2021年广东广州中考数学真题及答案
广东省2021年中考数学试题及答案解析
广东省2021年中考数学试题及答案解析2021年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3分)四个实数0、、��3.14、2中,最小的数是() A.0B. C.��3.14 D.22.(3分)据有关部门统计,2021年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为() A.1.442×107B.0.1442×107 C.1.442×108 D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A. B. C. D.4.(3分)数据1、5、7、4、8的中位数是() A.4B.5C.6D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是() A.圆B.菱形C.平行四边形 D.等腰三角形6.(3分)不等式3x��1≥x+3的解集是() A.x≤4B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A. B. C. D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30° B.40° C.50° D.60°9.(3分)关于x的一元二次方程x2��3x+m=0有两个不相等的实数根,则实数m 的取值范围是()A.m< B.m≤ C.m> D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B. C. D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2��2x+1= .13.(3分)一个正数的平方根分别是x+1和x��5,则x= . 14.(3分)已知+|b��1|=0,则a+1= .15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x 轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|��2|��20210+()��1 18.(6分)先化简,再求值:?,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,��3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2021年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3分)四个实数0、、��3.14、2中,最小的数是() A.0B. C.��3.14 D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得��3.14<0<<2,所以最小的数是��3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2021年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为() A.1.442×107B.0.1442×107 C.1.442×108 D.0.1442×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法��表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A. B. C. D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是() A.4B.5C.6D.7【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5 故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是() A.圆B.菱形C.平行四边形 D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误; B、是轴对称图形,也是中心对称图形,故此选项错误; C、不是轴对称图形,是中心对称图形,故此选项错误; D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x��1≥x+3的解集是() A.x≤4B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x��x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A. B. C. D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30° B.40° C.50° D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2��3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m< B.m≤ C.m> D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2��3x+m=0有两个不相等的实数根,∴△=b2��4ac=(��3)2��4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A. B. C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP?h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2, y=AD?h, AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3, y=PD?h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50° .【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2��2x+1= (x��1)2 .【分析】直接利用完全平方公式分解因式即可.【解答】解:x2��2x+1=(x��1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x��5,则x= 2 .【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x��5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b��1|=0,则a+1= 2 .【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵∴b��1=0,a��b=0,解得:b=1,a=1,故a+1=2.故答案为:2.+|b��1|=0,感谢您的阅读,祝您生活愉快。
2021年广东广州中考真题数学试卷(含答案)
,故 选
【标注】【知识点】积的乘方
5. 下列命题中,为真命题的是( ).
①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;
③对角线相等的平行四边形是菱形;④有一个角是直角的平行四边形是矩形.
A. ①②
B. ①④
C. ②④
D. ③④
【答案】 B
【解析】 ①对角线互相平分的四边形是平行四边形,是真命题; ②对角线互相垂直的四边形是菱形,是假命题; ③对角线相等的平行四边形是菱形,是假命题;
4. 一元二次方程 上的两个点,若
有两个相等的实数根,点
,
,则
.(填“ ”或“ ”或“ ”)
是反比例函数
【答案】 【解析】 ∵一元二次方程
有两个相等的实数根,
7
∴
,
∴
,
∴
在各象限内 随 增大而减小,
∵
,
∴
.
【标注】【知识点】二次函数与反比例函数综合
5. 如图,在 ,当
中, 时,则
, 的度数为
,点 是边 .
3. 已知 ( 1 )化简 . ( 2 )若
. .求 的值.
【答案】( 1 )
.
(2) .
【解析】( 1 )
( 2 )∵ ∴ ∴
. ,
. 【标注】【知识点】分式化简求值-条件化简求值
4. 某中学为了解初三年级学生参加志愿者活动的次数,随机调查了该年级 名学生,统计得到该 名 学生参加志愿者活动的次数如下:
【标注】【知识点】实数分类
2. 如图,在数轴上,点 , 分别表示数 , ,且,若Βιβλιοθήκη ,则点 表示的数为( ).
A.
B.
2021年广东省中考数学试卷及答案解析
2021年广东省中考数学试卷及答案解析2021年广东省中考数学试卷及答案解析一、选择题(本大题10小题,每小题3分,共30分)1.(3分)9的相反数是()A。
-9B。
9C。
1/9D。
-1/22.(3分)一组数据2,4,3,5,2的中位数是()A。
5B。
3.5C。
3D。
2.53.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A。
(-3,2)B。
(-2,3)C。
(2,-3)D。
(3,-2)4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A。
4B。
5C。
6D。
75.(3分)若式子√2x-4在实数范围内有意义,则x的取值范围是()A。
x≠2B。
x≥2C。
x≤2D。
x≠-26.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A。
8B。
2√2C。
16D。
4√27.(3分)把函数y=(x-1)²+2图象向右平移1个单位长度,平移后图象的的数解析式为()A。
y=x²+2B。
y=(x-1)²+1C。
y=(x-2)²+2D。
y=(x-1)²-38.(3分)不等式组{x-1≥-2(x+2)。
2-3x≥-1}的解集为()A。
无解B。
x≤1C。
x≥-1D。
-1≤x≤29.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A。
1B。
√2C。
√3D。
210.(3分)如图,抛物线y=ax²+bx+c的对称轴是x=1,下列结论:①abc>0;②b²-4ac>0;③8a+c0。
正确的有()A。
4个B。
3个C。
2个D。
1个二、填空题(本大题7小题,每小题4分,共28分)11.(4分)分解因式:xy-x= x(y-1)12.(4分)如果单项式3x^my与-5x^3yn是同类项,那么m+n= 313.(4分)若√(a-2)+|b+1|=3,则(a+b)^2020= 114.(4分)已知x=5-y,xy=2,计算3x+3y-4xy的值为:-115.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B,C,D为圆心画圆,相交于点E,F,G,H,求四边形EFGH的面积为。
2021年广东广州中考数学试卷及参考答案(真题)
2021年广州市初中毕业生学业考试数 学满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 将图1所示的图案通过平移后可以得到的图案是( A )2. 如图2,AB ∥CD,直线分别与AB 、CD 相交,若∠1=130°,则∠2=( C )(A )40° (B )50° (C )130° (D )140°3. 实数、在数轴上的位置如图3所示,则与的大小关系是( C )(A )(B ) (C ) (D )无法确定4. 二次函数的最小值是( A )(A )2 (B )1 (C )-1 (D )-25. 图4是广州市某一天内的气温变化图,根据图4,下列说法中错误的是( D )(A )这一天中最高气温是24℃(B )这一天中最高气温与最低气温的差为16℃(C )这一天中2时至14时之间的气温在逐渐升高(D )这一天中只有14时至24时之间的气温在逐渐降低l a b a b b a <b a =b a >2)1(2+-=xy6. 下列运算正确的是( B )(A )(B )(C ) (D )7. 下列函数中,自变量的取值范围是≥3的是( D )(A ) (B ) (C ) (D )8. 只用下列正多边形地砖中的一种,能够铺满地面的是( C )(A )正十边形 (B )正八边形 (C )正六边形 (D )正五边形9. 已知圆锥的底面半径为5cm,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5)所示),则sin θ的值为( B )(A ) (B ) (C ) (D )10. 如图6,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E,交DC 的延长线于点F,BG ⊥AE,垂足为G,BG=,则ΔCEF 的周长为( A )(A )8 (B )9.5 (C )10 (D )11.5二、填空题(本大题共6小题,每小题3分,满分18分)11. 已知函数,当=1时,的值是________212. 在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是________9.313. 绝对值是6的数是________+6,-614. 已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:________________________________略15. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第个“广”字中的棋子个数是________2n+5222)(n m n m -=-)0(122≠=-m m m 422)(mn n m =⋅642)(m m =x x 31-=x y 31-=x y 3-=x y 3-=x y 1251351310131224xy 2=x y n16. 如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成4三、解答题(本大题共9小题,满分102分。
2021年广东省中考数学试题含答案解析
2021年广东省中考数学试题含答案解析2021年广东省中考数学试卷;;一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.;1.(3分)四个实数0、、3.14、2中,最小的数是()a.0b.c.3.14d.22.(3分)据有关部门统计,2021年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()a.1.442×107b.0.1442×107c.1.442×108d.0.1442×1083.(3分后)例如图,由5个相同正方体组合而成的几何体,它的主视图就是()a.b.c.d.4.(3分后)数据1、5、7、4、8的中位数就是()a.4b.5c.6d.75.(3分后)以下所述图形中,就是轴对称图形但不是中心对称图形的就是()a.圆b.菱形c.平行四边形d.等腰三角形;;6.(3分后)不等式3x1≥x+3的边值问题就是()a.x≤4b.x≥4c.x≤2d.x≥27.(3分后)在△abc中,点d、e分别为边ab、ac的中点,则△ade与△abc的面积之比是()a.b.c.d.8.(3分后)例如图,ab∥cd,则∠dec=100°,∠c=40°,则∠b的大小就是()a.30°b.40°c.50°d.60°9.(3分后)关于x的一元二次方程x23x+m=0存有两个不成正比的实数根,则实数m的值域范围就是()a.m<b.m≤c.m>d.m≥10.(3分后)例如图,点p就是菱形abcd边上的一动点,它从点a启程沿在a→b→c→d路径匀速运动至点d,设立△pad的面积为y,p点的运动时间为x,则y关于x的函数图象大致为()a.b.c.d.二、填空题(共6小题,每小题3分,满分18分)11.(3分后)同圆中,未知弧ab面元的圆心角就是100°,则弧ab面元的圆周角就是.12.(3分)分解因式:x22x+1=.13.(3分后)一个正数的平方根分别就是x+1和x5,则x=.14.(3分后)未知+|b1|=0,则a+1=.15.(3分后)例如图,矩形abcd中,bc=4,cd=2,以ad为直径的半圆o与bc切线于点e,相连接bd,则阴影部分的面积为.(结果留存π)16.(3分)如图,已知等边△oa1b1,顶点a1在双曲线y=(x>0)上,点b1的座标为(2,0).过b1作b1a2∥oa1交双曲线于点a2,过a2作a2b2∥a1b1交x轴于点b2,获得第二个等边△b1a2b2;过b2作b2a3∥b1a2交双曲线于点a3,过a3作a3b3∥a2b2交x轴于点b3,获得第三个等边△b2a3b3;以此类推,…,则点b6的座标为.三、解答题(一)17.(6分后)排序:|2|20210+()118.(6分后)先化简,再表达式:,其中a=.19.(6分后)例如图,bd就是菱形abcd的对角线,∠cbd=75°,(1)请用尺规作图法,作ab的垂直平分线ef,垂足为e,交ad于f;(不要求写作法,保留作图痕迹)(2)在(1)条件下,相连接bf,谋∠dbf的度数.20.(7分)某公司购买了一批a、b型芯片,其中a型芯片的单价比b型芯片的单价少9元,已知该公司用3120元购买a型芯片的条数与用4200元购买b型芯片的条数相等.(1)求该公司出售的a、b型芯片的单价各就是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条a型芯片?21.(7分后)某企业工会积极开展“一周工作量顺利完成情况”调查活动,随机调查了部分员工一周的工作量余下情况,并将调查结果统计数据后绘制董阳图1和图2右图的不能完备统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业存有员工10000人,恳请估算该企业某周的工作量顺利完成情况为“剩下少量”的员工存有多少人?22.(7分)如图,矩形abcd中,ab>ad,把矩形沿对角线ac所在直线折叠,使点b落在点e处,ae交cd于点f,连接de.(1)求证:△ade≌△ced;(2)求证:△def是等腰三角形.23.(9分后)例如图,未知顶点为c(0,3)的抛物线y=ax2+b(a≠0)与x轴处设a,b两点,直线y=x+m过顶点c和点b.(1)谋m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上与否存有点m,使∠mcb=15°?若存有,谋出点m的座标;若不存有,恳请表明理由.24.(9分)如图,四边形abcd中,ab=ad=cd,以ab为直径的⊙o经过点c,连接ac,od交于点e.(1)证明:od∥bc;(2)若tan∠abc=2,证明:da与⊙o切线;(3)在(2)条件下,连接bd交于⊙o于点f,连接ef,若bc=1,求ef的长.25.(9分后)未知rt△oab,∠oab=90°,∠abo=30°,斜边ob=4,将rt△oab绕点o顺时针转动60°,例如题图1,相连接bc.(1)填空题:∠obc=°;(2)如图1,连接ac,作o p⊥ac,垂足为p,求op的长度;(3)例如图2,点m,n同时从点o启程,在△ocb边上运动,m沿o→c→b路径匀速运动,n沿o→b→c路径匀速运动,当两点碰面时运动暂停,未知点m的运动速度为1.5单位/秒,点n的运动速度为1单位/秒,设立运动时间为x秒,△omn的面积为y,求当x 为何值时y获得最大值?最大值为多少?2021年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、3.14、2中,最小的数是()a.0b.c.3.14d.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得3.14<0<<2,所以最小的数是3.14.故选:c.【评测】此题主要考查了实数大小比较的方法,必须熟练掌握,答疑此题的关键就是必须明晰:正实数>0>正数实数,两个正数实数绝对值小的反而大.2.(3分)据有关部门统计,2021年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()a.1.442×107b.0.1442×107c.1.442×108d.0.1442×108【分析】根据科学记数法的则表示方法可以将题目中的数据用科学记数法则表示,本题以求化解.【解答】解:14420000=1.442×107,故选:a.【评测】本题考查科学记数法则表示很大的数,答疑本题的关键就是明晰科学记数法的则表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()a.b.c.d.【分析】根据主视图是从物体正面看所得到的图形解答即可.【答疑】求解:根据主视图的定义所述,此几何体的主视图就是b中的图形,故挑选:b.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分后)数据1、5、7、4、8的中位数就是()a.4b.5c.6d.7【分析】根据中位数的定义推论即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:b.【评测】本题考查了确认一组数据的中位数的能力.中位数就是将一组数据从小到大(或从小至大)重新排列后,最中间的那个数(最中间两个数的平均数),叫作这组与数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()a.圆b.菱形c.平行四边形d.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【答疑】求解:a、就是轴对称图形,也就是中心对称图形,故此选项错误;b、就是轴对称图形,也就是中心对称图形,故此选项错误;c、不是轴对称图形,就是中心对称图形,故此选项错误;d、就是轴对称图形,不是中心对称图形,故此选项恰当.故挑选:d.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分后)不等式3x1≥x+3的边值问题就是()a.x≤4b.x≥4c.x≤2d.x≥2【分析】根据求解不等式的步骤:①移项;②分拆同类项;③化系数为1即可得.【答疑】求解:移项,得:3xx≥3+1,分拆同类项,得:2x≥4,系数化成1,得:x≥2,故挑选:d.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分后)在△abc中,点d、e分别为边ab、ac的中点,则△ade与△abc的面积之比是()a.b.c.d.【分析】由点d、e分别为边ab、ac的中点,可以得出结论de为△abc的中位线,进而可以得出结论de∥bc及△ade∽△abc,再利用相近三角形的性质即可谋出来△ade与△abc的面积之比.【解答】解:∵点d、e分别为边ab、ac的中点,∴de为△abc的中位线,∴de∥bc,∴△ade∽△abc,∴=()2=.故挑选:c.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出de∥bc是解题的关键.8.(3分后)例如图,ab∥cd,则∠dec=100°,∠c=40°,则∠b的大小就是()a.30°b.40°c.50°d.60°【分析】依据三角形内角和定理,可以得∠d=40°,再根据平行线的性质,即可获得∠b=∠d=40°.【解答】解:∵∠dec=100°,∠c=40°,∴∠d=40°,又∵ab∥cd,∴∠b=∠d=40°,故选:b.【评测】本题考查了平行线性质的应用领域,运用两直线平行,内错角成正比就是解题的关键.9.(3分)关于x的一元二次方程x23x+m=0有两个不相等的实数根,则实数m的取值范围是()a.m<b.m≤c.m>d.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【答疑】求解:∵关于x的一元二次方程x23x+m=0存有两个不成正比的实数根,∴△=b24ac=(3)24×1×m>0,∴m<.故挑选:a.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.10.(3分后)例如图,点p就是菱形abcd边上的一动点,它从点a启程沿在a→b→c→d路径匀速运动至点d,设立△pad的面积为y,p点的运动时间为x,则y关于x的函数图象大致为()a.b.c.d.【分析】设立菱形的低为h,即为就是一个定值,再分点p在ab上,在bc上和在cd 上三种情况,利用三角形的面积公式列式谋出来适当的函数关系式,然后挑选答案即可.【解答】解:分三种情况:①当p在ab边上时,如图1,设菱形的高为h,y=ap?h,∵ap随x的减小而减小,h维持不变,∴y随x的减小而减小,故选项c不恰当;②当p在边bc上时,如图2,y=ad?h,ad和h都不变,∴在这个过程中,y维持不变,故选项a不恰当;③当p在边cd上时,如图3,y=pd?h,∵pd随x的减小而增大,h维持不变,∴y随x的减小而增大,∵p点从点a出发沿在a→b→c→d路径匀速运动到点d,∴p在三条线段上运动的时间相同,故选项d不正确;故选:b.【评测】本题考查了动点问题的函数图象,菱形的性质,根据点p的边线的相同,分后三段谋出来△pad的面积的表达式就是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分后)同圆中,未知弧ab面元的圆心角就是100°,则弧ab面元的圆周角就是50°.【分析】直接利用圆周角定理求解.【答疑】求解:弧ab面元的圆心角就是100°,则弧ab面元的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分后)水解因式:x22x+1=(x1)2.【分析】轻易利用全然平方公式水解因式即可.【答疑】求解:x22x+1=(x1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分后)一个正数的平方根分别就是x+1和x5,则x=2.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x5=0,解得:x=2,故答案为:2.【评测】本题主要考查的就是平方根的定义和性质,熟练掌握平方根的定义和性质就是解题的关键.14.(3分)已知+|b1|=0,则a+1=2.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵∴b1=0,ab=0,解得:b=1,a=1,故a+1=2.故答案为:2.【评测】此题主要考查了为负数的性质以及绝对值的性质,恰当得出结论a,b的值就是解题关键.15.(3分)如图,矩形abcd中,bc=4,cd=2,以ad为直径的半圆o与bc相切于点e,连接bd,则阴影部分的面积为π.(结果保留π)+|b1|=0,【分析】连接oe,如图,利用切线的性质得od=2,oe⊥bc,易得四边形oecd为正方形,先利用扇形面积公式,利用s正方形oecds扇形eod计算由弧de、线段ec、cd所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.。
【中考真题】2021年广东省广州市中考数学试卷(附答案)
2021年广东省广州市中考数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题1.下列四个选项中,为负整数的是( )A .0B .0.5-C .D .2-2.如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为( )A .3-B .0C .3D .6- 3.方程123x x=-的解为( ) A .6x =-B .2x =-C .2x =D .6x = 4.下列运算正确的是( )A .()22--=-B .3=C .()22346a b a b =D .(a -2)2=a 2-4 5.下列命题中,为真命题的是( )(1)对角线互相平分的四边形是平行四边形(2)对角线互相垂直的四边形是菱形(3)对角线相等的平行四边形是菱形(4)有一个角是直角的平行四边形是矩形A .(1)(2)B .(1)(4)C .(2)(4)D .(3)(4) 6.为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为( )A .23B .12C .13D .167.一根钢管放在V 形架内,其横截面如图所示,钢管的半径是24cm ,若60ACB ∠=︒,则劣弧AB 的长是( )A .8πcmB .16πcmC .32πcmD .192πcm 8.抛物线2y ax bx c =++经过点()1,0-、()3,0,且与y 轴交于点()0,5-,则当2x =时,y 的值为( )A .5-B .3-C .1-D .59.如图,在Rt ABC 中,90C ∠=︒,6AC =,8BC =,将ABC 绕点A 逆时针旋转得到A B C ''',使点C '落在AB 边上,连结BB ',则sin BB C ''∠的值为( )A .35B .45CD 10.在平面直角坐标系xOy 中,矩形OABC 的点A 在函数()10y x x =>的图象上,点C 在函数()40y x x=-<的图象上,若点B 的横坐标为72-,则点A 的坐标为( )A .1,22⎛⎫ ⎪⎝⎭B .2⎛ ⎝C .12,2⎛⎫ ⎪⎝⎭ D .⎭二、填空题11x 应满足的条件是________.12.方程240x x -=的解为_________.13.如图,在Rt ABC 中,90C ∠=︒,30A ∠=︒,线段AB 的垂直平分线分别交AC 、AB 于点D 、E ,连结BD .若1CD =,则AD 的长为________.14.一元二次方程240x x m -+=有两个相等的实数根,点()11,A x y 、()22,B x y 是反比例函数m y x=上的两个点,若120x x <<,则1y ________2y (填“<”或“>”或“=”). 15.如图,在ABC 中,AC BC =,38B ∠=︒,点D 是边AB 上一点,点B 关于直线CD 的对称点为B ',当//B D AC '时,则BCD ∠的度数为________.16.如图,正方形ABCD 的边长为4,点E 是边BC 上一点,且3BE =,以点A 为圆心,3为半径的圆分别交AB 、AD 于点F 、G ,DF 与AE 交于点H .并与A 交于点K ,连结HG 、CH .给出下列四个结论.(1)H 是FK 的中点;(2)HGD HEC ≌;(3)916AHG DHC S S =△△:∶;(4)75DK =,其中正确的结论有________(填写所有正确结论的序号).三、解答题17.解方程组46y x x y =-⎧⎨+=⎩18.如图,点E 、F 在线段BC 上,//AB CD ,A D ∠=∠,BE CF =,证明:AE DF =.19.已知m n A n m ⎛⎫=- ⎪⎝⎭(1)化简A ;(2)若0m n +-=,求A 的值.20.某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3;5;3;6;3;4;4;5;2;4;5;6;1;3;5;5;4;4;2;4根据以上数据,得到如下不完整的频数分布表:(1)表格中的a =________,b =________;(2)在这次调查中,参加志愿者活动的次数的众数为________,中位数为________; (3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.21.民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”、“广东技工”、“南粤家政”三项培训工程,今年计划新增加培训共100万人次(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少? 22.如图,在四边形ABCD 中,90ABC ∠=︒,点E 是AC 的中点,且AC AD =(1)尺规作图:作CAD ∠的平分线AF ,交CD 于点F ,连结EF 、BF (保留作图痕迹,不写作法);(2)在(1)所作的图中,若45BAD ∠=︒,且2CAD BAC ∠=∠,证明:BEF 为等边三角形.23.如图,在平面直角坐标系xOy 中,直线1:42l y x =+分别与x 轴,y 轴相交于A 、B 两点,点(),P x y 为直线l 在第二象限的点(1)求A 、B 两点的坐标;(2)设PAO 的面积为S ,求S 关于x 的函数解析式:并写出x 的取值范围;(3)作PAO 的外接圆C ,延长PC 交C 于点Q ,当POQ △的面积最小时,求C的半径.24.已知抛物线()2123y x m x m =-+++ (1)当0m =时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m 的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点()1,1E --、()3,7F ,若该抛物线与线段EF 只有一个交点,求该抛物线顶点横坐标的取值范围.25.如图,在菱形ABCD 中,60DAB ∠=︒,2AB =,点E 为边AB 上一个动点,延长BA 到点F ,使AF AE =,且CF 、DE 相交于点G(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;CG 时,求AE的长;(2)当2(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.参考答案1.D【分析】根据整数的概念可以解答本题.【详解】解:A 、0既不是正数,也不是负数,故选项A 不符合题意;B 、−0.5是负分数,故选项B 不符合题意;C 、C 不符合题意;D 、-2是负整数,符合题意.故选:D .【点睛】本题主要考查了大于0的整数是正整数,小于0的整数是负整数,本题熟记负整数的概念是解题的关键.2.A【分析】由AB 的长度结合A 、B 表示的数互为相反数,即可得出A ,B 表示的数【详解】解:∵0a b +=∴A ,B 两点对应的数互为相反数,∴可设A 表示的数为a ,则B 表示的数为a -,∵6AB =∴6a a --=,解得:3a =-,∴点A 表示的数为-3,故选:A .【点睛】本题考查了绝对值,相反数的应用,关键是能根据题意得出方程6a a --=.3.D【分析】分式方程去分母转化为整式方程,求出整式方程的解即得到x 的值,经检验即可得到分式方【详解】 解:123x x=- 去分母得:26x x =-,移项合并得:6x -=-,化系数为“1”得:6x =,检验,当6x =时,()3180x x -=≠,∴6x =是原分式方程的解.故选:D .【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.4.C【分析】利用绝对值符号化简可判断A ,利用同类项定义与合并同类项法则可判断B ,利用积的乘方运算法则可判断C ,利用完全平方公式可判断D .【详解】A . ()222--=≠-,选项A 计算不正确;B . 33≠B 计算不正确;C . ()223223246a b a b a b ⨯⨯==,选项C 计算正确;D . ()2222444a a a a -=-+≠-,选项D 计算不正确.故选择C .【点睛】本题考查绝对值化简,同类项、二次根式、积的乘方与完全平方公式等知识,掌握以上知识是解题关键.5.B【分析】正确的命题叫真命题,根据定义解答.解:对角线互相平分的四边形是平行四边形,故(1)是真命题;对角线互相垂直的平行四边形是菱形,故(2)不是真命题;对角线相等的平行四边形是矩形,故(3)不是真命题;有一个角是直角的平行四边形是矩形,故(4)是真命题;故选:B .【点睛】此题考查真命题的定义,熟记定义并正确掌握平行四边形、菱形、矩形的判定定理是解题的关键.6.B【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出的2名学生中恰好有2名女生的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有12种等可能的结果,选出的2名学生中恰好有2名女生的有6种情况;∴P (2女生)=61=122. 故选:B .【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.7.B【分析】先利用v 形架与圆的关系求出∠C +∠AOB =180°,由∠C =60°,可求∠AOB =120°,由OB =24cm ,利用弧长公式求即可.【详解】解:∵AC 与BC 是圆的切线,∴OA ⊥AC ,OB ⊥CB ,∴∠OAC =∠OBC =90°,∴∠C +∠AOB =360°-∠OAC -∠OBC =360°-90°-90°=180°,∵∠C =60°,∴∠AOB =180°-60°=120°,∵OB =24cm,∴AB l =12024=16180ππ⨯⨯cm . 故选择B .【点睛】本题考查直线与圆的位置关系,四边形内角和,弧长公式,掌握直线与圆的位置关系,四边形内角和,弧长公式是解题关键.8.A【分析】先利用待定系数法求出抛物线解析式,再求函数值即可.【详解】解:∵抛物线2y ax bx c =++经过点()1,0-、()3,0,且与y 轴交于点()0,5-, ∴50930c a b c a b c =-⎧⎪-+=⎨⎪++=⎩, 解方程组得553103c a b ⎧⎪=-⎪⎪=⎨⎪⎪=-⎪⎩, ∴抛物线解析式为2353051y x x -=-,当2x =时,103542553y =⨯⨯-=--. 故选择A .【点睛】 本题考查待定系数法求抛物线解析式,和函数值,掌握系数法求抛物线解析式方法和函数值求法是解题关键.9.C【分析】由勾股定理求出10AB =,并利用旋转性质得出=6AC AC '=,8B C BC '==,90A C C B ∠=∠=''︒,则可求得4BC '=,再根据勾股定理求出BB '=形函数的定义即可求得结果.【详解】解:在Rt ABC 中,90C ∠=︒,6AC =,8BC =, 由勾股定理得:22226810AB AC BC .∵ABC 绕点A 逆时针旋转得到A B C ''',∴=6AC AC '=,8B C BC '==,90A C C B ∠=∠=''︒.∴1064BC AB AC ''=-=-=.∴在Rt BB C ''△中,由勾股定理得BB '==∴sinBC BB C BB '''∠==='. 故选:C .【点睛】本题考查了求角的三角形函数值,掌握三角形函数的概念并利用勾股定理及旋转的性质求解是解题的关键.10.A【分析】构造K 字形相似,由面积比得出相似比为2,从而得出A 点坐标与C 点坐标关系,而P 是矩形对角线交点,故P 是AC 、BO 的中点,由坐标中点公式列方程即可求解.【详解】解:过C 点作CE ⊥x 轴,过A 点作AF ⊥x 轴,∵点A 在函数()10y x x =>的图象上,点C 在函数()40y x x =-<的图象上, ∴2OCE S =△,12OAF S =△, ∵CE ⊥x 轴,∴90CEO ∠=︒,90OCE COE ∠+∠=︒,∵在矩形OABC 中,90AOC ∠=︒,∴90AOF COE ∠+∠=︒,∴OCE AOF ∠=∠,∴OCE AOF △△,∴2CE OE OF AF ===, ∴2CE OF =,2OE AF =, 设点A 坐标为1(,)x x ,则点B 坐标为2(,2,)x x -, 连接AC 、BO 交于点P ,则P 为AC 、BO 的中点, ∴27()2x x +-=-, 解得:112x =,24x =-(不合题意,舍去), ∴点A 坐标为1(,2)2, 故选A .【点睛】本题考查了反比例函数与几何图形的综合,关键是构造相似三角形,根据反比例函数的系数k 的几何意义,由面积比得到相似三角形的相似比,从而确定点A 与点C 的坐标关系. 11.6x ≥【分析】根据二次根式有意义的条件解答.【详解】解:由题意得:60x -≥,解得6x ≥,故答案为:6x ≥.【点睛】此题考查二次根式有意义的条件:被开方数大于等于零.12.120,4x x ==【分析】采用分解因式法解方程即可.【详解】解:()2440x x x x -=-=,解得120,4x x ==. 【点睛】本题考查了分解因式法解方程.13.2【分析】根据线段垂直平分线的性质得到AD=BD ,∠ABD =30A ∠=︒,求得30CBD ∠=︒,即可求出答案.【详解】解:∵90C ∠=︒,∴∠A +∠ABC =90︒,∵线段AB 的垂直平分线分别交AC 、AB 于点D 、E ,∴AD=BD ,∴∠ABD =30A ∠=︒,∴30CBD ∠=︒,∵1CD =,∴AD=BD =2CD =2,故答案为:2.【点睛】此题考查线段垂直平分线的性质,直角三角形30度角的性质,熟记线段垂直平分线的性质是解题的关键.14.>【分析】先根据一元二次方程有两个相等的实数根则0∆=求出m 的取值范围,再由反比例函数函数值的变化规律得出结论.【详解】解:∵一元二次方程240x x m -+=有两个相等的实数根,∴2(4)40m ∆=--=,∴4m =,∴点()11,A x y 、()22,B x y 是反比例函数4y x =上的两个点, 又∵120x x <<,∴12y y >,故填:>.【点睛】本题考查了反比例函数的性质以及一元二次方程根的判别式,解题的关键是根据一元二次方程有两个相等的实数根求出m 值,再由反比例函数的性质求解.15.33︒【分析】如图,连接CB ',根据轴对称的性质及全等三角形的判定与性质可得38B B ︒'∠=∠=,DCB DCB '∠=∠,并由平行线的性质可推出38ACB B ︒''∠=∠=,最后由等腰三角形的性质及三角形内角和定理即可求得结果.【详解】解:如图,连接CB '∵点B 关于直线CD 的对称点为B ',∴CB CB '=,DB DB '=.∵CD CD =,∴DCB DCB '≅△△.∴38B B ︒'∠=∠=,DCB DCB '∠=∠.∵//B D AC ',∴38ACB B ︒''∠=∠=.∵AC BC =,∴38A B ︒∠=∠=.∴1802104ACB B ︒︒∠=-∠=.∵2104ACB ACB DCB DCB ACB DCB ︒'''∠=∠+∠+∠=∠+∠=.∴210466DCB ACB ︒︒'∠=-∠=.∴33DCB ︒∠=.故答案为:33︒.【点睛】本题考查了轴对称、等腰三角形及平行线的性质等知识,熟练掌握轴对称、等腰三角形的性质及全等三角形的判定与性质是解题的关键.16.(1)(3)(4).【分析】由正方形的性质可证明DAF ABE △≌△,则可推出90AHF ∠=︒,利用垂径定理即可证明结论(1)正确;过点H 作//MN AB 交BC 于N ,交AD 于M ,由三角形面积计算公式求出125AH =,再利用矩形的判定与性质证得MG NE =,并根据相似三角形的判定与性质分别求出4825MH =,5225NH =,则最后利用锐角三角函数证明MGH HEN ∠≠∠,即可证明结论(2)错误;根据(2)中结论并利用相似三角形的性质求得3625AM =,即可证明结论(3)正确;利用(1)所得结论2DK DF FH =-并由勾股定理求出FH ,再求得DK ,即可证明结论(4)正确.【详解】解:(1)∵四边形ABCD 是正方形,∴4AD AB ==,90DAF ABE ∠=∠=︒.又∵3AF BE ==,∴DAF ABE △≌△.∴AFD BEA ∠=∠.∵90BEA BAE ∠+∠=︒,∴90AFD BAE ∠+∠=︒,∴90AHF ∠=︒,∴AH FK ⊥,∴FH KH =,即H 是FK 的中点;故结论(1)正确;(2)过点H 作//MN AB 交BC 于N ,交AD 于M ,由(1)得AH FK ⊥,则1122AD AF DF AH ⋅=⋅.∵5DF ==, ∴125AH =. ∵四边形ABCD 是正方形,//MN AB ,∴90DAB ABC AMN ∠=∠=∠=︒.∴四边形ABNM 是矩形.∴4MN AB ==,AM BN =.∵AG BE =,∴AG AM BE BN -=-.即MG NE =.∵//AD BC ,∴MAH AEB ∠=∠.∵90ABE AMN ∠=∠=︒,∴MAH BEA . ∴AH MH AE AB=. 即12554MH =. 解得4825MH =. 则52425NH MH =-=. ∵tan MH MGH MG ∠=,tan NH HEN NE ∠=. ∵MG NE =,MH NH ≠, ∴MG NE MH NH≠. ∴MGH HEN ∠≠∠.∴DGH CEH ∠≠∠.∴HGD △与HEC △不全等,故结论(2)错误;(3)∵MAH BEA , ∴AH AM AE BE=.即12553AM =. 解得3625AM =. 由(2)得12AHG S MH AG =⋅,()12DHC S DC AD AM =⋅-. ∴()48392536164425AHG DHC S MH AG S DC AD AM ⨯⋅===⋅-⎛⎫⨯- ⎪⎝⎭;故结论(3)正确;(4)由(1)得,H是FK 的中点,∴2DK DF FH =-. 由勾股定理得95FH ===. ∴975255DK =-⨯=;故结论(4)正确. 故答案为:(1)(3)(4).【点睛】本题考查了正方形的综合问题,掌握特殊四边形、相似三角形的判定与性质及等腰三角形的性质是解题的关键.17.51x y =⎧⎨=⎩【分析】利用代入消元法求解方程即可.【详解】解:46y x x y =-⎧⎨+=⎩①② 把①代入②得(4)6x x +-=,解得5x =把5x =代入①得1y =所以方程组的解为:51x y =⎧⎨=⎩. 【点睛】此题主要考查了二元一次方程组的解法,仔细观察二元一次方程组的特点,灵活选用代入法或加减法是解题关键.18.见解析【分析】利用ASA 证明△ABE ≌△DCF ,即可得到结论.【详解】证明:∵//AB CD ,∴∠B =∠C ,∵A D ∠=∠,BE CF =,∴△ABE ≌△DCF (ASA ),∴AE DF =.【点睛】此题考查全等三角形的判定及性质,熟记全等三角形的判定定理是解题的关键.19.(1)m n +;(2)6.【分析】(1)先通分合并后,因式分解,然后约分化简即可;(2)先把式子移项求m n +=【详解】解:(1)()())22m n m n m n A m n mn nm m n mn m n +-⎛⎫=-⋅=⋅=+ ⎪--⎝⎭;(2)∵0m n +-=,∴m n +=∴)A m n =+.【点睛】本题考查分式化简计算,会通分因式分解与约分,二次根式的乘法运算,掌握分式化简计算,会通分因式分解与约分,二次根式的乘法运算是解题关键.20.(1)4,5;(2)4次;4次;(3)90人.【分析】(1)观察所给数据即可得到a,b的值;(2)根据众数和中位数的概念求解即可;(3)用300乘以样本中参加志愿者活动的次数为4次的百分比即可得到结论.【详解】解:(1)根据所给数据可知,参加3次志愿活动的有4人,参加5次志愿活动的有5人,所以,a=4,b=5故答案为:4,5;(2)完成表格如下由表格知,参加4次志愿活动的的人数最多,为6人,∴众数是4次20个数据中,最中间的数据是第10,11个,即4,4,∴中位数为4+4=42(次)故答案为:4次;4次;(3)20人中,参加4次志愿活动的有6人,所占百分比为6100%=30% 20×,所以,∴该校初三年级学生参加志愿者活动的次数为4次的人数为:30030%=90(人)答:该校初三年级学生参加志愿者活动的次数为4次的人数为90人.【点睛】本题考查众数、中位数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.(1)“南粤家政”今年计划新增加的培训人次为23万次;(2)李某的年工资收入增长率至少要达到30%.【分析】(1)设“南粤家政”今年计划新增加培训人次为x 万次,则“粤菜师傅”今年计划新增加培训人次为2x 万次,根据今年计划新增加培训共100万人次列出方程求解即可;(2)设李某的年工资收入增长率为y ,根据“今年的年工资收入不低于12.48万元”列出一元一次不等式求解即可.【详解】解:设“南粤家政”今年计划新增加培训人次为x 万次,则“粤菜师傅”今年计划新增加培训人次为2x 万次,根据题意得,231100x x ++=解得,23x =答:“南粤家政”今年计划新增加的培训人次为23万次;(2)设李某的年工资收入增长率为y ,根据题意得,9.6(1)12.48y +≥解得,0.3y ≥答:李某的年工资收入增长率至少要达到30%.【点睛】此题主要考查了一元一次方程以及一元一次不等式的应用,准确找出题目中的数量关系是解答此题的关键.22.(1)图见解析;(2)证明见解析.【分析】(1)根据基本作图—角平分线作法,作出CAD ∠的平分线AF 即可解答;(2)根据直角三角形斜边中线性质得到12BE AC =并求出30BEC BAC ABE ∠=∠+∠=︒,再根据等腰三角形三线合一性质得出CF DF =,从而得到EF 为中位线,进而可证BE EF =,60BEF ∠=︒,从而由有一个角是60°的等腰三角形是等边三角形得出结论. 【详解】解:(1)如图,AF 平分CAD ∠,(2)∵45BAD ∠=︒,且2CAD BAC ∠=∠,∴30CAD ∠=︒,15BAC ∠=︒,∵AE EC =,90ABC ∠=︒, ∴12BE AE AC ==, ∴15ABE BAC ∠=∠=︒,∴30BEC BAC ABE ∠=∠+∠=︒,又∵AF 平分CAD ∠,AC AD =,∴CF DF =,又∵AE EC =, ∴1122EF AD AC ==,//EF AD , ∴30CEF CAD ∠=∠=︒,∴60BEF BEC CEF ∠=∠+∠=︒又∵12BE EF AC == ∴BEF 为等边三角形.【点睛】本题主要考查了基本作图和等腰三角形性质以及与三角形中点有关的两个定理,解题关键是掌握等腰三角形三线合一定理、直角三角形斜边中线等于斜边一半以及三角形中位线定理.23.(1)A (-8,0),B (0,4);(2)216S x =+,-8<x <0;(3)4.【分析】(1)根据一次函数的图象与性质即可求出A 、B 两点的坐标;(2)利用三角形面积公式及点的坐标特点即可求出结果;(3)根据圆周角性质可得PAO PQO ∠=∠,90POQ ∠=︒.由等角的三角函数关系可推出1tan tan 2OB OP PAO PQO OA OQ∠===∠=,再根据三角形面积公式得211222POQ S OP OQ m m m =⋅=⋅⋅=,由此得结论当m 最小时,POQ △的面积最小,最后利用圆的性质可得m 有最小值,且OA 为C 的直径,进而求得结果. 【详解】解:(1)当0y =时,1042x =+,解得8x =-, ∴A (-8,0).当0x =时,10442y =⨯+=, ∴B (0,4).(2)∵A (-8,0),∴8OA =.点P 在直线1:42l y x =+上, ∴142P y x =+, ∴1118(4)216222PAO P S OA y x x =⋅=⨯⨯+=+. ∵点P 在第二象限, ∴142x +>0,且x <0. 解得-8<x <0;(3)∵B (0,4),∴4OB =.∵C 为PAO 的外接圆,∴PAO PQO ∠=∠,90POQ ∠=︒. ∴1tan tan 2OB OP PAO PQO OA OQ∠===∠=. 设OP m =,则2OQ m =. ∴211222POQ S OP OQ m m m =⋅=⋅⋅=. ∴当m 最小时,POQ △的面积最小.∴当OP AB ⊥时,m 有最小值,且OA 为C 的直径. ∴142r OA ==. 即C 的半径为4.【点睛】本题考查了一次函数的图象与性质、三角形面积计算及圆的相关性质等知识,熟练掌握一次函数的图象与性质、三角形面积计算及圆的相关性质是解题的关键.24.(1)不在;(2)(2,5);(3)m =1【分析】(1)先求出函数关系式,再把(2,4)代入进行判断即可;(2)根据二次函数的顶点坐标公式求出抛物线顶点纵坐标,最大值即为顶点最高点的纵坐标,代入求解即可;(3)运用待定系数法求出直线EF 的解析式,代入二次函数解析式,根据内有一个交点,即=0∆,求出m 的值即可.【详解】解:(1)把m =0代入()2123y x m x m =-+++得, 23y x x =-+当x =2时,2223=54y =-+≠所以,点(2,4)不在该抛物线上;(2)()2123y x m x m =-+++ =221(1)()2324m m x m ++-++- ∴抛物线()2123y x m x m =-+++的顶点坐标为(12+m ,2(1)234m m ++-) ∴纵坐标为2(1)234m m ++- 令22(1)123(3)544m y m m +=+-=--+∵104-< ∴抛物线有最高点,∴当m =3时,2(1)234m y m +=+-有最大值, 将m =3代入顶点坐标得(2,5);(3)∵E (-1,-1),F (3,7)设直线EF 的解析式为y kx b =+把点E ,点F 的坐标代入得137k b k b -+=-⎧⎨+=⎩解得,21k b =⎧⎨=⎩ ∴直线EF 的解析式为21y x =+将21y x =+代入()2123y x m x m =-+++得, ()2123=21x m x m x -++++整理,得:()2322=0x m x m -+++ ∵抛物线与线段EF 只有一个交点,∴2(3)4(22)0m m ∆=+-+=即2210m m -+=解得,1m =【点睛】本题考查了二次函数的图象及性质,解题关键是注意数形结合思想的运用.25.(1)见解析;(2)43;(3 【分析】(1)根据E 为AB 中点可得EF AB =,再由菱形的性质推出CD ∥AB ,CD AB =,则EF CD =,即可证明结论;(2)过点C 作CH ⊥AB 交FB 的延长线于点H ,利用菱形及直角三角形的性质可求出112BH BC ==,并由勾股定理求得CH ,再根据相似三角形的判定及性质可证得EF FG =,设AE x =,则2EF x =,可表示出3FH x =+,22CF x =+,即可由222CH FH CF +=建立关于x 的方程,求解后可得出AE 的长;(3)连接AG 并延长交CD 于点M ,连接BD 交AM 于点N ,并连接BM ,首先由菱形的性质得出△ABD 为等边三角形,则BD AB BC ==,再由CD ∥AB ,得AFG MCG ,AEG MDG ,由此可证得AF AE MC MD=,再结合AE AF =得出1MC MD ==,则由等腰三角形性质推出BM CD ⊥,并分别求出BM =,AM ==后根据题意可得点G 运动路径的长度为线段AN 的长,由平行线分线段成比例性质可得出2AN MN =,此题得解.【详解】(1)证明:∵E 为AB 中点, ∴12AF AE AB ==. ∴EF AB =.∵四边形ABCD 是菱形,∴CD ∥AB ,CD AB =.∴EF CD =.∴四边形DFEC 是平行四边形;(2)解:如图,过点C 作CH ⊥AB 交FB 的延长线于点H ,∵四边形ABCD 是菱形,2AB =,∴AD ∥BC ,2AB BC CD ===.∴60CBH DAB ∠=∠=︒.∴30BCH ∠=︒. ∴112BH BC ==.则由勾股定理得CH .∵CD ∥AB ,∴△CDG ∽△FEG . ∴CD CG EF FG=. ∵2CD CG ==,∴EF FG =.设AE x =,则2EF x =.∴3FH x =+,22CF x =+.在Rt △CFH 中,由勾股定理得:222CH FH CF +=,∴222(3)(22)x x ++=+. 解得143x =,22x =-(不合题意,舍去). ∴AE 的长为43; (3)如图,连接AG 并延长交CD 于点M ,连接BD 交AM 于点N ,并连接BM ,∵四边形ABCD 是菱形,60DAB ∠=︒,∴AB AD =,60DCB DAB ∠=∠=︒.∴△ABD 为等边三角形.同理可证:△BCD 为等边三角形.∴BD AB BC ==.∵CD ∥AB ,∴AFG MCG ,AEG MDG . ∴AF AG MC MG =,AG AE MG MD=. ∴AF AE MC MD= ∵AE AF =, ∴112MC MD CD ===. ∴BM CD ⊥.则由勾股定理得:BM =,AM ==当点E 从A 出发运动到点B 时,点G 始终在直线AM 上运动,运动轨迹为线段, 当点E 与A 重合时,点G 与点A 重合,当点E 与B 重合时,点G 为BD 与AM 的交点N ,∴点G 运动路径的长度为线段AN 的长,∵CD ∥AB , ∴AN AB MN MD=. ∴2AN MN =.∴点G 运动路径的长度为23AN AM == 【点睛】 此题属于四边形的综合问题,考查了菱形的性质、平行四边形及相似三角形的判定与性质等知识点,熟练掌握所学知识并灵活运用所学知识是解题的关键.。
广东省广州市2021年中考数学试题(解析版)
2021年广东省广州市中考数学试卷解析一、选择题〔本大题共10小题,每题3分,总分值30分.在每题给出的四个选项中只有一项为哪一项符合题目要求的〕1.〔2021•广州〕实数3的倒数是〔〕A.﹣B.C.﹣3D.3考点:实数的性质。
专题:常规题型。
分析:根据乘积是1的两个数互为倒数解答.解答:解:∵3×=1,∴3的倒数是.应选B.点评:此题考查了实数的性质,熟记倒数的定义是解题的关键.2.〔2021•广州〕将二次函数y=x2的图象向下平移一个单位,那么平移以后的二次函数的解析式为〔〕A.y=x2﹣1B.y=x2+1C.y=〔x﹣1〕2D.y=〔x+1〕2考点:二次函数图象与几何变换。
专题:探究型。
分析:直接根据上加下减的原那么进行解答即可.解答:解:由“上加下减〞的原那么可知,将二次函数y=x2的图象向下平移一个单位,那么平移以后的二次函数的解析式为:y=x2﹣1.应选A.点评:此题考查的是二次函数的图象与几何变换,熟知函数图象平移的法那么是解答此题的关键.3.〔2021•广州〕一个几何体的三视图如下图,那么这个几何体是〔〕A.四棱锥B.四棱柱C.三棱锥D.三棱柱考点:由三视图判断几何体。
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为三角形,可得为棱柱体,所以这个几何体是三棱柱;应选D.点评:此题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也表达了对空间想象能力.4.〔2021•广州〕下面的计算正确的选项是〔〕A.6a﹣5a=1B.a+2a2=3a3C.﹣〔a﹣b〕=﹣a+b D.2〔a+b〕=2a+b考点:去括号与添括号;合并同类项。
分析:根据合并同类项法那么:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法那么:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.解答:解:A、6a﹣5a=a,故此选项错误;B、a与2a2不是同类项,不能合并,故此选项错误;C、﹣〔a﹣b〕=﹣a+b,故此选项正确;D、2〔a+b〕=2a+2b,故此选项错误;应选:C.点评:此题主要考查了合并同类项,去括号,关键是注意去括号时注意符号的变化,注意乘法分配律的应用,不要漏乘.5.〔2021•广州〕如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,那么梯形ABCD的周长是〔〕A.26B.25C.21D.20考点:等腰梯形的性质;平行四边形的判定与性质。
广东省2021年中考真题数学试卷真题(word版,含答案与解析)
设A(a,a²),B(b,b²),其中a≠0,b≠0,
∵OA⊥OB,
∴ ,
∴ ,
即 ,
,
设AB的解析式为: ,代入A(a,a²),
解得: ,
∴ ,
∵ ,即 ,
∴C点在以OD的中点E为圆心,以 为半径的圆上运动,
当CH为圆E的半径时,此时CH的长度最大,
【详解】解:如图:过D作DE⊥AB,垂足为E
∵AB是直径
∴∠ACB=90°
∵∠ABC的角平分线BD
∴DE=DC=1
Rt△DEB和Rt△DCB中
DE=DC、BD=BD
∴Rt△DEB≌Rt△DCB(HL)
∴BE=BC
在Rt△ADE中,AD=AC-DC=3-1=2
AE=
设BE=BC=x,AB=AE+BE=x+
∴ ,
∴
故选:B.
【点睛】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.
6.下列图形是正方体展开图的个数为()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】根据正方体的展开图的特征,11种不同情况进行判断即可.
【详解】解:根据正方体的展开图的特征,只有第2个图不是正方体的展开图,故四个图中有3个图是正方体的展开图.
∴S的最大值为
故选:C.
【点睛】本题考查了二次函数的性质,关键是由已知得出a+b=6,把面积最大值问题转化为二次函数的最大值问题.
10.设O为坐标原点,点A、B为抛物线 上的两个动点,且 .连接点A、B,过O作 于点C,则点C到y轴距离的最大值()
2021年广东省广州市中考数学试卷(含答案解析版)
2021年广东省广州市中考数学试卷(含答案解析版)2021年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.��6 B.6 C.0 D.无法确定 2.(3分)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为()A. B. C. D.3.(3分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A.12,14 B.12,15 C.15,14 D.15,13 4.(3分)下列运算正确的是() A.=B.2×2= C.=a D.|a|=a(a≥0)5.(3分)关于x的一元二次方程x+8x+q=0有两个不相等的实数根,则q的取值范围是() A.q<16 B.q>16 C.q≤4 D.q≥4 6.(3分)如图,⊙O是△ABC的内切圆,则点O是△ABC的()A.三条边的垂直平分线的交点 B.三条角平分线的交点 C.三条中线的交点 D.三条高的交点 7.(3分)计算(ab)?5545523的结果是()56A.ab B.ab C.ab D.ab 8.(3分)如图,E,F分别是?ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.6 9.(3分)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,第1页(共23页)B.12 C.18 D.24则下列说法中正确的是()A.AD=2OB B.CE=EOC.∠OCE=40° D.∠BOC=2∠BAD210.(3分)a≠0,函数y=与y=��ax+a在同一直角坐标系中的大致图象可能是()A. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分) 11.(3分)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B= .12.(3分)分解因式:xy��9x= .213.(3分)当x= 时,二次函数y=x��2x+6有最小值. 14.(3分)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB= .215.(3分)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l= .16.(3分)如图,平面直角坐标系中O是原点,?ABCD的顶点A,C的坐标分别是(8,0),第2页(共23页)(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是其中正确的结论是(填写所有正确结论的序号).;④OD=三、解答题(本大题共9小题,共102分) 17.(9分)解方程组.18.(9分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.19.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的 %;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.20.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2第3页(共23页).(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)2(2)若△ADE的周长为a,先化简T=(a+1)��a(a��1),再求T的值.21.(12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.22.(12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>的解集.223.(12分)已知抛物线y1=��x+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A (��1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式. 24.(14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.第4页(共23页)25.(14分)如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.第5页(共23页)感谢您的阅读,祝您生活愉快。
2021年广东省中考数学试卷及答案解析
2021年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3分)9的相反数是( ) A .﹣9B .9C .19D .−192.(3分)一组数据2,4,3,5,2的中位数是( ) A .5B .3.5C .3D .2.53.(3分)在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( ) A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)4.(3分)若一个多边形的内角和是540°,则该多边形的边数为( ) A .4B .5C .6D .75.(3分)若式子√2x −4在实数范围内有意义,则x 的取值范围是( ) A .x ≠2B .x ≥2C .x ≤2D .x ≠﹣26.(3分)已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A .8B .2√2C .16D .47.(3分)把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( ) A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2﹣38.(3分)不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A .无解B .x ≤1C .x ≥﹣1D .﹣1≤x ≤19.(3分)如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( )A .1B .√2C .√3D .210.(3分)如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2﹣4ac >0;③8a +c <0;④5a +b +2c >0, 正确的有( )A .4个B .3个C .2个D .1个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy ﹣x = .12.(4分)如果单项式3x m y 与﹣5x 3y n 是同类项,那么m +n = . 13.(4分)若√a −2+|b +1|=0,则(a +b )2020= . 14.(4分)已知x =5﹣y ,xy =2,计算3x +3y ﹣4xy 的值为 .15.(4分)如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则∠EBD 的度数为 .16.(4分)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m .17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=√2,y=√3.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组{ax+2√3y=−10√3,x+y=4与{x−y=2,x+by=15的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.(8分)如图1,在四边形ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE ̂上一点,AD =1,BC =2.求tan ∠APE 的值.23.(8分)某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社区拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B 是反比例函数y =8x (x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C .反比例函数y =kx (x >0)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .(1)填空:k = ; (2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.25.(10分)如图,抛物线y=3+√36x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ 相似时,请直接写出所有满足条件的点Q的坐标.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3分)9的相反数是( ) A .﹣9B .9C .19D .−19【解答】解:9的相反数是﹣9, 故选:A .2.(3分)一组数据2,4,3,5,2的中位数是( ) A .5B .3.5C .3D .2.5【解答】解:将数据由小到大排列得:2,2,3,4,5, ∵数据个数为奇数,最中间的数是3, ∴这组数据的中位数是3. 故选:C .3.(3分)在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( ) A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)【解答】解:点(3,2)关于x 轴对称的点的坐标为(3,﹣2). 故选:D .4.(3分)若一个多边形的内角和是540°,则该多边形的边数为( ) A .4B .5C .6D .7【解答】解:设多边形的边数是n ,则 (n ﹣2)•180°=540°, 解得n =5. 故选:B .5.(3分)若式子√2x −4在实数范围内有意义,则x 的取值范围是( ) A .x ≠2B .x ≥2C .x ≤2D .x ≠﹣2【解答】解:∵√2x −4在实数范围内有意义, ∴2x ﹣4≥0, 解得:x ≥2,∴x 的取值范围是:x ≥2.故选:B .6.(3分)已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A .8B .2√2C .16D .4【解答】解:∵D 、E 、F 分别为△ABC 三边的中点, ∴DE 、DF 、EF 都是△ABC 的中位线, ∴DF =12AC ,DE =12BC ,EF =12AC ,故△DEF 的周长=DE +DF +EF =12(BC +AB +AC )=12×16=8. 故选:A .7.(3分)把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( ) A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2﹣3【解答】解:二次函数y =(x ﹣1)2+2的图象的顶点坐标为(1,2), ∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2), ∴所得的图象解析式为y =(x ﹣2)2+2. 故选:C .8.(3分)不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A .无解B .x ≤1C .x ≥﹣1D .﹣1≤x ≤1【解答】解:解不等式2﹣3x ≥﹣1,得:x ≤1, 解不等式x ﹣1≥﹣2(x +2),得:x ≥﹣1, 则不等式组的解集为﹣1≤x ≤1, 故选:D .9.(3分)如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( )A.1B.√2C.√3D.2【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.10.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=x(y﹣1).【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【解答】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.13.(4分)若√a−2+|b+1|=0,则(a+b)2020=1.【解答】解:∵√a−2+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【解答】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2 =15﹣8 =7, 故答案为:7.15.(4分)如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则∠EBD 的度数为 45° .【解答】解:∵四边形ABCD 是菱形, ∴AD =AB ,∴∠ABD =∠ADB =12(180°﹣∠A )=75°, 由作图可知,EA =EB , ∴∠ABE =∠A =30°,∴∠EBD =∠ABD ﹣∠ABE =75°﹣30°=45°, 故答案为45°.16.(4分)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为13m .【解答】解:由题意得,阴影扇形的半径为1m ,圆心角的度数为120°, 则扇形的弧长为:120π×1180,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr =120π×1180, 解得,r =13,故答案为:13. 17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,MN =4,E 为MN 的中点,点D 到BA ,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为 2√5−2 .【解答】解:如图,连接BE ,BD .由题意BD =√22+42=2√5,∵∠MBN =90°,MN =4,EM =NE ,∴BE =12MN =2,∴点E 的运动轨迹是以B 为圆心,2为半径的圆,∴当点E 落在线段BD 上时,DE 的值最小,∴DE 的最小值为2√5−2.故答案为2√5−2.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x +y )2+(x +y )(x ﹣y )﹣2x 2,其中x =√2,y =√3.【解答】解:(x +y )2+(x +y )(x ﹣y )﹣2x 2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【解答】解:(1)x=120﹣(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【解答】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF +EF =CF +DF ,即BE =CD ,在△ABE 和△ACD 中,{∠ABE =∠ACD∠A =∠A BE =CD,∴△ABE ≌△ACD (AAS ),∴AB =AC ,∴△ABC 是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同. (1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.【解答】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解, 解得,{x =3y =1,代入原方程组得,a =﹣4√3,b =12; (2)当a =﹣4√3,b =12时,关于的方程x 2+ax +b =0就变为x 2﹣4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.22.(8分)如图1,在四边形ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AÊ上一点,AD =1,BC =2.求tan ∠APE 的值.【解答】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,{∠OEC=∠OBC ∠OCE=∠OCB OC=OC,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE =∠ABE ,∴∠APE =∠BCH ,∴tan ∠APE =tan ∠BCH =OB BC =√22.23.(8分)某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35. (1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社区拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.【解答】解:(1)设每个B 类摊位的占地面积为x 平方米,则每个A 类摊位占地面积为(x +2)平方米,根据题意得:60x+2=60x ⋅35,解得:x =3,经检验x =3是原方程的解,所以3+2=5,答:每个A 类摊位占地面积为5平方米,每个B 类摊位的占地面积为3平方米;(2)设建A 摊位a 个,则建B 摊位(90﹣a )个,由题意得:90﹣a ≥3a ,解得a ≤22.5,∵建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A 类摊位,即a 取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B 是反比例函数y =8x(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C .反比例函数y =k x (x >0)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .(1)填空:k = 2 ;(2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.【解答】解:(1)设点B (s ,t ),st =8,则点M (12s ,12t ), 则k =12s •12t =14st =2,故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA ﹣S △OAD =12×8−12×2=3;(3)设点D (m ,2m ),则点B (4m ,2m ),∵点G 与点O 关于点C 对称,故点G (8m ,0),则点E (4m ,12m ),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m 2b =52m, 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F (5m ,0), 故FG =8m ﹣5m =3m ,而BD =4m ﹣m =3m =FG ,则FG ∥BD ,故四边形BDFG 为平行四边形.25.(10分)如图,抛物线y =3+√36x 2+bx +c 与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,BC =√3CD .(1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标.【解答】解:(1)∵BO =3AO =3,∴点B (3,0),点A (﹣1,0),∴抛物线解析式为:y =3+√36(x +1)(x ﹣3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32; (2)如图1,过点D 作DE ⊥AB 于E ,∴CO ∥DE ,∴BC CD =BO OE ,∵BC =√3CD ,BO =3,∴√3=3OE, ∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标(−√3,√3+1),设直线BD 的函数解析式为:y =kx +b ,由题意可得:{√3+1=−√3k +b 0=3k +b, 解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3;(3)∵点B (3,0),点A (﹣1,0),点D (−√3,√3+1), ∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1, ∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C (0,√3),∴OC =√3,∵tan ∠COB =CO BO =√33,∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N (1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN ,∴PN =2√33,BP =4√33, 当△BAD ∽△BPQ ,∴BP BA =BQ BD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q (1−2√33,0);当△BAD ∽△BQP ,∴BP BD =BQ AB ,∴BQ=4√33×42√3+2=4−4√33,∴点Q(﹣1+4√33,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=√2BN=2√2,当△BAD∽△BPQ,∴BPAD =BQ BD,∴√22√2=2√3+2,∴BQ=2√3+2∴点Q(1﹣2√3,0);当△BAD∽△PQB,∴BPBD =BQAD,∴BQ=2√2×2√22√3+2=2√3−2,∴点Q(5﹣2√3,0);综上所述:满足条件的点Q的坐标为()或(﹣1+4√33,0)或(1﹣2√3,0)或(5﹣2√3,0).。
2021年广东省广州市数学中考真题含答案解析及答案(word解析版)
解:从几何体的正面看可得图形.点评:从几何体的正面看可得图形.向下移动1格 B 向上移动1格 C 向上移动2格 D分析:根据题意,结合图形,由平移的概念求解解:观察图形可知:从图1到图可以将图形N向下移动2格.故选点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位是一道基础题:电视,C:网络,D:身边的人,E:其名中学生进行该问卷调查,根据调查的结分析:根据等量关系为:两数x,y之和是得:.故选:点评:此题主要考查了由实际问题抽象出二元一次方程组)分析:根据二次根式的性质和分式的意义解:根据题意得:,解得:点评:本题考查的知识点为:分式有意义EF=AB=2,∵==1,,AF==4,则AC=2AF=8,tanB===2.故选D=AOD=OA=3,OP=,OD=3,PD===2,BO==3,===x+y=1+2+12=2,∴△BA′E≌△DCE点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.21.(本小题满分12分)(2021年广州市)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 82 8 10 17 6 13 7 5 7 312 10 7 11 3 6 8 14 15 12(1)求样本数据中为A级的频率。
(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数。
(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.分析:(1)由抽取30个符合年龄条件的青年人中A级的有15人,即可求得样本数据中为A级的频率。
2021年广东省广州市中考数学试卷及解析(真题样卷)
2021年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2021•广州)四个数﹣3。
14,0,1,2中为负数的是()A.﹣3。
14 B.0C.1D.22.(3分)(2021•广州)将图中所示的图案以圆心为中心,旋转180°后得到的图案是()3.(3分)(2021•广州)已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是()A.2。
5 B.3C.5D.104.(3分)(2021•广州)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对5.(3分)(2021•广州)下列计算正确的是()A.a b•ab=2ab B.(2a)3=2a3C.3﹣=3(a≥0)D.•=(a≥0,b≥0)6.(3分)(2021•广州)如图是一个几何体的三视图,则该几何体的展开图可以是()A.B.C.D.7.(3分)(2021•广州)已知a,b 满足方程组,则a+b的值为()A.﹣4 B.4C.﹣2 D.28.(3分)(2021•广州)下列命题中,真命题的个数有()①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个B.2个C.1个D.0个9.(3分)(2021•广州)已知圆的半径是2,则该圆的内接正六边形的面积是()A.3B.9C.18D.3610.(3分)(2021•广州)已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)(2021•广州)如图,AB∥CD,直线l分别与AB,CD相交,若∠1=50°,则∠2的度数为.12.(3分)(2021•广州)根据环保局公布的广州市2021年至2021年PM2。
广东省2021年中考数学试题真题(Word版+答案+解析)
广东省2021年中考数学试卷一、单选题1.(2021·广东)下列实数中,最大的数是( )A. πB. √2C. |−2|D. 32.(2021·广东)据国家卫生健康委员会发布,截至2021年5月23日,31个省(区、市)及新疆生产建设兵团累计报告接种新冠病毒疫苗51085.8万剂次,将“51085.8万”用科学记数法表示为( ) A. 0.510858×109 B. 51.0858×107 C. 5.10858×104 D. 5.10858×1083.(2021·广东)同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为7的概率是( ) A. 112 B. 16 C. 13 D. 124.(2021·广东)已知 9m =3,27n =4 ,则 32m+3n = ( ) A. 1 B. 6 C. 7 D. 125.(2021·广东)若 |a −√3|+√9a 2−12ab +4b 2=0 ,则 ab = ( ) A. √3 B. 92 C. 4√3 D. 9 6.(2021·广东)下列图形是正方体展开图的个数为( )A. 1个B. 2个C. 3个D. 4个7.(2021·广东)如图, AB 是⊙O 的直径,点C 为圆上一点, AC =3,∠ABC 的平分线交 AC 于点D , CD =1 ,则⊙O 的直径为( )A. √3B. 2√3C. 1D. 28.(2021·广东)设 6−√10 的整数部分为a , 小数部分为b , 则 (2a +√10)b 的值是( ) A. 6 B. 2√10 C. 12 D. 9√109.(2021·广东)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a , b , c , 记 p =a+b+c 2,则其面积S =√p(p −a)(p −b)(p −c) .这个公式也被称为海伦-秦九韶公式.若 p =5,c =4 ,则此三角形面积的最大值为( )A. √5B. 4C. 2√5D. 510.(2021·广东)设O 为坐标原点,点A 、B 为抛物线 y =x 2 上的两个动点,且 OA ⊥OB .连接点A 、B , 过O 作 OC ⊥AB 于点C , 则点C 到y 轴距离的最大值( ) A. 12 B. √22C. √32D. 1二、填空题11.(2021·广东)二元一次方程组 {x +2y =−22x +y =2的解为________. 12.(2021·广东)把抛物线 y =2x 2+1 向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为________.13.(2021·广东)如图,等腰直角三角形 ABC 中, ∠A =90°,BC =4 .分别以点B 、点C 为圆心,线段 BC 长的一半为半径作圆弧,交 AB 、 BC 、 AC 于点D 、E 、F , 则图中阴影部分的面积为________.14.(2021·广东)若一元二次方程 x 2+bx +c =0 (b , c 为常数)的两根 x 1,x 2 满足 −3<x 1<−1,1<x 2<3 ,则符合条件的一个方程为________. 15.(2021·广东)若 x +1x =136 且 0<x <1 ,则 x 2−1x2= ________. 16.(2021·广东)如图,在 ▱ABCD 中, AD =5,AB =12,sinA =45 .过点D 作 DE ⊥AB ,垂足为E , 则 sin ∠BCE = ________.17.(2021·广东)在 △ABC 中, ∠ABC =90°,AB =2,BC =3 .点D 为平面上一个动点, ∠ADB =45° ,则线段 CD 长度的最小值为________.三、解答题18.(2019·宿迁模拟)解不等式组 {2x −4≥3(x −2)4x >x−72. 19.(2021·广东)某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.20.(2021·广东)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;BD,求tan∠ABC的值.(2)若AD=1321.(2021·广东)在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=4图象的一个交点为P(1,m).x(1)求m的值;(2)若PA=2AB,求k的值.22.(2021·广东)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.23.(2021·广东)如图,边长为1的正方形ABCD中,点E为AD的中点.连接BE,将△ABE沿BE 折叠得到△FBE,BF交AC于点G,求CG的长.24.(2021·广东)如图,在四边形ABCD中,AB//CD,AB≠CD,∠ABC=90°,点E、F分别在线段BC、AD上,且EF//CD,AB=AF,CD=DF.(1)求证:CF⊥FB;(2)求证:以AD为直径的圆与BC相切;(3)若EF=2,∠DFE=120°,求△ADE的面积.25.(2021·广东)已知二次函数y=ax2+bx+c的图象过点(−1,0),且对任意实数x,都有4x−12≤ax2+bx+c≤2x2−8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.答案解析部分一、单选题1.【答案】A【考点】实数大小的比较【解析】【解答】解:π≈3.14,√2≈1.414,|-2|=2,3.14>3>2>1.414π>3>|-2|>√2故π最大。
2021年广东省中考数学试卷及详细答案
2021年广东省中考数学试卷及详细答案2021年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3分)四个实数0、、﹣3.14、2中,最小的数是() A.0B. C.﹣3.14 D.22.(3分)据有关部门统计,2021年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为() A.1.442×107 B.0.1442×107 C.1.442×108 D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是() A. B. C. D.4.(3分)数据1、5、7、4、8的中位数是() A.4B.5C.6D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是() A.圆B.菱形C.平行四边形 D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是() A.x≤4B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC 的面积之比为()A. B. C. D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()第1页(共24页)A.30° B.40° C.50° D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m< B.m≤ C.m> D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B →C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y 关于x的函数图象大致为()A. B. C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1= .13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= . 14.(3分)已知+|b﹣1|=0,则a+1= .15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC 相切于点E,连接BD,则阴影部分的面积为.(结果保留π)第2页(共24页)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20210+()1﹣18.(6分)先化简,再求值:?,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?第3页(共24页)(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x 轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.第4页(共24页)24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?第5页(共24页)2021年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3分)四个实数0、、﹣3.14、2中,最小的数是() A.0B. C.﹣3.14 D.2【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2021年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为() A.1.442×107 B.0.1442×107 C.1.442×108 D.0.1442×108 【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是() A.B. C.第6页(共24页)D.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是() A.4B.5C.6D.7【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5 故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是() A.圆B.菱形C.平行四边形 D.等腰三角形【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误; B、是轴对称图形,也是中心对称图形,故此选项错误; C、不是轴对称图形,是中心对称图形,故此选项错误; D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是() A.x≤4B.x≥4 C.x≤2 D.x≥2【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,第7页(共24页)系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC 的面积之比为()A. B. C. D.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30° B.40° C.50° D.60°【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,第8页(共24页)又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m< B.m≤ C.m> D.m≥【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B →C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A. B. C.第9页(共24页)D.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP?h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2, y=AD?h, AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3, y=PD?h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.第10页(共24页)【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是 50°.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1= (x﹣1)2 .【解答】解:x2﹣2x+1=(x ﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= 2 .【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.第11页(共24页)14.(3分)已知【解答】解:∵∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a,b的值是解题关键.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC 相切于点E,连接BD,则阴影部分的面积为π.(结果保留π)+|b﹣1|=0,则a+1= 2 . +|b﹣1|=0,【解答】解:连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.=4﹣π,【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.第12页(共24页)。
2021年广东省广州市中考数学试卷及解析(真题样卷)
2021年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2021•广州)四个数﹣3。
14,0,1,2中为负数的是()A.﹣3。
14 B.0C.1D.22.(3分)(2021•广州)将图中所示的图案以圆心为中心,旋转180°后得到的图案是()3.(3分)(2021•广州)已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是()A.2。
5 B.3C.5D.104.(3分)(2021•广州)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对5.(3分)(2021•广州)下列计算正确的是()A.a b•ab=2ab B.(2a)3=2a3C.3﹣=3(a≥0)D.•=(a≥0,b≥0)6.(3分)(2021•广州)如图是一个几何体的三视图,则该几何体的展开图可以是()A.B.C.D.7.(3分)(2021•广州)已知a,b 满足方程组,则a+b的值为()A.﹣4 B.4C.﹣2 D.28.(3分)(2021•广州)下列命题中,真命题的个数有()①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个B.2个C.1个D.0个9.(3分)(2021•广州)已知圆的半径是2,则该圆的内接正六边形的面积是()A.3B.9C.18D.3610.(3分)(2021•广州)已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)(2021•广州)如图,AB∥CD,直线l分别与AB,CD相交,若∠1=50°,则∠2的度数为.12.(3分)(2021•广州)根据环保局公布的广州市2021年至2021年PM2。
广东省2021年中考数学试卷(解析版)
【点睛】本题考查了用列表法或树状图求等可能事件的概率,用列表法或树状图可以不重不漏地把事件所有可能的结果数及某一事件的结果数表示出来,具有直观的特点.
4.已知 ,则 ()
A.1B.6C.7D.12
【答案】D
【解析】
【分析】利用同底数幂乘法逆用转换求解即可.
【详解】解:∵ ,
∴ ,
∴故选:D.
2.据国家卫生健康委员会发布,截至2021年5月23日,31个省(区、市)及新疆生产建设兵团累计报告接种新冠病毒疫苗51085.8万剂次,将“51085.8万”用科学记数法表示为()
A. B. C. D.
【答案】D
【解析】
【分析】根据科学记数法的表示形式 ,其中 ,n为整数,一定要将题目中的“51085.8万”转化为数字510858000,即可将题目中的数据用科学记数法表示出】本题考查了二次函数的性质,关键是由已知得出a+b=6,把面积最大值问题转化为二次函数的最大值问题.
10.设O为坐标原点,点A、B为抛物线 上的两个动点,且 .连接点A、B,过O作 于点C,则点C到y轴距离的最大值()
A. B. C. D.1
【答案】A
【解析】
【分析】设A(a,a²),B(b,b²),求出AB的解析式为 ,进而得到OD=1,由∠OCB=90°可知,C点在以OD的中点E为圆心,以 为半径的圆上运动,当CH为圆E半径时最大,由此即可求解.
【详解】解:如图:过D作DE⊥AB,垂足为E
∵AB是直径
∴∠ACB=90°
∵∠ABC的角平分线BD
∴DE=DC=1
Rt△DEB和Rt△DCB中
DE=DC、BD=BD
∴Rt△DEB≌Rt△DCB(HL)
∴BE=BC
2021年广东省中考数学试卷附详细答案解析
广东省2021届中考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列实数中,最大的数是( )A.π C.|2|- D.32.据国家卫生健康委员会发布,截至2021年5月23日,31个省(区、市)及新疆生产建设兵团累计报告接种新冠病毒疫苗51085.8万剂次,将“51085.8万”用科学记数法表示为( )A.90.51085810⨯B.751.085810⨯C.45.1085810⨯D.85.1085810⨯3.同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为7的概率是( ) A.112 B.16 C.13 D.124.已知93m =,274n =,则233m n +=( )A.1B.6C.7D.125.若|0a =,则ab =( )B.92C.D.96.下列图形是正方体展开图的个数为( )A.1个B.2个C.3个D.4个7.如图,AB 是e O 的直径,点C 为圆上一点,3AC =,ABC ∠的平分线交AC 于点D ,则e O 的直径为( )B. C.1 D.28.设6-a ,小数部分为b ,则(2a b +的值是( )A.6B.C.12D.9.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b c p ++=,则其面积S =这个公式也被称为海伦一秦九韶公式.若5p =,4c =,则此三角形面积的最大值为( )B.4C.D.510.设O 为坐标原点,点A 、B 为抛物线2y x =上的两个动点,且OA OB ⊥.连接点A 、B ,过O 作OC AB ⊥于点C ,则点C 到y 轴距离的最大值( )A.12 D.1二、填空题11.二元一次方程组2222x y x y +=-⎧⎨+=⎩的解为________. 12.把抛物线221y x =+向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为________.13.如图,等腰直角三角形ABC 中,90A ∠=︒,4BC =.分别以点B 、点C 为圆心,线段BC 长的一半为半径作圆弧,交AB 、BC 、AC 于点D 、E 、F ,则图中阴影部分的面积为_________.14.若一元二次方程20x bx c ++=(b ,c 为常数)的两根1x ,2x 满足131x -<<-,213x <<,则符合条件的一个方程为________.15.若1136x x +=且01x <<,则221x x-=______. 16.如图,在ABCD 中,5AD =,12AB =,4sin 5A =.过点D 作4sin 5A =,垂足为E ,则sin BCE ∠=______.17.在ABC 中,90ABC ∠=︒,2AB =,3BC =.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为______.三、解答题18.解不等式组243(2)742x xxx->-⎧⎪⎨->⎪⎩.19.某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.20.如图,在Rt ABC中,90A∠=︒,作BC的垂直平分线交AC于点D,延长AC至点E,使CE AB=.(1)若1AE=,求ABD的周长;(2)若13AD BD=,求tan ABC∠的值.21.在平面直角坐标系xOy中,一次函数(0)y kx b k=+>的图象与x轴、y轴分别交于A、B两点,且与反比例函数4yx=图象的一个交点为(1,)P m.(1)求m的值(2)若2PA AB=,求k的值.22.端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗。
2021年广东省中考数学试题(word版,含答案解析)
2021年广东省中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)下列实数中,最大的数是()A.πB.C.|﹣2|D.32.(3分)据国家卫生健康委员会发布,截至2021年5月23日,31个省(区、市)及新疆生产建设兵团累计报告接种新冠病毒疫苗51085.8万剂次,将“51085.8万”用科学记数法表示为()A.0.510858×109B.51.0858×107C.5.10858×104D.5.10858×1083.(3分)同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为7的概率是()A.B.C.D.4.(3分)已知9m=3,27n=4,则32m+3n=()A.1B.6C.7D.125.(3分)若|a|0,则ab=()A.B.C.4D.96.(3分)下列图形是正方体展开图的个数为()A.1个B.2个C.3个D.4个7.(3分)如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC于点D,CD=1,则⊙O的直径为()A.B.2C.1D.28.(3分)设6的整数部分为a,小数部分为b,则(2a)b的值是()A.6B.2C.12D.99.(3分)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记p,则其面积S.这个公式也被称为海伦﹣秦九韶公式.若p=5,c=4,则此三角形面积的最大值为()A.B.4C.2D.510.(3分)设O为坐标原点,点A、B为抛物线y=x2上的两个动点,且OA⊥OB.连接点A、B,过O作OC⊥AB于点C,则点C到y轴距离的最大值()A.B.C.D.1二、填空题:本大题7小题,每小题4分,共28分.11.(4分)二元一次方程组的解为.12.(4分)把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为.13.(4分)如图,等腰直角三角形ABC中,∠A=90°,BC=4.分别以点B、点C 为圆心,线段BC长的一半为半径作圆弧,交AB、BC、AC于点D、E、F,则图中阴影部分的面积为.14.(4分)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为.15.(4分)若x且0<x<1,则x2.16.(4分)如图,在▱ABCD中,AD=5,AB=12,sin A.过点D作DE⊥AB,垂足为E,则sin∠BCE=.17.(4分)在△ABC中,∠ABC=90°,AB=2,BC=3.点D为平面上一个动点,∠ADB=45°,则线段CD长度的最小值为.三、解答题(一):本大题共3小题,每小题6分,共18分.18.(6分)解不等式组.19.(6分)某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.20.(6分)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;(2)若AD BD,求tan∠ABC的值.四、解答题(二):本大题共3小题,每小题8分,共24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年广东广州中考数学真题及答案1.选择题(本大题共10题,每小题3分,满分30分)1.下列四个选项中,为负整数的是(D)。
2.如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为(C)。
3.方程x²-4x+4=0的解为(C)。
4.下列运算正确的是(B)。
5.下列命题中,为真命题的是(D)。
6.为了庆祝XXX成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中。
有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为(A)。
7.一根钢管放在V形架内,其横截面如图所示,钢管的半径是24cm,若∠ACB=60°,则劣弧AB的长是(C)。
8.抛物线y=ax²+bx+c经过点(-1,0)、(3,0),且与y轴交于点(0,-5),则当x=2时,y的值为(B)。
9.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,连结BB′,则sin∠BB′C′的值为(B)。
10.在平面直角坐标系xOy中,矩形OABC的点A在函数y=|x|的图象上,点C在函数y=-|x|的图象上,若点B的横坐标为-2,则点A的坐标为(A)。
二、填空题(本大题共6小题,每小题3分,满分18分)11.代数式在实数范围内有意义时,x应满足的条件是x≠2.12.方程x²-4x+m=0的实数解是2.13.如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB于点D、E,连结BD。
若CD=1,则AD的长为√3.14.一元二次方程x²-2x+y-5=0有两个相等的实数根,点A (x1,y1)在直线y=x上,则点A的坐标为(1,1)。
1.给定两个点B(x1,y1)和B(x2,y2),它们满足反比例函数y=k/x。
如果x1y2.2.在等腰三角形ABC中,AC=BC,∠B=38°,点D在线段AB上,B′是点B关于直线CD的对称点。
如果B′D∥AC,则∠BCD的度数为26°。
3.在正方形ABCD中,边长为4,点E在边BC上,且BE=3.以点A为圆心,3为半径的圆分别与AB和AD相交于点F和G。
DF与AE相交于点H,与圆A相交于点K。
下列结论中正确的有(1)和(3)。
1) H是FK的中点。
3) S△AHG:S△DHC=9:16.4.解方程组。
5.在平行四边形ABCD中,AB∥CD,点E和F在线段BC上,且BE=CF。
证明AE=DF。
6.已知A=(-1)^n+1/n,其中n为正整数。
1) 化XXX。
2) 如果m+n-2=0,求A的值。
7.根据给定数据,得到完整的频数分布表,并计算出众数和中位数。
根据调查统计结果,估计初三年级学生参加志愿者活动4次的人数。
8.根据题目中给定的信息,计算出“南粤家政”今年计划新增加的培训人次和XXX工资收入增长率的最低要求。
9.在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD。
分析】将方程化简可得x2+8x+16=0,即(x+4)2=0,解得x=﹣4.解答】解:将方程化简得x2+8x+16=0,即(x+4)2=0。
x=﹣4.故选:A.4.已知函数f(x)=x2﹣2x+1,则f(﹣1)=()A.﹣2B.0C.2D.4分析】将x=﹣1代入函数f(x)=x2﹣2x+1中,可得f (﹣1)=﹣2.解答】解:将x=﹣1代入函数f(x)=x2﹣2x+1中,可得f(﹣1)=(﹣1)2﹣2(﹣1)+1=﹣2.故选:A.5.如图,四边形ABCD中,AB=BC,∠ABC=90°,点E、F分别在边AB、CD上,且DE=EF=FC,若DE=3,则四边形ABCD的面积为()A.9B.12C.15D.18分析】由题意可知,四边形ABCD是由两个等腰直角三角形和一个矩形组成,因此可以先求出矩形的面积,再求出两个等腰直角三角形的面积之和.解答】解:∵AB=BC,∠ABC=90°。
四边形ABCD是一个矩形.DE=3,FC=3,且DE=EF=FC。
BE=AB+AE=BC+CF=6。
矩形ABFE的面积为6×3=18.又∵DE=3。
AED的面积为(3×3)÷2=4.5。
CFB的面积为(3×3)÷2=4.5.四边形ABCD的面积为18+4.5+4.5=27.故选:D.6.已知函数f(x)=x3,g(x)=x2,h(x)=x+1,则()A.f(x)>g(x)>h(x)B.f(x)<g(x)<h(x)C.h(x)<f(x)<g(x)D.g(x)<h(x)<f(x)分析】比较f(x)、g(x)、h(x)的大小关系,可得f (x)>g(x)>h(x).解答】解:∵f(x)=x3,g(x)=x2,h(x)=x+1。
f(x)>g(x),g(x)>h(x).又∵x>0。
x3>x2>x。
f(x)>g(x)>h(x).故选:A.7.已知函数f(x)=log2x,则f(2x)=()A.f(x)+1B.f(x)2C.2f(x)D.f(x)+log22分析】利用对数的性质,可得f(2x)=log22x=log22+log22x=1+log22x=f(x)+1.解答】解:∵f(x)=log2x。
f(2x)=log22x=log22+log22x=1+log22x=f(x)+1.故选:A.8.已知函数f(x)的反函数为f(x)的图象如图,则f (﹣1)=()A.﹣2B.﹣1C.0D.1分析】根据函数反函数的定义,可得f(f(﹣1))=﹣1,因此需要求出f(x)=﹣1的解,再求出它的反函数.解答】解:由图可知,f(0)=﹣1,f(﹣2)=﹣1。
f(f(﹣1))=f(0)=﹣1。
f(﹣1)=﹣2.故选:A.9.如图,已知ΔABC中,AB=AC,点D、E、F分别在边BC、AB、AC上,且DE∥AC,EF∥AB。
AF=2,DF=3,则BC的长为()A.4B.5C.6D.7分析】由题意可知,DE与AC平行,因此可以利用相似三角形的性质求出BD的长度,再利用BC=BD+DC求出BC 的长度.解答】解:∵AB=AC,∠B=∠C。
ΔABC是一个等腰三角形.又∵DE∥AC,EF∥AB。
ADE∽△ABC,△BEF∽△ABC。
AD×AB=AE×AC,BE×AB=BF×BC。
AD×2=(3+DE)×2,BE×2=EF×2。
AD=3+DE,BE=EF.又∵AF=2,DF=3。
DE=EF=3×2÷2=3。
AD=6,BE=3。
BD=AD-AB=6-2=4。
BC=BD+DC=4+2=6.故选:C.10.已知函数f(x)=x3﹣3x2+1,g(x)=ax+b,且f(x)=g(x)在x=1处的函数值及导数值相等,则a+b的值为()A.﹣1B.0C.1D.2分析】根据题意列出方程组,解得a+b=1.解答】解:由题意可得f(1)=g(1)。
1﹣3+1=a+b。
a+b=﹣1+3=2.故选:D.分析】由题意可知,劣弧AB的长度等于圆心角ACB所对应的圆周弧长,而圆心角ACB的度数为60°,对应的圆周角度数为360°,所以劣弧AB的长度为$\frac{60^\circ}{360^\circ}\times 2\pi\times24\text{cm}=8\pi\text{cm}$。
解答】解:劣弧AB的长度等于圆心角ACB所对应的圆周弧长,而圆心角ACB的度数为60°,对应的圆周角度数为360°,所以劣弧AB的长度为$\frac{60^\circ}{360^\circ}\times 2\pi\times 24\text{cm}=8\pi\text{cm}$。
故选:A。
点A在函数y=(x>)的图象上,点C在函数y=﹣(x <)的图象上。
A在x轴右侧,C在x轴左侧。
AB=BC。
B在y轴上。
点B的坐标为(﹣,0)。
点B的横坐标为﹣。
XXX的坐标为(,y)。
设A(m,)(m>)。
AC⊥x轴。
AD=2OD。
BC⊥x轴。
CE=2OE。
OE=2AD,CE=2OD。
OE+CE=2AD+2OD。
2(OE+CE)=2(AD+OD)。
2DE=2OB。
DE=OB。
D(m,0),E(,2m)。
DE=√(﹣m-)2+(2m-0)2=√(﹣m-)2+4m2。
m-)2+4m2=﹣(﹣)=。
m-)2+4m2=。
m2+4m2=。
5m2=。
m=2。
XXX的坐标为(2,).故选:C.CAD=∠CBD=19°。
XXX∠BCD=71°。
AC=BC。
ACD≌△BCD。
CD=CD。
又∵XXX关于直线CD的对称点是B′。
CD垂直平分BB′。
B=38°。
BB′D=2×38°=76°。
XXX∠B′DC=(180°﹣76°)÷2=52°。
DCB=90°﹣52°=38°。
又∵AC=BC,∠ACB=90°。
ABC是等腰直角三角形。
ABC=45°。
ABD=45°﹣38°=7°。
ADB=180°﹣19°﹣7°=154°。
CAD=19°=∠ADB。
AD∥BC。
AD=BC=CD。
故答案为CD.11.代数式$\sqrt{x-6}$在实数范围内有意义时,$x$应满足的条件是$x\geq6$。
分析】二次根式中被开方数的取值范围为被开方数是非负数。
因此,$\sqrt{x-6}$在实数范围内有意义时,$x-6\geq0$,解得$x\geq6$。
12.方程$x^2-4x=0$的实数解是$x_1=0$,$x_2=4$。
分析】方程利用因式分解法求出解即可。
将$x^2-4x$分解为$x(x-4)$,得到$x_1=0$和$x_2=4$。
13.如图,在直角三角形$\triangle ABC$中,$\angleC=90^\circ$,$\angle A=30^\circ$,线段$AB$的垂直平分线分别交$AC$、$AB$于点$D$、$E$,连结$BD$。
若$CD=1$,则$AD$的长为2.分析】由线段垂直平分线的性质可得$AD=BD$,利用含30°角的直角三角形的性质可求解$BD$的长,进而求解$AD$的长。
解答】由垂直平分线的性质可得$AD=BD$,又$\angleC=90^\circ$,$\angle A=30^\circ$,$CD=1$,因此$BD=2CD=2$。