,摸到红球的概率是( ) A .12B .13 C .14 D .164. 下列各式计算正确的是( )A .34x x x +=B .2510·x x x = C .428()x x = D .224(0)x x x x +=≠ 5.在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来,如图,则这堆货箱共有( ) A .6个B .5个C .4个D .3个6.下列调查适合作普查的是( )A .了解汕头市居民对废电池的处理情况B .日光灯管厂要检测一批灯管的使用寿命C .了解在校大学生的主要娱乐方式D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查7.为了美化环境,某市加大对绿化的投资.2008年用于绿化投资200万元,2010年用于绿化投资250化投资的年平均增长率为x ,根据题意所列方程为( ) A .2200250x = B .200(1)250x +=C .2200(1)250x += D .2200(1)200(1)250x x +++=8.如图,在Rt ABC △中,908cm 6cm ABC AB BC ∠===°,,,分别以A C 、为圆心,主视图左视图 俯视图12 l 2l 1(第9题)以2AC的长为半径作圆,将Rt ABC △截去两个扇形,则剩余(阴影)部分的面积为( )cm 2. A .2524π4-B .25π4 C .524π4- D .2524π6-二.填空题:请把答案填在答题卡上.(本大题5小题,每小题4分,共20分) 9.如图,直线12l l ∥,1120∠=°,则2∠=___________度. 10.分解因式:34a a -= .11.2009年以来,粤东地区外贸经济呈现出进口逆势增长、 出口逐步回暖的喜人态势.据统计,2009年汕头海关共征收入库税款31.42亿元,用科学记数法表示_________________元.12.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别是_________.13.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察图形并解答有关问题:在第n 个图中共有 块黑瓷砖,块白瓷砖.三.解答题:(本大题5小题,每题7分,共35分)14.(本题满分7分)求值11|2|20093tan303-⎛⎫+--+ ⎪⎝⎭°.…第1个 第2个 第3个-5-4-3-2-15xCBA15.(本题满分7分)解不等式组2 1 84 1 x x x x ≥+⎧⎨+≥-⎩①②,并在所给的数轴上表示出其解集.16.(本题满分7分)某市为治理污水,需要铺设一条全长为550米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,原计划每天铺设多少米管道?17.(本题满分7分)如图,△ABC 中,∠C =90°,∠A =30°. (1)用尺规作图作AB 边上的中垂线DE ,交AC 于点D ,交AB 于点E . (保留作图痕迹,不要求写作法和证明); (2)连接BD ,求证:BD 平分∠CBA .18.(本题满分7分)小强在江南岸选定建筑物A ,并在江北岸的B 处观察,此时,视线与江岸BE 所成的夹角是30°,小强沿江岸BE 向东走了500m ,到C 处,再观察A ,此时视线AC 与江岸所成的夹角∠ACE =60°.根据小强提供的信息,你能测出江宽吗?若能,写出求解过程(结果可保留根号);若不能,请说明理由.四.解答题:(本大题3小题,每小题9分,共27分)19.(本题满分9分)在改革开放30年纪念活动中,某校学生会就同学们对我国改革开放30年所取得的辉煌成就的了解程度进行了随机抽样调查,并将调查结果绘制成如图所示的统计图的一部分.根据统计图中的信息,解答下列问题:(1)本次抽样调查的样本容量是___________.调查中“了解很少”的学生占_________%; (2)补全条形统计图;(3)若全校共有学生1300人,那么该校约有多少名学生“很了解”我国改革开放30年来取得的辉煌成就?不了解10%10%很了解基本了解30%了解很少不了解了解很少基本了解很了解了解程度20.(本题满分9分)如图,AB 为半圆O 的直径,点C 在半圆O 上,过点O 作BC 的平行线交AC 于点E ,交过点A 的直线于点D ,且D ∠=∠(1)求证:AD 是半圆O 的切线; (2)若2=BC ,2=CE ,求AD 的长.21.(本题满分9分)阅读下列材料:求函数22320.25x xy x x +=++的最大值.解:将原函数转化成x 的一元二次方程,得21(3)(2)04y x y x y -+-+=. ∵x 为实数,∴△=21(2)4(3)4y y y ---⨯=4y -+≥0. ∴4y ≤.因此,y 的最大值为4.根据材料给你的启示,求函数223221x x y x x ++=++的最小值.ABCD EF五.解答题:(本大题3小题,每小题12分,共36分)22.(本题满分12分)如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在射线DE 上,并且EF =AC . (1)求证:AF=CE ;(2)当∠B 的大小满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论;(3)四边形ACEF 有可能是正方形吗?为什么?23.(本题满分12分)我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a 元;一月用水超过10吨的用户,10吨水仍按每吨a 元收费,超过10吨的部分,按每吨b 元(b a >)收费.设一户居民月用水x 吨,应收水费y 元,y 与x 之间的函数关系如图所示.(1)a 的值为 ;b 的值为 ;(直接填答案) (2)求出当10x >时,y 与x 之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元, 求他们上月分别用水多少吨?24.(本题满分12分)如图1,把两个全等的三角板ABC 、EFG 叠放在一起,使三角板EFG 的直角边FG 经过三角板ABC 的直角顶点C ,垂直AB 于G ,其中∠B=∠F=30°,斜边AB 和EF 均为4.现将三角板EFG 由图1所示的位置绕G 点沿逆时针方向旋转α(0<α<90°),如图2,EG 交AC 于点K ,GF 交BC 于点H .在旋转过程中,请你解决以下问题: (1)GH ∶GK 的值是否变化?证明你的结论; (2)连结HK ,求证:KH ∥EF ;(3)设AK =x ,请问是否存在x ,使△CKH 的面积最大,若存在,求x 的值,若不存在,请说明理由.AF广东省2013年中考数学模拟试题及答案五一.选择题1.A 2.B 3.A 4.C 5.C 6.D 7.C 8.A 二.填空题9.120 10.(2)(2)a a a +- 11.93.14210⨯ 12. 25.5,25.5 13. 4n+6,n (n+1)三.解答题 14.解:原式2133=++ 4分6=. 7分15.解:2x x ≥+1,解得x ≥1. 2分8x x +≥4-1,解得x ≤3. 4分∴原不等式组的解集为1x ≤≤3. 5分 不等式组的解集在数轴上表示如下:分16.解:设原计划每天铺设x 米管道. 1分 则由题意可得5505505(110%)x x=++, 4分 解得10x =, 5分经检验10x =是原方程的根. 6分 答:原计划每天铺设10米管道. 7分 17.解:(1) 如图,DE 为所求; 3分 (2)∵△ABC 中,∠C =90°,∠A =30°.∴∠CBA =60°. 4分 ∵DE 垂直平分AB ,∴DA=DB . 5分∴∠DBA =∠A =30°.∴ ∠DBC = ∠CBA-∠DBA =30°, 6分∴ ∠DBC =∠DBA ,∴BD 平分∠CBA . 7分18.解:能.理由如下: 1分过点A 作AD ⊥BE ,垂足为D , 2分 ∵∠ACE =60°, ∠ABE =30°,∴∠CAB=∠ACE-∠ABE =30°.∴∠CAB=∠ABE .∴AC=BC=500m . 4分 在Rt △ACD 中,∠ACD =60°,∵sin ∠ACD =AD AC 6分∴AD =AC 500答:江宽为 7分 四.解答题19.(1)50,50 4分 (2)补图略 6分 (3)130010%130⨯=人. 8分 答:该校约有130名学生很了解我国改革开放30年来所取得的辉煌成就. 9分 20.(1)证明:∵AB 为半⊙O 的直径,∴90=∠BCA .又∵BC ∥OD , ∴AC OE ⊥∴090=∠+∠DAE D 而BAC D ∠=∠ ∴090=∠+∠DAE OAE ∴OA AD ⊥∴AD 是半圆O 的切线. 4分(2)∵AC OE ⊥ ∴222==CE AC 在ABC Rt ∆中,322)22(2222=+=+=BC AC AB 6分 由DOA ∆∽ABC ∆可得:BC OA AC AD = 即2322=AD ∴6=AD 9分21.解:将原函数转化成x 的一元二次方程,得2(3)(21)20y x y x y -+-+-=. 3分 ∵x 为实数,∴△=2(21)4(3)(2)y y y ----=1623y -≥0. 7分 ∴2316y ≥. 8分因此,y 的最小值为2316. 9分 五.解答题22.解:(1)∵∠ACB=900,BC ⊥BC ,∴DF ∥AC , 又∵EF=AC ,∴四边形EFAC 是平行四边形,∴AF=CE. 5分 (2)当∠B=300时四边形EFAC 是菱形. ∵点E 在BC 的垂直平分线上, ∴DB=DC=21BC ,BE=EC ,∠B=∠ECD=300, ∵DF ∥AC , ∴△BDE ∽△BCA. ∴21==BC BD BA BE , 即BE=AE. ∴AE=CE.又∠ECA=900– 300=600∴△AEC 是等边三角形.∴CE=AC.所以四边形EFAC 是菱形. 10分 (3)不可能.若四边形EFAC 是正方形,则E 与D 重合,A 与C 重合,不可能有∠B=300. 12分 23. 解:(1)1.5; 2. 4分 (2)当10x >时,设y 与x 之间的函数关系式为y=kx+b , 5分 当x=10时,y=15;当x=20时,y=35,则15103520k bk b=+⎧⎨=+⎩ ,解得 25k b =⎧⎨=-⎩ 7分 故当10x >时,y 与x 之间的函数关系式为25y x =-. 8分 (3)因1.510 1.5102446⨯+⨯+⨯<,A BCDEF所以甲、乙两家上月用水均超过10吨. 9分设甲、乙两家上月用水分别为m吨,n吨,则4252546.n mn m=-⎧⎨-+-=⎩,11分解之,得1612. mn=⎧⎨=⎩,故居民甲上月用水16吨,居民乙上月用水12吨. 12分24.(1)解:GH∶GK的值不变,GH∶GK1分证明如下:∵CG⊥AB,∴∠AGC=∠BGC=90°.∵∠B=30°,∠ACB=90°,∴∠A=∠GCH=60°.∵∠AGB=∠BGC=90°,∴∠AGK=∠CGH.∴△AGK∽△CGH.∴GH CG GK AG=.∵在Rt△ACG中,tan∠A=CGAG=∴GH∶GK(2)证明:由(1)得,在Rt△KHG中,tan∠GKH=GHGK=GKH=60°.∵在△EFG中,∠E=∠EGF-∠F=90°-30°=60°,∴∠GKH=∠E.∴KH∥EF. 7分(3)解:存在x=1,使△CKH的面积最大.理由如下: 8分由(1)得△AGK∽△CGH,∴CH CGAK AG==CH==.9分在Rt△EFG中,∠EGF =90°,∠F=30°,∴AC=12EF=2,∴CK=AC-AK=2-x. 10分∴211(2)1)2222CHKS CK CH x x==-=--+.∴当x=1时,△CKH. 12分A。
广东中考第二次模拟检测《数学试题》含答案解析
广东数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共12小题)1.﹣34的绝对值是( )A. ﹣34B.34C. ﹣43D.432.如图的几何体由6个相同的小正方体搭成,它的主视图是( )A. B. C. D.3.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A. 64°B. 68°C. 58°D. 60°4.下列运算正确的是( )A. 2m3+3m2=5m5B. m3÷m2=mC. m•(m2)3=m6D. (m﹣n)(n﹣m)=n2﹣m25.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )A. 25台B. 50台C. 75台D. 100台6.小明将一正方形纸片画分成16个全等的小正方形,且如图所示为他将其中四个小正方形涂成灰色的情形.若小明想再将一小正方形涂成灰色,使此纸片上的灰色区域成为线对称图形,则此小正方形的位置为何?( ).A. 第一列第四行B. 第二列第一行C. 第三列第三行D. 第四列第一行7.某青少年篮球队有12名队员,队员的年龄情况统计如下: 年龄(岁) 12 13 14 15 16 人数 31251则这12名队员年龄的众数和中位数分别是( ) A. 15岁和14岁 B. 15岁和15岁 C. 15岁和14.5岁 D. 14岁和15岁8.已知下列命题: ①若a >b ,则ac >bc; ②若a=1a ③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是( ) A. 1个B. 2个C. 3个D. 4个9.如图,将ABC ∆沿BC 边上的中线AD 平移到A B C '''∆的位置.已知ABC ∆的面积为16,阴影部分三角形的面积9.若1AA '=,则A D '等于( )A. 2B. 3C. 4D. 3 210.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A 20° B. 35° C. 40° D. 55°11.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点纵坐标分别为4,2,反比例函数ykx(x>0)的图象经过A,B两点,若菱形ABCD的面积为25,则k的值为( )A. 2B. 3C. 4D. 612.如图,以矩形ABCD对角线AC为底边作等腰直角△ACE,连接BE,分别交AD,AC于点F,N,CD=AF,AM平分∠BAN.下列结论:①EF⊥ED;②∠BCM=∠NCM;③AC=2EM;④BN2+EF2=EN2;⑤AE•AM =NE•FM,其中正确结论的个数是( )A 2 B. 3 C. 4 D. 5二.填空题(共4小题)13.把多项式9m 2﹣36n 2分解因式的结果是_____.14.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP 可以用点P 的坐标表示为OP =(m ,n ),已知:OA =(x 1,y 1),OB =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA 与OB 互相垂直,下列四组向量:①OC =(2,1),OD =(﹣1,2);②OE =(cos30°,tan45°),OF =(﹣1,sin60°);③OG =(3﹣2,﹣2),OH =(3+2,12);④OC =(π0,2),ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).15.如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=mx(m 为常数且m ≠0)的图象都经过A (﹣1,2),B (2,﹣1),结合图象,则关于x 的不等式kx +b >mx的解集是_____.16.如图,Rt △ABC ,AB =3,AC =4,点D 在以C 为圆心3为半径的圆上,F 是BD 的中点,则线段AF 的最大值是_____.三.解答题(共7小题)17.计算:3016sin 45227()(20192019)2-︒+-+.18.先化简2728333x x x x x -⎛⎫+-÷⎪--⎝⎭,再从04x ≤≤中选一个适合的整数代入求值.19.为响应市政府关于”垃圾不落地市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为”A:非常了解;B:比较了解;C:了解较少;D:不了解“四种,并将调查结果绘制成以下两幅不完整的统计图请根据图中提供的信息,解答下列问题;()1求m=______,并补全条形统计图;()2若我校学生人数为1000名,根据调查结果,估计该校”非常了解”与”比较了解”的学生共有______名;()3已知”非常了解”是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.20.小明想测量湿地公园内某池塘两端A,B两点间的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=40°,再向前行走100米到点D处,测得∠BDF=52.44°,若直线AB与EF之间的距离为60米,求A,B两点的距离(结果精确到0.1)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin52.44°≈0.79,cos52.44°≈0.61,tan52.44°≈1.30)21.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)22.如图,AB是⊙O直径,点C是AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且23OEEB=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.23.如图,抛物线y=ax2+bx(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2,顶点为D.(1)填空:抛物线的解析式为,顶点D的坐标为,直线AB的解析式为;(2)在直线AB左侧抛物线上存在点E,使得∠EBA=∠ABD,求E的坐标;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ =1:2时,求出点P的坐标.答案与解析一.选择题(共12小题)1.﹣34的绝对值是( )A. ﹣34B.34C. ﹣43D.43【答案】B 【解析】【分析】根据负数的绝对值等于它的相反数即可得出34的绝对值.【详解】解:|-34|=34,故选:B.【点睛】本题考查求一个数的绝对值.理解一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0是解决此题的关键.2.如图的几何体由6个相同的小正方体搭成,它的主视图是( )A. B. C. D.【答案】A【解析】分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A 符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.3.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A. 64°B. 68°C. 58°D. 60°【答案】A【解析】【分析】首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°,∵AB∥CD,∴∠2=64°.故选:A.【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.4.下列运算正确的是( )A. 2m3+3m2=5m5B. m3÷m2=mC. m•(m2)3=m6D. (m﹣n)(n﹣m)=n2﹣m2【答案】B【解析】【分析】根据合并同类项、幂的乘法除法、幂的乘方、完全平方公式分别计算即可.【详解】A.2m3+3m2,不是同类项,不能合并,故错误;B.m3÷m2=m,正确;C.m•(m2)3=m7,故错误;D.(m﹣n)(n﹣m)=﹣(m﹣n)2=﹣n2﹣m2+2mn,故错误.故选B.【点睛】本题考查了整式的运算,熟练掌握合并同类项、幂的乘除法、幂的乘方、完全平方公式是解题的关键.5. 学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )A. 25台B. 50台C. 75台D. 100台【答案】C【解析】试题分析:首先设去年购置计算机数量为x台,则今年购置计算机的数量为3x台,根据题意可得:x+3x=100,解得:x=25,则3x=3×25=75(台),即今年购置计算机的数量为75台.考点:一元一次方程的应用.6.小明将一正方形纸片画分成16个全等的小正方形,且如图所示为他将其中四个小正方形涂成灰色的情形.若小明想再将一小正方形涂成灰色,使此纸片上的灰色区域成为线对称图形,则此小正方形的位置为何?( ).A. 第一列第四行B. 第二列第一行C. 第三列第三行D. 第四列第一行【答案】B【解析】【分析】根据轴对称图形的性质和纸片上的四个灰色小正方形,确定出对称轴,即可得出小正方形的位置.【详解】解:根据题意得:涂成灰色的小方格在第二列第一行.故选B.点评:此题考查了利用轴对称设计图案,解答此题的关键是根据题意确定出对称轴,画出图形.7.某青少年篮球队有12名队员,队员的年龄情况统计如下:年龄(岁) 12 13 14 15 16人数 3 1 2 5 1则这12名队员年龄的众数和中位数分别是( )A. 15岁和14岁B. 15岁和15岁C. 15岁和14.5岁D. 14岁和15岁【答案】C【解析】【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【详解】在这12名队员的年龄数据里,15岁出现了5次,次数最多,因而众数是1512名队员的年龄数据里,第6和第7个数据的平均数14152=14.5,因而中位数是14.5.故选C.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.已知下列命题:①若a>b,则ac>bc;②若a=1,则a =a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a >b ,则ac >bc 是假命题,逆命题是假命题;②若a=1,则a =a 是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A .点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.9.如图,将ABC ∆沿BC 边上的中线AD 平移到A B C '''∆的位置.已知ABC ∆的面积为16,阴影部分三角形的面积9.若1AA '=,则A D '等于( )A. 2B. 3C. 4D. 32【答案】B【解析】【分析】由 S △ABC =16、S △A ′EF =9且 AD 为 BC 边的中线知 1922A DE A EF S S '∆'∆==,182ABD ABC S S ∆∆== ,根据△DA ′E ∽△DAB 知2A DE ABD S A D AD S ∆∆'⎛⎫=' ⎪⎝⎭,据此求解可得. 【详解】16ABC S ∆=、9A EF S ∆'=,且AD 为BC 边的中线,1922A DE A EF S S ∆∆''∴==,182ABD ABC S S ∆∆==, 将ABC ∆沿BC 边上的中线AD 平移得到A B C '''∆,//A E AB ∴',DA E DAB '∴∆~∆,则2A DE ABD S A D AD S ∆∆'⎛⎫=' ⎪⎝⎭,即22991816A D A D ⎛⎫== '⎪+⎝⎭', 解得3A D '=或37A D '=-(舍), 故选.【点睛】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.10.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF=EB ,EF 与AB 交于点C ,连接OF ,若∠AOF=40°,则∠F 的度数是( )A. 20°B. 35°C. 40°D. 55°【答案】B【解析】【分析】 连接FB ,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB 、∠EFB 的度数,继而根据∠EFO =∠EBF-∠OFB 即可求得答案.【详解】连接FB ,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=12∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.11.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数ykx(x>0)的图象经过A,B两点,若菱形ABCD的面积为25,则k的值为( )A. 2B. 3C. 4D. 6【答案】C【解析】【分析】过点A作x轴的垂线,交CB的延长线于点E,根据A,B两点的纵坐标分别为4,2,可得出横坐标,即可求得AE,BE的长,根据菱形的面积为5AE的长,在Rt△AEB中,即可得出k的值.【详解】过点A作x轴的垂线,交CB的延长线于点E,∵A,B 两点在反比例函数y k x =(x >0)的图象,且纵坐标分别为4,2, ∴A (4k ,4),B(2k ,2), ∴AE=2,BE 12=k 14-k 14=k , ∵菱形ABCD 的面积为25,∴BC×AE=25,即BC 5=, ∴AB=BC 5=,在Rt△AEB 中,BE 22AB AE =-=1 ∴14k =1, ∴k=4.故选C .【点睛】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键. 12.如图,以矩形ABCD 对角线AC 为底边作等腰直角△ACE ,连接BE ,分别交AD ,AC 于点F ,N ,CD =AF ,AM 平分∠BAN .下列结论:①EF ⊥ED ;②∠BCM =∠NCM ;③AC =2EM ;④BN 2+EF 2=EN 2;⑤AE •AM =NE •FM ,其中正确结论的个数是( )A 2B. 3C. 4D. 5【答案】C【解析】【分析】①正确,只要证明A,B,C,D,E五点共圆即可解决问题;②正确,证明BE平分∠ABC,再证明点M是△ABC的内心即可;③正确,证明∠EAM=∠EMA可得EM=AE,即可解决问题;④正确.如图2中,将△ABN逆时针旋转90°得到△AFG,连接EG.想办法证明△GEF是直角三角形,利用勾股定理即可解决问题;⑤错误.利用反证法证明即可.【详解】解:如图1中,连接BD交AC于O,连接OE.∵四边形ABCD是矩形,∴OA=OC=OD=OB,∵∠AEC=90°,∴OE=OA=OC,∴OA=OB=OC=OD=OE,∴A,B,C,D,E五点共圆,BD直径,∴∠BED=90°,∴EF⊥ED,故①正确,∵CD=AB=AF,∠BAF=90°,∴∠ABF=∠AFB=∠FBC=45°,∴BM平分∠ABC,∵AM平分∠BAC,∴点M是△ABC的内心,∴CM平分∠ACB,∴∠MCB=∠MCA,故②正确,∵∠EAM=∠EAC+∠MAC,∠EMA=∠BAM+∠ABM,∠ABM=∠EAC=45°,∴∠EAM=∠EMA,∴EA=EM,∵△EAC是等腰直角三角形,∴AC=2EA=2EM,故③正确,如图2中,将△ABN绕点A逆时针旋转90°,得到△AFG,连接EG,∵将△ABN绕点A逆时针旋转90°,得到△AFG,∴∠NAB=∠GAF,∠GAN=∠BAD=90°,AG=AN,GF=BN,∵∠EAN=45°,∴∠EAG=∠EAN=45°,∵AE=AE,∴△AEG≌△AEN(SAS),∴EN=EG,∵∠AFG=∠ABN=∠AFB=45°,∴∠GFB=∠GFE=90°,∴EG2=GF2+EF2,∴BN2+EF2=EN2,故④正确,不妨设AE•AM=NE•FM,∵AE=EC,∴EC EN FM AM,∴只有△ECN∽△MAF才能成立,∴∠AMF =∠CEN ,∴CE ∥AM ,∵AE ⊥CE ,∴MA ⊥AE (矛盾),∴假设不成立,故⑤错误,故选:C .【点睛】本题考查矩形的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,相似三角形的判定和性质,圆等知识.解题的关键是学会添加常用辅助线,构造全等三角形解决问题.二.填空题(共4小题)13.把多项式9m 2﹣36n 2分解因式的结果是_____.【答案】9(m ﹣2n )(m +2n ).【解析】【分析】先提取公因式9,再利用平方差公式(22()()a b a b a b -=+-)因式分解即可.【详解】解:原式=9(m 2﹣4n 2)=9(m ﹣2n )(m +2n ),故答案为:9(m ﹣2n )(m +2n ).【点睛】本题考查综合运用提公因式法和公式法因式分解.一般来说,因式分解时,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP 可以用点P 的坐标表示为OP =(m ,n ),已知:OA =(x 1,y 1),OB =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA 与OB 互相垂直,下列四组向量:①OC =(2,1),OD =(﹣1,2);②OE =(cos30°,tan45°),OF =(﹣1,sin60°);③OG ,﹣2),OH 12);④OC =(π0,2),ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).【答案】①③④【解析】分析:根据两个向量垂直的判定方法一一判断即可;详解:①∵2×(−1)+1×2=0,∴OC 与OD 垂直;②∵33cos301tan45sin60322⨯+⋅=+=, ∴OE 与OF 不垂直. ③∵()()()13232202-++-⨯=, ∴OG 与OH 垂直. ④∵()02210π⨯+⨯-=,∴OM 与ON 垂直.故答案为:①③④.点睛:考查平面向量,解题的关键是掌握向量垂直的定义.15.如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=m x(m 为常数且m ≠0)的图象都经过A (﹣1,2),B (2,﹣1),结合图象,则关于x 的不等式kx +b >m x的解集是_____.【答案】x <﹣1或0<x <2.【解析】【分析】根据一次函数图象在反比例函数图象上方的x 的取值范围便是不等式m kx b x+>的解集. 【详解】解:由函数图象可知,当一次函数y 1=kx +b (k ≠0)的图象在反比例函数y 2=m x (m 为常数且m ≠0)的图象上方时,x 的取值范围是:x <﹣1或0<x <2,∴不等式kx +b >m x的解集是x <﹣1或0<x <2, 故答案为:x <﹣1或0<x <2.【点睛】本题考查一次函数图象与反比例函数图象的交点问题,主要考查了由函数图象求不等式的解集.利用数形结合思想分析是解题的关键.16.如图,Rt△ABC,AB=3,AC=4,点D在以C为圆心3为半径的圆上,F是BD的中点,则线段AF的最大值是_____.【答案】4【解析】【分析】取BC的中点N,连接AN,NF,DC,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得AN和NF的长,然后确定AF的范围.【详解】解:取BC的中点N,连接AN,NF,DC,∵Rt△ABC,AB=3,AC=4,∴BC22AB AC5,∵N为BC的中点,∴AN=12BC=52,又∵F为BD的中点,∴NF是△CDB的中位线,∴NF=12DC=32,∵52﹣32≤AF ≤52+32,即1≤AF ≤4. ∴最大值为4,故答案为:4.【点睛】本题考查圆的综合问题,三角形中位线定理,直角三角形斜边上的中线,勾股定理.熟练掌握直角三角形中线定理和三角形中位线定理,能正确构造辅助线是解题关键.三.解答题(共7小题)17.计算:3016sin 457()(20192-︒+-+.【解析】【分析】原式利用特殊角的三角函数值,绝对值的代数意义,零指数幂、负整数指数幂法则计算即可求出值.【详解】原式6781=--+= 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简2728333x x x x x -⎛⎫+-÷ ⎪--⎝⎭,再从04x ≤≤中选一个适合的整数代入求值. 【答案】42x x+;1x =时,原式52=(或当2x =时,原式32=.) 【解析】【分析】根据分式的运算法则进行化简,再选择使分式有意义的值代入. 【详解】解:原式22162833x x x x x --=÷-- (4)(4)332(4)x x x x x x -+-=⋅-- 42x x+= ∵0,3,4x ≠,∴当1x =时,原式52=(或当2x =时,原式32=.) 【点睛】本题考查了分式化简求值.,解题的关键是熟练掌握运算法则.19.为响应市政府关于”垃圾不落地市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为”A :非常了解;B :比较了解;C :了解较少;D :不了解 “四种,并将调查结果绘制成以下两幅不完整的统计图请根据图中提供的信息,解答下列问题;()1求m =______,并补全条形统计图;()2若我校学生人数为1000名,根据调查结果,估计该校”非常了解”与”比较了解”的学生共有______名;()3已知”非常了解”的是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.【答案】(1)20(2)500(3)12【解析】分析】 ()1先利用A 选项的人数和它所占百分比计算出调查的总人数为50,再计算出B 选项所占的百分比为42%,从而得到m%20%=,即m 20=,然后计算出C 、D 选项的人数,最后补全条形统计图;()2用1000乘以()8%42%+可估计该校”非常了解”与”比较了解”的学生数;()3画树状图展示所有12种等可能的结果数,找出抽到1男1女的结果数,然后根据概率公式求解.【详解】()1调查的总人数为48%50÷=,B 选项所占的百分比为21100%42%50⨯=, 所以m%18%42%30%20%=---=,即m 20=,C 选项的人数为30%5015(⨯=人),D 选项的人数为20%5010(⨯=人),条形统计图为:故答案为20;()()210008%42%500⨯+=,所以估计该校”非常了解”与”比较了解”的学生共有500名;故答案为500;()3画树状图为:共有12种等可能的结果数,其中抽到1男1女的结果数为6,所以恰好抽到1男1女的概率61 122 ==【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图.20.小明想测量湿地公园内某池塘两端A,B两点间的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=40°,再向前行走100米到点D处,测得∠BDF=52.44°,若直线AB与EF之间的距离为60米,求A,B两点的距离(结果精确到0.1)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin52.44°≈0.79,cos52.44°≈0.61,tan52.44°≈1.30)【答案】74.7米【解析】【分析】根据题意作出合适的辅助线,画出相应的图形,可以分别求得CM、DN的长,由于AB=CN﹣CM,从而可以求得AB的长.【详解】解:作AM⊥EF于点M,作BN⊥EF于点N,如图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=40°,∠BDF=52.44°,∴CM=60tan400.84AM≈︒≈71.43(米),DN=60tan52.44 1.3BN︒≈≈46.15(米),∴AB=CD+DN﹣CM=100+46.15﹣71.43≈74.7(米),即A、B两点的距离是74.7米.【点睛】本题考查的知识点是解直角三角形,读懂题目,作出合适的辅助线是解此题的关键.21.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)【答案】(1)进价为180元;(2)至少打6折.【解析】分析】(1)根据题意,列出等式24003370025x x⨯=+,解等式,再验证即可得到答案;(2)设剩余的仙桃每件售价打y折,由题意得到不等式,再解不等式,即可得到答案.【详解】解:(1)设第一批仙桃每件进价x元,则24003370025x x⨯=+,解得180x=.经检验,180x=是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.则:3700370022580%225(180%)0.13700440 18051805y⨯⨯+⨯⨯-⨯-≥++,解得6y≥.答:剩余的仙桃每件售价至少打6折.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是熟练掌握分式方程的应用和一元一次不等式的应用.22.如图,AB是⊙O的直径,点C是AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且23OEEB=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.【答案】(1)证明见解析;(2)BH=125.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是AB的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线; (2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴OC OE BF EB=,∵OB=2,∴OC=OB=2,AB=4,23 OEEB=,∴223 BF=,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=12AB•BF=12AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=125.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23.如图,抛物线y=ax2+bx(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2,顶点为D.(1)填空:抛物线的解析式为,顶点D的坐标为,直线AB的解析式为;(2)在直线AB左侧抛物线上存在点E,使得∠EBA=∠ABD,求E的坐标;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ =1:2时,求出点P的坐标.【答案】(1)y =14x 2+x ;(﹣2,﹣1);y =x +4;(2)(﹣163,169);(3)P (﹣22,2﹣22). 【解析】【分析】 (1)根据对称轴可求得A 点坐标,再根据B 点坐标,利用待定系数法即可求得抛物线以及一次函数解析式,再利用对称轴为x =﹣2可求得抛物线顶点坐标;(2)证明四边形GDHD′为正方形,点D (-2,-1),则点G (-5,-1),则正方形的边长为3,则点D′(-5,2),求得直线BD′的解析式,与抛物线联立即可求解;(3)证明四边形PQHO 为平行四边形,则x Q -x P =x H -x O ,即可求解.【详解】解:(1)对称轴为直线x =﹣2,则点A (﹣4,0),将点A 、B 的坐标代入抛物线表达式得0=1648164a b a b -⎧⎨=+⎩ ,解得141a b ⎧=⎪⎨⎪=⎩. 故抛物线的表达式为:y =14x 2+x …①, 当x=-2时,21(2)(2)14y =⨯-+-=- ∴顶点D 的坐标为:(﹣2,﹣1),设直线AB 的表达式为y kx c =+,将点A 、B 的坐标代入一次函数表达式0484k c k c =-+⎧⎨=+⎩,解得14k c =⎧⎨=⎩, 所以,直线AB 的表达式为:y =x +4…②,故答案为:y =14x 2+x ;(﹣2,﹣1);y =x +4; (2)作点D 关于AB 的对称点D ′,分别过点D 、D ′作x 轴的平行线交直线AB 与点G 、H ,则','DH D H D G DG ,'D GH HGD ,∵直线AB 的解析式为y =x +4,'D H ∥x 轴,GD ∥x 轴,∴'45D HGHAO HGD , ∴''45D GHHGD D HG , ∴'90D GD ,''DH D H D G DG ,则四边形GDHD ′为正方形,根据点D (﹣2,﹣1),可得点G (﹣5,﹣1),所以,正方形的边长为3,则点D ′(﹣5,2),设直线BD ′的表达式为:11y k x c ,所以11112584k c k c =-+⎧⎨=+⎩,解得1123163k c ⎧=⎪⎪⎨⎪=⎪⎩, 所以,直线BD ′的表达式为:y =23x +163…③; 联立①③并解得:x =﹣163或4(舍去), 故点E (﹣163,169); (3)取OB 的中点H (2,4),则S △OQH =12S △OBQ ,而S △POQ :S △BOQ =1:2,故S △OQH =S △POQ ,∵PQ ∥OH ,故PQ =OH (四边形PQHO 为平行四边形),则x Q ﹣x P =x H ﹣x O ,设点P (m ,14m 2+m ), 直线OB 的表达式为:y =2x ,则直线PQ 的表达式为:y =2x +b 1,将点P 的坐标代入上式得21124m m m b +=+,解得2114b m m =-, 所以,直线PQ 的表达式为:y =2x +14m 2﹣m …④, 联立②④并解得:x Q =﹣14m 2+m +4, 而x Q ﹣x P =x H ﹣x O , 即﹣14m 2+m +4﹣m =2,解得:m =-或m =(舍去),故点P (﹣,2﹣).【点睛】本题考查二次函数综合,求一次函数解析式,正方形的性质和判定,平行四边形的性质和判定.(1)能利用对称轴求得A 点坐标是解题关键;(2)中能巧用轴对称的性质,得出作点D 关于AB 的对称点D ′时,∠D ′BA =∠ABD 是解题关键;(3)证明四边形PQHO 为平行四边形是解题关键.。
广东省2013年中考数学全真模拟试题(针对2013版新考纲)(二)(含答案)
机密★启用前2013年广东省初中毕业生学业考试模拟试题数学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓 名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,满分30分)1、-16的绝对值是( ) A 、-16 B 、16 C 、-6 D 、62、某种彩票的中奖机会是1%,下列说法正确的是( )A 、买1张这种彩票一定不会中奖B 、买1张这种彩票一定会中奖C 、买100张这种彩票一定会中奖D 、当购买彩票的数量很大时,中奖的频率稳定在1%)4、已知两个变量x 和y ,它们之间的3组对应值如下表所示:则y 与x 之间的函数关系式可能是( )A 、B 、C 、D 、A 、y =xB 、y =2x +1C 、y =x 2+x +1D 、y =3x5、一个多边形的内角和与外角和相等,则这个多边形是( )A 、四边形B 、五边形C 、六边形D 、八边形6、等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( )A 、16B 、18C 、20D 、16或207、下列图形即使轴对称图形又是中心对称图形的有( )①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形A 、1个B 、2个C 、3个D 、4个8、如图2,梯形ABCD 中AD//BC ,对角线AC 、BD 相交于点O , 若AO ∶CO =2:3,AD =4,则BC 等于( ) A 、12 B 、8 C 、7 D 、6 9、如图3,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A 、10π B、3 C、3π D 、π10、对正整数n ,记!123......n n =⨯⨯⨯⨯,则1!2!3!......10!+++的末尾数为( )A 、0B 、1C 、3D 、5二、填空题(本大题共6小题,每小题4分,满分24分)11、已知一个样本91,89,88,90,92,则这个样本的方差是 ;12、若x 、y 为实数,且023=--+++y x y x ,则=xy ;13、一次函数1y kx k =+-的图象与函数221x y =的图像有 个交点; 14、如图4,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C .若︒=∠40A ,则=∠C ____ _;图4AD B C O图2 AB C图3A CD15、四边形的两条对角线AC ,BD 互相垂直,AC+BD=10,当四边形ABCD 的面积最大,则AC=____ _;16、如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是 。
广东省2013年中考数学模拟试题及答案二
广东省2013年中考数学模拟试题一、选择题1.-3的相反数是( ) A .3B .31C .-3D .31-2.算式22222222+++可化为( )A .42B .28C .82D . 162 3.如图,下列条件中,能判断直线1l //2l 的是( )(A )∠2=∠3 (B )∠1=∠3(C )∠4+∠5=180° (D )∠2=∠44.某班七个合作学习小组人数如下:5、5、6、x 、7、7、8。
已知这组数据的平均数是6,则这组数据的中位数是( )A 、7B 、6C 、5.5D 、5 5. 不等式1+2x5≥1的解集在数轴上表示正确的是()6、某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( ) A .200(1+a %)2=148 B .200(1-a %)2=148 C .200(1-2a %)=148 D .200(1-a 2%)=148(第3题)1 25432l1l7.如图所示几何体的左视图是()B. D.8.从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称图形的卡片的概率是()A.41B.21C.43D.1二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.9.若分式51-x有意义,则实数x的取值范围是_______.10.三峡工程是世界防洪效益最为显著的水利工程,它能有效控制长江上游洪水,增强长江中下游抗洪能力.据相关报道三峡水库的防洪库容为22 150 000 000 m3,用科学记数法可记作__________ m3.11.已知点(12)-,在反比例函数kyx=的图象上,则k=.12.如图,∠1=∠2=∠3,有几对三角形相似,请写出其中的两对。
13、观察按下列顺序排列的等式:9011⨯+=;91211⨯+=;92321⨯+=;B(第12题)ACD E12393431⨯+=; 94541⨯+=;……猜想:第n 个等式(n 为正整数)用n 表示,可以表示成________________. 三、解答题(一)(本大题5小题,每小题7分,共35分)14.计算:1132-⎛⎫- ⎪⎝⎭15、先化简,再求值:(2+m )(2-m)+m (m-6)-3,其中m=1316、如图:在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D ,求征:BD=CD .(第16题) 17、如图,在等腰梯形ABCD 中,E 为底BC 的中点,连结AE 、DE .求证:ABE DCE △≌△.A DCBE(第17题)18、△ABC在平面直角坐标系中的位置如图所示,将△ABC沿y轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.四、解答题(二)(本大题3小题,每小题9分,共27分)19、在Rt△ABC中︒=∠︒=∠=90,30,36CBa,解这个直角三角形。
广东2013年中考数学模拟试卷及答案(6)
DCBA机密★启用前2013年广东省初中毕业生学业考试数学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,满分30分)()A.9B.-9C. 9D. 32.观察下列图案,其中既是轴对称图形又是中心对称图形的有()A.B.C.D.3.如图所示几何体的主(正)视图是()4.下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某通信卫星的零部件的质量情况的调查D.对某类烟花爆竹燃放安全情况的调查5.⊙O1和⊙O2的半径分别为1和4,若两圆的位置关系为相交,则圆心距O1O2的取值范围在数轴上表示正确的是 ( ) A B C D 6.用配方法解方程x 2+4x +2=0,配方后的方程是 ( )A .(x +2)2=0B .(x -2)2=4C .(x -2)2=0D .(x +2)2=2 9.如下图,ABC ∆中, 90=∠C ,3=AC ,30=∠B ,点P 是BC 边上的动点,则AP长不可能...是 ( ) A .3.5 B .4.2 C .5.8D .710.化简22a b ab a b---的结果是( ) A .a b +B.a b - C.22a b - D.1二、填空题(本大题共6小题,每小题4分,满分24分) 11.函数y =x +2x -1中,自变量x 的取值范围是 _____________ 12. 分解因式:2218x -=13. 我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每3 1 0 245 3 1 0 2 4 5 3 1 0 2 4 5 3 1 0 2 4 5 7题图(第7题图)CP9题图年排放的污水减少了167000吨.将167000用科学记数法表示为14. 如图,若//AB CD ,EF 与AB CD 、分别相交于点E F 、,EP 与EFD ∠的平分线相交于点P ,且60EFD ∠=,EP FP BEP ⊥∠=,则____度.15. 不等式组10230x x -≤⎧⎨+>⎩的解集为16. 方程0415=-+xx 的解是 三、解答题(一)(本大题共3小题,每小题5分,满分15分)17.计算:3213|12-⎛⎫---- ⎪⎝⎭18.解不等式组543121 25x x x x +>⎧⎪--⎨⎪⎩,≤.并把解集在数轴上表示出来.19.如图,点A B C D 、、、在同一条直线上,AB DC AE DF AE DF ==,∥,, 求证:EC FB =.14题图AECDFB四、解答题(二)(本大题共3小题,每小题8分,满分24分)20.目前世界上最高的电视塔是广州新电视塔“小蛮腰”,如图所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°.(1)求大楼与电视塔之间的距离AC;(2)求大楼的高度CD(精确到1米).(tan39°≈0.81,,cos39°≈0.78,,sin39°≈0.63)21.广珠城轨某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?22.初三年级学习压力大,放学后在家自学时间较初一、初二长.为了解学生学习时间,该年级随机抽取25%的学生问卷调查,制成统计表和扇形统计图,请你根据图表中提供的信息回答下列问题: 学习时间(h )1 1.52 2.53 3.5 人数72365418(1)初一年级共有学生___________人. (2)在表格中的空格处填上相应的数字.(3)表格中所提供的六个数据的中位数是_______,众数是__________.(4)估计“从该校初一年级中任选一名学生,放学后在家自学时间超过3h (不含3h )”概率.五、解答题(三)(本大题共3小题,每小题9分,满分27分)23.阅读理解题:定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位.那么形如a +bi (a ,b 为实数)的数就叫做复数, a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i )+(3-4i )=5-3i .(1)填空:i 3=_____,i 4=_______ ; (2)计算:①()()i -2i 2+;②()2i 2+;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题: 已知:(x +y )+3i =(1-x )-yi ,(x ,y 为实数),求x ,y 的值. (4)试一试:请利用以前学习的有关知识将i-1i1+化简成a +bi 的形式.24.如图,矩形ABCD中,AB=4,AD=5,将矩形ABCD绕点A顺时针旋转,得到矩形AMNP,直线MN分别与边BC、CD交于点E、F.(1)判断BE与ME的数量关系,并加以证明;(2)当△CEF是等腰三角形时,求线段BE的长;(3)设x=BE,y=CF·(AB2-BE2),试求y与x之间的函数关系式,并求出y 的最大值.25.如图,抛物线C1:y=ax2+bx+1的顶点坐标为D(1,0),(1)求抛物线C1的解析式;(2)如图1,将抛物线C1向右平移1个单位,向下平移1个单位得到抛物线C2,直线y=x+c,经过点D交y轴于点A,交抛物线C2于点B,抛物线C2的顶点为P,求△DBP 的面积(3)如图2,连接AP,过点B作BC⊥AP于C,设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC·(AC+EC)为定值.1、A2、C3、B4、C5、A 6.D 7.D 8.A 9.D 10.A11.x ≠1 12.2(x +3)(x -3) 13、1.67×105 14、60 15、32≤-<x 1 16. x =417.答案:解:原式981=-++4分=.5分18.解:由不等式组:54312125x x x x +>⎧⎪⎨--⎪⎩ ①≤ ② 解不等式①,得2x >-. 2分解不等式②,得5(1)2(21)x x --≤. 即5542x x --≤.∴3x ≤. 3分 由图可知不等式组的解集为:23x -<≤. 4分5分19.答案:证明AB DC =AB BC DC BC ∴+=+即AC DB =2分AE DF ∥ A D ∴∠=∠3分在AEC △和DFB △中AE DF A D AC DB =⎧⎪∠=∠⎨⎪=⎩AEC DFB ∴△≌△EC FB ∴= 5分20. 解:(1)在Rt △BAC 中,45BCA ∠=,90BAC ∠=,-2 3ABCEDF45∴△BAC 是等腰直角三角形. ∴610AC AB ==米.∴大楼与电视塔之间的距离AC 为610米. 3分 (2)作//DE AC 交AB 于点E (如图6), 则39BDE ∠=,610DE AC ==. 在Rt △BED 中,tan 39BEDE=, ∴tan39494.0BE DE =⋅≈米. 5分 ∴610494.0116CD AE AB BE ==-=-=米. ∴大楼的高度CD 约为116米. 8分21.解:设甲工程队单独完成任务需x 天,则乙工程队单独完成任务需(2)x +天,1分 依题意得2312x x +=+. 4分 化为整式方程得2340x x --=解得1x =-或4x =. 5分 检验:当4x =和1x =-时,(2)0x x +≠,4x ∴=和1x =-都是原分式方程的解. 7分但1x =-不符合实际意义,故1x =-舍去;∴乙单独完成任务需要26x +=(天).答:甲、乙工程队单独完成任务分别需要4天、6天. 8分 22.答案:(1)1340;(2)72,108;(3)2.25,3.5. 6分 (4)解:0.3. 8分 23.解:(1)∵i 2=-1,∴i 3=i 2•i =-1•i =-i , 1分 i 4=i 2•i 2=-1•(-1)=1, 2分 (2)①(2+i )(2-i )=4-i 2=5; 3分 ②(2+i )2=i 2+4i +4=-1+4i +4=3+4i ; 4分 (3)∵(x +y )+3i =(1-x )-yi , ∴x +y =1-x ,3=-y ,∴x =2, y =-3; 6分 (4)原式=i . 9分24.(1)BE =ME , 1分∵AB =AM ,AE =AE ∴Rt △ABE ≌Rt △AME ∴BE =ME 3分 (2)BE =4-24 6分 (3)y =-8x 2+40x (0<x ≤2) 8分 y max =48 9分25.(1)解:∵抛物线顶点为P (1,0),经过点(0,1)∴可设抛物线的解析式为:y =a (x -1)2,将点(0,1)代入,得a =1, ∴抛物线的解析式为y =x 2-2x +1; 3分 (2)解:根据题意,平移后顶点坐标P (2,-1) ∴抛物线的解析式为:y =(x -2)2-1,∴A (0,-1),B (4,3),∴S △DBP =3; 6分 (3)证明:过点Q 作QM ⊥AC 于点M ,过点Q 作QN ⊥BC 于点N , 设点Q 的坐标是(t ,t 2-4t +3),则QM =CN =(t -2)2,MC =QN =4-t . ∵QM ∥CE ,∴△PQM ∽△PEC ,∴QM :EC =PM :PC ,即(t -2) 2 :EC =t -1 :2 , 得EC =2(t -2),∵QN ∥FC ,∴△BQN ∽△BFC , ∴QN :FC =BN :BC , 即4-t :FC =3-(t 2 -4t +3) :4 , 得FC =4 :t ,又∵AC =4, ∴FC (AC +EC )=t4[4+2(t -2)]=8, 即FC (AC +EC )为定值8. 9分。
2013年广东省中考数学试题与答案
2013年省初中毕业生学业考试数学(时间:100分钟 满分:120分)班别:__________学号:____________:___________成绩:______________一、选择题(本大题10小题,每小题3分,共30分) 1. 2的相反数是( )A.21-B. 21C.-2D.22.下列几何体中,俯视图为四边形的是( )3.据报道,2013年第一季度,省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为( )A. 0.126×1012元 B. 1.26×1012元 C. 1.26×1011元 D. 12.6×1011元 4.已知实数a 、b ,若a >b ,则下列结论正确的是( )A.55-<-b aB.b a +<+22C.33ba < D.b a 33> 5.数据1、2、5、3、5、3、3的中位数是( ) A.1 B.2 C.3 D.56.如题6图,AC ∥DF,AB ∥EF,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是( ) A.30° B.40° C.50° D.60°7.下列等式正确的是( ) A.1)1(3=-- B. 1)4(0=- C. 6322)2()2(-=-⨯- D. 2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是( )9.下列图形中,不是..轴对称图形的是( )10.已知210k k <<,则是函数11-=x k y 和xk y 2=的图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:92-x =________________.12.若实数a 、b 满足042=-++b a ,则=ba 2________. 13.一个六边形的角和是__________.14.在R t △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA=________.15.如题15图,将一直角三角板纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置, 则四边形ACE ′E 的形状是________________.16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.解方程组⎩⎨⎧=++=821y x y x① ②18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当3,6==b a 时该分式的值.19.如题19图,已知□ABCD .(1)作图:延长BC,并在BC 的延长线上截取线段CE,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD 于点F,求证:△AFD ≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表. (1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21.地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF,使得另一边EF 过原矩形的顶点C.(1)设R t △CBD 的面积为S 1, R t △BFC 的面积为S 2, R t △DCE 的面积为S 3 , 则S 1______ S 2+ S 3(用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如题23图,当2=m 时,该抛物线与y 轴交于点C,顶点为D, 求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P,使得PC+PD 最短?若P 点 存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.25.有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,4.将这副直角三角板按如题25图(1)所示位置摆放,点B与点F重∠FDE=90°,DF=4,DE=3合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如题25图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=______度;(2)如题25图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分面积为y,求y与x的函数解析式,并求出对应的x取值围.FED CBA参考答案一、C D B D C C B A C A二、11.)3)(3(-+x x ;12. 1;13. 720°;14.54;15.平行四边形;16.83π 三、17.⎩⎨⎧==23y x ;18.选取①、②得3)(3)(332222b a b a b a b a b ab a -=--=-+-,当3,6==b a 时,原式=1336=-(有6种情况).19. (1)如图所示,线段CE 为所求;(2)证明:在□ABCD 中,A D ∥BC,AD=BC.∴∠CEF=∠DAF ∵CE=BC,∴AD=CE,又∵∠CFE=∠DFA,∴△AFD ≌△EFC. 20.(1)30%、10、50;图略;(2)276(人).21.(1)10%;(2)12100×(1+0.1)=13310(元). 22.(1) S 1= S 2+ S 3;(2)△BCF ∽△DBC ∽△CDE; 选△BCF ∽△CDE证明:在矩形ABCD 中,∠BCD=90°且点C 在边EF 上,∴∠BCF+∠DCE=90° 在矩形BDEF 中,∠F=∠E=90°,∴在Rt △BCF 中,∠CBF+∠BCF=90° ∴∠CBF=∠DCE,∴△BCF ∽△CDE.23.(1)m=±1,二次函数关系式为x x y x x y 2222-=+=或;(2)当m=2时,1)2(3422--=+-=x x x y ,∴D(2,-1);当0=x 时,3=y ,∴C(0,3). (3)存在.连结C 、D 交x 轴于点P,则点P 为所求,由C(0,3)、D(2,-1)求得直线CD 为32+-=x yFNMEDC BAGFN MEDCB AFEA当0=y 时,23=x ,∴P(23,0).24.(1)∵AB=DB,∴∠BDA=∠BAD,又∵∠BDA=∠BCA,∴∠BCA=∠BAD. (2)在Rt △ABC 中,AC=135122222=+=+BC AB ,易证△ACB ∽△DBE,得ACBDAB DE =, ∴DE=13144131212=⨯ (3)连结OB,则OB=OC,∴∠OBC=∠OCB,∵四边形ABCD 接于⊙O,∴∠BAC+∠BCD=180°,又∵∠BCE+∠BCD=180°,∴∠BCE=∠BAC,由(1)知∠BCA=∠BAD,∴∠BCE=∠OBC,∴OB ∥DE ∵BE ⊥DE,∴OB ⊥BE,∴BE 是⊙O 的切线.25. 解:(1)15;(2)在R t △CFA 中,AC=6,∠ACF=∠E=30°,∴FC=ο30cos AC=6÷3423= (3)如图(4),设过点M 作MN ⊥AB 于点N,则MN ∥DE,∠NMB=∠B=45°,∴NB=NM,NF=NB-FB=MN-x∵MN ∥DE ∴△FMN ∽FED,∴FD FNDE MN =,即434x MN MN -=,∴x MN 233+= ①当20≤≤x 时,如图(4) ,设DE 与BC 相交于点G ,则DG=DB=4+x ∴x x x MN BF DG DB S S y BMF BGD 23321)4(2121212+⋅⋅-+=⋅⋅-⋅⋅=-=∆ 即844312+++-=x x y ; ②当3262-≤<x 时,如图(5),x x MN BF AC S S y BMFBCA 23321362121212+⋅-⨯=⋅⋅-⋅=-=∆ 即184332++-=x y ; ③当4326≤<-x 时, 如图(6) 设AC 与EF 交于点H , ∵AF=6-x ,∠AHF =∠E=30° ∴AH=)6(33x AF -=2)6(23)6(3)6(21x x x S y FHA -=-⋅-==∆ 综上所述,当20≤≤x 时,844312+++-=x x y 题25图(4)题25图(5)当3262-≤<x ,184332++-=x y 当4326≤<-x 时,2)6(23x y -=。
2013年广州市中考数学模拟试卷(二)
2013年广东省广州市中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)2.(3分)(2013•广州二模)函数y=的自变量x的取值范围是()....5.(3分)(2013•广州二模)方程的解为()6.(3分)(2013•广州二模)如图,△ABC为⊙O的内接三角形,∠OBC=50°,则∠A等于()2.C D.10.(3分)(2013•广州二模)已知Rt△ABC的斜边AB=5cm,直角边AC=4cm,BC=3cm,以直线AB为轴旋转一二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)(2013•广州二模)七边形的内角和为_________度,外角和为_________度.12.(3分)(2013•广州二模)化简:•=_________.13.(3分)(2013•广州二模)已知△ABC中,D、E分别是AB、AC边的中点,则=_________.14.(3分)(2013•广州二模)一个不透明的袋子里装有3个红球,4个黄球,5个白球,每个球除颜色外其它都相同,搅匀后随机从中摸出一个球是黄球的概率是_________.15.(3分)(2013•广州二模)将点A(0,6)绕着原点顺时针方向旋转60°得到点B,则点B的坐标为_________(结果用根号表示).16.(3分)(2013•广州二模)如图,正方形ABCD、DEFG、FHIJ在直线MN的同一侧,点B、C、E、H、I均在直线MN上,正方形ABCD、FHIJ的面积分别为13、23,则正方形DEFG的面积为_________.三、解答题(本大题共9小题,满分102分.)17.(9分)(2013•广州二模)解方程:=+118.(9分)(2013•广州二模)如图,E、F分别是矩形ABCD的边AD、BC上的点,且AE=CF.求证:四边形EBFD 为平行四边形.19.(10分)(2013•广州二模)为提高同学们体育运动水平,增强体质,九年毕业年级规定:每周三下午人人参与1小时体育运动.项目有篮球、排球、羽毛球和乒乓球.下面是九年(2)班某次参加活动的两个不完整统计图(图1和图2).根据图中提供的信息,请解答以下问题:(1)九年(2)班共有多少名学生?(2)计算参加乒乓球运动的人数,并在条形统计图(图1)中,将表示“乒乓球”的部分补充完整;(3)求出扇形统计图中“羽毛球”扇形圆心角的度数.20.(10分)(2004•杭州)某航运公司年初用120万元购进一艘运输船,在投入运输后,每一年运输的总收入为72万元,需要支出的各种费用为40万元.(1)问该船运输第几年开始盈利?(盈利即指总收入减去购船费及所有支出费用之差为正值)(2)若该船运输满15年要报废,报废时旧船卖出可收回5万元,求这15年的年平均盈利额(精确到0.1万元).21.(12分)(2011•白云区模拟)如图,⊙O是△ABC外接圆,直径AB=12,∠A=2∠B.(1)∠A=_________°,∠B=_________°;(2)求BC的长(结果用根号表示);(3)连接OC并延长到点P,使CP=OC,连接PA,画出图形,求证:PA是⊙O的切线.22.(12分)(2013•广州二模)如图,在平面直角坐标系中,直线l是第二、四象限的角平分线.(1)实验与探究:由图观察易知A(0,2)关于直线l的对称点A′的坐标为(﹣2,0),请在图中分别标明B(﹣1,5)、C(3,2)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;(2)归纳与发现:结合图观察以上三组点的坐标,你会发现坐标平面内任一点P(a,b)关于第二、四象限的角平分线l的对称点P'的坐标为_________(不必证明);(3)运用与拓展:已知两点D(﹣1,﹣3)、E(2,﹣4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出点Q的坐标.23.(12分)(2013•广州二模)如图,是反比例函数的图象,且k是一元二次方程x2+x﹣6=0的一个根.(1)求方程x2+x﹣6=0的两个根;(2)确定k的值;(3)若m为非负实数,对于函数,当x1=m+1及x2=m+2时,说明y1与y2的大小关系.24.(14分)(2013•广州二模)如图,直线AM∥BN,AE、BE分别平分∠MAB、∠NBA.(1)∠AEB的度数为_________;(2)请证明(1)中你所给出的结论;(3)过点E任作一线段CD,使CD交直线AM于点D,交直线BN于点C,线段AD、BC、AB三者间有何等量关系?试证明你的结论.25.(14分)(2003•黄冈)已知经过A、B、C三点的二次函数图象如图所示.(1)求二次函数的解析式及抛物线顶点M的坐标;(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B、点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t取值范围;(3)将△OAC补成矩形,使△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.2013年广东省广州市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)2.(3分)(2013•广州二模)函数y=的自变量x的取值范围是()....5.(3分)(2013•广州二模)方程的解为()6.(3分)(2013•广州二模)如图,△ABC为⊙O的内接三角形,∠OBC=50°,则∠A等于()A=2.C D.=10.(3分)(2013•广州二模)已知Rt△ABC的斜边AB=5cm,直角边AC=4cm,BC=3cm,以直线AB为轴旋转一CD==为半径的圆的周长ππ×π二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)(2013•广州二模)七边形的内角和为900度,外角和为360度.12.(3分)(2013•广州二模)化简:•=4a2.13.(3分)(2013•广州二模)已知△ABC中,D、E分别是AB、AC边的中点,则=.的中位线,所以=故答案为14.(3分)(2013•广州二模)一个不透明的袋子里装有3个红球,4个黄球,5个白球,每个球除颜色外其它都相同,搅匀后随机从中摸出一个球是黄球的概率是.个球,从中摸出一个球是黄球的概率是=.15.(3分)(2013•广州二模)将点A(0,6)绕着原点顺时针方向旋转60°得到点B,则点B的坐标为(3,3)(结果用根号表示).,16.(3分)(2013•广州二模)如图,正方形ABCD、DEFG、FHIJ在直线MN的同一侧,点B、C、E、H、I均在直线MN上,正方形ABCD、FHIJ的面积分别为13、23,则正方形DEFG的面积为36.三、解答题(本大题共9小题,满分102分.)17.(9分)(2013•广州二模)解方程:=+118.(9分)(2013•广州二模)如图,E、F分别是矩形ABCD的边AD、BC上的点,且AE=CF.求证:四边形EBFD 为平行四边形.19.(10分)(2013•广州二模)为提高同学们体育运动水平,增强体质,九年毕业年级规定:每周三下午人人参与1小时体育运动.项目有篮球、排球、羽毛球和乒乓球.下面是九年(2)班某次参加活动的两个不完整统计图(图1和图2).根据图中提供的信息,请解答以下问题:(1)九年(2)班共有多少名学生?(2)计算参加乒乓球运动的人数,并在条形统计图(图1)中,将表示“乒乓球”的部分补充完整;(3)求出扇形统计图中“羽毛球”扇形圆心角的度数.20.(10分)(2004•杭州)某航运公司年初用120万元购进一艘运输船,在投入运输后,每一年运输的总收入为72万元,需要支出的各种费用为40万元.(1)问该船运输第几年开始盈利?(盈利即指总收入减去购船费及所有支出费用之差为正值)(2)若该船运输满15年要报废,报废时旧船卖出可收回5万元,求这15年的年平均盈利额(精确到0.1万元).21.(12分)(2013•广州二模)如图,⊙O是△ABC外接圆,直径AB=12,∠A=2∠B.(1)∠A=60°,∠B=30°;(2)求BC的长(结果用根号表示);(3)连接OC并延长到点P,使CP=OC,连接PA,画出图形,求证:PA是⊙O的切线.AB=65=622.(12分)(2013•广州二模)如图,在平面直角坐标系中,直线l是第二、四象限的角平分线.(1)实验与探究:由图观察易知A(0,2)关于直线l的对称点A′的坐标为(﹣2,0),请在图中分别标明B(﹣1,5)、C(3,2)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;(2)归纳与发现:结合图观察以上三组点的坐标,你会发现坐标平面内任一点P(a,b)关于第二、四象限的角平分线l的对称点P'的坐标为(﹣b,﹣a)(不必证明);(3)运用与拓展:已知两点D(﹣1,﹣3)、E(2,﹣4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出点Q的坐标.的交点,解方程组:解方程组:得,﹣)23.(12分)(2013•广州二模)如图,是反比例函数的图象,且k是一元二次方程x2+x﹣6=0的一个根.(1)求方程x2+x﹣6=0的两个根;(2)确定k的值;(3)若m为非负实数,对于函数,当x1=m+1及x2=m+2时,说明y1与y2的大小关系.24.(14分)(2013•广州二模)如图,直线AM∥BN,AE、BE分别平分∠MAB、∠NBA.(1)∠AEB的度数为90°;(2)请证明(1)中你所给出的结论;(3)过点E任作一线段CD,使CD交直线AM于点D,交直线BN于点C,线段AD、BC、AB三者间有何等量关系?试证明你的结论.25.(14分)(2003•黄冈)已知经过A、B、C三点的二次函数图象如图所示.(1)求二次函数的解析式及抛物线顶点M的坐标;(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B、点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t取值范围;(3)将△OAC补成矩形,使△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.﹣,),)坐标代入其中,﹣x+3﹣﹣(﹣t+;x+2x+m﹣x.(,(﹣,﹣)或(,(﹣,﹣)。
2013年广东省中考数学模拟试卷
2013年广东省中考数学模拟试卷(二十二)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)计算的结果是()2.(3分)(2010•荆州)在电子显微镜下测得一个圆球体细胞的直径是5×10﹣5cm,2×103个这样的细胞排成的细胞4.(3分)(2009•湛江)沃尔玛商场为了了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如图所示,根据图中给出的信息,这100名顾客中对该商场的服务质量表示不满意的有()5.(3分)如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是()7.(3分)不等式组的解集在数轴上可表示为(). B . ..8.(3分)均匀地向一个如图所示的容器中注水,最后把容器注满,在注水的过程中水面的高度h 随时间t 变化的函数图象大致是( ).CD .9.(3分)(2010•台湾)如图为一个平行四边形ABCD ,其中H 、G 两点分别在BC 、CD 上,AH ⊥BC ,AG ⊥CD ,且AH 、AC 、AG 将∠BAD 分成∠1、∠2、∠3、∠4四个角.若AH=5,AG=6,则下列关系何者正确( )10.(3分)(2007•舟山)如图,正三角形ABC 内接于圆O ,动点P 在圆周的劣弧AB 上,且不与A ,B 重合,则∠BPC 等于( )二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.(4分)若x+=2,则x= _________ 或 _________ .12.(4分)(2011•岳阳)分解因式:a 4﹣1= _________ . 13.(4分)(2010•虹口区一模)在△ABC 中,∠C=90°,AB=4,AC=1,则cosA 的值是 _________ .14.(4分)已知,则= _________ .15.(4分)如果一个多边形的每一个外角都等于30°,那么这个多边形是 _________ 边形.16.(4分)(2010•江津区)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是_________.三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2010•长沙)计算:.18.(5分)(2010•汕头)先化简,再求值,其中x=.19.(5分)(2007•双柏县)如图,在某建筑物AC上,挂着“多彩贵州”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为30°,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为60°,求宣传条幅BC 的长.(小明的身高不计,结果精确到0.1米)四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2007•呼伦贝尔)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?21.(8分)(1)如图所示,若反比例函数解析式为y=,P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)M1的坐标是_________.(2)请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得k﹦_________,若点P的坐标为(m,0)时,则b﹦_________;(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.22.(8分)(2011•威海)甲乙二人玩一个游戏:每人分别抛掷一个质地均匀的小立方体(每个面分别标有数字1,2,3,4,5,6),落定后,若两个小立方体朝上的数字之和为偶数,则甲胜;若两个小立方体朝上的数字之和为奇数,则乙胜,你认为这个游戏公平吗?试说明理由.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(1)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.根据该材料:已知x1、x2是方程x2+6x+3=0的两实数根,求+的值.2点A(x1,y1)、B(x2,y2)在函数的图象上,当0<x1<1,2<x2<3时,试判断y1与y2的大小关系.24.(9分)以△ABC的两边AB、AC为腰分别向外作等腰Rt△ABD和等腰Rt△ACE,∠BAD=∠CAE=90°,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图①当△ABC为直角三角形时,AM与DE的位置关系是_________,线段AM与DE的数量关系是_________;(2)将图①中的等腰Rt△ABD绕点A沿逆时针方向旋转θ°(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.25.(9分)(2009•龙岩)如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连接BC、AD.(1)求C点的坐标及抛物线的解析式;(2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;(3)设过点E的直线交AB边于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形ABCD的面积为1:3两部分?若存在,求出P点坐标;若不存在,请说明理由.2013年广东省中考数学模拟试卷(二十二)参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)计算的结果是()(为正整数)可算出(=(2.(3分)(2010•荆州)在电子显微镜下测得一个圆球体细胞的直径是5×10﹣5cm,2×103个这样的细胞排成的细胞=|a|(==4.(3分)(2009•湛江)沃尔玛商场为了了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如图所示,根据图中给出的信息,这100名顾客中对该商场的服务质量表示不满意的有()5.(3分)如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是()=27.(3分)不等式组的解集在数轴上可表示为().B...,∴在数轴上表示为8.(3分)均匀地向一个如图所示的容器中注水,最后把容器注满,在注水的过程中水面的高度h随时间t变化的函数图象大致是().C D.9.(3分)(2010•台湾)如图为一个平行四边形ABCD,其中H、G两点分别在BC、CD上,AH⊥BC,AG⊥CD,且AH、AC、AG将∠BAD分成∠1、∠2、∠3、∠4四个角.若AH=5,AG=6,则下列关系何者正确()10.(3分)(2007•舟山)如图,正三角形ABC内接于圆O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC等于()二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)若x+=2,则x=2或.,12.(4分)(2011•岳阳)分解因式:a4﹣1=(a2+1)(a+1)(a﹣1).13.(4分)(2010•虹口区一模)在△ABC中,∠C=90°,AB=4,AC=1,则cosA的值是.cosA=.故答案为:14.(4分)已知,则=.===k===故答案为:15.(4分)如果一个多边形的每一个外角都等于30°,那么这个多边形是十二边形.16.(4分)(2010•江津区)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是±3.三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2010•长沙)计算:.;18.(5分)(2010•汕头)先化简,再求值,其中x=.•时,原式.19.(5分)(2007•双柏县)如图,在某建筑物AC上,挂着“多彩贵州”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为30°,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为60°,求宣传条幅BC 的长.(小明的身高不计,结果精确到0.1米)×四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2007•呼伦贝尔)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?千克.本题的等量关系为:)﹣21.(8分)(1)如图所示,若反比例函数解析式为y=,P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)M1的坐标是(﹣1,2).(2)请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得k﹦﹣1,若点P的坐标为(m,0)时,则b﹦m;(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.y=的图象上,故=3+﹣=3+,)3+﹣22.(8分)(2011•威海)甲乙二人玩一个游戏:每人分别抛掷一个质地均匀的小立方体(每个面分别标有数字1,2,3,4,5,6),落定后,若两个小立方体朝上的数字之和为偶数,则甲胜;若两个小立方体朝上的数字之和为奇数,则乙胜,你认为这个游戏公平吗?试说明理由.=.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(1)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.根据该材料:已知x1、x2是方程x2+6x+3=0的两实数根,求+的值.2点A(x1,y1)、B(x2,y2)在函数的图象上,当0<x1<1,2<x2<3时,试判断y1与y2的大小关系.﹣﹣=+==24.(9分)以△ABC的两边AB、AC为腰分别向外作等腰Rt△ABD和等腰Rt△ACE,∠BAD=∠CAE=90°,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图①当△ABC为直角三角形时,AM与DE的位置关系是AM⊥DE,线段AM与DE的数量关系是DE=2AM;(2)将图①中的等腰Rt△ABD绕点A沿逆时针方向旋转θ°(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.AM=FBAM=AM=25.(9分)(2009•龙岩)如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连接BC、AD.(1)求C点的坐标及抛物线的解析式;(2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;(3)设过点E的直线交AB边于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形ABCD的面积为1:3两部分?若存在,求出P点坐标;若不存在,请说明理由.x x+2,得﹣x x+2••(S,解得;S,解得;,)或(,。
2013年广东中考数学卷和答案详解
2013年广东省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2013•广东)2的相反数是()A.B.C.﹣2 D.22.(3分)(2013•广东)下列四个几何体中,俯视图为四边形的是()A.B.C.D.3.(3分)(2013•广东)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为()A.0.126×1012元B.1.26×1012元C.1.26×1011元D.12.6×1011元4.(3分)(2013•广东)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.D.3a>3b5.(3分)(2013•广东)数学1、2、5、3、5、3、3的中位数是()A.1B.2C.3D.56.(3分)(2013•广东)如图,AC∥DF,AB∥EF ,点D、E分别在AB、AC上,若∠2=50°,则∠1的大小是()A.30°B.40°C.50°D.60°7.(3分)(2013•广东)下列等式正确的是()A.(﹣1)﹣3=1 B.(﹣4)0=1 C.(﹣2)2×(﹣2)3=﹣26D.(﹣5)4÷(﹣5)2=﹣528.(3分)(2013•广东)不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.9.(3分)(2013•广东)下列图形中,不是轴对称图形的是()A.B.C.D.10.(3分)(2013•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.(4分)(2013•平凉)分解因式:x2﹣9=_________.12.(4分)(2013•广东)若实数a、b满足|a+2|,则=_________.13.(4分)(2013•广东)一个六边形的内角和是_________.14.(4分)(2013•广东)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=_________.15.(4分)(2013•广东)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是_________.16.(4分)(2013•广东)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是_________(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2013•广东)解方程组.18.(5分)(2013•广东)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.19.(5分)(2013•广东)如图,已知▱ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2013•广东)某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图和所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.样本人数分布表类别人数百分比排球 3 6%乒乓球14 28%羽毛球15篮球20%足球8 16%合计100%21.(8分)(2013•广东)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?22.(8分)(2013•广东)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1_________ S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2013•广东)已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.24.(9分)(2013•广东)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.25.(9分)(2013•广东)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC= _________度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.2013年广东省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2013•广东)2的相反数是()A.B.C.﹣2 D.2考点:相反数.分析:根据相反数的概念解答即可.解答:解:2的相反数是﹣2,故选:C.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•广东)下列四个几何体中,俯视图为四边形的是()A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体上面看,所得到的图形.解答:解:A、五棱柱的俯视图是五边形,故此选项错误;B、三棱锥的俯视图是,故此选项错误;C、球的俯视图是圆,故此选项错误;D、正方体俯视图是正方形,故此选项正确;故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)(2013•广东)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为()A.0.126×1012元B.1.26×1012元C.1.26×1011元D.12.6×1011元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1260 000 000 000有13位,所以可以确定n=13﹣1=12.解答:解:1260 000 000 000=1.26×1012.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2013•广东)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.D.3a>3b考点:不等式的性质.分析:以及等式的基本性质即可作出判断.解答:解:A、a>b,则a﹣5>b﹣5,选项错误;B、a>b,则2+a>2+b,选项错误;C、a>b,则>,选项错误;D、正确.故选D.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(3分)(2013•广东)数学1、2、5、3、5、3、3的中位数是()A.1B.2C.3D.5考点:中位数.分析:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解答:解:将数据从大到小排列为:1,2,3,3,3,5,5,则中位数是3.故选C.点评:本题考查了中位数的知识,属于基础题,掌握中位数的定义及计算方法是关键.6.(3分)(2013•广东)如图,AC∥DF,AB∥EF,点D、E分别在AB、AC上,若∠2=50°,则∠1的大小是()A.30°B.40°C.50°D.60°考点:平行线的性质.分析:由AC∥DF,AB∥EF,根据两直线平行,同位角相等,即可求得∠1=∠A=∠2=50°.解答:解:∵AB∥EF,∴∠A=∠2=50°,∵AC∥DF,∴∠1=∠A=50°.故选C.点评:此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,同位角相等订立的应用,注意掌握数形结合思想的应用.7.(3分)(2013•广东)下列等式正确的是()A.(﹣1)﹣3=1 B.(﹣4)0=1 C.(﹣2)2×(﹣2)3=﹣26D.(﹣5)4÷(﹣5)2=﹣52考点:负整数指数幂;同底数幂的乘法;同底数幂的除法;零指数幂.分析:根据负整数指数幂:a﹣p=(a≠0,p为正整数),零指数幂:a0=1(a≠0),同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.同底数幂的除法法则:底数不变,指数相减分别进行计算,可得答案.解答:解:A、(﹣1)﹣3=﹣1,故此选项错误;B、(﹣4)0=1,故此选项正确;C、(﹣2)2×(﹣2)3=﹣25,故此选项错误;D、(﹣5)4÷(﹣5)2=52,故此选项错误;故选:B.点评:此题主要考查了负整数指数幂、零指数幂、同底数幂的乘除法,关键是熟练掌握各运算的计算法则,不要混淆.8.(3分)(2013•广东)不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:存在型.分析:先求出不等式的解集,再在数轴上表示出来即可.解答:解:移项得,5x﹣2x>5+1,合并同类项得,3x>6,系数化为1得,x>2,在数轴上表示为:故选A.点评:本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.(3分)(2013•广东)下列图形中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断即可得出答案.解答:解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.(3分)(2013•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:根据反比例函数的图象性质及正比例函数的图象性质可作出判断.解答:解:∵k1<0<k2,b=﹣1<0∴直线过二、三、四象限;双曲线位于一、三象限.故选A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.(4分)(2013•平凉)分解因式:x2﹣9=(x+3)(x﹣3).考点:因式分解-运用公式法.分析:本题中两个平方项的符号相反,直接运用平方差公式分解因式.解答:解:x2﹣9=(x+3)(x﹣3).点评:主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.12.(4分)(2013•广东)若实数a、b满足|a+2|,则=1.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.解答:解:根据题意得:,解得:,则原式==1.故答案是:1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.(4分)(2013•广东)一个六边形的内角和是720°.考点:多边形内角与外角.分析:根据多边形内角和公式进行计算即可.解答:解:由内角和公式可得:(6﹣2)×180°=720°.故答案为:720°.点评:此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n﹣2).180°(n≥3)且n为整数).14.(4分)(2013•广东)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=.考点:锐角三角函数的定义;勾股定理.分析:首先由勾股定理求得斜边AC=5;然后由锐角三角函数的定义知sinA=,然后将相关线段的长度代入计算即可.解答:解:∵在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC==5(勾股定理).∴sinA==.故答案是:.点评:本题考查了锐角三角函数定义,勾股定理.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.15.(4分)(2013•广东)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是平行四边形.考点:图形的剪拼.分析:四边形ACE′E的形状是平行四边形;首先根据三角形中位线的性质可得DE∥AC,DE=AC,再根据旋转可得DE=DE′,然后可根据一组对边平行且相等的四边形是平行四边形进行判定即可.解答:解:四边形ACE′E的形状是平行四边形;∵DE是△ABC的中线,∴DE∥AC,DE=AC,∵将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,∴DE=DE′,∴EE′=2DE=AC,∴四边形ACE′E的形状是平行四边形,故答案为:平行四边形.点评:此题主要考查了图形的剪拼,以及平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.16.(4分)(2013•广东)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).考点:扇形面积的计算.分析:阴影部分可看成是圆心角为135°,半径为1是扇形.解答:解:根据图示知,∠1+∠2=180°﹣90°﹣45°=45°,∴图中阴影部分的圆心角的和是90°+90°﹣∠1﹣∠2=135°,∴阴影部分的面积应为:S==.故答案是:.点评:本题考查学生的观察能力及计算能力.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2013•广东)解方程组.考点:解二元一次方程组.专题:计算题.分析:将方程组中的第一个方程代入第二个方程消去x求出y的值,进而求出x的值,即可得到方程组的解.解答:解:,将①代入②得:2(y+1)+y=8,去括号得:2y+2+y=8,解得:y=2,将y=2代入①得:x=2+1=3,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(5分)(2013•广东)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.考点:分式的化简求值.专题:开放型.分析:选②与③构造出分式,再根据分式混合运算的法则把原式进行化简,把a、b的值代入进行计算即可.解答:解:选②与③构造出分式,,原式==,当a=6,b=3时,原式==.点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.19.(5分)(2013•广东)如图,已知▱ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.考点:作图—复杂作图;全等三角形的判定;平行四边形的性质.分析:(1)根据题目要求画出图形即可;(2)首先根据平行四边形的性质可得AD∥BC,AD=BC,进而得到AD=CE,∠DAF=∠CEF,进而可利用AAS证明△AFD≌△EFC.解答:(1)解:如图所示:(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BC=CE,∴AD=CE,∵AD∥BC,∴∠DAF=∠CEF,∵在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).点评:此题主要考查了平行四边形的性质,以及全等三角形的判定,关键是正确画出图形,掌握平行四边形的性质.四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2013•广东)某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图和所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.样本人数分布表类别人数百分比排球 3 6%乒乓球14 28%羽毛球15篮球20%足球8 16%合计100%考点:条形统计图;用样本估计总体;统计表.专题:计算题.分析:(1)由排球的人数除以所占的百分比求出总人数,乘以篮球所占的百分比即可求出篮球的人数,补全条形统计图,如图所示,求出羽毛球所占的百分比,补全人数分布图,如图所示;(2)用人数乘以羽毛球所占的百分比即可求出人数.解答:解:(1)3÷6%=50人,则篮球的人数为50×20%=10人,则补全条形统计图如下:羽毛球占总数的百分比为:15÷50=30%,补全人数分布表为:类别人数百分比排球 3 6%乒乓球14 28%羽毛球15 30%篮球10 20%足球8 16%合计50 100%(2)920×30%=276人.则七年级学生喜爱羽毛球运动项目的人数为276人.点评:此题考查了条形统计图,扇形统计图,中位数,以及众数,弄清题意是解本题的关键.21.(8分)(2013•广东)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?考点:一元二次方程的应用.专题:增长率问题.分析:(1)解答此题利用的数量关系是:第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数,设出未知数,列方程解答即可;(2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.解答:解:(1)设捐款增长率为x,根据题意列方程得,10000×(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.点评:本题考查了一元二次方程的应用,列方程的依据是:第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数.22.(8分)(2013•广东)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1=S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.考点:相似三角形的判定;矩形的性质.分析:(1)根据S1=S矩形BDEF,S2+S3=S矩形BDEF,即可得出答案.(2)根据矩形的性质,结合图形可得:△BCD∽△CFB∽△DEC,选择一对进行证明即可.解答:(1)解:∵S1=BD×ED,S矩形BDEF=BD×ED,∴S1=S矩形BDEF,∴S2+S3=S矩形BDEF,∴S1=S2+S3.(2)答:△BCD∽△CFB∽△DEC.证明△BCD∽△DEC;证明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°,∴∠EDC=∠CBD,又∵∠BCD=∠DEC=90°,∴△BCD∽△DEC.点评:本题考查了相似三角形的判定,注意掌握相似三角形的判定定理,最经常用的就是两角法,此题难度一般.四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2013•广东)已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.考点:二次函数综合题.分析:(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可;(2)根据m=2,代入求出二次函数解析式,进而利用配方法求出顶点坐标以及图象与y轴交点即可;(3)根据当P、C、D共线时PC+PD最短,利用平行线分线段成比例定理得出PO 的长即可得出答案.解答:解:(1)∵二次函数的图象经过坐标原点O(0,0),∴代入二次函数y=x2﹣2mx+m2﹣1,得出:m2﹣1=0,解得:m=±1,∴二次函数的解析式为:y=x2﹣2x或y=x2+2x;(2)∵m=2,∴二次函数y=x2﹣2mx+m2﹣1得:y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点为:D(2,﹣1),当x=0时,y=3,∴C点坐标为:(0,3);(3)当P、C、D共线时PC+PD最短,过点D作DE⊥y轴于点E,∵PO∥DE,∴=,∴=,解得:PO=,∴PC+PD最短时,P点的坐标为:P(,0).点评:此题主要考查了二次函数的综合应用以及配方法求二次函数顶点坐标以及最短路线问题等知识,根据数形结合得出是解题关键.24.(9分)(2013•广东)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.考点:切线的判定;圆周角定理;相似三角形的判定与性质.分析:(1)根据BD=BA得出∠BDA=∠BAD,再由∠BCA=∠BDA即可得出结论;(2)判断△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.(3)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断OB⊥DE,可得出结论.解答:(1)证明:∵BD=BA,∴∠BDA=∠BAD,∵∠BCA=∠BDA(圆周角定理),∴∠BCA=∠BAD.(2)解:∵∠BDE=∠CAB(圆周角定理),∠BED=∠CBA=90°,∴△BED∽△CBA,∴=,即=,解得:DE=.(3)证明:连结OB,OD,在△ABO和△DBO中,∵,∴△ABO≌△DBO,∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB∥ED,∵BE⊥ED,∴EB⊥BO,∴OB⊥BE,∴BE是⊙O的切线.点评:本题考查了切线的判定及圆周角定理的知识,综合考查的知识点较多,解答本题要求同学们熟练掌握一些定理的内容.25.(9分)(2013•广东)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC= 15度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.考点:相似形综合题.分析:(1)如题图2所示,由三角形的外角性质可得;(2)如题图3所示,在Rt△ACF中,解直角三角形即可;(3)认真分析三角板的运动过程,明确不同时段重叠图形的变化情况:(I)当0≤x≤2时,如答图1所示;(II)当2<x≤6﹣时,如答图2所示;(III)当6﹣<x≤6时,如答图3所示.解答:解:(1)如题图2所示,∵在三角板DEF中,∠FDE=90°,DF=4,DE=,∴tan∠DFE==,∴∠DFE=60°,∴∠EMC=∠FMB=∠DFE﹣∠ABC=60°﹣45°=15°;(2)如题图3所示,当EF经过点C时,FC====;(3)在三角板DEF运动过程中,(I)当0≤x≤2时,如答图1所示:设DE交BC于点G.过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=x.y=S△BDG﹣S△BFM=BD•DG﹣BF•MN=(x+4)2﹣x•x=x2+4x+8;(II)当2<x≤6﹣时,如答图2所示:过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=x.y=S△ABC﹣S△BFM=AB•AC﹣BF•MN=×62﹣x•x=x2+18;(III)当6﹣<x≤6时,如答图3所示:由BF=x,则AF=AB﹣BF=6﹣x,设AC与EF交于点M,则AM=AF•tan60°=(6﹣x).y=S△AFM=AF•AM=(6﹣x)•(6﹣x)=x2﹣x+.综上所述,y与x的函数解析式为:y=.点评:本题是运动型综合题,解题关键是认真分析三角板的运动过程,明确不同时段重叠图形形状的变化情况.在解题计算过程中,除利用三角函数进行计算外,也可以利用三角形相似,殊途同归.。
广东省广州市天河区2013年中考二模数学试题及答案
图像上的点,若
x
x1
0
x2 ,
A
则一定成立的是()
A 、 y1 y2 0
B、 y1 0 y2
O
O‘
C、 0 y1 y2
D、 y2 0 y1
B
10、如图,⊙ O 和⊙ O′相交于 A 、 B 两点,且 OO ’=5, OA=3 , O’B=4,则 AB=( )
A 、 5 B 、 2.4 C、2.5
D 、4.8
A 、 20° B 、 80° C、 60° D、 100°
7、已知 AB 、 CD 是⊙ O 的直径,则四边形 ACBD 是()
A 、正方形
B、矩形
C 、菱形
D、等腰梯形
x30
8、不等式组
的整数解有()
x2
俯视图
A E
2 左视图
B C
D
A 、 0 个 B 、5 个 C、 6 个 D、无数个
2
9、已知点 A( x1, y1 ), B( x2, y2 ) 是反比例函数 y
72°,那么捐款 21~40 元的有多少人?
捐款 0~20 元 21~40 元 41~60 元 61~80 元 81 元以上
人数
6 4
81 元 以上 0~20 元
61~80 元 8% 72°
41~60 元 21~40 元
32%
21、校运会期间,某班预计用 90 元为班级同学统一购买矿泉水,生活委员发现学校小卖部有优惠活 动:购买瓶装矿泉水打 9 折,经计算按优惠价购买能多买 5 瓶,求每瓶矿泉水的原价和该班实际购 买矿泉水的数量。
22、如图,矩形 OABC 顶点 A(6,0) 、 C(0,4),直线 y kx 1 分别交 BA 、OA 于点 D、 E,且 D
广东省2013年中考数学全真模拟试题(针对2013版新考纲)(一)(含答案)
机密★启用前2013年广东省初中毕业生学业考试模拟试题数学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓 名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 将图1所示的图案通过平移后可以得到的图案是( )2. 如图2,AB ∥CD ,直线l 分别与AB 、CD 相交,若∠1=130°,则∠2=( )(A )40° (B )50° (C )130° (D )140°3. 实数a 、b 在数轴上的位置如图3所示,则a 与b 的大小关系是( )(A )b a < (B )b a =(C )b a > (D )无法确定4. 二次函数2)1(2+-=x y 的最小值是( )(A )2 (B )1 (C )-1 (D )-25. 图4是广州市某一天内的气温变化图,根据图4,下列说法中错误..的是( ) (A )这一天中最高气温是24℃(B )这一天中最高气温与最低气温的差为16℃(C )这一天中2时至14时之间的气温在逐渐升高(D )这一天中只有14时至24时之间的气温在逐渐降低6. 下列运算正确的是( )(A )222)(n m n m -=- (B ))0(122≠=-m mm (C )422)(mn n m =⋅ (D )642)(m m =7. 下列函数中,自变量x 的取值范围是x ≥3的是( )(A )31-=x y (B )31-=x y (C )3-=x y (D )3-=x y8. 只用下列正多边形地砖中的一种,能够铺满地面的是( )(A )正十边形 (B )正八边形(C )正六边形 (D )正五边形9. 已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5)所示),则sin θ的值为( )(A )125 (B )135 (C )1310 (D )131210. 如图6,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=24,则ΔCEF 的周长为( )(A )8 (B )9.5 (C )10 (D )11.5二、填空题(本大题共6小题,每小题4分,满分24分)11. 已知函数xy 2=,当x =1时,y 的值是________ 12. 在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是________13. 绝对值是6的数是________14. 已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:________________________________15. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________16. 如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成三、解答题(一)(本大题共3小题,每小题5分,满分15分)17. (本小题满分5分)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。
2013年广东省中考数学试卷及答案(Word解析版)
12.若实数a 、b 满足042=-++b a ,则=ba 2________. 16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是83π__________(结果保留π).五、解答题(三)(本大题3小题,每小题9分,共27分)23. 已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如题23图,当2=m 时,该抛物线与y 轴交于点C,顶点为D,求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P,使得PC+PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.解析:(1)m=±1,二次函数关系式为x x y x x y 2222-=+=或;(2)当m=2时,1)2(3422--=+-=x x x y ,∴D(2,-1);当0=x 时,3=y ,∴C(0,3).(3)存在.连结C 、D 交x 轴于点P,则点P 为所求,由C(0,3)、D(2,-1)求得直线CD 为32+-=x y当0=y 时,23=x ,∴P(23,0).25.有一副直角三角板,在三角板ABC 中,∠BAC=90°,AB=AC=6,在三角板DEF 中,∠FDE=90°,DF=4,DE=34.将这副直角三角板按如题25图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如题25图(2),当三角板DEF 运动到点D 与点A 重合时,设EF 与BC 交于点M, 则∠EMC=______度;(2)如题25图(3),在三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长;(3)在三角板DEF 运动过程中,设BF=x ,两块三角板重叠部分面积为y ,求y与x 的函数解析式,并求出对应的x 取值范围.解析。
2013年广东省中考数学试卷及答案
2013年广东省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2013•广东)2的相反数是()A.B.C.﹣2 D.22.(3分)(2013•广东)下列四个几何体中,俯视图为四边形的是()A.B.C.D.3.(3分)(2013•广东)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为()A.0.126×1012元B.1.26×1012元C.1.26×1011元D.12.6×1011元4.(3分)(2013•广东)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.D.3a>3b5.(3分)(2013•广东)数学1、2、5、3、5、3、3的中位数是()A.1B.2C.3D.56.(3分)(2013•广东)如图,AC∥DF,AB∥EF,点D、E分别在AB、AC上,若∠2=50°,则∠1的大小是()A.30°B.40°C.50°D.60°7.(3分)(2013•广东)下列等式正确的是()A.(﹣1)﹣3=1 B.(﹣4)0=1 C.(﹣2)2×(﹣2)3=﹣26D.(﹣5)4÷(﹣5)2=﹣528.(3分)(2013•广东)不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.9.(3分)(2013•广东)下列图形中,不是轴对称图形的是()A.B.C.D.10.(3分)(2013•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.(4分)(2013•平凉)分解因式:x2﹣9=_________.12.(4分)(2013•广东)若实数a、b满足|a+2|,则=_________.13.(4分)(2013•广东)一个六边形的内角和是_________.14.(4分)(2013•广东)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=_________.15.(4分)(2013•广东)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是_________.16.(4分)(2013•广东)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是_________(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2013•广东)解方程组.18.(5分)(2013•广东)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.19.(5分)(2013•广东)如图,已知▱ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2013•广东)某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图和所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.样本人数分布表类别人数百分比排球 3 6%乒乓球14 28%羽毛球15篮球20%足球8 16%合计100%21.(8分)(2013•广东)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?22.(8分)(2013•广东)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1_________ S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2013•广东)已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.24.(9分)(2013•广东)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.25.(9分)(2013•广东)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC= _________度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.2013年广东省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2013•广东)2的相反数是()A.B.C.﹣2 D.2考点:相反数.分析:根据相反数的概念解答即可.解答:解:2的相反数是﹣2,故选:C.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•广东)下列四个几何体中,俯视图为四边形的是()A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体上面看,所得到的图形.解答:解:A、五棱柱的俯视图是五边形,故此选项错误;B 、三棱锥的俯视图是,故此选项错误;C、球的俯视图是圆,故此选项错误;D、正方体俯视图是正方形,故此选项正确;故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)(2013•广东)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为()A.0.126×1012元B.1.26×1012元C.1.26×1011元D.12.6×1011元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1260 000 000 000有13位,所以可以确定n=13﹣1=12.解答:解:1260 000 000 000=1.26×1012.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2013•广东)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.D.3a>3b考点:不等式的性质.分析:以及等式的基本性质即可作出判断.解答:解:A、a>b,则a﹣5>b﹣5,选项错误;B、a>b,则2+a>2+b,选项错误;C、a>b,则>,选项错误;D、正确.故选D.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(3分)(2013•广东)数学1、2、5、3、5、3、3的中位数是()A.1B.2C.3D.5考点:中位数.分析:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解答:解:将数据从大到小排列为:1,2,3,3,3,5,5,则中位数是3.故选C.点评:本题考查了中位数的知识,属于基础题,掌握中位数的定义及计算方法是关键.6.(3分)(2013•广东)如图,AC∥DF,AB∥EF,点D、E分别在AB、AC上,若∠2=50°,则∠1的大小是()A.30°B.40°C.50°D.60°考点:平行线的性质.分析:由AC∥DF,AB∥EF,根据两直线平行,同位角相等,即可求得∠1=∠A=∠2=50°.解答:解:∵AB∥EF,∴∠A=∠2=50°,∵AC∥DF,∴∠1=∠A=50°.故选C.点评:此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,同位角相等订立的应用,注意掌握数形结合思想的应用.7.(3分)(2013•广东)下列等式正确的是()A.(﹣1)﹣3=1 B.(﹣4)0=1 C.(﹣2)2×(﹣2)3=﹣26D.(﹣5)4÷(﹣5)2=﹣52考点:负整数指数幂;同底数幂的乘法;同底数幂的除法;零指数幂.分析:根据负整数指数幂:a﹣p=(a≠0,p为正整数),零指数幂:a0=1(a≠0),同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.同底数幂的除法法则:底数不变,指数相减分别进行计算,可得答案.解答:解:A、(﹣1)﹣3=﹣1,故此选项错误;B、(﹣4)0=1,故此选项正确;C、(﹣2)2×(﹣2)3=﹣25,故此选项错误;D、(﹣5)4÷(﹣5)2=52,故此选项错误;故选:B.点评:此题主要考查了负整数指数幂、零指数幂、同底数幂的乘除法,关键是熟练掌握各运算的计算法则,不要混淆.8.(3分)(2013•广东)不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:存在型.分析:先求出不等式的解集,再在数轴上表示出来即可.解答:解:移项得,5x﹣2x>5+1,合并同类项得,3x>6,系数化为1得,x>2,在数轴上表示为:故选A.点评:本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.(3分)(2013•广东)下列图形中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断即可得出答案.解答:解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.(3分)(2013•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:根据反比例函数的图象性质及正比例函数的图象性质可作出判断.解答:解:∵k1<0<k2,b=﹣1<0∴直线过二、三、四象限;双曲线位于一、三象限.故选A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.(4分)(2013•平凉)分解因式:x2﹣9=(x+3)(x﹣3).考点:因式分解-运用公式法.分析:本题中两个平方项的符号相反,直接运用平方差公式分解因式.解答:解:x2﹣9=(x+3)(x﹣3).点评:主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.12.(4分)(2013•广东)若实数a、b满足|a+2|,则=1.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.解答:解:根据题意得:,解得:,则原式==1.故答案是:1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.(4分)(2013•广东)一个六边形的内角和是720°.考点:多边形内角与外角.分析:根据多边形内角和公式进行计算即可.解答:解:由内角和公式可得:(6﹣2)×180°=720°.故答案为:720°.点评:此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n﹣2).180°(n≥3)且n为整数).14.(4分)(2013•广东)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=.考点:锐角三角函数的定义;勾股定理.分析:首先由勾股定理求得斜边AC=5;然后由锐角三角函数的定义知sinA=,然后将相关线段的长度代入计算即可.解答:解:∵在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC==5(勾股定理).∴sinA==.故答案是:.点评:本题考查了锐角三角函数定义,勾股定理.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.15.(4分)(2013•广东)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是平行四边形.考点:图形的剪拼.分析:四边形ACE′E的形状是平行四边形;首先根据三角形中位线的性质可得DE∥AC,DE=AC,再根据旋转可得DE=DE′,然后可根据一组对边平行且相等的四边形是平行四边形进行判定即可.解答:解:四边形ACE′E的形状是平行四边形;∵DE是△ABC的中线,∴DE∥AC,DE=AC,∵将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,∴DE=DE′,∴EE′=2DE=AC,∴四边形ACE′E的形状是平行四边形,故答案为:平行四边形.点评:此题主要考查了图形的剪拼,以及平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.16.(4分)(2013•广东)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).考点:扇形面积的计算.分析:阴影部分可看成是圆心角为135°,半径为1是扇形.解答:解:根据图示知,∠1+∠2=180°﹣90°﹣45°=45°,∴图中阴影部分的圆心角的和是90°+90°﹣∠1﹣∠2=135°,∴阴影部分的面积应为:S==.故答案是:.点评:本题考查学生的观察能力及计算能力.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2013•广东)解方程组.考点:解二元一次方程组.专题:计算题.分析:将方程组中的第一个方程代入第二个方程消去x求出y的值,进而求出x的值,即可得到方程组的解.解答:解:,将①代入②得:2(y+1)+y=8,去括号得:2y+2+y=8,解得:y=2,将y=2代入①得:x=2+1=3,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(5分)(2013•广东)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.考点:分式的化简求值.专题:开放型.分析:选②与③构造出分式,再根据分式混合运算的法则把原式进行化简,把a、b的值代入进行计算即可.解答:解:选②与③构造出分式,,原式==,当a=6,b=3时,原式==.点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.19.(5分)(2013•广东)如图,已知▱ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.考点:作图—复杂作图;全等三角形的判定;平行四边形的性质.分析:(1)根据题目要求画出图形即可;(2)首先根据平行四边形的性质可得AD∥BC,AD=BC,进而得到AD=CE,∠DAF=∠CEF,进而可利用AAS证明△AFD≌△EFC.解答:(1)解:如图所示:(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BC=CE,∴AD=CE,∵AD∥BC,∴∠DAF=∠CEF,∵在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).点评:此题主要考查了平行四边形的性质,以及全等三角形的判定,关键是正确画出图形,掌握平行四边形的性质.四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2013•广东)某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图和所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.样本人数分布表类别人数百分比排球 3 6%乒乓球14 28%羽毛球15篮球20%足球8 16%合计100%考点:条形统计图;用样本估计总体;统计表.专题:计算题.分析:(1)由排球的人数除以所占的百分比求出总人数,乘以篮球所占的百分比即可求出篮球的人数,补全条形统计图,如图所示,求出羽毛球所占的百分比,补全人数分布图,如图所示;(2)用人数乘以羽毛球所占的百分比即可求出人数.解答:解:(1)3÷6%=50人,则篮球的人数为50×20%=10人,则补全条形统计图如下:羽毛球占总数的百分比为:15÷50=30%,补全人数分布表为:类别人数百分比排球 3 6%乒乓球14 28%羽毛球15 30%篮球10 20%足球8 16%合计50 100%(2)920×30%=276人.则七年级学生喜爱羽毛球运动项目的人数为276人.点评:此题考查了条形统计图,扇形统计图,中位数,以及众数,弄清题意是解本题的关键.21.(8分)(2013•广东)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?考点:一元二次方程的应用.专题:增长率问题.分析:(1)解答此题利用的数量关系是:第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数,设出未知数,列方程解答即可;(2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.解答:解:(1)设捐款增长率为x,根据题意列方程得,10000×(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.点评:本题考查了一元二次方程的应用,列方程的依据是:第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数.22.(8分)(2013•广东)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1=S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.考点:相似三角形的判定;矩形的性质.分析:(1)根据S1=S矩形BDEF,S2+S3=S矩形BDEF,即可得出答案.(2)根据矩形的性质,结合图形可得:△BCD∽△CFB∽△DEC,选择一对进行证明即可.解答:(1)解:∵S1=BD×ED,S矩形BDEF=BD×ED,∴S1=S矩形BDEF,∴S2+S3=S矩形BDEF,∴S1=S2+S3.(2)答:△BCD∽△CFB∽△DEC.证明△BCD∽△DEC;证明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°,∴∠EDC=∠CBD,又∵∠BCD=∠DEC=90°,∴△BCD∽△DEC.点评:本题考查了相似三角形的判定,注意掌握相似三角形的判定定理,最经常用的就是两角法,此题难度一般.四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2013•广东)已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.考点:二次函数综合题.分析:(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可;(2)根据m=2,代入求出二次函数解析式,进而利用配方法求出顶点坐标以及图象与y轴交点即可;(3)根据当P、C、D共线时PC+PD最短,利用平行线分线段成比例定理得出PO 的长即可得出答案.解答:解:(1)∵二次函数的图象经过坐标原点O(0,0),∴代入二次函数y=x2﹣2mx+m2﹣1,得出:m2﹣1=0,解得:m=±1,∴二次函数的解析式为:y=x2﹣2x或y=x2+2x;(2)∵m=2,∴二次函数y=x2﹣2mx+m2﹣1得:y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点为:D(2,﹣1),当x=0时,y=3,∴C点坐标为:(0,3);(3)当P、C、D共线时PC+PD最短,过点D作DE⊥y轴于点E,∵PO∥DE,∴=,∴=,解得:PO=,∴PC+PD最短时,P点的坐标为:P(,0).点评:此题主要考查了二次函数的综合应用以及配方法求二次函数顶点坐标以及最短路线问题等知识,根据数形结合得出是解题关键.24.(9分)(2013•广东)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.考点:切线的判定;圆周角定理;相似三角形的判定与性质.分析:(1)根据BD=BA得出∠BDA=∠BAD,再由∠BCA=∠BDA即可得出结论;(2)判断△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.(3)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断OB⊥DE,可得出结论.解答:(1)证明:∵BD=BA,∴∠BDA=∠BAD,∵∠BCA=∠BDA(圆周角定理),∴∠BCA=∠BAD.(2)解:∵∠BDE=∠CAB(圆周角定理),∠BED=∠CBA=90°,∴△BED∽△CBA,∴=,即=,解得:DE=.(3)证明:连结OB,OD,在△ABO和△DBO中,∵,∴△ABO≌△DBO,∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB∥ED,∵BE⊥ED,∴EB⊥BO,∴OB⊥BE,∴BE是⊙O的切线.点评:本题考查了切线的判定及圆周角定理的知识,综合考查的知识点较多,解答本题要求同学们熟练掌握一些定理的内容.25.(9分)(2013•广东)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC= 15度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.考点:相似形综合题.分析:(1)如题图2所示,由三角形的外角性质可得;(2)如题图3所示,在Rt△ACF中,解直角三角形即可;(3)认真分析三角板的运动过程,明确不同时段重叠图形的变化情况:(I)当0≤x≤2时,如答图1所示;(II)当2<x≤6﹣时,如答图2所示;(III)当6﹣<x≤6时,如答图3所示.解答:解:(1)如题图2所示,∵在三角板DEF中,∠FDE=90°,DF=4,DE=,∴tan∠DFE==,∴∠DFE=60°,∴∠EMC=∠FMB=∠DFE﹣∠ABC=60°﹣45°=15°;(2)如题图3所示,当EF经过点C时,FC====;(3)在三角板DEF运动过程中,(I)当0≤x≤2时,如答图1所示:设DE交BC于点G.过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=x.y=S△BDG﹣S△BFM=BD•DG﹣BF•MN=(x+4)2﹣x•x=x2+4x+8;(II)当2<x≤6﹣时,如答图2所示:过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN ,即MN+x=MN,解得:MN=x.y=S△ABC﹣S△BFM=AB•AC ﹣BF•MN=×62﹣x •x=x2+18;(III)当6﹣<x≤6时,如答图3所示:由BF=x,则AF=AB﹣BF=6﹣x,设AC与EF交于点M,则AM=AF•tan60°=(6﹣x).y=S△AFM =AF•AM=(6﹣x)•(6﹣x)=x2﹣x+.综上所述,y与x的函数解析式为:y=.点评:本题是运动型综合题,解题关键是认真分析三角板的运动过程,明确不同时段重叠图形形状的变化情况.在解题计算过程中,除利用三角函数进行计算外,也可以利用三角形相似,殊途同归.21。
广东省2013年中考数学模拟试卷(解析版)
某某省2013年中考数学模拟试卷一、选择题:请把答案填涂在答题卡上.(本大题8小题,每题4分,共32分)1.(4分)(2013•某某模拟)的绝对值是()A.2B.﹣2 C.D.考点:绝对值.专题:常规题型.分析:根据绝对值的定义直接进行计算.解答:解:根据绝对值的概念可知:||=,故选C.点评:本题考查了绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2013•某某模拟)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.专题:应用题.分根据轴对称图形与中心对称图形的概念求解.解答:解:A 、是轴对称图形,不是中心对称图形,故本选项错误,B、既是中心对称图形又是轴对称图形,故本选项正确,C、是轴对称图形,不是中心对称图形,故本选项错误,D、是轴对称图形,不是中心对称图形,故本选项错误,故选B.点评:本题主要考查了如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,难度适中.3.(4分)(2013•某某模拟)一个不透明的布袋装有4个只有颜色的球,其中2个红色,1个白色,1个黑色,搅匀后从布袋里摸出1个球,摸到红球的概率是()A.B.C.D.考点:概率公式.分析:让红球的个数除以球的总个数即为所求的概率.解答:解:因为只有四个球,红球有2个,所以从布袋里摸出1个球摸到红球的概率=.故选A.点评:用到的知识点为:概率等于所求情况数与总情况数之比.4.(4分)(2013•某某模拟)下列各式计算正确的是()A.x+x3=x4B.x2•x5=x10C.(x4)2=x8D.x2+x2=x4(x≠0)考幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据合并同类项;同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.对各选项计算后利用排除法求解.解答:解:A、x与x3不是同类项不能合并,故本选项错误;B、应为x2•x5=x2+5=x7,故本选项错误;C、(x4)2=x4×2=x8,故本选项正确;D、应为x2+x2=2x2,故本选项错误;故选C.点评:本题考查同底数幂的乘法,幂的乘方的性质,合并同类项的法则,熟练掌握性质和法则是解题的关键,要注意不是同类项的一定不能合并.5.(4分)(2013•某某模拟)在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来,如图,则这堆货箱共有()A.6个B.5个C.4个D.3个考点:由三视图判断几何体.分析:易得这个几何体共有1层,那么小正方体的个数就是俯视图中正方形的个数.解答:解:由俯视图易得最底层有4个正方体,再由主视图和左视图可得,共有4个正方体组成,故选C.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.6.(4分)(2013•某某模拟)下列调查适合作普查的是()A.了解某某市居民对废电池的处理情况B.日光灯管厂要检测一批灯管的使用寿命C.了解在校大学生的主要娱乐方式D.对甲型H1N1流感患者的同一车厢的乘客进行医学检查考点:全面调查与抽样调查.分析:选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.解答:解:A、了解某某市居民对废电池的处理情况,人数众多,适于用抽样调查,故此选项错误;B、日光灯管厂要检测一批灯管的使用寿命,破坏性较强,适于用抽样调查,故此选项错误;C、了解在校大学生的主要娱乐方式,人数众多,适于用抽样调查,故此选项错误;D、对甲型H1N1流感患者的同一车厢的乘客进行医学检查,人数较少,适于用普查,故此选项正确;故选:D.点评:本题考查了抽样调查和全面调查的区别,普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.7.(4分)(2013•某某模拟)为了美化环境,某市加大对绿化的投资.2010年用于绿化投资20万元,2012年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x,根据题意所列方程为()A.20x2=25 B.20(1+x)=25 C.20(1+x)2=25 D.20(1+x)+20(1+x)2=25考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),设这两年绿化投资的年平均增长率为x,根据“2010年用于绿化投资20万元,2012年用于绿化投资25万元”,可得出方程.解答:解:设这两年绿化投资的年平均增长率为x,那么依题意得20(1+x )2=25 故选C.点评:本题为平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.8.(4分)(2013•某某模拟)如图,在Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,分别以A,C为圆心,以的长为半径作圆,将Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为()cm2.A.24﹣πB.πC.24﹣πD.24﹣π考点:扇形面积的计算;勾股定理.专题:压轴题;转化思想.分析:已知Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,则根据勾股定理可知AC=10cm,阴影部分的面积可以看作是直角三角形ABC的面积减去两个扇形的面积.解答:解:∵Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC==10(cm),∴S阴影部分=×6×8﹣=24﹣(cm2).故选A.点评:阴影部分的面积可以看作是直角三角形ABC的面积减去两个扇形的面积,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.二.填空题:请把答案填在答题卡上.(本大题5小题,每小题4分,共20分)9.(4分)(2013•某某模拟)如图,直线l1∥l2,∠1=120°,则∠2=120 度.考点:平行线的性质;对顶角、邻补角.专题:计算题.分析:由l1∥l2可以得到∠1=∠3=120°,又由∠3=∠2可以得到∠2的度数.解答:解:∵l1∥l2,∴∠1=∠3=120°,∵∠3=∠2,∴∠2=120°.故填空答案:120.点评:此题较简单,根据两直线平行同位角相等,对顶角相等解答.10.(4分)(2013•某某模拟)因式分解:a3﹣4a= a(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再对余下的多项式利用平方差公式进行二次分解因式.解答:解:a3﹣4a,=a(a2﹣4),=a(a+2)(a﹣2).点评:本题主要考查提公因式法分解因式和利用平方差公式分解因式,分解因式要彻底,直到不能再分解为止.11.(4分)(2013•某某模拟)2011年以来,粤东地区外贸经济呈现出进口逆势增长、出口逐步回暖的喜人态势.据统计,2011年某某海关共征收入库税款31.42亿元,用科学记数法表示 3.142×109元.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:31.42亿=3142000000=3.142×109.故答案为:3.142×109.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2013•某某模拟)(4分)为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表所示:尺码(厘米)25 26 27购买量(双) 1 2 3 2 2则这10双运动鞋尺码的众数和中位数分别为26 cm,26 cm.考点:众数;中位数.专题:图表型.分析:本题考查统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解答:解:数据26出现了3次最多,这组数据的众数是26,共10个数据,从小到大排列此数据处在第5、6位的数都为26,故中位数是26.故答案为:26,26.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.要注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.13.(4分)(2013•某某模拟)如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察图形并回答下列问题:在第n个图中,白瓷砖有n2+n 块,黑瓷砖有4n+6 块.(用含n的代数式表示)考点:规律型:图形的变化类.专题:压轴题;规律型.分析:分别清点题目给出的三个图形中的白瓷砖和黑瓷砖的块数,然后通过分析,找出白瓷砖和黑瓷砖的块数与图形数之间的规律,即可解答此题.解答:解:通过观察图形可知,当n=1时,用白瓷砖2块,黑瓷砖10块;当n=2时,用白瓷砖6块,黑瓷砖14块;当n=3时,用白瓷砖12块,黑瓷砖18块;可以发现,需要白瓷砖的数量和图形数之间存在这样的关系,即白瓷砖块数等于图形数的平方加上图形数;需要黑瓷砖的数量和图形数之间存在这样的关系,即黑瓷砖块数等于图形数的4倍加上图形数.所以,在第n个图形中,白瓷砖的块数可用含n的代数式表示为n2+n;白瓷砖的块数可用含n的代数式表示为4n+6.故答案分别为:n2+n;4n+6.点评:此题主要考查学生对图形变化类这个知识点的理解和掌握,此题有一定拔高难度,属于难题,解答此题的关键是通过观察和分析,找出其中的规律.三.解答题:(本大题5小题,每题7分,共35分)14.(7分)(2013•某某模拟)求值:|﹣2|+20110﹣(﹣)﹣1+3tan30°.考点:特殊角的三角函数值;实数的性质;零指数幂;负整数指数幂.专题:计算题.分析:负数的绝对值是它的相反数;任何不等于0的数的0次幂都等于1;一个数的负指数即这个数的正指数次幂的倒数;熟悉特殊角的锐角三角函数值:tan30°=.解答:解:原式=2﹣+1+3+3•=6.点评:注意能够判断﹣2<0,熟练把负指数转换为正指数.15.(7分)(2013•某某模拟)解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:分别解两个不等式,求出其解集,在数轴上表示出来,找出公共部分,即求出了不等式组的解集.解答:解:2x≥x+1,解得x≥1.x+8≥4x﹣1,解得x≤3.(4分)∴原不等式组的解集为1≤x≤3.(5分)不等式组的解集在数轴上表示如图:(6分).点评:不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.16.(7分)(2013•某某模拟)某市为治理污水,需要铺设一条全长为600米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,原计划每天铺设多少米管道?考点:分式方程的应用.分析:先设原计划每天铺设x米管道,则实际施工时,每天的铺设管道(1+20%)x米,由题意可得等量关系:原计划的工作时间﹣实际的工作时间=5,然后列出方程可求出结果,最后检验并作答.解答:解:设原计划每天铺设x米管道,由题意得:﹣=5,解得:x=20,经检验:x=20是原方程的解.答:原计划每天铺设20米管道.点评:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规X解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.17.(7分)(2013•某某模拟)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.考点:作图—复杂作图;线段垂直平分线的性质.专题:作图题;证明题;压轴题.分析:(1)分别以A、B为圆心,以大于AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.解答:(1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.点评:本题考查了线段垂直平分线的作法以及线段垂直平分线上的点到线段两端点的距离相等的性质,难度不大,需熟练掌握.18.(7分)(2013•某某模拟)如图,小强在江南岸选定建筑物A,并在江北岸的B处观察,此时,视线与江岸BE所成的夹角是30°,小强沿江岸BE向东走了500m,到C处,再观察A,此时视线AC与江岸所成的夹角∠ACE=60°.根据小强提供的信息,你能测出江宽吗?若能,写出求解过程(结果可保留根号);若不能,请说明理由.考点:勾股定理的应用.专题:压轴题.分析:先过A作AD⊥BE于D,再根据30°和60°判断出∠BAC也是30°,所以AC=BC=500m,在Rt△ADC中,因为∠ACD=60°,所以∠CAD=30°,所以AC=2CD,因此可以求出江宽.解答:解:能.过点A作BE的垂线,垂足为D,∵∠CBA=30°,∠ECA=60°,∴∠CAB=30°,∴CB=CA=500m,在Rt△ACD中,∠ECA=60°,∴∠CAD=30°,∴CD=CA=250m.由勾股定理得:AD2+2502=5002,解得AD=250m,则河流宽度为250m.本题主要考查:30°所对的直角边是斜边的一半和勾股定理.点评:四.解答题:(本大题3小题,每小题9分,共27分)19.(9分)(2013•某某模拟)在改革开放30年纪念活动中,某校学生会就同学们对我国改革开放30年所取得的辉煌成就的了解程度进行了随机抽样调查,并将调查结果绘制成如图所示的统计图的一部分.根据统计图中的信息,解答下列问题:(1)本次抽样调查的样本容量是50 .调查中“了解很少”的学生占50 %;(2)补全条形统计图;(3)若全校共有学生1300人,那么该校约有多少名学生“很了解”我国改革开放30年来取得的辉煌成就?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)由扇形统计图可知,“了解很少”的学生占1﹣10%﹣10%﹣30%=50%,再由条形统计图知,“了解很少”的学生有25人,所以本次抽样调查的样本容量是25÷50%=50;(2)由样本容量是50,知基本了解的学生有50×30%=15,在条形统计图中的“基本了解”对应画出高为15的长方形即可;(3)利用样本估计总体的方法知,该校约有1300×10%=130名学生“很了解”我国改革开放30年来取得的辉煌成就.解答:解:(1)5÷10%=50,1﹣10%﹣10%﹣30%=50%,故答案为:50;50;(2)基本了解的人数:50×30%=15(人),如图所示:(3)1300×10%=130人.答:该校约有130名学生很了解我国改革开放30年来所取得的辉煌成就.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(9分)(2013•某某模拟)如图,AB为半圆O的直径,点C在半圆O上,过点O作BC 的平行线交AC于点E,交过点A的直线于点D,且∠D=∠BAC.(1)求证:AD是半圆O的切线;(2)若BC=2,CE=,求AD的长.考点:切线的判定;相似三角形的判定与性质.专题:综合题.分析:(1)要证AD是半圆O的切线只要证明∠DAO=90°即可;(2)由两组角对应相等的两个三角形相似可得到△DOA∽△ABC,据相似三角形的对应边成比例可得到AD的长.解答:(1)证明:∵AB为半圆O的直径,∴∠BCA=90°.又∵BC∥OD,∴OE⊥AC.∴∠D+∠DAE=90°.∵∠D=∠BAC,∴∠BAC+∠DAE=90°.∴AD是半圆O 的切线.(2)解:∵BC∥OD,∴△AOE∽△ABC,∵BA=2AO,∴==,又CE=,∴AC=2CE=.在Rt△ABC中,AB==,∵∠D=∠BAC,∠ACB=∠DAO=90°,∴△DOA∽△ABC.∴即.∴.此题考查学生对切线的判定及相似三角形的判定方法的掌握情况.点评:21.(9分(2013•某某模拟))阅读下列材料:求函数的最大值.解:将原函数转化成x 的一元二次方程,得.∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y 的最大值为4.根据材料给你的启示,求函数的最小值.一元二次方程的应用.考点:专压轴题.题:分根据材料内容,可将原函数转换为(y﹣3)x2+(2y﹣1)x+y﹣2=0,继而根据△≥0,析:可得出y的最小值.解答:解:将原函数转化成x的一元二次方程,得(y﹣3)x2+(2y﹣1)x+y﹣2=0,∵x为实数,∴△=(2y﹣1)2﹣4(y﹣3)(y﹣2)=16y﹣23≥0,∴y≥,因此y的最小值为.点评:本题考查了一元二次方程的应用,这样的信息题,一定要熟读材料,套用材料的解题模式进行解答.五.解答题:(本大题3小题,每小题12分,共36分)23.(12分)(2013•某某模拟)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC 于D,交AB于E,F在射线DE上,并且EF=AC.(1)求证:AF=CE;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论;(3)四边形ACEF有可能是正方形吗?为什么?考点:相似三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定与性质;菱形的判定;正方形的判定.专题:探究型.分析:(1)先根据FD⊥BC,∠ACB=90°得出DF∥AC,再由EF=AC可知四边形EFAC是平行四边形,故可得出结论;(2)由点E在BC的垂直平分线上可知DB=DC=BC,BE=EC,由直角三角形的性质可求出∠B=∠ECD=30°,再由相似三角形的判定定理可知BDE∽△BCA,进而可得出AE=CE,再求出∠ECA的度数即可得出△AEC是等边三角形,进而可知CE=AC,故可得出结论;(3)若四边形EFAC是正方形,则E与D重合,A与C重合,故四边形ACEF不可能是正方形.解答:解:(1)∵∠ACB=90°,FD⊥BC,∴∠ACB=∠FDB=90°,∴DF∥AC,又∵EF=AC,∴四边形EFAC是平行四边形,∴AF=CE;(2)当∠B=30° 时四边形EFAC是菱形,∵点E在BC的垂直平分线上,∴DB=DC=BC ,BE=EC ,∴∠B=∠ECD=30°,∵DF∥AC,∴△BDE∽△BCA,∴==,即BE=AB,∴AE=CE又∵∠ECA=90°﹣30°=60°,∴△AEC是等边三角形∴CE=AC,∴四边形EFAC是菱形;(3)不可能.若四边形EFAC是正方形,则E与D重合,A与C重合,不可能有∠B=30°.点评:本题考查的是相似三角形的判定与性质、菱形的判定与性质、线段垂直平分线及直角三角形的性质、正方形的判定与性质,涉及面较广,难度适中.24.(12分)(2013•某某模拟)我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?考点:一次函数的应用;二元一次方程组的应用;分段函数.分析:(1)由图中可知,10吨水出了15元,那么a=15÷10=1.5元,用水8吨,应收水费1.5×8元;(2)由图中可知当x>10时,有y=b(x﹣10)+15.把(20,35)代入一次函数解析式即可.(3)应先判断出两家水费量的X围.解答:解:(1)a=15÷10=1.5.(1分)用8吨水应收水费8×1.5=12(元).(2分)(2)当x>10时,有y=b(x﹣10)+15.(3分)将x=20,y=35代入,得35=10b+15.b=2.(4分)故当x>10时,y=2x﹣5.(5分)(3)∵假设乙用水10吨,则甲用水14吨,∴水费是:1.5×10+1.5×10+2×4<46,∴甲、乙两家上月用水均超过10吨.(6分)设甲、乙两家上月用水分别为x吨,y吨,则甲用水的水费是(2x﹣5)元,乙用水的水费是(2y﹣5)元,则(8分)解得:(9分)故居民甲上月用水16吨,居民乙上月用水12吨.(10分)点评:本题主要考查了一次函数与图形的结合,应注意分段函数的计算方法.25.(12分(2013•某某模拟))如图1,把两个全等的三角板ABC、EFG叠放在一起,使三角板EFG的直角边FG经过三角板ABC的直角顶点C,垂直AB于G,其中∠B=∠F=30°,斜边AB和EF均为4.现将三角板EFG由图1所示的位置绕G点沿逆时针方向旋转α(0<α<90°),如图2,EG交AC于点K,GF交BC于点H.在旋转过程中,请你解决以下问题:(1)GH:GK的值是否变化?证明你的结论;(2)连接HK,求证:KH∥EF;(3)设AK=x,请问是否存在x,使△CKH的面积最大?若存在,求x的值;若不存在,请说明理由.考点:相似形综合题.专题:压轴题.分析:(1)GH :GK的值没发生变化,根据已知条件证明△AGK∽△CGH,由相似三角形的性质可得:,又因为在Rt△ACG中,tan∠A=,所以GH:GK的比值是一个的值;(2)连接HK,由(1)可知在Rt△KHG中,tan∠GKH=,所以∠GKH=60°,再根据三角形的内角和证明,∠E=∠EGF﹣∠F=90°﹣30°=60°,即可证得∠GKH=∠E=60°,利用同位角相等两线平行即可证明KH∥EF;(3)设AK=x,存在x=1,使△CKH 的面积最大,由(1)得△AGK∽△CGH,所以CH=AK=x,根据三角形的面积公式表示出S△CHK=CK•CH=(2﹣x)•x,再把二次函数的解析式化为顶点式即可求出x的值.解答:(1)解:GH:GK的值不变,GH:GK=.证明如下:∵CG⊥AB,∴∠AGC=∠BGC=90°.∵∠B=30°,∠ACB=90°,∴∠A=∠GCH=60°.∵∠AGC=∠BGC=90°,∴∠AGK=∠CGH.∴△AGK∽△CGH.∴.∵在Rt△ACG中,tan∠A=,∴GH:GK=.(2)证明:连接HK,如图2,由(1)得,在Rt△KHG中,tan∠GKH=,∴∠GKH=60°.∵在△EFG中,∠E=∠EGF﹣∠F=90°﹣30°=60°,∴∠GKH=∠E.∴KH∥EF;(3)解:存在x=1,使△CKH的面积最大.理由如下:由(1)得△AGK∽△CGH,∴,∴CH=AK=x,在Rt△EFG中,∠EGF=90°,∠F=30°,∴AC=EF=2,∴CK=AC﹣AK=2﹣x.∴S△CHK=CK•CH=(2﹣x)•x,=﹣(x﹣1)2+,∴当x=1时,△CKH的最大面积为.点评:本题考查的是相似三角形的判定与性质及图形旋转的性质、平行线的判定和性质、三角形的面积公式、二次函数的最值问题,题目的综合性很强,难度中等.。
2013年广东省中考数学模拟试卷
2013年广东省中考数学模拟试卷(二)一、选择题(本大题8小题,每小题4分,共32分)在每小题列出的四个选项中,只有一个是正确的,请将答题卡上对应的小题所选的选项涂黑. 1.(4分)(2008•梅州)下列各组数中,互为相反数的是( ) A . 2和 B . ﹣2和﹣ C . ﹣2和|﹣2| D .和 2.(4分)股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95 000 000,正向1亿挺进,95 000 000用科学记数法表示为( )户. A . 9.5×106 B . 9.5×107 C . 9.5×108 D . 9.5×109 3.(4分)(2005•哈尔滨)下列各式正确的是( ) A . a 4×a 5=a 20 B . a 2×2a 2=2a 4 C . (﹣a 2b 3)2=a 4b 9 D . a 4÷a=a 24.(4分)下面的图形中,既是轴对称图形又是中心对称图形的是( ) A . B .C .D .5.(4分)如图,在一本书上放置一个乒乓球,则此几何体的俯视图是( )A .B .C .D .6.(4分)下列事件中是必然事件的是( ) A . 打开电视机,正在播广告B . 今年10月1日,潮南区的天气一定是晴天C . 小沈阳一定能上2010年春节联欢晚会D .从一个只装有白球的缸里摸出一个球,摸出的球是白球7.(4分)(2008•佛山)如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )A . BM >DNB . BM <DNC . BM=DND . 无法确定8.(4分)(2006•莱芜)如图,B 是线段AC 的中点,过点C 的直线l 与AC 成60°的角,在直线L 上取一点P ,使∠APB=30°,则满足条件的点P 的个数是( )A . 3个B . 2个C . 1个D . 不存在二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答卷相应的位置上.9.(4分)3减去﹣2的结果是_________.10.(4分)已知反比例函数的图象过点(6,﹣),则k=_________.11.(4分)(2008•梅州)如图,AB是⊙O的直径,∠COB=70°,则∠A=_________度.12.(4分)(2003•滨州)如图,点O是正△ACE和正△BDF的中心,且AE∥BD,则∠AOF=_________度.13.(4分)(2003•十堰)将正方形A的一个顶点与正方形B的对角线交叉重合,如图1位置,则阴影部分面积是正方形A面积的,将正方形A与B按图2放置,则阴影部分面积是正方形B面积的_________.三、解答题(一)(本大题5小题,每小题7分,共35分)14.(7分)(2008•湛江)计算:(﹣1)2008﹣(π﹣3)0+15.(7分)(2008•安徽)解不等式组,并将解集在数轴上表示出来.16.(7分)(2007•梅州)如图,AC是平行四边形ABCD的对角线.(1)请按如下步骤在图中完成作图(保留作图痕迹):①分别以A,C为圆心,以大于AC长为半径画弧,弧在AC两侧的交点分别为P,Q.②连接PQ,PQ分别与AB,AC,CD交于点E,O,F;(2)求证:AE=CF.17.(7分)如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求一次函数y=kx+b解析式.18.(7分)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.四、解答题(二)(本大题3小题,每小题9分,共27分)19.(9分)商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)问商场经营该商品原来一天可获利润多少元?(2)若商场经营该商品一天要获利润2160元,则每件商品售价应为多少元?20.(9分)透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字以外都相同.(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.21.(9分)(2006•菏泽)我市在城市建设中,要折除旧烟囱AB(如图所示),在烟囱正西方向的楼CD的顶端C,测得烟囱的顶端A的仰角为45°,底端B的俯角为30°,已量得DB=21m.(1)在原图上画出点C望点A的仰角和点C望点B的俯角,并分别标出仰角和俯角的大小;(2)拆除时若让烟囱向正东倒下,试问:距离烟囱正东35m远的一棵大树是否被歪倒的烟囱砸着?请说明理由.(≈1.732)五、解答题(三)(本大题3小题,每小题12分,共36分)22.(12分)(2008•湛江)先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=_________;(2)探究=_________;(用含有n的式子表示)(3)若的值为,求n的值.23.(12分)(2008•安徽)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.24.(12分)(2007•双柏县)如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,点P不与点0、点A重合.连接CP,过点P作PD交AB于点D.(1)求点B的坐标;(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;(3)当点P运动什么位置时,使得∠CPD=∠OAB,且,求这时点P的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年广东初中毕业生学业模拟试题二数学一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1. 16的算术平方根是()A.2 B.﹣2 C.4D.﹣42.PM 2.5是指大气中直径小于或等于0.0000025 m的颗粒物,将0.0000025用科学记数法表示为()A. -50.2510⨯ B. -60.2510⨯ C. -52.510⨯ D. -62.510⨯3.为了解某公司员工的年工资情况,小王随机调查了10位员工,其年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20,下列统计量中,能合理反映该公司年工资中等水平的是()A.方差B.众数C.中位数D.平均数4.下列图形既是轴对称图形,又是中心对称图形的是()A B C D5.如图,点D、E、F分别为∠ABC三边的中点,若△DEF的周长为10,则△ABC的周长为()A.5 B.10 C.20 D.40二、选择题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上。
6.分解因式:224a b-=。
7.函数y=21-x+1x中,自变量x的取值范围是。
8.如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且△AFD的面积为60,则△DEC的面积为 .9.已知P=3xy﹣8x+1,Q=x﹣2xy﹣2,当x≠0时,3P﹣2Q=7恒成立,则y的值为.10.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2012的坐标为 .三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:02112sin30( 3.14)()2π---︒+-+12.化简分式1211222+--÷⎪⎭⎫⎝⎛---xxxxxxxx,并从31≤≤-x中选一个你认为适合的整数x代人求值.13.解不等式组233,311,362x xx x+⎧⎪+-⎨-⎪⎩>≥并求出它的整数解的和.第8题图14.如图8,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1;(要求:A 与A 1,B 与B 1,C 与C 1相对应)(2)在(1)问的结果下,连接BB 1,CC 1, 求四边形BB 1C 1C 的面积.15.如图所示,在梯形A B C D 中,AD ∥BC ,90BDC ∠=︒,E 为BC 上一点, BDE DBC ∠=∠. (1) 求证:DE EC =; (2) 若12AD BC =,试判断四边形ABED 的形状,并说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分) 16.为了迎接“五·一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元.⑴ 若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?⑵ 该专卖店为使甲、乙两种服装共200件的总利润(利润=售价-进价)不少于26700元,且不超过26800元,则该专卖店有几种进货方案?⑶ 在⑵的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠 a (0<a <20)元出售,乙种服装价格不变.那么该专卖店要获得最大利润应如何进货?17.如图,已知双曲线y=和直线y=mx+n 交于点A 和B ,B 点的坐标是(2,﹣3),AC 垂直y 轴于点C ,AC=.(1)求双曲线和和直线的解析式. (2)求△AOB 的面积.18.如图所示,当小华站立在镜子EF 前A 处时,他看自己的脚在镜中的像的俯角为45︒;如果小华向后退0.5米到B 处,这时他看自己的脚在镜中的像的俯角为30︒.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据 1.73≈)图8lCBA第15题图A BCDE第24题图FEABB 1A 1 CD 30º45º19. 某市把中学生学习情绪的自我控制能力分为四个等级,即A级:自我控制能力很强;B级;自我控制能力较好;C级:自我控制能力一般;D级:自我控制能力较差。
通过对该市农村中学的初中学生学习情绪的自我控制能力的随机抽样调查,得到下面两幅不完整的统计图,请根据图中的信息解决下面的问题。
(1)在这次随机抽样调查中,共抽查了多少名学生?(2)求自我控制能力为C级的学生人数;(3)求扇形统计图中D级所占的圆心角的度数;(4)请你估计该市农村中学60000名初中学生中,学习情绪自我控制能力达B级及以上等级的人数是多少?五、解答题(三)(本大题3小题,每小题9分,共27分)20.为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有4各不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d 表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.(1)请用树形图法或列表法,表示某个同学抽签的各种可能情况.(2)小张同学对物理的①、②和化学的b、c号实验准备得较好,他同时抽到两科都准备的较好的实验题目的概率是多少?21.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.22.如图11,已知二次函数))(2(481baxxy++=的图像过点A(-4,3),B(4,4).(1)求二次函数的解析式:(2)求证:△ACB是直角三角形;(3)若点P在第二象限,且是抛物线上的一动点,过点P作PH垂直x轴于点H,是否存在以P、H、D、为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由。
2013年广东初中毕业生学业模拟试题二答案一、选择题:1、A2、C3、C4、D5、C 二、填空题:6、(2)(2)a b a b +-7、x <1且x≠08、82899、2 10、(-21006,-21006) 注:表示为(-( 2 )2012,-( 2 )2012)亦可 三、解答题(一) 11.解:原式=11214=52-⨯++ 12.解:原式= x x x x x x x x -+-∙⎪⎭⎫ ⎝⎛---2221211 =()()()()()()111111122--∙-+---∙-x x x x x x x x x x x =111+-x =1+x x ∵101、、-≠x , ∴当 2=x 时,原式=32122=+13.解 233,311,362x x x x +⎧⎪+-⎨-⎪⎩>≥ 解不等式①,得 3<x . 解不等式②,得 4-≥x .在同一数轴上表示不等式①②的解集,得∴这个不等式组的解集是34<≤-x . ∴这个不等式组的整数解的和是72101234-=+++----.14.解(1)如图,△A 1B 1C 1 是△ABC 关于直线l 的对称图形.(2)由图得四边形BB 1 C 1C 是等腰梯形,BB 1= 4,CC 1=2,高是4.∴S 四边形B B 1C 1C =4)(2111⨯+CC BB =4)24(21⨯+=12.15.(1)∵90BDC ∠=︒,∴90BDE EDC ∠+∠=︒,且90DBC C ∠+∠=︒ 又∵BDE DBC ∠=∠,∴EDC C ∠=∠ ∴DE EC =(2)四边形ABED 为菱形∵BDE DBC ∠=∠,∴BE DE =,∵DE EC =,∴12BE EC BC ==∵12AD BC =, ∴AD BE = 又∵AD ∥BC , ∴四边形ABED 为平行四边形又∵BE DE =,∴ABED 为菱形(说明:其它解法,仿此得分) 16.解:(1) 设购进甲种服装x 件,则购进乙种服装(200 -x )件180x+150(200 -x )=32400 解得 x=80∴购进甲种服装80件,购进乙种服装120件.(2) 设购进甲种服装y 件,则购进乙种服装(200 -y )件,根据题意得26700≤(320-180)y+(280-150)(200 -y )≤26800解得 70≤y ≤80 ∵y 为正整数 ∴共有11种方案(3)设总利润为W 元W =(140-a )y+130(200-y )=(10-a )y+26000①当0<a <10时,10-a >0,W 随y 增大而增大,∴当y=80时,W 有最大值,即此时购进甲种服装80件, 乙种服装120件; ②当a=10时,(2)中所有方案获利相同, 所以按哪种方案进货都可以;③当10<a <20时,10-a <0 ,W 随y 增大而减小,当y=70时,W 有最大值,即此时购进甲种服装70件,乙种服装130件.17.解:(1)∵点B (2,﹣3)在双曲线上,∴=﹣3,解得k=﹣6,∴双曲线解析式为y=﹣,∵AC=,∴点A 的横坐标是﹣,∴y=﹣=4,∴点A 的坐标是(﹣,4),∴,解得,∴直线的解析式为y=﹣2x+1;(2)如图,设直线与x 轴的交点为D ,当x=0时,﹣2x+1=0,解得x=,所以,点D 的坐标为(,0),∴OD=,S △AOB =S △AOD +S △BOD =××4+××3=1+=.118.解:设()AC x m =,则在1Rt CAA ∆中,∵145CA A ∠=︒, ∴1AC AA x ==又在1Rt DB B ∆中,∵130DB B ∠=︒,∴11tan 3DB DB B BB ∠==∴1BB = 由对称性知:1AE A E =,1BE B E =,∴111BB AA =+,31x x =+解得11.42x =≈ ,∴小华的眼睛到地面的距离约为1.4()m 19.解:(1)抽查学生人数=5000.1680=(人) (2)自我控制能力为C 级的学生人数=2100.42500=⨯(人)(3)扇形统计图中D 级所占的圆心角的度数=360º×0.18=64.8º (4)学习情绪自我控制能力达B 级及以上 等级的人数 =60000×0.58=34800(人)点评:不完整的两个统计图对已知条件具有互补性。