11.1到11。3三角形练习题

合集下载

与三角形有关的线段练习题(含答案)

与三角形有关的线段练习题(含答案)

与三角形有关的线段练习题11.1.1 三角形的边1.下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2.以下列各组线段的长为边长,能组成三角形的是()A.2,3,5 B.3,4,5C.3,5,10 D.4,4,83.下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4.如图,图中共有________个三角形,在△ABE中,AE所对的角是________,∠ABE所对的边是________;在△ADE中,AD是________的对边;在△ADC中,AD是________的对边.5.若a,b,c为△ABC的三边长,且a,b满足|a-3|+(b-2)2=0.(1)求c的取值范围;(2)若第三边长c是整数,求c的值.11.1.2三角形的高、中线与角平分线11.1.3 三角形的稳定性1.桥梁拉杆、电视塔底座都是三角形结构,这是利用三角形的________性.2.如图,在△ABC中,AB边上的高是________,BC边上的高是________;在△BCF中,CF边上的高是________.第2题图第3题图3.如图,在△ABC中,BD是∠ABC的平分线.已知∠ABC=80°,则∠DBC=________°. 4.若AE是△ABC的中线,且BE=4cm,则BC=________cm.5.如图,BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长差是________.第5题图第6题图6.如图,在△ABC中,D是BC的中点,S△ABC=4cm2,则S△ABD=________cm2.7.如图,AD,CE是△ABC的两条高.已知AD=5,CE=4.5,AB=6.(1)求△ABC的面积;(2)求BC的长.11.2 与三角形有关的角11.2.1 三角形的内角第1课时三角形的内角和1.在△ABC中,∠A=20°,∠B=60°,则∠C的度数为()A.80° B.90° C.20° D.100°2.如图所示是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板的另一个角的度数是()A.30° B.40° C.50° D.60°第2题图第3题图3.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠DBC的度数是________.4.根据下图填空.(1)n=________;(2)x=________;(3)y=________.5.如图,在△ABC中,点D在BA的延长线上,DE∥BC,∠BAC=65°,∠C=30°,求∠BDE 的度数.第2课时直角三角形的两锐角互余1.在Rt△ABC中,∠C=90°,∠A=61°,则∠B的度数为()A.61° B.39° C.29° D.19°2.在△ABC中,∠A=60°,∠C=30°,则△ABC是()A.直角三角形B.钝角三角形C.锐角三角形D.等边三角形3.直角三角形的一个锐角是另一个锐角的2倍,则较小锐角的度数是() A.60° B.36° C.54° D.30°4.如图,∠ACB=90°,CD⊥AB,垂足为D,则与∠A互余的角的个数是() A.1个B.2个C.3个D.4个第4题图第5题图5.如图,在△ABC中,∠A=25°,∠ACB=105°,则∠D的度数为________.6.如图,在△ABC中,CE,BF是两条高.若∠A=70°,∠BCE=30°,求∠EBF和∠FBC 的度数.7.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.11.2.2三角形的外角1.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为________.2.如图,∠2________∠1(填“>”“<”或“=”).3.如图,在△ABC中,CD是∠ACB的平分线,∠A=70°,∠ACB=60°,则∠BDC的度数为()A.80° B.90° C.100° D.110°4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E的度数为()A.30° B.40° C.60° D.70°5.如图,在△ABC中,延长CB到D,延长BC到E,∠A=80°,∠ACE=140°,求∠1的度数.11.3多边形及其内角和11.3.1多边形1.下列图形中,凸多边形有()A.1个B.2个C.3个D.4个2.下列关于正六边形的说法错误的是()A.边都相等B.对角线长都相等C.内角都相等D.外角都相等3.四边形一共有________条对角线()A.1 B.2 C.3 D.44.已知从一个多边形的一个顶点最多可以引出3条对角线,则它是() A.五边形B.六边形C.七边形D.八边形5.若一个六边形的各条边都相等,当边长为3cm时,它的周长为________cm.6.从七边形的一个顶点出发,最多可以引________条对角线,这些对角线可以将这个多边形分成________个三角形.7.如图,请回答问题:(1)该多边形如何表示?指出它的内角;(2)作出这个多边形所有过顶点A的对角线;(3)在这个多边形的一个顶点处作出它的一个外角.11.3.2多边形的内角和1.五边形的内角和是()A.180° B.360° C.540° D.720°2.已知一个多边形的内角和为900°,则这个多边形为()A.七边形B.八边形C.九边形D.十边形3.若一个多边形的每一个外角都等于45°,则这个多边形的边数为() A.3 B.4 C.5 D.84.若正多边形的一个内角是120°,则该正多边形的边数是()A.12 B.6 C.16 D.85.如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C的度数为________.第5题图第6题图6.图中x的值为________.7.若一个多边形的内角和是外角和的3倍,则它是几边形?8.如果四边形ABCD的四个外角的度数之比为3∶4∶5∶6,那么这个四边形各内角的度数分别是多少?1.1与三角形有关的线段11.1.1三角形的边1.C 2.B 3.C 4.6∠B AE∠AED∠C5.解:(1)∵|a-3|+(b-2)2=0,∴a-3=0,b-2=0,∴a=3,b=2.由三角形三边关系得3-2<c<3+2,即1<c<5.(2)∵c为整数,1<c<5,∴c=2或3或4.11.1.2三角形的高、中线与角平分线11.1.3三角形的稳定性1.稳定 2.CE AD BC 3.40 4.8 5.2 6.27.解:(1)S△ABC=12AB·CE=12×6×4.5=13.5.(2)∵S△ABC=12BC·AD,∴BC=2S△ABCAD=2×13.55=5.4.11.2与三角形有关的角11.2.1三角形的内角第1课时三角形的内角和1.D 2.B 3.30° 4.(1)27(2)29(3)595.解:∵∠BAC=65°,∠C=30°,∴∠B=85°.∵DE∥BC,∴∠BDE=180°-∠B=180°-85°=95°.第2课时直角三角形的两锐角互余1.C 2.A 3.D 4.B 5.40°6.解:∵∠A=70°,CE,BF是△ABC的两条高,∴∠EBF=20°,∠ECA=20°.又∵∠BCE =30°,∴∠ACB=50°,∴在Rt△BCF中,∠FBC=40°.7.证明:∵∠ACB=90°,∴∠A+∠B=90°.∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC =90°,∴CD⊥AB.11.2.2三角形的外角1.70° 2.> 3.C 4.A5.解:∵∠ACE=140°,∴∠ACB=40°.∵∠A=80°,∴∠1=40°+80°=120°.11.3多边形及其内角和11.3.1多边形1.A 2.B 3.B 4.B 5.18 6.457.解:(1)六边形ABCDEF,它的内角是∠A,∠B,∠C,∠D,∠E,∠F.(2)如图所示.(3)如图,∠DCG即为点C处的一个外角(答案不唯一).11.3.2多边形的内角和1.C 2.A 3.D 4.B 5.230° 6.1307.解:设该多边形是n边形.由题意可得(n-2)·180°=3×360°,解得n=8.故该多边形为八边形.8.解:根据题意,设四边形ABCD的四个外角的度数分别为3x,4x,5x,6x,则3x+4x+5x+6x=360°,解得x=20°.∴这四个外角的度数分别为60°,80°,100°,120°,则这个四边形各内角的度数分别为120°,100°,80°和60°.。

人教版 数学八年级 上册第11章 11.1--11.3分节检测题含答案

人教版 数学八年级 上册第11章 11.1--11.3分节检测题含答案

人教版八年级上册第11章 11.1--11.3分节检测题含答案11.1与三角形有关的线段一、选择题1.下面几个图形不具有稳定性的是()A. B.C. D.2.已知△ABC的两条高分别为4和12,第三条高也为整数,则第三条高所有可能的值为()A. 3和4B. 1和2C. 2和3D. 4和53.如图,在△ABC中,AE是和AF分别是BC边上的中线和高线,AD是∠BAC的平分线.则下列线段中最短的是()A. AEB. ADC. AFD. AC4.在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为13cm,那么AC的长为()A. 7cmB. 8cmC. 9cmD. 10cm5.如图,在△ABC中,E是边BC的任意一点,AD垂直BC于点D,则以AD为高的三角形有().A. 3个B. 4个C. 5个D. 6个6.下列图形中具有稳定性的是()A. 平行四边形B. 等腰三角形C. 长方形D. 梯形7.如图,在△ABC中,AD,AE,AF分别是三角形的高线,角平分线及中线,那么下列结论错误的是().A. AD⊥BCB. BF=CFC. BE=ECD. ∠BAE=∠CAE8.下面是一位同学用三根木棒拼成的图形,其中符合三角形概念的是().A. B. C. D.9.如图,∠1=∠2,∠3=∠4,下列结论中错误的是().A. BD是△ABC的角平分线B. CE是△BCD的角平分线∠ACBC. ∠3=12D. CE是△ABC的角平分线10.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A. 1种B. 2种C. 3种D. 4种11.若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A. 6B. 7C. 11D. 12二、填空题12.若a,b,c为△ABC的三边长,且满足|a−4|+√b−2=0,则c的值可以为_________.13.如图,在△ABC中,AC=8,BC=6,AD⊥BC于D,AD=5,BE⊥AC于E,则BE的长为_________.14.如图,在△ACB中,∠ACB=90°,CD⊥AB,则以∠A为内角的三角形是__________,以BC为边的三角形是___________,∠B所对的边为___________.15.有四条线段,长分别为3cm、5cm、7cm、9cm,如果用这些线段组成三角形,可以组成______ 个三角形.16.如图,D,E分别是△ABC的边AB,AC的中点,若△ADE的面积为1,则四边形DBCE的面积等于______.三、解答题17.如图,AD是△ABC的边BC的中线,已知AB=5cm,AC=3cm,求△ABD与△ACD的周长之差.18.如图,回答下列问题:(1)图中有________个三角形,它们分别是______________________;(2)以线段AD为边的三角形是__________________;(3)线段CE所在的三角形是________,CE边所对的角是________.19.已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,求∠BAC的度数.答案和解析1.A解:根据三角形的稳定性可得,B、C、D都具有稳定性.不具有稳定性的是A选项.故选A.2.D解:设边长为a,b的边上的高分别为4,12,边长为c的边上的高为h,△ABC的面积是S,那么a=2S4,b=2S12,c=2Sℎ.∵a−b<c<a+b.∴2S4−2S12<c<2S4+2S12,即S3<2Sℎ<2S3,解得3<ℎ<6.∴ℎ=4或5.3.C解:∵在△ABC中,AF是高,∴AF⊥BC,又∵在△ABC中,AD是∠BAC的平分线,AE是BC边上的中线,∴AF<AD,AF<AE,AF<AC,故最短线段为AF.4.C解∵AD是BC边上的中线,所以D为BC的中点CD=BD,∵△ADC的周长比△ABD的周长多5cm,AD=AD,∴AC−AB=5cm,又∵AB+AC=13cm,∴AC=9cm即AC的长度是9cm.5.D解:AD垂直BC于点D,则以AD为高的三角形有△ABD,△AED,△ABE,△ADC,△ABC,△AEC,共6个.故选D.6.B解:根据三角形具有稳定性,可知四个选项中只有等腰三角形具有稳定性的..7.C解:根据△ABC中,AD,AE,AF分别是三角形的高线,角平分线及中线,可得AD⊥BC,∠BAE=∠CAE,BF=CF,不能得到BE=EC.8.D解:因为三角形是由不在同一条直线上的三条线段首尾顺次相接所成的图形.所以D 符合题意.9.D解:由∠1=∠2,∠3=∠4,根据角平分线的性质,可知:BD是△ABC的角平分线,故A正确;CE是△BCD的角平分线,故B正确;∠ACB,故C正确;∠3=12CE是△ABC的角平分线是错误的,三角形的角平分线是角的顶点与对边交点之间的线段,故D错误.10.C解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.11.C解:设第三边的长为x,∵三角形两边的长分别是2和4,∴4−2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项的11符合题意,12.3(答案不唯一)解:∵|a−4|+√b−2=0,∴a−4=0,a=4;b−2=0,b=2;则4−2<c<4+2,2<c<6,3符合条件.故答案为3(答案不唯一) 13.154解:∵SΔABC=12AC·BE,SΔABC=12BC·AD,∴AC·BE=BC·AD,∵AC=8cm,BC=6cm,AD=5cm,∴BE=BC·ADAC =6×58=154(cm)。

【教材答案】人教版八年级数学上册课本练习题答案()

【教材答案】人教版八年级数学上册课本练习题答案()

第11章习题11.1第1题答案图中共6个三角形分别是:△ABD,△ADE,△AEC,△ABE,AADC,△ABC习题11.1第2题答案2种四根木条每三条组成一组可组成四组,分别为:10,7,5;10,7,3;10,5,3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形习题11.1第3题答案如下图所示,中线AD、高AE、角平分线AF习题11.1第4题答案(1)EC;BC(2)∠DAC;∠BAC(3)∠AFC(4)1/2BC·AF习题11.1第5题答案C习题11.1第6题答案(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm) 因为6+6>8所以此时另两边的长为6cm,8cm(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm)因为6+7>7所以北时另两边的长分别为7cm,7cm习题11.1第7题答案(1) 当等腰三角形的腰长为5时,三角形的三边为5,5,6因为5+5>6所以三角形周长为5+5+6=16当等腰三角形的腰长为6时,三角形的三边为6,6,5 因为6+5>6所以三角形周长为6+6+5=17所以这个等腰三角形的周长为16或17(2)22习题11.1第8题答案1:2习题11.1第9题答案解:∠1=∠2,理由如下:因为AD平分∠BAC所以∠BAD=∠DAC又DE//AC所以∠DAC=∠1又DF//AB所以∠DAB=∠2所以∠1=∠2习题11.1第10题答案四边形木架钉1根木条五边形木架钉2根木条六边形木架钉3根木条习题11.2第1题答案(1)x=33(2)x=60(3)x=54(4)x=60习题11.2第2题答案(1)一个直角,因为如果有两个直角,三个内角的和就大于180°了(2)一个钝角,如果有两个钝角,三个内角的和就大于180°了(3)不可以,如果外角是锐角,则它的邻补角为钝角,就是钝角三角形,而不是直角三角形了习题11.2第3题答案∠A=50°,∠B=60°,∠C=70°习题11.2第4题答案70°习题11.2第5题答案解:∵AB//CD,∠A=40°∴∠1=∠A=40°∵∠D=45°∴∠2=∠1+∠D=40°+45°=85°习题11.2第6题答案解:∵AB//CD,∠A=45°∴∠1=∠A=45°∵∠1=∠C+∠E∴∠C+∠E=45°又∵∠C=∠E∴∠C+∠C=45°∴∠C=22.5°习题11.2第7题答案解:依题意知:∠ABC=80°-45°-35°∠BAC= 45°+15°=60°,∠C =180°-35°-60°=85°,即∠ACB=85°习题11.2第8题答案解:∠BDC=∠A+∠ACD=62°+35°=97°,∠BFD=180°-∠BDC-∠ABE=180°-97°-20°=63°习题11.2第9题答案解:因为∠A+∠ABC+∠ACB=180°,∠A=100°所以∠ABC+∠ACB=180°-∠A=180°-100°=80°又因为∠1=∠2,∠3=∠4所以∠2=1/2∠ABC,∠4=1/2∠ACB所以∠2 +∠4=1/2(∠ABC+∠ACB)=1/2×80°=40°所以x=180°-(∠2+∠4) =180°-40°=140°所以x=140°习题11.2第10题答案180°;90°;90°习题11.2第11题答案证明:因为∠BAC是△ACE的一个外角所以∠BAC=∠ACE+∠E又因为CE平分∠ACD所以∠ACE= ∠DCE所以∠BAC=∠DCE+∠E又因为∠DCE是△BCE的一个外角所以∠DCE=∠B+∠E所以∠BAC=∠B+ ∠E+∠E=∠B+2∠E习题11.3第1题答案如下图所示,共9条习题11.3第2题答案(1)x=120(2)x=30(3)x=75习题11.3第3题答案多边形的边数 3 4 5 6 8 12 内角和180°360°540°720°1080°1800°外角和360°360°360°360°360°360°习题11.3第4题答案108°;144°习题11.3第5题答案这个多边形是九边形习题11.3第6题答案(1)三角形;(2)解:设这个多边形是n边形,由题意得:(n-2)×180=2×360解得n=6所以这个多边形为六边形习题11.3第7题答案AB//CD,BC//AD(理由略)提示:由四边形的内角和可求得同旁内角互补习题11.3第8题答案(1)是.理由如下:由已知BC⊥CD,可得∠BCD=90°又因为∠1=∠2=∠3所以有∠1=∠2=∠3=45°,即△CBD为等腰直角三角形,且CO是∠DCB的平分线所以CO是△BCD的高。

八年级上册数学第十一章试卷

八年级上册数学第十一章试卷

第十一章 全等三角形11.1 全等三角形1.(2008年仙桃、潜江)△ABC 中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是 .2.(2007年泰安)如图,ABE △和ACD △是ABC △分别沿着AB AC ,边翻折180形成的,若150BAC ∠=,则θ∠的度数是 .11.2 三角形全等的条件(1)1.(2008年宜宾市)已知:如图,AD =BC,AC =BD.求证:∠C =∠DD C OAB11.2 三角形全等的条件(2)1.(2008年遵义市)如图,OA =OB ,OC =OD ,∠O =50°,∠D =35°,则∠AEC 等于( )A .60°B .50°C .45°D .30°OEA B DCCDAEBθ2.(2008常州市) 已知:如图,AB =AD ,AC =AE ,∠BAD =∠CAE. 求证:AC =DE.3.(2007年南昌市)如图,在△ABC 中,D 是AB 上一点,DF 交AC 于点E ,DE =FE ,AE =CE ,AB 与CF 有什么位置关系?证明你的结论.4.(2008年泰安市)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC ⊥BE .5.(2008年北京)已知:如图,C 为BE 上一点,点A ,D 分别在BE 两侧.AB ∥ED ,AB =CE ,BC =ED .求证:AC =CD .11.2 三角形全等的条件(3)1.(2008年苏州)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC ≌△ADC ;(2)BO =DO .2.(2007年随州市)如图,△ABC 中,点D 在BC 上,点E 在AB 上,BD =BE ,要使△ADB ≌△CEB ,还需添加一个条件. (1)给出下列四个条件: ①AD CE =②AE CD =③BAC BCA ∠=∠ ④ADB CEB ∠=∠图1图2ADBCFEABDCE请你从中选出一个能使ADB CEB △≌△的条件,并给出证明; 你选出的条件是.证明:(2)在(1)中所给出的条件中,能使ADB CEB △≌△的还有哪些? 直接在题后横线上写出满足题意的条件序号:.3.(2008年西宁市)如图,一块三角形模具的阴影部分已破损.(1)只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的模具ABC 的形状和大小完全相同的模具A B C '''?请简要说明理由.(2)作出模具A B C '''△的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).11.2 三角形全等的条件(4)1.(2007年通辽市)如图,在Rt △AEB 和Rt △AFC 中,BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于点N ,∠E =∠F =90°,∠EAC =∠FAB ,AE =AF .给出下列结论:①∠B =∠C ;②CD =DN ;③BE =CF ;④△CAN ≌△ABM .其中正确的结论是( ) A .①③④B .②③④C .①②③D .①②④ABCEMFDN2.(2008年南宁市)如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,BE=CF 。

2021最新人教版 八年级 上册 数学11.1 --11.3基础练习题含答案

2021最新人教版 八年级 上册 数学11.1 --11.3基础练习题含答案

人教版八年级上册数学11.1 --11.3基础练习题11.1与三角形有关的线段一、选择题1.下面几个图形不具有稳定性的是()A. B.C. D.2.已知a,b,c是△ABC的三条边长,化简|a+b−c|−|c−a−b|的结果为()A. 2a+2b−2cB. 2a+2bC. 2cD. 03.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A. 4B. 5C. 6D. 94.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A. 1种B. 2种C. 3种D. 4种5.下列各组数中,不可能成为一个三角形三边长的是()A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,106.如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E,F为AB上一点,CF⊥AD于H,下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高;④AH是△ACF的角平分线和高.A. 1个B. 2个C. 3个D. 4个7.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A. 5米B. 10米C. 15米D. 20米8.若a、b、c为△ABC的三边长,且满足|a−4|+√b−2=0,则c的值可以为()A. 5B. 6C. 7D. 89.下列说法错误的是()A. 一般锐角三角形的三条高、三条中线、三条角平分线分别交于一点B. 钝角三角形有两条高在三角形外部C. 直角三角形只有一条高D. 任意三角形都有三条高、三条中线、三条角平分线10.三角形的高、中线和角平分线都是()A. 直线B. 射线C. 线段D. 以上答案都不对11.如图,在△ABC中,AE是和AF分别是BC边上的中线和高线,AD是∠BAC的平分线.则下列线段中最短的是()A. AEB. ADC. AFD. AC12.如图,图中直角三角形共有()A. 1个B. 2个C. 3个D. 4个二、填空题13.有四条线段,长分别为3cm、5cm、7cm、9cm,如果用这些线段组成三角形,可以组成______ 个三角形.14.如图,在△ABC中,D,E,F分别是BC,AD,CE的中点,且S△ABC=4cm2,则S阴影=________.15.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1−S2的值为__.16.如图,在△ACB中,∠ACB=90°,CD⊥AB,则以∠A为内角的三角形是__________,以BC为边的三角形是___________,∠B所对的边为___________.三、解答题17.如图,回答下列问题:(1)图中有________个三角形,它们分别是______________________;(2)以线段AD为边的三角形是__________________;(3)线段CE所在的三角形是________,CE边所对的角是________.18.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,且AB=13cm,BC=12cm,AC=5cm.求:(1)△ABC的面积;(2)CD的长.19.已知三角形的三条边为互不相等的整数,且有两边长分别为7和9,另一条边长为偶数.(1)请写出一个三角形,符合上述条件的第三边长.(2)若符合上述条件的三角形共有a个,求a的值.20.如图,在△ABC中,D、E分别是BC,AD的中点,S△ABC=4cm2,求S△ABE.答案和解析1.【答案】A【解答】解:根据三角形的稳定性可得,B、C、D都具有稳定性.不具有稳定性的是A选项.故选A.2.【答案】D【解答】解:∵a、b、c为△ABC的三条边长,∴a+b−c>0,c−a−b<0,∴原式=a+b−c+(c−a−b)=a+b−c+c−a−b=0.故选D.3.【答案】C【解答】解:由三角形三边关系定理得7−2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选C.4.【答案】C【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选C.5.【答案】C【解析】解:∵5+6<12,∴三角形三边长为5,6,12不可能成为一个三角形,故选:C.6.【答案】B【解答】解:①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.故选B.7.【答案】A【解答】解:连接AB,根据三角形的三边关系定理得:15−10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.8.【答案】A【解答】解:∵|a−4|+√b−2=0,∴a−4=0,a=4;b−2=0,b=2;则4−2<c<4+2,即2<c<6,∴5符合条件;故选A.9.【答案】C【解答】解:A.锐角三角形的三条高线、三条角平分线分别交于一点,故本选项说法正确;B.钝角三角形有两条高线在三角形的外部,故本选项说法正确;C.直角三角形也有三条高线,故本选项说法错误;D.任意三角形都有三条高线、中线、角平分线,故本选项说法正确;故选C.10.【答案】C【解答】解:三角形的高、中线和角平分线都是线段.故选C.11.【答案】C【解答】解:∵在△ABC中,AF是高,∴AF⊥BC,又∵在△ABC中,AD是∠BAC的平分线,AE是BC边上的中线,∴AF<AD,AF<AE,AF<AC,故最短线段为AF.故选C.12.【答案】C【解析】【分析】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,,图中直角三角形有Rt△ADB、Rt△BDC、Rt△ABC,共有3个.故选C.13.【答案】3【解析】解:其中的任意三条组合有3、5、7;3、5、9;3、7、9;5、7、9四种情况.根据三角形的三边关系,则其中的3+5<9,不能组成三角形,应舍去,故可以组成3个三角形.故答案为:3.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.14.【答案】1cm2【解答】解:∵点D,E,F,分别为BC、AD、CE的中点,且S△ABC=4,∴S△ABD=S△ADC=2,S△BDE=S△DEC=1,∴S△BEC=2,∴S阴=12⋅S△BEC=1,故答案为1cm2.15.【答案】1【解答】解:∵BE=CE,∴S△ACE=12S△ABC=12×6=3,∵AD=2BD,∴S△ACD=21+2S△ABC=23×6=4,∴S1−S2=S△ACD−S△ACE=4−3=1.故答案为1.16.【答案】△ABC和△ACD;△BCD和△ABC;CD和AC.【解答】解:以∠A为内角的三角形是△ABC和△ACD,以BC为边的三角形是△BCD和△ABC,∠B所对的边为CD和AC,故答案为△ABC和△ACD;△BCD和△ABC;CD和AC.17.【答案】(1)6;△ABD,△ACE,△ABE,△ABC,△ACD,△ADE;(2)△ACD,△ADE,△ABD;(3)△ACE,∠CAE.【解答】解:(1)图中有6个三角形,它们分别是△ABD,△ACE,△ABE,△ABC,△ACD,△ADE.故答案为6;△ABD,△ACE,△ABE,△ABC,△ACD,△ADE;(2)以线段AD为边的三角形是△ACD,△ADE,△ABD.故答案为△ACD,△ADE,△ABD;(3)线段CE所在的三角形是△ACE,CE边所对的角是∠CAE.故答案为△ACE,∠CAE.18.【答案】解:(1)△ABC的面积=12BC×AC=30cm2;(2)∵△ABC的面积=12AB×CD=30,∴CD=30÷12AB=6013cm.19.【答案】解:两边长分别为9和7,设第三边是a,则9−7<a<7+9,即2<a<16.(1)第三边长是4.(答案不唯一);(2)∵2<a<16,∴a的值为4,6,8,10,12,14共六个,∴a=6;20.【答案】解:∵D、E分别是BC,AD的中点,S△ABC=4cm2,∴S△ABE=12S△ABD=14S△ABC=1cm2.11.2 与三角形有关的角1. 已知在△ABC中,∠A=70°,∠B=60°,则∠C的度数为( ) A.50°B.60°C.70°D.80°2. 在△ABC中,∠A,∠C与∠B处的外角的度数如图所示,则x的值是( )A.80 B.70 C.65D.603. 在Rt△ABC中,∠C=90°,∠A-∠B=50°,则∠A的度数为( ) A.80°B.70°C.60°D.50°4. 如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为( )A.65°B.70°C.75°D.85°5. 一个三角形三个内角的度数之比为2∶3∶4,这个三角形是( )A. 直角三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形6. 若三角形的三个内角的度数之比为2∶3∶7,则这个三角形的最大内角是( )A.75°B.90°C.105°D.120°7. 如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°8. 如图,在△ABC中,D是∠ABC和∠ACB的平分线的交点,∠A=80°,∠ABD=30°,则∠BDC的度数为( )A.100°B.110°C.120°D.130°9. 如图,把△ABC沿DE折叠,当点A落在四边形BCED内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,这个关系是( )A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)10. 如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是()A.x=y+zB.x=y-zC.x=z-yD.x+y+z=180二、填空题11. 如图所示,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD= .12. 有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图所示的方式剪去它的一个角,在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为.13. 如图,折叠一张三角形纸片,把三角形的三个角拼在一起,就可以说明一个几何定理.请你写出这个定理的内容:______________________.14. 如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E.若∠AFD=158°,则∠EDF= °.15. 定义:当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的一个内角为48°,那么“特征角”α的度数为____________.16. 如图,在△ABC中,点E在BC的延长线上,∠ABC的平分线与∠ACE 的平分线相交于点D.(2)若∠A=α,则∠ACE-∠ABC=________,∠D=________.三、解答题17. 如图,用钢筋做支架,要求BA,DC相交所成的锐角为32°,现测得∠BAC=∠DCA=115°,则这个支架符合设计要求吗?为什么?18. 如图,在△ABC中,AD是BC边上的高,E是AB上一点,CE交AD于点M,且∠DCM=∠MAE.求证:△ACE是直角三角形.19. 在△ABC中,∠B=55°,且3∠A=∠B+∠C,求∠A和∠C的度数.20. 如图,在△ABC中,CD,BE分别是AB,AC边上的高,BE,CD相交于点O.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)求证:∠BOC+∠A=180°.人教版八年级数学上册11.2 与三角形有关的角同步培优训练-答案一、选择题1. 【答案】A2. 【答案】B3. 【答案】B又∵∠A -∠B =50°,∴2∠A =140°.∴∠A =70°.4. 【答案】B∴∠CFD =∠AFE =55°.∴∠ACB =∠D +∠CFD =15°+55°=70°.5. 【答案】 C6. 【答案】C由题意,得2x +3x +7x =180°,解得x =15°.∴7x =105°.7. 【答案】C ∴∠ACB=180°-∠A-∠ABC=78°.∵∠ABC ,∠ACB 的平分线分别为BE ,CD , ∴∠FBC=12∠ABC=21°,∠FCB=12∠ACB=39°, ∴∠BFC=180°-∠FBC-∠FCB=120°.故选C .8. 【答案】D∴∠DBC =∠ABD =30°,∠ABC =2∠ABD =2×30°=60°.∴∠ACB =180°-∠A -∠ABC =40°.∵CD 平分∠ACB ,∴∠DCB =12∠ACB =12×40°=20°.∴∠BDC =180°-∠DCB -∠DBC =130°.9. 【答案】B 10. 【答案】A二、填空题11. 【答案】 105°12. 【答案】105° 所以∠1+∠2=360°-90°=270°.因为∠1=165°, 所以∠2的度数为105°.13. 【答案】三角形三个内角的和等于180°14. 【答案】68 ∴∠CFD=180°-∠AFD=180°-158°=22°.∵FD ⊥BC , ∴∠FDC=90°.∴∠C=180°-∠FDC-∠CFD=180°-90°-22°=68°. ∵∠B=∠C ,DE ⊥AB ,∴∠EDB=180°-∠B-∠DEB=180°-68°-90°=22°. ∴∠EDF=180°-90°-22°=68°.15. 【答案】48°或96°或88°当β=48°时,则“特征角”α=2×48°=96°;当第三个角为48°时,α+12α+48°=180°,解得α=88°.综上所述,“特征角”α的度数为48°或96°或88°.16. 【答案】(1)70 35 (2)α1 2α三、解答题17. 【答案】解:这个支架不符合设计要求.理由:如图,延长BA,DC交于点E.∵∠BAC=∠DCA=115°,∴∠EAC=∠ECA=65°.∴∠E=180°-∠EAC-∠ECA=50°. ∵要求BA,DC相交所成的锐角为32°,∴这个支架不符合设计要求.证明:∵AD是BC边上的高,∴∠ADC=90°.∵∠DCM=∠MAE,∠CMD=∠AME,∴∠AEC=∠ADC=90°.∴△ACE是直角三角形.19. 【答案】解:∵在△ABC中,∠A+∠B+∠C=180°,3∠A=∠B+∠C,∴4∠A=180°,解得∠A=45°.∵∠B=55°,∴∠C=180°-45°-55°=80°.20. 【答案】解:(1)∵CD⊥AB,BE⊥AC,∴∠BDC=∠BEC=90°.∵∠ABC=50°,∠ACB=60°.∴∠BCO=40°,∠CBO=30°.∴∠BOC=180°-40°-30°=110°.(2)证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠BEC=90°.∴∠ABE=90°-∠A.∴∠BOC=∠ABE+∠BDC=90°-∠A+90°=180°-∠A.∴∠BOC+∠A=180°.11.3多边形及其内角和一.选择题1.正多边形的每个内角为135度,则多边形为()A.4 B.6 C.8D.102.若一个多边形减去一个角后,内角和为720°,则原多边形不可能是几边形()A.四边形B.五边形C.六边形D.七边形3.一个四边形的四个内角度数之比为1:2:4:5,则这个四边形中,最小的内角为()A.30°B.40°C.50°D.60°4.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3 B.4 C.6D.125.如图,已知一个五边形ABCDE纸片,一条直线将该纸片分割成两个多边形.若这两个多边形内角和分别为m和n,则m+n不可能是()A.540°B.720°C.900°D.1080°6.如图,在五边形ABCDE中,AE∥BC,延长DE至点F,连接BE,若∠A=∠C,∠1=∠3,∠AEF=2∠2,则下列结论正确的是()①∠1=∠2 ②AB∥CD ③∠AED=∠A ④CD⊥DEA.1个B.2个C.3个D.4个7.如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°<α<90°),若DE⊥B′C′,则∠α为()A.36°B.54°C.60°D.72°8.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P=()A.10°B.15°C.30°D.40°9.设BF交AC于点P,AE交DF于点Q.若∠APB=126°,∠AQF=100°,则∠A-∠F=()A.60°B.46°C.26°D.45°10.如图,已知四边形ABCD中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°11.如图,在六边形ABCDEF中,若∠A+∠B+∠C+∠D=500°,∠DEF与∠AFE的平分线交于点G,则∠G等于()A.55°B.65°C.70°D.80°12.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是()A.180°B.360°C.540°D.720°二.填空题13.八边形的内角和为;一个多边形的每个内角都是120°,则它是边形.14.一个多边形,除了一个内角外,其余各角的和为2750°,则内角和是.15.如图,已知在四边形ABCD中,∠A+∠C=135°,∠ADE=125°,则∠B= .16.如图所示,若∠DBE=78°,则∠A+∠C+∠D+∠E= °.17.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= °.三.解答题18.(1)已知一个正多边形的每个内角比它的每个外角的4倍多30°,求这个多边形的边数;(2)一个多边形的外角和是内角和的七分之二,求这个多边形的边数.19.如图,在四边形ABCD中,BD⊥CD,EF⊥CD,且∠1=∠2.(1)求证:AD∥BC;(2)若BD平分∠ABC,∠A=130°,求∠C的度数.20.如图,四边形ABCD中,∠BAD=106°,∠BCD=64°,点M,N分别在AB,BC 上,将△BMN沿MN翻折得△FMN,若MF∥AD,FN∥DC.求(1)∠F的度数;(2)∠D的度数.21.将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为.22.已知,在四边形ABCD中,∠A+∠C=160°,BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线.(1)如图1,若BE∥DF,求∠C的度数;(2)如图2,若BE,DF交于点G,且BE∥AD,DF∥AB,求∠C的度数.参考答案1-5:CAACD 6-10:CBBBC 11-12:CB13、1080°;六14、2880°15、170°16、10217、72018、:(1)设这个多边形的每个内角是x°,每个外角是y°,则得到一个方程组得而任何多边形的外角和是360°,则多边形内角和中的外角的个数是360÷30=12,则这个多边形的边数是12边形;(2)设这个多边形的边数为n,依题意得:(n-2)180°=360°,解得n=9,答:这个多边形的边数为9.19、:(1)证明:∵BD⊥CD,EF⊥CD(已知),∴BD∥EF(垂直于同一直线的两条直线平行),∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AD∥BC(内错角相等,两直线平行).(2)∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=25°.∴∠C=90°-∠3=65°.20、:(1)∵MF∥AD,FN∥DC,∠BAD=106°,∠BCD=64°,∴∠BMF=106°,∠FNB=64°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=53°,∠FNM=∠MNB=32°,∴∠F=∠B=180°-53°-32°=95°;(2)∠F=∠B=95°,∠D=360°-106°-64°-95°=95°.21、:(1)如图,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1-∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.22、:(1)过点C作CH∥DF,∵BE∥DF,∴BE∥DF∥CH,∴∠FDC=∠DCH,∠BCH=∠EBC,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,∴∠FDC=∠CDM,∠EBC=∠CBN,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;31(2)连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.第!异常的公式结尾页,共32页32。

人教八年级数学上册同步练习题及答案

人教八年级数学上册同步练习题及答案

第十一章全等三角形11.1全等三角形1、已知⊿ABC≌⊿DEF,A与D,B与E分别是对应顶点,∠A=52°,∠B=67 °,BC =15cm, = ,FE = .则F2、∵△ABC≌△DEF∴AB= ,AC= BC= ,(全等三角形的对应边)∠A= ,∠B= ,∠C= ;(全等三角形的对应边)3、下列说法正确的是()A:全等三角形是指形状相同的两个三角形 B:全等三角形的周长和面积分别相等 C:全等三角形是指面积相等的两个三角形 D:所有的等边三角形都是全等三角形4、如图1:ΔABE≌ΔACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=_____,∠C=____。

C课堂练习1、已知△ABC ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm ,∠A=25°∠B=48°; 那么DE= cm ,EC= cm ,∠C= 度.3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,则∠DCB= 度;(第1小题)2小题) (第3小题) (第4小题)4、如图,若△ABC ≌△,则对应角有 ;对应边有 (各写一对即可);11.2.1全等三角形的判定(sss )课前练习1、如图1:AB=AC ,BD=CD ,若∠B=28°则∠C= ;2、如图2:△EDF ≌△BAC ,EC=6㎝,则BF= ;3、如图,AB ∥EF ∥DC ,∠ABC =900,AB =DC ,那么图中有全等三角形 对。

FE D C BAEDCB A (第12题)FEDCB A(第1小题)(第2小题)(第3小题)课堂练习4、如图,在△ABC中,∠C=900,BC=40,AD是∠BAC的平分线交BC于D,且DC∶DB=3∶5,则点D到AB的距离是。

5、如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB。

人教版八年级数学上册11.1--11.3能力测试题含答案(含答案)

人教版八年级数学上册11.1--11.3能力测试题含答案(含答案)

人教版八年级数学上册11.1--11.3能力测试题含答案(含答案)11.1 与三角形有关的线段考点1 三角形的认识及分类1.三角形是指( )A.由三条线段所组成的封闭图形B.由不在同一直线上的三条直线首尾顺次相接组成的图形C.由不在同一直线上的三条线段首尾顺次相接组成的图形D.由三条线段首尾顺次相接组成的图形2.如图中三角形的个数是( )A.6 B.7 C.8 D.93.在△ABC中,已知∠B=2∠C,∠A=30°,则这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.无法判断4.三角形按角分类可以分为()A.锐角三角形、直角三角形、钝角三角形B.等腰三角形、等边三角形、不等边三角形C.直角三角形、等边直角三角形D.以上答案都不正确考点2 三角形的稳定性5.下列图形中具有稳定性的是()A.直角三角形B.正方形C.长方形D.平行四边形6.下列图形中,不是运用三角形的稳定性的是()A.房屋顶支撑架B.自行车三脚架C.拉闸门D.木门上钉一根木条7.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A.G,H两点处B.A,C两点处C.E,G两点处D.B,F两点处考点3 三角形的三边关系8.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A .3,3,6B .1,5,5C .1,2,3D .8,3,49.如图,在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( )A .1AB 29<< B .4AB 24<<C .5AB 19<<D .9AB 19<<10.一个三角形的两边长为4和7,第三边长为奇数,则第三边长可能为( )A .5或7B .5、7或9C .7D .1111.三角形的两边长分别为3和5,则周长C 的范围是( )A .615C <<B .616C << C .1113C <<D .1016C <<12.已知等腰△ABC 的两边长分别为2和3,则等腰△ABC 的周长为( )A .7B .8C .6或8D .7或813.已知a b c 、、是ABC ∆的三边长,化简a b c b a c +----的值是( )A .2c -B .22b c -C .22a c -D .22a b -考点4 三角形的高线14.下面四个图形中,线段BE是⊿ABC的高的图是()A.B.C.D.15.如图,△ABC的面积计算方法是()A.AC•BD B.12BC•EC C.12AC•BD D.12AD•BD16.下列各图中,AC边上的高画正确的是()A.B.C.D.考点5 三角形的中线17.如图AD是△ABC的中线,那么BD=()A.AD B.AC C.BC D.CD18.如图,AD 是ABC ∆的中线,5AB =,3AC =,ABD ∆的周长和ACD ∆的周长差为( )A .6B .3C .2D .不确定19.如图,已知在ABC 中,点D 、E 分别为BC 、AD 的中点,且26ABC S cm =△,则ABES △的值为( )A .20.5cmB .21.5cmC .22cmD .23cm20.如图,, , A B C 分别是线段1A B 、1B C 、1C A 的中点,若111A B C △的面积是20,那么ABC 的面积是( )A.4 B.103C.207D.5考点6 三角形的角平分线21.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°22.如图,在ABC中,∠A=60°,∠ABD和∠ACE是ABC的外角,∠ACE=110°,BF 平分∠ABD,则∠FBE=()A.105°B.110°C.115°D.120°23.如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形()A.0个B.1个C.2个D.3个答案1.C2.C3.C4.A5.A6.C7.C8.B9.D10.B11.D12.D13.B14.A15.C16.D17.D18.C19.B20.C21.A22.C23.D11.2 与三角形有关的角班级:姓名:成绩:一、选择题1、将一副三角尺按如图所示的方式摆放,则∠a的大小为()A. B. C. D.2、如图,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG∥CE,且FG交AB于点G.关于∠2+∠3与∠1的大小关系,正确的是( )A.∠2+∠3>∠1 B.∠2+∠3<∠1 C. ∠2+∠3=∠1 D.无法判断3、用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A. 有一个内角大于60°B. 有一个内角小于60°C. 每一个内角都大于60°D. 每一个内角都小于60°4、如图,在三角形ABC中,已知∠ABC=70º,∠ACB=60º,BE⊥AC于E,CF⊥AB于F,H是BE和CF的交点,则∠EHF=( )A. 100ºB. 110ºC. 120ºD.130º5、如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD 于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④6、如图,三角形ABC中,AB=AC,D,E分别为边A B,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40° B.50° C.60° D.70°7、如图,AD是∠CAE的平分线,∠B=300, ∠DAE=600,那么∠ACD等于()A、900B、600C、800D、10008、在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有A.2个 B.3个 C.4个 D.5个9、适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形10、如图,D是△ABC的角平分线BD和CD的交点,若∠A=50°,则∠BDC=()A.120° B.130° C.115° D.110°11、如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°12、将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是()A.45°B.60°C.75°D.90°13、下列结论正确的是()A.三角形的高总在三角形的内部B.△ABC的角平分线AD是自A出发的一条射线C.三角形中最大的内角不能小于60°D.三角形的三个外角中,最多只有一个钝角14、下列条件中,能判定△ABC为直角三角形的是()A.∠A=2∠B=3∠C B.∠A+∠B=2∠C C.∠A=∠B=30° D.∠A=∠B=∠C15、如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150° B.160° C.130° D.60°16、如图,在△ABC中,∠BAC=56°,∠ABC=74°,BP、CP分别平分∠ABC和∠ACB,则∠BPC=()A.102° B.112° C.115° D.118°17、如图,把一副含30°角和45°角的直角三角板拼在一起,那么图中∠ADE是()A.100°B.120° C.135° D.150°18、如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F,则下列结论正确的是( )A.点F在BC边的垂直平分线上 B.点F在∠BAC的平分线上C.△BCF是等腰三角形 D.△BCF是直角三角形19、如图所示,∠1+∠2+∠3+∠4的度数为()A100° B.180° C.360° D.无法确定20、如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有()A.2个 B.3个 C.4个 D.5个21、如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100° B.80° C.70° D.50°22、已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题1、如图,在△ABC中,已知∠ABC=50°,∠ACB=60°,BE是AC边上的高,CF是AB边上的高,H 是BE和CF的交点,则∠BHC=______.2、如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=______.3、△ABC中,若∠A∶∠B∶∠C=2∶3∶5,则∠A=______,∠B=______,∠C=______.4、△ABC中,若∠A+∠C=2∠B,则∠B=______.5、如图,△ABC中,∠BAC、∠ABC、∠ACB的外角分别记为∠α,∠β,∠γ,若∠α:∠β:∠γ=3:4:5,则∠BAC:∠ABC:∠ACB等于______°6、如图所示,已知△ABC的周长是22,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是______.7、如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=______.8、如图,∠A+∠B+∠C+∠D+∠E=______.三、解答题1、如图∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE的度数.2、已知:如图,在△ABC中,∠1是它的一个外角,E为边AC上一点,延长BC到H,连接HE.求证:∠l>∠2.3、如图,在△ABC中,∠B<∠ACB,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD,且PE交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,求证:∠E=(∠ACB-∠B).4、如图,在△ABC中,D是BC上一点,AD=BD,∠C=∠ADC,∠BAC=57°,求∠DAC的度数.5、已知如图,在△ABC中,CH是外角∠ACD的角平分线,BH是∠ABC的平分线,∠A=58°,求∠H的度数.6、如图所示,在△ABC中,BP、CP分别是∠ABC和∠ACB的角平分线,∠BPC=134°,求∠A 的度数.参考答案一、选择题1-5、BCCDD6-10、AABBC11-15、CCCDA16-20、DCBCC21-22、AB二、填空题1、110°2、150°3、36°,54°,90°4、60°5、3:2:16、337、70°8、180三、解答题1、解:∵∠ABC=38°,∠ACB=100°(己知)∴∠BAC=180°―38°―100°=42°(三角形内角和180°) 又∵AD平分∠BAC(己知)∴∠BAD=21°∴∠ADE=∠ABC+∠BAD=59°(三角形的外角性质)又∵AE是BC边上的高,即∠E=90°∴∠DAE=90°―59°=31°2、证明:∵∠1是△ABC的一个外角∴∠1>∠BCA∵∠BCA是△HEC的一个外角∴∠BCA>∠2∴∠1>∠23、 (1)解:∵∠B=35°,∠ACB=85°,∴∠BAC=60°. ∵AD平分∠BAC,∴∠DAC=30°.∴∠ADC=65°.又∵PE⊥AD,∴∠DPE=90°.∴∠E=25°.(2)证明:∵∠B+∠BAC+∠ACB=180°,∴∠BAC=180°-(∠B+∠ACB).∵AD平分∠BAC,∴∠BAD=∠BAC=90°-(∠B+∠ACB).∴∠ADC=∠B+∠BAD=90°-(∠ACB-∠B).∵PE⊥AD,∴∠DPE=90°.∴∠ADC+∠E=90°.∴∠E=90°-∠ADC.∴∠E=(∠ACB-∠B).4、解:设∠DAC=x,则∠BAD=57°-x.∵∠C=∠ADC,∴∠ADC=(180°-x).又∵AD=BD,∴∠B=∠BAD=57°-x.∵∠ADC=∠B+∠BAD,∴(180°-x)=2(57°-x),解得x=16°.即∠DAC的度数为16°.5、解:∵∠A=58°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣58°=122°…①,∵BH是∠ABC的平分线,∴∠HBC=∠ABC,∵∠ACD是△ABC的外角,CH是外角∠ACD的角平分线,∴∠ACH=(∠A+∠ABC),∴∠BCH=∠ACB+∠ACH=∠ACB+(∠A+∠ABC),∵∠H+∠HBC+∠ACB+∠ACH=180°,∴∠H+∠ABC+∠ACB+(∠A+∠ABC)=180°,即∠H+(∠ABC+∠ACB)+∠A=180°…②,把①代入②得,∠H+122°+×58°=180°,∴∠H=29°.6、解:∵在△BPC中,∠BPC=134°,∴∠1+∠2=180°﹣∠BPC=180°﹣134°=46°,∵BP、CP分别是∠ABC和∠ACB的角平分线,∴∠ABC=2∠1,∠ACB=2∠2,∴∠ABC+∠ACB=2∠1+2∠2=2(∠1+∠2)=2×46°=92°,∴在△ABC中,∠A=180°﹣(∠ABC+∠ACB)=180°﹣92°=88°.11.3多边形及其内角和一.选择题(共12小题)1.如果一个n边形的外角和是内角和的一半,那么n的值为()A.6 B.7 C.8 D.92.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.93.多边形的内角和不可能为()A.180°B.540°C.1080°D.1200°4.一个n边形的每一个外角都是72°,则n等于()A.3 B.4 C.5 D.65.下列说法中,正确的个数有()①若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形;②一个三角形中,至少有一个角不小于60°;③三角形的外角大于与它不相邻的任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加180°.A.1个B.2个C.3个D.4个6.如图,足球图片正中的黑色正五边形的内角和是()A.180°B.360°C.540°D.720°7.如图,五边形ABCDE的每个内角都相等,分别过顶点D、E作一条射线,交点为H,如果CD∥EH,那么∠DEH的度数是()A.50°B.60°C.72°D.75°8.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,若∠1,∠2,∠3,∠4相邻的外角的和等于230°,则∠BOD的度数是()A.50°B.55°C.40°D.45°9.如图,把纸片△ABC的∠A沿DE折叠,点A落在四边形CBDE外,则∠1,∠2与∠A的关系是()A.∠2-∠1=2∠A B.∠2-∠A=2∠1 C.∠1+∠2=2∠A D.∠1+∠A=2∠210.游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,成功的招数不止一招,可助我们成功的一招是()A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长11.如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3=()A.90°B.180°C.120°D.270°12.如图为互相垂直的两直线将四边形ABCD分成四个区域的情形,若∠A=100°,∠B=∠D=85°,∠C=90°,则根据图中标示的角,判断下列∠1,∠2,∠3的大小关系,何者正确()A.∠1=∠2>∠3 B.∠1=∠3>∠2 C.∠2>∠1=∠3 D.∠3>∠1=∠2二.填空题(共5小题)13.一个正n边形的内角和是它外角和的4倍,则n= .14.已知一个正多边形的内角和为1440°,则它的一个外角的度数为度.15.如图,正五边形ABCDE中,对角线AC与BE相交于点F,则∠AFE= 度.16.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是.17.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC= 度.三.解答题(共5小题)18.(1)已知一个正多边形的每个内角比它的每个外角的4倍多30°,求这个多边形的边数;(2)一个多边形的外角和是内角和的,求这个多边形的边数.19.小华与小明在讨论一个凸多边形的问题,他们的对话如下:小华说:“这个凸多边形的内角和是2020°.”小明说:“不可能吧!你错把一个外角当作内角了!”请根据俩人的对话,回答下列问题:(1)凸多边形的内角和为2020°,小明为什么说不可能?(2)小华求的是几边形的内角和?20.如图,在五边形ABCDE中,∠C=90°,∠D=70°,∠E=130°,AP平分∠EAB,BP平分∠ABC,求∠P的度数.21.如图,四边形ABCD中,∠BAD=106°,∠BCD=64°,点M,N分别在AB,BC上,将△BMN沿MN翻折得△FMN,若MF∥AD,FN∥DC.求(1)∠F的度数;(2)∠D的度数.22.已知,在四边形ABCD中,∠A+∠C=160°,BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线.(1)如图1,若BE∥DF,求∠C的度数;(2)如图2,若BE,DF交于点G,且BE∥AD,DF∥AB,求∠C的度数.参考答案1-5:ACDCC 6-10:CCAAA 11-12:BD13、1014、3615、7216、144°17、3018、(1)12;(2)9.19、:(1)∵n边形的内角和是(n-2)×180°,∴多边形的内角和一定是180°的整倍数.∵2020÷180=11……40,∴多边形的内角和不可能为2020°.(2)设小华求的是n边形的内角和,这个内角为x°,则0<x<180.根据题意,得(n-2)×180°-x+(180°-x)=2020°,解得n=∵n为正整数,∴2x+40必为180的整倍数.又∵0<x<180,∴∴n=13或14.∴小华求的是十三边形或十四边形的内角和.20、五边形ABCDE的内角和为(5-2)•180°=540°,∠C=90°,∠D=70°,∠E=130°,∴∠EAB+∠ABC=250°,∵AP平分∠EAB,BP平分∠ABC,∴∠PAB+∠PBA=125°,∴∠P=180°-125°=55°.21、:(1)∵MF∥AD,FN∥DC,∠BAD=106°,∠BCD=64°,∴∠BMF=106°,∠FNB=64°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=53°,∠FNM=∠MNB=32°,∴∠F=∠B=180°-53°-32°=95°;(2)∠F=∠B=95°,∠D=360°-106°-64°-95°=95°.22、:(1)过点C作CH∥DF,∵BE∥DF,∴BE∥DF∥CH,∴∠FDC=∠DCH,∠BCH=∠EBC,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,∴∠FDC=∠CDM,∠EBC=∠CBN,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.。

人教版八年级上册 第11章《三角形》 同步练习及答案(11.1)

人教版八年级上册 第11章《三角形》 同步练习及答案(11.1)

第11章《三角形》同步练习(§11.1 与三角形有关的线段A)班级学号姓名得分1、填空题:(1)由____________三条线段______所组成的图形叫做三角形.组成三角形的线段叫做______;相邻两边的公共端点叫做______,相邻两边所组成的角叫做______,简称______.(2)如图所示,顶点是A、B、C的三角形,记作______,读作______.其中,顶点A所对的边______还可用______表示;顶点B所对的边______还可用______表示;顶点C 所对的边______还可用______表示.(3)由“连接两点的线中,线段最短”这一性质可以得到三角形的三边有这样的性质______________________________.由它还可推出:三角形两边的差____________.(4)对于△ABC,若a≥b,则a+b______c同时a-b______c;又可写成______<c<______.(5)若一个三角形的两边长分别为4cm和5cm,则第三边x的长度的取值范围是____________,其中x可以取的整数值为____________.2.已知:如图,试回答下列问题:(1)图中有______个三角形,它们分别是______________________________________.(2)以线段AD为公共边的三角形是_________________________________________.(3)线段CE所在的三角形是______,CE边所对的角是________________________.(4)△ABC、△ACD、△ADE这三个三角形的面积之比等于______∶______∶______.3.选择题:(1)下列各组线段能组成一个三角形的是( ).(A)3cm,3cm,6cm (B)2cm,3cm,6cm(C)5cm,8cm,12cm (D)4cm,7cm,11cm(2)现有两根木条,它们的长分别为50cm,35cm,如果要钉一个三角形木架,那么下列四根木条中应选取( ).(A)0.85m长的木条(B)0.15m长的木条(C)1m长的木条(D)0.5m长的木条(3)从长度分别为10cm、20cm、30cm、40cm的四根木条中,任取三根可组成三角形的个数是( ).(A)1个(B)2个(C)3个(D)4个(4)若三角形的两边长分别为3和5,则其周长l的取值范围是( ).(A)6<l<15 (B)6<l<16(C)11<l<13 (D)10<l<164.(1)一个等腰三角形的周长为18,若腰长的3倍比底边的2倍多6,求各边长.(2)已知等腰三角形的一边等于8cm,一边等于6cm,求它的周长.(3)一个等腰三角形的周长为30cm,一边长为6cm,求其它两边的长.(4)有两边相等的三角形的周长为12cm,一边与另一边的差是3cm,求三边的长.5.(1)若三角形三条边的长分别是7,10,x,求x的范围.(2)若三边分别为2,x-1,3,求x的范围.(3)若三角形两边长为7和10,求最长边x的范围.(4)等腰三角形腰长为2,求周长l的范围.(5)等腰三角形的腰长是整数,周长是10,求它的各边长.6.已知:如图,△ABC中,AB=AC,D是AB边上一点.(1)通过度量AB 、CD 、DB 的长度,确定AB 与)(21DB CD 的大小关系.(2)试用你所学的知识来说明这个不等关系是成立的.7.已知:如图,P 是△ABC 内一点.请想一个办法说明AB +AC >PB +PC .8.如图,D 、E 是△ABC 内的两点,求证:AB +AC >BD +DE +EC .第11章《三角形》同步练习(§11.1 与三角形有关的线段B )班级 学号 姓名 得分1.填空题:(1)从三角形一个顶点向它的对边画______,以______和______为端点的线段叫做三角形这边上的高.如图,若CD 是△ABC 中AB 边上的高,则∠ADC ______∠BDC =______,C 点到对边AB 的距离是______的长.(2)连结三角形的一个顶点和它______的______叫做三角形这边上的中线. 如右图,若BE 是△ABC 中AC 边上的中线,则AE ______.______21EC(3)三角形一个角的______与这个角的对边相交,以这个角的______和______为端点的线段叫做三角形的角平分线.一个角的平分线与三角形的角平分线的区别是________________________________ ______________________________________. 如图,若AD 是△ABC 的角平分线,则∠BAD ______∠CAD =21______或∠BAC =2______=2______.2.已知:△GEF ,分别画出此三角形的高GH ,中线EM ,角平分线FN .3.(1)分别画出△ABC 的三条高AD 、BE 、CF .(∠A为锐角) (∠A为直角) (∠A为钝角)(2)这三条高AD、BE、CF所在的直线有怎样的位置关系?4.(1)分别画出△ABC的三条中线AD、BE、CF.(2)这三条中线AD、BE、CF有怎样的位置关系?(3)设中线AD与BE相交于M点,分别量一量线段BM和ME、线段AM和MD的长,从中你能发现什么结论?5.(1)分别画出△ABC的三条角平分线AD、BE、CF.(2)这三条角平分线AD、BE、CF有怎样的位置关系?(3)设△ABC的角平分线BE、CF交于N点,请量一量点N到△ABC三边的距离,从中你能发现什么结论?6.已知:△ABC中,AB=AC,BD是AC边上的中线,如果D点把三角形ABC的周长分为12cm和15cm两部分,求此三角形各边的长.7.(1)如果将一个三角形的三边的长确定,那么这个三角形的形状和大小就不会改变了,三角形的这个性质叫做________________________.(2)四边形是否具有这种性质?8.将一个三角形剖分成若干个面积相等的小三角形,称为该三角形的等积三角形的剖分(以下两问要求各画三个示意图)(1)已知一个任意三角形,并其剖分成3个等积的三角形.(2)已知一个任意三角形,将其剖分成4个等积的三角形.9.不等边△ABC的两条高长度分别为4和12,若第三条高的长也是整数,试求它的长.参考答案(§11.1 与三角形有关的线段A )1.(1)不在同一直线上的,首尾顺次相接,三角形的边,三角形的顶点,三角形的内角,三角形的角.(2)△ABC ,三角形ABC ,BC ,a ;AC ,b ;AB ,c (3)三角形两边之和大于第三边,小于第三边. (4)>,<,a -b ,a +b(5)1cm <x <9cm ,2cm 、3cm 、4cm 、5cm 、6cm 、7cm 、8cm . 2.(1)六,△ABC 、△ABD 、△ABE 、△ACD 、△ACE 、△ADE . (2)△ABD 、△ACD 、△ADE . (3)△ACE ,∠CAE . (4)BC :CD :DE .3.(1)C ,(2)D ,(3)A ,(4)D4.(1)6,6,6;(2)20cm ,22cm ;(3)12cm ,12cm ;(4)5cm ,5cm ,2cm . 5.(1)3<x <17;(2)2<x <6;(3)10≤x <17;(4)4<e <8; (5)3,3,4或4,4,2 6.(1))(21DB CD AB +>. (2)提示:对于△ADC ,∵AD +AC >DC , ∴(AD +DB )+AC >CD +DB , 即AB +AC >CD +DB .又∵AB =AC ,∴2AB >CD +DB . 从而AB >21(CD +DB ). 7.提示:延长BP 交AC 于D .∵在△ABD 中,AB +AD >BD =BP +PD ,① 在△DPC 中,DP +DC >PC ,② 由①、②,∴AB +(AD +DC )+DP >BP +PC +DP . 即AB +AC >PB +PC .8.证明:延长BP 交AC 于D ,延长CE 交BD 于F . 在△ABD 中,AB +AD >BD . ① 在△FDC 中,FD +DC >FC . ② 在△PEF 中,PF +FE >PE . ③①+②+③得AB +AD +FD +DC +PF +FE >BD +FC +PE , 即:AB +AC +PF +FD +FE >BP +PF +FD +FE +EC +PE ,所以AB +AC >BP +PE +EC .(§11.1 与三角形有关的线段B )1.(1)垂线,顶点、垂足,=,90°,高CD 的长. (2)所对的边的中点、线段,=,AC(3)平分线,顶点、交点,一个角的平分线是射线,而三角形的角平分线是线段. =,∠BAC ,∠BAD ,∠DAC 2.略.3.(1)略,(2)三条高所在直线交于一点.4.(1)略,(2)三条中线交于一点,(3)BM =2ME .5.(1)略,(2)三条角平分线交于一点,(3)点N 到△ABC 三边的距离相等. 6.提示:有两种情况,分别运用方程思想,设未知数求解.⎩⎨⎧===,11,8BC AC AB 或⎩⎨⎧===.7,10BC AC AB 7.(1)三角形的稳定性,(2)不具有稳定性. 8.(1)(2)下列各图是答案的一部分:9.它的长为5,或4.提示:设S △ABC =S ,第三条高为h ,则△ABC 的三边长可表示为:hSS S 212242、、,列不等式得:12242212242SS h S S S +<<- ∴3<h <6.。

人教版 八年级数学第11章 11.1--11.3测试题含答案

人教版 八年级数学第11章 11.1--11.3测试题含答案
二、填空题(本大题共5道小题)
11. 【答案】三角形具有稳定性
12. 【答案】4 △ABC,△ADC,△ABE,△ADE
13. 【答案】四边形具有不稳定性
14. 【答案】3<a<9 [解析] 由题意,得7-3<1+a<7+3,解得3<a<9.
15. 【答案】1.5<AD<6.5 [解析] 如图,延长AD到点E,使DE=AD,连接BE.
12.如图,把△ABC沿DE折叠,当点A落在四边形BCED内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,这个关系是( )
A.∠A=∠1+∠2B.2∠A=∠1+∠2
C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)
二、填空题(本大题共6道小题)
13.把一副三角尺如图所示拼在一起,那么图中∠ABF=________°.
6.如图,在△ABC中,表示AB边上的高的图形是( )
7.已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为( )
A.7B.8C.9D.10
8.如图,为估计池塘岸边A,B两地之间的距离,小明在池塘的一侧选取一点O,测得OA=10米,OB=8米,那么A,B两地之间的距离可能是( )
A.2米B.15米C.18米D.28米
因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.
10. 【答案】C【解析】①∵32+42=52,∴三条线段3、4、5组成直角三角形,∴B选项不正确;②当把斜边5变成7时,3+4=7,不满足三角形两边之和大于第三边,不能构成三角形,∴D选项不正确;③当把斜边5稍微变小一点为4时,三条线段为3、4、4组成锐角三角形,∴A选项不正确;④当把斜边5稍微变大一点为6时,三条线段为3、4、6组成钝角三角形,∴C选项正确.

人教八上11.1-11.3 全等三角形的判定和角平分线的性质精练题易错题

人教八上11.1-11.3 全等三角形的判定和角平分线的性质精练题易错题

11.1-11.2经典题1.如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .【正确答案】30°2.已知图中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50° 【正确答案】D3.如图,D E ,分别为ABC △的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58°【正确答案】B .4.如图,ACB A CB ''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30°C .35°D .40°【正确答案】B.5.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A .CB CD = B .BAC DAC =∠∠C A B B 'A 'ABC C 1A 1B 1a b c 50゜ 58゜ 72゜ ca αC .BCA DCA =∠∠D .90B D ==︒∠∠【正确答案】C .6.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( )A .SASB .ASAC .AASD .SSS【正确答案】D 7.如图,已知∠1=∠2,AO=BO.求证:AC=BC.【正确答案】证明:在△AOC 与△BOC 中∵AO =BO ,∠1=∠2,OC =OC ∴△AOC ≌△BOC ∴AC =BCOA B C DAB FOCDE8.如图,已知AC 平分∠BAD ,∠1=∠2,求证:AB =AD【正确答案】证明:∵AC 平分∠BAD ∴∠BAC =∠DAC . ∵∠1=∠2∴∠ABC =∠ADC .在△ABC 和△ADC 中,,BAC DAC ABC ADC AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADC (AAS ). ∴AB =AD .9.如图,AB =DC ,AD =CB ,O 为AC 中点,过O 的直线分别交AB 、CD 的延长线于F 、E .求证:∠F =∠E . 【正确答案】 证明:,,,.,,,.ABC CDA AB CD AD CB AC CA ABC CDA BAC DCA AOF COE FAO ECO AO CO AOF COE AOF COE F E ∆∆=⎧⎪=⎨⎪=⎩∴∆∆∠=∠∆∆∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆∆∴∠=∠在和中≌在和中≌A BDC1210.如图,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是 (写出一个即可).【正确答案】AE AC =(或填E C ∠=∠或D B ∠=∠)11.如图,在△ABE 中,AB =AE ,AD =AC ,∠BAD =∠EAC , BC 、DE 交于点O .求证: △ABC ≌△AED.【正确答案】 证明:BAD EAC BAC EAD ABC AED AB AEBAC EAD AC AD ABC AED∠=∠∴∠=∠∆∆=⎧⎪∠=∠⎨⎪=⎩∴∆∆ 在和中≌ 12.如图,点B 、E 、F 、C 在同一直线上. 已知∠A =∠D ,∠B =∠C ,要使△ABF ≌△DCE ,需要补充的一个条件是 (写出一个即可).【正确答案】AB = DC (填AF =DE 或BF =CE 或BE =CF 也对) 13.已知命题:如图,点A ,D ,B ,E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一.个.适当条件使它成为真命题,并加以证明.FEABCD AC E BD A B CEDOABEFCD【正确答案】解:是假命题.以下任一方法均可: ①添加条件:AC =DF . 证明:∵AD =BE ,∴AD +BD =BE +BD ,即AB =DE . 在△ABC 和△DEF 中,,,,AB DE A FDE AC DF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (SAS). ②添加条件:∠CBA =∠E . 证明:∵AD =BE ,∴AD +BD =BE +BD ,即AB =DE . 在△ABC 和△DEF 中, ∠A =∠FDE , AB =DE , ∠CBA =∠E , ∴△ABC ≌△DEF (ASA). ③添加条件:∠C =∠F . 证明:∵AD =BE ,∴AD +BD =BE +BD ,即AB =DE . 在△ABC 和△DEF 中, ∠A =∠FDE , ∠C =∠F , AB =DE , ∴△ABC ≌△DE F(AAS)【正确答案】AE AC =(或填E C ∠=∠或D B ∠=∠) 14.已知:如图,在四边形ABCD 中,AB =CB ,AD =CD . 求证:∠C =∠A .【正确答案】 证明:连接BD .在△ABD 和△CBD 中,A BC D BC DA OB D∵AB =CB ,AD =CD ,BD =BD , ∴△ABD ≌△CBD . ∴∠C =∠A .15.如图,AC 、BD 相交于点O ,且AB =DC ,AC =DB .求证:∠A =∠D . 证明:连接BC.,,,.ABC DCB AB DC AC DB BC CB ABC DCBA D ∆∆=⎧⎪=⎨⎪=⎩∴∆∆∠=∠在和中≌16.已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.【正确答案】解:图2成立;图3不成立. 证明图2:过点D 作DM AC DN BC ⊥⊥, 则90DME DNF MDN ∠=∠=∠=°再证MDE NDF DM DN ∠=∠=, 有DME DNF △≌△AOBCDAEC F BD 图1 图3ADFECBA D BC E 图2 F图2ADBCE M NFD ME D NF S S ∴=△△D E FC EF D M C N D E C F S S SS∴==+△△四边形四边形由信息可知12ABC DMCN S S =△四边形 12D E F C E F A B CS S S ∴+=△△△ 图3不成立,DEF CEF ABC S S S △△△、、的关系是:12DEF CEF ABC S S S -=△△△ 11.1-11.2易错题1.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组【错解】选D .【错解剖析】错选D 的原因是对全等三角形的判定方法理解不透,当两个三角形有两边及一边的对角对应相等时,两个三角形不一定全等.【正确答案】选C .2.已知△ABC 中,AB =BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个.【错解】所找三角形比7个多或比7个少.【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论. 【正确答案】7.3.在△ABC 和△A /B /C /中,AB =A /B /,AC =A /C /,高AD =A /D /,则∠C 和∠C /的关系是( ) (A )相等. (B )互补. (C )相等或互补. (D )以上都不对. 【错解】A .【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论. 【正确答案】C .TM北11.3经典题1.Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于点D ,2CD =,则点D 到AB 的距离是( )A .1B .2C .3D .4 【正确答案】B 2.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE =3,则点P 到AB 的距离是( )A .3B .4C .5D .6 【正确答案】A 3.如图,∠ACB=90度,AD 平分∠BAC ,BC=9,BD=5,则点D 到AB 的距离为 .【正确答案】4.4.如图,要在河流的南边,公路的左侧M 处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A 点处的距离为1cm (指图上距离),则图中工厂的位置应在 ,理由是 .【正确答案】∠BAC 的平分线上且距A 点1cm 处,角的平分线上的点到角两边的距离相等. 5.三角形中,到三边距离相等的点是( )(A )三条高线交点. (B )三条中线交点. (C )三条角平分线交点. (D )三边垂直平分线交点. 【正确答案】C.6.如图,MP ⊥NP ,MQ 为△NMP 的角平分线,MT =MP ,连结TQ ,则下列结论中,不正确的是( )(A )TQ =PQ . (B )∠MQT =∠MQP .(C )∠QTN =90o . (D )∠NQT =∠MQT .A B C DF EDCB A FEO C A B 【正确答案】D.7.已知:如图,BE 、CF 是△ABC 的角平分线,BE 、CF 相交于D ,∠A =50o ,则∠BDC 的度数是( )(A )70o . (B )120o . (C )115o . (D )130o .【正确答案】C.8.已知:如图,△ABC 中,∠C =90o ,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且AB =10cm ,BC =8cm ,CA =6cm ,则点O 到三边AB 、AC 和BC 的距离分别等于( )(A )2cm 、2cm 、2cm . (B )3cm 、3cm 、3cm . (C )4cm 、4cm 、4cm . (D )2cm 、3cm 、5cm .【正确答案】A.9.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( ) A .PA PB = B .PO 平分APB ∠ C .OA OB = D .AB 垂直平分OP【正确答案】D 10.如图,BE ⊥AC,CF ⊥AB,且BE,CF 相交于点D ,若AB=AC ,求证:点D 在∠BAC 的平分线上.【正确答案】OBAPA BCEF DMDCB AONPCBA 证明:在△ABE 与△ACF 中,,,BEA CFA A A AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ACF ∴AF AE =B C ∠=∠AB AC =,AF AE = ∴BF CE =在△DBF 与△DCE 中,,,FDB EDC B C FB EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ACF ∴DF=DE又BE ⊥AC,CF ⊥AB∴点D 在∠BAC 的平分线上. 11.如图,∠B =∠C =90o ,M 是BC 上一点,且∠AMD =90o ,DM 平分∠ADC ,求证:AM平分∠DAB .【正确答案】证明:∵∠B =∠C =90o ,∴∠ADC +∠DAB =180o , 又∵∠AMD =90o ,∴∠ADM +∠DAM =90o ,∠CDM +∠MAB =90o , ∵∠CDM =∠ADM , ∴∠DAM =∠MAB .12.如图,已知P A ⊥ON 于A ,PB ⊥OM 于B ,且P A =PB .∠MON =50o ,∠OPC =30o ,则∠PCA= .【正确答案】55o .N M D C B A A B C D F N P MO P Q C B A 13.如图,∠AOB 是直角,OP 平分∠AOB ,OQ 平分∠AOC ,∠POQ =70o ,则∠AOC = .【正确答案】140o .14.如图,AE 平分∠BAC ,BD =DC ,DE ⊥BC ,EM ⊥AB ,EN ⊥AC .求证:BM =CN .【正确答案】证明:连结BE 、CE ,∵AE 平分∠BACEM ⊥AB ,EN ⊥AC∴EM=EC在△DBE 与△DCE 中 ,,,DB DC BDE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩∴△DBE ≌△DCE∴BE=NE在△BME 与△CNE 中,,ME NE BE CE =⎧⎨=⎩ ∴△BME ≌△CNE∴ BM =CN .15. 已知:如图,P A 、PC 分别是△ABC 外角∠MAC 与∠NCA 的平分线,它们交于P ,PD⊥BM 于M ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线.N ME D C BA【正确答案】作过点P 作PE ⊥AC 于E .∵AP 平分∠MACPE ⊥AC ,PD ⊥BM∴PE=PD同理可证PE=PC∴PD=PF 又PD ⊥BM ,PF ⊥BN∴BP 为∠MBN 的平分线.易错题1.已知点P 到△ABC 三边的距离相等,则符合条件的点P 有 个.【错解】1.【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论.【正确答案】4.2.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是( )(A )DE =DF . (B )ME =MF .(C )AE =AF . (D )BD =DC .【错解】A .【错解剖析】不能正确审题,本题是选错误的选项.【正确答案】D3.若一个三角形的最长边是10,最短边是5,其周长是奇数,则第三边长可取值有 个.【错解】4.【错解剖析】第三边c 的范围本应是510c <<,但由于没有注意到条件“最长边是10,最短边是5”,误认为第三边c 的范围本应是515c <<.【正确答案】2M F E D C B A A D NP M E。

人教版八年级上册 数学11.1--11.3同步基础检测题含答案

人教版八年级上册 数学11.1--11.3同步基础检测题含答案

人教版八年级上册数学11.1--11.3基础检测题含答案《11.1 与三角形有关的线段》一.选择题1.一个三角形的两边长分别为3和8,则它的第三边长可能是()A.5 B.12 C.10 D.无法确定2.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.两点之间线段最短B.三角形两边之和大于第三边C.两点确定一条直线D.三角形的稳定性3.如图,在△ABC中,AC边上的高是()A.BE B.AD C.CF D.AF4.已知n是正整数,若一个三角形的三边长分别是n+2、n+4、n+8,则n的取值范围是()A.n>﹣1 B.n>0 C.n>2 D.n>35.如图所示,△ABC中,BC边上的中线是()A.线段AD B.线段AE C.线段AF D.线段AG6.下列说法中,正确的个数有()①三角形具有稳定性;②如果两个角相等,那么这两个角是对顶角;③三角形的角平分线是射线;④直线外一点到这条直线的垂线段叫做这点到直线的距离;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内;A.2 B.3 C.4 D.5二.填空题7.三角形一边长为4cm,另一边长为3cm,且第三边长为偶数,则第三边的长为cm.8.如果三角形的两边长为1和5,第三边长为整数,那么三角形的周长为.9.若△ABC的边AB、BC的长是方程组的解,设边AC的长为m,则m的取值范围是.10.已知a,b,c是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=.11.如图,木匠在做门框时防止门框变形,用一根木条斜着钉好,这样门框就固定了,所运用的数学道理是.12.如图,图中以BC为边的三角形的个数为.三.解答题13.如图,在△ABC中,AD是BC边上的中线,△ABD的周长比△ADC的周长多2,且AB与AC的和为10.(1)求AB、AC的长.(2)求BC边的取值范围.14.若a,b,c是△ABC三边的长,化简:|a+b﹣c|+|b﹣a﹣c|﹣|c﹣a﹣b|.15.若一个三角形的三边长分别是a,b,c,其中a和b满足方程,若这个三角形的周长为整数,求这个三角形的周长.16.如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.参考答案一.选择题1.解:∵此三角形的两边长分别为3和8,∴第三边长的取值范围是:8﹣3<第三边<8+3.即5<第三边<11,观察选项,只有选项C符合题意.故选:C.2.解:根据三角形的稳定性可固定窗户.故选:D.3.解:在△ABC中,AC边上的高是线段BE,故选:A.4.解:∵三角形的三边长分别是n+2、n+4、n+8,∴n+2+n+4>n+8,解得n>2.故选:C.5.解:用尺规作图得出中点E,△ABC中,BC边上的中线是线段AE,故选:B.6.解:①三角形具有稳定性,正确;②如果两个角相等,那么这两个角不一定是对顶角,故原说法错误;③三角形的角平分线是射线,错误;④直线外一点到这条直线的垂线段长度叫做这点到直线的距离,故此选项错误;⑤任何一个三角形都有三条高、三条中线、三条角平分线,正确;⑥三角形的三条角平分线交于一点,且这点在三角形内,正确;故选:B.二.填空题(共6小题)7.解:设第三边长为x,则4﹣3<x<4+3,即1<x<7.又x为偶数,因此x=2或4或6.故答案为:2或4或6.8.解:设第三边为a,根据三角形的三边关系,得:5﹣1<a<5+1,即4<a<6,∵a为整数,∴a的值为5,则三角形的周长为1+5+5=11.故答案为:11.9.解:解得:,∵△ABC的边AB、BC的长是方程组的解,边AC的长为m,∴m的取值范围是:3<m<9,故答案为:3<m<9.10.解:∵a,b,c是一个三角形的三条边长,∴a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a+c﹣b﹣b+c﹣a+a﹣b﹣c=a﹣3b+c,故答案为:a﹣3b+c.11.解:结合图形,为防止变形钉上一根木条,构成了三角形,所以这样做根据的数学道理是三角形的稳定性.故答案为:三角形的稳定性.12.解:∵以BC为公共边的三角形有△BCD,△BCE,△BCF,△ABC,∴以BC为公共边的三角形的个数是4个.故答案为:4.三.解答题(共4小题)13.解:(1)∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长﹣△ADC的周长=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC=2,即AB﹣AC=2①,又AB+AC=10②,①+②得.2AB=12,解得AB=6,②﹣①得,2AC=8,解得AC=4,∴AB和AC的长分别为:AB=6,AC=4;(2)∵AB=6,AC=4,∴2<BC<10.14.解:∵a、b、c是△ABC的三边的长,∴a+b﹣c>0,b﹣a﹣c<0,c﹣a﹣b<0,∴原式=a+b﹣c﹣b+a+c+c﹣a﹣b=a﹣b+c.15.解:由,解得,∴3<c<5,∵周长为整数,∴c=4,∴周长=4+4+1=9.16.解:(1)∵AB=4,AC=5,∴5﹣4<BC<4+5,即1<BC<9,故答案为:1<BC<9;(2)∵∠ACD=125°,∴∠ACB=180°﹣∠ACD=55°,∵DE∥AC,∴∠BDE=∠ACB=55°.∵∠E=55°,∴∠B=180°﹣∠E﹣∠BDE=180°﹣55°﹣55°=70°.11.2三角形有关的角一、选择题1.若一个三角形的三个内角的度数之比为,则这个三角形是.A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形2.在不等边三角形中,最小的角可以是.A. B. C. D.3.在锐角三角形中,最大角的取值范围是.A. B. C.D.4.如图,CE是的外角的平分线,若,,则等于.A. B. C. D.5.下列说法正确的是A. 三角形的内角中最多有一个锐角B. 三角形的内角中最多有两个锐角C. 三角形的内角中最多有一个直角D. 三角形的三个内角都大于6.如图,在中,,沿图中虚线截去,则的度数为A. B. C. D.7.如图,,,,则等于A. B. C. D.8.如图,中,,,则等于A. B. C. D.9.在三角形的三个外角中,钝角的个数最少有.A. 1个B. 2个C. 3个D. 4个10.如图,在中,点D在AB上,点E在AC上,若,,则的大小为A. B. C. D.11.在中,,,的度数之比为,则的度数为A. B. C. D.二、填空题12.如图,在中,,BD是AC边上的高,则_________.13.在中,AE为边BC上的高线,若,,则_________.14.如果一个三角形的两个不同的外角之和为,那么这个三角形是________三角形填“锐角”“直角”或“钝角”.15.根据如图所示的图形直接写出的度数.如图,________;如图,________;如图,________.三、解答题16.如图,已知,,求:的度数.的度数.17.如图,在中,AD是BC边上的高,AE平分,,,求与的度数.答案和解析1.C解:设其三个内角度数分别是2k,8k,5k.根据三角形的内角和定理,得:,解得:,,这个三角形是钝角三角形.2.D解:在不等边三角形中,最小的角要小于,否则三内角的和大于.3.D解:三角形中最大的角不能小于,如果小于,则三角形的内角和将小于,又该三角形是锐角三角形,则最大角必须小于,故最大角的取值范围是.4.C解:是的外角的平分线,,,又,.故选C.5.C解:A、直角三角形中有两个锐角,故本选项错误;B、等边三角形的三个角都是锐角,故本选项错误;C、三角形的内角中最多有一个直角,故本选项正确;D 、若三角形的内角都大于,则三个内角的和大于,这样的三角形不存在,故本选项错误.6C解:作、如上图,,,.7.C解:,,,8.B解:由三角形内角和定理得,,9.B解:三角形的外角与它相邻的内角互补,在一个三角形中最多有一个钝角,它的外角至少有两个钝角.故选B.10.C解:,,,,故选:C.11.C解:中:::3:4,设,,,,解得,故选C.12.解:,,解得,,是AC边上的高,.故答案为.13.或解:,,,当为锐角时,如图1,在中,,,当为钝角时,如图2,,则.故答案为或14.直角解:一个三角形的两个不同的外角之和为,第三个外角是,与的外角相邻的内角是,这个三角形一定是直角三角形.故答案为直角.15.;;.解:如图,,,.故答案为.如图,,,又,.故答案为.如图,,,又,.故答案为.16.解:在中,,,,;在中,,,,.17.解:,,,,平分,,是BC上的高,,,,在中,.11.3多边形及其内角和一、选择题18.在四边形中,如果有一组对角都是直角,那么另一组对角可能.A. 都是钝角B. 都是锐角C. 是一个锐角、一个钝角D. 是一个锐角、一个直角19.一个多边形的边数增加1,则它的内角和与外角和增加的度数之和是.A. B. C. D.20.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是A. B. C. D.21.已知一个正多边形的一个外角为,则这个正多边形的边数是A. 8B. 9C. 10D. 1122.一个多边形从一个顶点最多能引出三条对角线,这个多边形是A. 三角形B. 四边形C. 五边形D. 六边形23.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为,则n等于A. 11B. 12C. 13D. 1424.一个多边形除了一个内角外,其余各内角的和为,则这个内角的度数为A. B. C. D.25.下列可能是n边形内角和的是A. B. C. D.26.如图,四边形ABCD中,,与、相邻的两外角平分线交于点E,若,则的度数为A. B. C. D.27.从十二边形的一个顶点出发,可引出对角线条.A. 9条B. 10条C. 11条D. 12条28.一个n边形的每一个外角都是,则n等于A. 3B. 4C. 5D. 6二、填空题29.如图,在六边形ABCDEF中,,,,,分别是,,,的外角,则_________.30.如果一个多边形的边数增加一倍,它的内角和是,则原来那个多边形是_________边形.31.多边形的每个内角都等于,则从这个多边形一个顶点发出的对角线有_________条.32.十二边形的内角和是______ ,外角和是______ .33.正八边形的每个外角的度数为________;若正多边形的一个外角是,则这个正多边形的边数是________.三、解答题(本大题共2小题,共16.0分)34.李明在计算某个多边形的内角和时得到,老师说他算错了,于是李明认真地检查了一遍.若他检查时发现其中一个内角多算了一次,求这个多边形的边数是多少?若他检查时发现漏算了一个内角,求漏算的那个内角是多少度?这个多边形是几边形?35.已知一个多边形的内角和与外角和相加为,求这个多边形的对角线的条数.答案和解析1.C解:如图:四边形ABCD的内角和等于,即,,.只有C答案才满足.2.C解:由多边形的内角和公式可知:一个多边形边数增加1,则这个多边形内角增加;由任意多边形的外角和是可知,外角和增加,则内角和与外角和增加的度数之和是.3.B解:四边形的内角和等于a,.五边形的外角和等于b,,.5.D解:,所以这个正多边形是正十边形.解:设多边形有n条边,则,解得.故多边形的边数为6.6.C解:n边形内角和为,并且每一个内角的度数都小于.,,,.7.B解:设这个内角度数为x,边数为n,则,整理得,则.为正整数,.这个内角度数为.8.C解:不能被180整除,故A错误;B.550不能被180整除,故B错误;C.720能被180整除,故C正确;D.960不能被180整除,故D错误;解:,,,、相邻的两外角平分线交于点E,,10.A解:,十二边形从一个顶点出发可引出9条对角线.11.C解:多边形的每一个外角都是,此多边形是正多边形,,所以,它的边数是5.故选:C.12.解:,,与的外角和为,六边形ABCDEF的外角和为,.故答案为.13.七解:设多边形原有边数为x,则,,解得,所以此图形为七边形.故答案为七.14.9解:多边形的每一个内角都等于,每个外角是,多边形边数是,则此多边形从一个顶点出发的对角线共有条.15.;解:十二边形的内角和是,外角和,故答案为,.根据n边形的内角和是,代入求值即可得出内角和,再根据多边形的外角和为即可得出答案.16.;.解:解:设该正多边形的边数为n,根据多边形的外角和定理可得,,解得.故答案为9.17.解:设这个多边形的边数是n,重复计算的内角的度数是x,则,又,,解得.故这个多边形的边数是12;设这个多边形的边数是n,没有计算在内的内角的度数是x,则,又,,解得.故,,故漏算的那个内角是140度,这个多边形是十三边形18.解:设这是n边形,则,,.这个多边形的对角线的条数.。

11.1到113三角形练习题

11.1到113三角形练习题
三角形练习
三角形两边之和 大于第三边,两 边之差小于第三 边
三角形三 边的关系
按角分: 直角三角形, 锐角三角形, 钝角三角形
等腰三角形
三角形的边
特殊的三 角形
等边三角形
三角形的有 关概念和表 示方法
三角形 的分类
按边分
三边都不相
等的三角形
底边和腰
等腰 三角
不相等的 等腰三角形
形 等边三角形
直角三角形的中线 钝角三角形 的中线
8、在ΔABC中,AB=9,BC=2,并 且AC为奇数,那么ΔABC的周长 为 20 。
9.若一个等腰三角形的周长为18厘米, 一边长为4厘米,求其余两边长.
10.等腰三角形的一边长是另一边长 的两倍,周长等于20厘米,求三边 长.
11.如图, △ABC是钝角三角形,请你作出: (1)BC边上的高 (2)AC边的中线 (3) ∠C的平分线
DC
E
A
FBຫໍສະໝຸດ 12.如下图中,已知AD、AE分别是△ABC的
中线、高. 有AB=5cm,AC=3cm,则△ABD
与 △ ACD的周长之差为 ____2_, △ABD与
△ACD的面积关系为__相_等____. A
解: ∵ △ABD的周长=AB+AD+BD
△ACD的周长=AC+AD+DC
5
3
∴ △ABD的周长与△ACD的周长之差
三角形具有稳定性, 而四边形具有灵活性
三角形的 中线
三角形的一条中线 把三角形分成面积 相等的两部分
三角形的 角平分线
锐角三角形的中线
三角形的三条 重要的线段
钝,锐,直角三角 形的角平分线
锐,直,钝角 三角形的高

人教版八年级数学上册第十一章三角形达标测试卷一(11.1-11.3)含答案

人教版八年级数学上册第十一章三角形达标测试卷一(11.1-11.3)含答案

人教版八年级数学上册第十一章三角形达标测试卷一(11.1-11.3)含答案一、选择题(每小题3分,共30分)1. 一个多边形的内角和小于它的外角和,则这个多边形的边数是 ( )A. 3B. 4C. 5D. 62. 如图,AB ∥CD ,∠A +∠E =75°,则∠C 的度数为 ( )A. 60°B. 65°C. 75°D. 80°第2题 第3题3. 如图,一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是 ( )A. 两点之间线段最短B. 垂线段最短C. 两点确定一条直线D. 三角形的稳定性4. 一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为 ()A. 5 B. 6或4 C. 5或7 D. 5或6或75. 现有六根细木棒,它们的长度分别为2,3,4,6,8,10(单位:cm),从中取出三根首尾顺次连接能搭成一个三角形的是 ( )A. 2,3,6B. 3,4,8C. 4,6,8D. 4,6,106. 已知一个三角形的周长为20cm ,且其中的两边都等于第三边的2倍,那么这个三角形的最短边为 ( )A. 1cmB. 2cmC. 3cmD. 4cm7. 已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为 ( )A. 16B. 20或16C. 20D. 128. 若△ABC 的三个内角满足∠A =∠B =∠C ,那么此三角形的形状是 ( )14A. 锐角三角形 B. 等腰三角形 C. 直角三角形 D. 等腰直角三角形9. 如图,BD 平分∠B ,∠A =60°,∠C =15°,则∠ADB 等于 ( )A. 60°B. 52.5°C. 67.5°D. 37.5°第9题 第10题10. 如图,若∠B=50°,则∠1+∠2+∠3+∠4等于( )A. 240°B. 260°C. 280°D. 360°二、填空题(每小题3分,共24分)11. 若一个多边形的内角和是1260°,则这个多边形的边数是.12. 两根木棒的长分别为5cm和8cm,要选择第三根木棒将它们钉成一个三角形框架,那么第三根木棒长x(cm)的范围是.13. 在△ABC中,∠A-∠B=25°,∠C=65°,那么∠A=,∠B=.14. 现用一块三角钢制作一个等腰三角形钢架,其两边长分别是2m和5m,则至少需要这种三角钢m.15. 在△ABC中,∠A是∠B的3倍,∠C比∠A+∠B还大20°,则∠A=,∠B=,∠C=.16. 如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC 内,若∠1=35°,则∠2的度数为.第16题第17题17. 如图,B,C,E,F在一条直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D=.18. △ABC的周长为18,三边a,b,c满足关系式a=b+1,b=c+1,则a=,b=,c=.三、解答题(共66分)19. (8分)若一个多边形的各内角都相等,且一个内角与一个外角的度数比为3∶1,求这个多边形的边数.20. (8分)已知在△ABC中,∠A比∠B大20°,∠B又比∠C的2倍多5°,请你求出∠A,∠B,∠C的度数.21. (9分)已知三角形ABC 的周长是36cm ,a +b =2c ,a ∶b =1∶2,请你求出a ,b ,c 的长.22. (9分)如图,在△ABC 中,BD ,CE 是∠ABC 和∠ACB 的平分线,∠ABD =20°,∠BDC =80°,请你求出∠AEC 的度数.23. (10分)在△ABC 中,AC =7,BC =2,且AB 为奇数.(1)求△ABC 的周长;(2)请你判断△ABC 的形状.24. (10分)如图,已知△ABC 中,AB >AC ,AD 平分∠BAC ,EF ⊥AD 于点G ,交AB 于点E ,交BC 的延长线于点 M ,求证:∠M =(∠ACB -∠B ).1225. (12分)如图,BD,CE是△ABC的两条高,它们交于O点.(1)∠1和∠2的大小关系如何? 并说明理由;(2)若∠A=50°,∠ABC=70°,求∠3和∠4的度数.参考答案1. A2. C3. D4. D5. C6. D7. C8. B9. C 10. B11. 912. 3<x <1313. 70° 45°14. 1215. 60° 20° 100°16. 45°17. 36°18. 7 6 519. 解:设多边形的一个外角的度数为x ,内角的度数为180°-x ,根据题意,得:(180°-x )∶x =3∶1,解得x =45°,n =360°÷45°=8.20.解:设∠B =x 度,那么∠A =(x +20)度,∠C =(x -5)度,由三角形内角和定理知:(x +20)12+x +(x -5)=180,所以x =65,所以∠A =85°,∠B =65°,∠C =30°.1221. 解:∵三角形 ABC 的周长是36cm ,即a +b +c =36,又∵a +b =2c ,∴2c +c =36,∴c =12cm ,a +b =24cm ,∵a ∶b =1∶2,∴b =2a ,∴a =8cm ,b =16cm.22. 解:∵∠BDC =∠A +∠ABD ,∠BDC =80°,∠ABD =20°,∴∠A=80°-20°=60°,∵BD 平分∠ABC ,∴ ∠ABC=2∠ABD =40°,∵∠A +∠ABC + ∠ACB =180°,∴ ∠ACB =80°,∵CE 平分∠ACB ,∴∠BCE =∠ACB =40°,∴∠AEC =∠ABC +∠BCE =80°.1223. 解:(1)根 据 三 角 形 三 边 关 系 有:AC -BC <AB <AC +BC ,所以7-2<AB <7+2,所以5<AB <9,又因为 AB 长为奇数,所以 AB =7,所以△ABC 的周长为7+7+2=16.(2)∵AC =AB =7,∴△ABC 为等腰三角形.24. 证明:∵EF ⊥ AD ,∴ ∠M =90°- ∠MDG =90°-(∠BAD +∠B )=90°-∠DAF -∠B =∠AFG -∠B ,①在△CMF 中,∠ACB =∠CFM+∠M =∠AFG +∠M ,即∠AFG =∠ACB -∠M ,② 把②代入①,得∠M = ∠ACB -∠M -∠B ,即2∠M =∠ACB -∠B ,∴ ∠M =(∠ACB -∠B ).1225. 解:(1)∠1=∠2.理由:∵BD 是△ABC 的高,∴∠BDA =90°.∵∠BDA +∠A +∠1=180°,∴ ∠A +∠1=90°.同理,∠2+∠A =90°.∴∠1=∠2.(2)∵CE ⊥AB ,∴∠BEC =90°,又∵∠BEC +∠ABC +∠3=180°,∴ ∠3=180°-90°-70°=20°.在四边形AEOD 中,∠A +∠4+∠AEO +∠ADO =360°,∴ ∠4=360°-∠A -∠AEO -∠ADO =360°-50°-90°-90°=130°.。

人教版八年级上册数学11.1--11.3分节测试题含答案。

人教版八年级上册数学11.1--11.3分节测试题含答案。

人教版八年级数学上册11.1--11.3分节测试题(含答案)11.1 与三角形有关的线段一、选择题1、下列命题是假命题的是()A.三角形的三条角平分线相交于一点,并且这一点到三边距离相等B.等腰三角形底边的中点到两腰的距离相等C.面积相等的两个三角形全等D.一个三角形中至少有两个锐角2、以长度为5 cm,7 cm,9 cm,13 cm的线段中的三条为边,能组成三角形的情况有()A.2种 B.3种C.4种 D.5种3、下列图形不具有稳定性的是()A.正方形 B.等腰三角形 C.直角三角形 D.钝角三角形4、已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.135、如图,△ABC中,点D在BC上,△ACD和△ABD面积相等,线段AD是三角形的()A.高B.角平分线C.中线 D.无法确定6、如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC 三条角平分线的交点,则S△OAB:S△OBC:S△OAC=()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:57、三角形一边上的中线把原三角形分成两个()A.形状相同的三角形 B.面积相等的三角形C.直角三角形 D.周长相等的三角形8、一个三角形任意一边上的高都是这边上的中线,则对这个三角形的形状最准确的判断是()三角形.A.等腰B.直角C.等边 D.等腰直角9、△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB <19 D.9<AB<1910、已知一个三角形的两边长分别是2和7,第三边为偶数,则此三角形的周长是()A.15 B.16 C.17 D.15或1711、现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个 D.4个12、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?()A.0根 B.1根 C.2根 D.3根13、如图,为估计荔香公园小池塘岸边A、B两点之间的距离,小明在小池塘的一侧选取一点O,测得OA=15m,OB=10m,则A、B间的距离可能是()A.5m B.15m C.25mD.30m14、a,b,c为三角形的三边长,化简|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,结果是()A.0 B.2a+2b+2c C.4a D.2b﹣2c15、AD是△ABC的中线,设△ABD的面积为S1,△ACD的面积为S2,那么()A.S1>S2 B.S1=S2 C.S1<S2 D.S1≠S216、如图,在四边形ABCD中,AC平分∠BAD,AB>AD,下列结论正确的是()A.AB-AD>CB-CD B.AB-AD=CB-CD C.AB-CD<CB-CD D.AB-AD与CB-CD的大小关系不确定.二、填空题1、(1)如果将一个三角形的三边的长确定,那么这个三角形的形状和大小就不会改变了,三角形的这个性质叫做________________________.(2)四边形是否具有这种性质?2、如图,在⊿ABC中,BC边上有n个点(包括B,C两点),则图中共有_______个三角形.3、已知:如图,试回答下列问题:(1)图中有______个三角形,它们分别是______________________________________.(2)以线段AD为公共边的三角形是_________________________________________.(3)线段CE所在的三角形是______,CE边所对的角是________________________.(4)△ABC、△ACD、△ADE这三个三角形的面积之比等于______∶______∶______.4、如图所示的图形中x的值是__ ____.5、如图,如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE 的中点,且△ABC的面积为4,则阴影部分的面积为_________ .6、如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC 的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1+S2=_______7、在△ABC中,点D,E分别在AB,AC上,且CD与BE相交于点F,已知△BDF的面积为6,△BCF的面积为9,△CEF的面积为6,则四边形ADFE的面积为_______.8、如图,在锐角三角形ABC中,CD和BE分别是AB和AC边上的高,且CD和BE交于点P,若∠A=40º,则∠BPC的度数是_______.三、解答题1、(画图)把△ABC分成面积相等的两部分,把△DEF分成面积相等的四部分。

人教版 八年级 上册 数学11.1 --11.3基础练习题含答案

人教版 八年级 上册 数学11.1 --11.3基础练习题含答案

人教版八年级上册数学11.1 --11.3基础练习题11.1与三角形有关的线段一、选择题1.下面几个图形不具有稳定性的是A. B.C. D.2.已知a,b,c是的三条边长,化简的结果为A. B. C. 2c D. 03.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是A. 4B. 5C. 6D. 94.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有A. 1种B. 2种C. 3种D. 4种5.下列各组数中,不可能成为一个三角形三边长的是A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,106.如图,在中,,G为AD的中点,延长BG交AC于E,F为AB上一点,于H,下面判断正确的有是的角平分线;是边AD上的中线;是边AD上的高;是的角平分线和高.A. 1个B. 2个C. 3个D. 4个7.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得米,米,A、B间的距离不可能是A. 5米B. 10米C. 15米D. 20米8.若a、b、c为的三边长,且满足,则c的值可以为A. 5B. 6C. 7D. 89.下列说法错误的是A. 一般锐角三角形的三条高、三条中线、三条角平分线分别交于一点B. 钝角三角形有两条高在三角形外部C. 直角三角形只有一条高D. 任意三角形都有三条高、三条中线、三条角平分线10.三角形的高、中线和角平分线都是A. 直线B. 射线C. 线段D. 以上答案都不对11.如图,在中,AE是和AF分别是BC边上的中线和高线,AD是的平分线.则下列线段中最短的是A. AEB. ADC. AFD. AC12.如图,图中直角三角形共有A. 1个B. 2个C. 3个D. 4个二、填空题13.有四条线段,长分别为3cm、5cm、7cm、9cm,如果用这些线段组成三角形,可以组成______ 个三角形.14.如图,在中,D,E,F分别是BC,AD,CE的中点,且,则________.15.如图,D、E分别是边AB、BC上的点,,,设的面积为,的面积为,若,则的值为__.16.如图,在中,,,则以为内角的三角形是__________,以BC为边的三角形是___________,所对的边为___________.三、解答题17.如图,回答下列问题:图中有________个三角形,它们分别是______________________;以线段AD为边的三角形是__________________;线段CE所在的三角形是________,CE边所对的角是________.18.如图,在中,,CD是AB边上的高,且,,.求:的面积;的长.19.已知三角形的三条边为互不相等的整数,且有两边长分别为7和9,另一条边长为偶数.请写出一个三角形,符合上述条件的第三边长.若符合上述条件的三角形共有a个,求a的值.20.如图,在中,D、E分别是BC,AD的中点,,求.答案和解析1.【答案】A【解答】解:根据三角形的稳定性可得,B、C、D都具有稳定性.不具有稳定性的是A选项.故选A.2.【答案】D【解答】解:、b、c为的三条边长,,,原式.故选D.3.【答案】C【解答】解:由三角形三边关系定理得,即.因此,本题的第三边应满足,把各项代入不等式符合的即为答案.4,5,9都不符合不等式,只有6符合不等式,故选C.4.【答案】C【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选C.5.【答案】C【解析】解:,三角形三边长为5,6,12不可能成为一个三角形,故选:C.6.【答案】B【解答】解:根据三角形的角平分线的概念,知AG是的角平分线,故此说法错误;根据三角形的中线的概念,知BG是的边AD上的中线,故此说法错误;根据三角形的高的概念,知CH为的边AD上的高,故此说法正确;根据三角形的角平分线和高的概念,知AH是的角平分线和高线,故此说法正确.故选B.7.【答案】A【解答】解:连接AB,根据三角形的三边关系定理得:,即:,、B间的距离在5和25之间,、B间的距离不可能是5米;故选:A.8.【答案】A【解答】解:,,;,;则,即,符合条件;故选A.9.【答案】C【解答】解:锐角三角形的三条高线、三条角平分线分别交于一点,故本选项说法正确;B.钝角三角形有两条高线在三角形的外部,故本选项说法正确;C.直角三角形也有三条高线,故本选项说法错误;D.任意三角形都有三条高线、中线、角平分线,故本选项说法正确;故选C.10.【答案】C【解答】解:三角形的高、中线和角平分线都是线段.故选C.11.【答案】C【解答】解:在中,AF是高,,又在中,AD是的平分线,AE是BC边上的中线,,,,故最短线段为AF.故选C.12.【答案】C【解析】【分析】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,,图中直角三角形有、、,共有3个.故选C.13.【答案】3【解析】解:其中的任意三条组合有3、5、7;3、5、9;3、7、9;5、7、9四种情况.根据三角形的三边关系,则其中的,不能组成三角形,应舍去,故可以组成3个三角形.故答案为:3.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.14.【答案】【解答】解:点D,E,F,分别为BC、AD、CE的中点,且,,,,,故答案为.15.【答案】1【解答】解:,,,,.故答案为1.16.【答案】和;和;CD和AC.【解答】解:以为内角的三角形是和,以BC为边的三角形是和,所对的边为CD和AC,故答案为和;和;CD和AC.17.【答案】;,,,,,;,,;,.【解答】解:图中有6个三角形,它们分别是,,,,,.故答案为6;,,,,,;以线段AD为边的三角形是,,.故答案为,,;线段CE所在的三角形是,CE边所对的角是.故答案为,.18.【答案】解:的面积;的面积,.19.【答案】解:两边长分别为9和7,设第三边是a,则,即.第三边长是答案不唯一;,的值为4,6,8,10,12,14共六个,;20.【答案】解:、E分别是BC,AD的中点,,.11.2 与三角形有关的角一、选择题1. 已知在△ABC中,∠A=70°,∠B=60°,则∠C的度数为( )A.50°B.60°C.70°D.80°2. 在△ABC中,∠A,∠C与∠B处的外角的度数如图所示,则x的值是( )A.80 B.70 C.65D.603. 在Rt△ABC中,∠C=90°,∠A-∠B=50°,则∠A的度数为( )A.80°B.70°C.60°D.50°4.如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为( )A.65°B.70°C.75°D.85°5. 一个三角形三个内角的度数之比为2∶3∶4,这个三角形是()A. 直角三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形6.若三角形的三个内角的度数之比为2∶3∶7,则这个三角形的最大内角是( )A.75°B.90°C.105°D.120°7. 如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°8.如图,在△ABC中,D是∠ABC和∠ACB的平分线的交点,∠A=80°,∠A BD=30°,则∠BDC的度数为( )A.100°B.110°C.120°D.130°9.如图,把△ABC沿DE折叠,当点A落在四边形BCED内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,这个关系是( )A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)10. 如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是()A.x=y+zB.x=y-zC.x=z-yD.x+y+z=180二、填空题11. 如图所示,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD=.12. 有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图所示的方式剪去它的一个角,在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为.13.如图,折叠一张三角形纸片,把三角形的三个角拼在一起,就可以说明一个几何定理.请你写出这个定理的内容:______________________.14. 如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E.若∠AFD=158°,则∠EDF=°.15.定义:当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的一个内角为48°,那么“特征角”α的度数为____________.16.如图,在△ABC中,点E在BC的延长线上,∠ABC的平分线与∠ACE的平分线相交于点D.(1)若∠A=70°,则∠ACE-∠ABC=________°,∠D=________°;(2)若∠A=α,则∠ACE-∠ABC=________,∠D=________.三、解答题17.如图,用钢筋做支架,要求BA,DC相交所成的锐角为32°,现测得∠BAC=∠DCA=115°,则这个支架符合设计要求吗?为什么?18.如图,在△ABC中,AD是BC边上的高,E是AB上一点,CE交AD于点M,且∠DCM=∠MAE.求证:△ACE是直角三角形.19. 在△ABC中,∠B=55°,且3∠A=∠B+∠C,求∠A和∠C的度数.20.如图,在△ABC中,CD,BE分别是AB,AC边上的高,BE,CD相交于点O .(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)求证:∠BOC+∠A=180°.人教版八年级数学上册11.2 与三角形有关的角同步培优训练-答案一、选择题1. 【答案】A2. 【答案】B3. 【答案】B 又∵∠A-∠B=50°,∴2∠A=140°.∴∠A=70°.4. 【答案】B ∴∠CFD=∠AFE=55°.∴∠ACB=∠D+∠CFD=15°+55°=70°.5. 【答案】C6. 【答案】C 由题意,得2x+3x+7x=180°,解得x=15°.∴7x=105°.7. 【答案】C∴∠ACB=180°-∠A-∠ABC=78°.∵∠ABC,∠ACB的平分线分别为BE,CD,∴∠FBC=∠ABC=21°,∠FCB=∠ACB=39°,∴∠BFC=180°-∠FBC-∠FCB=120°.故选C.8. 【答案】D ∴∠DBC=∠ABD=30°,∠ABC=2∠ABD=2×30°=60°. ∴∠ACB=180°-∠A-∠ABC=40°.∵CD平分∠ACB,∴∠DCB=12∠ACB=12×40°=20°.∴∠BDC=180°-∠DCB-∠DBC=130°.9. 【答案】B10. 【答案】A二、填空题11. 【答案】105°12. 【答案】105°所以∠1+∠2=360°-90°=270°. 因为∠1=165°,所以∠2的度数为105°.13. 【答案】三角形三个内角的和等于180°14. 【答案】68∴∠CFD=180°-∠AFD=180°-158°=22°.∵FD⊥BC,∴∠FDC=90°.∴∠C=180°-∠FDC-∠CFD=180°-90°-22°=68°.∵∠B=∠C,DE⊥AB,∴∠EDB=180°-∠B-∠DEB=180°-68°-90°=22°.∴∠EDF=180°-90°-22°=68°.15. 【答案】48°或96°或88°当β=48°时,则“特征角”α=2×48°=96°;当第三个角为48°时,α+12α+48°=180°,解得α=88°.综上所述,“特征角”α的度数为48°或96°或88°.16. 【答案】(1)70 35 (2)α1 2α三、解答题17. 【答案】解:这个支架不符合设计要求.理由:如图,延长BA,DC交于点E.∵∠BAC=∠DCA=115°,∴∠EAC=∠ECA=65°.∴∠E=180°-∠EAC-∠ECA=50°. ∵要求BA,DC相交所成的锐角为32°,∴这个支架不符合设计要求.18. 【答案】证明:∵AD是BC边上的高,∴∠ADC=90°.∵∠DCM=∠MAE,∠CMD=∠AME,∴∠AEC=∠ADC=90°.∴△ACE是直角三角形.19. 【答案】解:∵在△ABC中,∠A+∠B+∠C=180°,3∠A=∠B+∠C,∴4∠A=180°,解得∠A=45°.∵∠B=55°,∴∠C=180°-45°-55°=80°.20. 【答案】解:(1)∵CD⊥AB,BE⊥AC,∴∠BDC=∠BEC=90°.∵∠ABC=50°,∠ACB=60°.∴∠BCO=40°,∠CBO=30°.∴∠BOC=180°-40°-30°=110°.(2)证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠BEC=90°.∴∠ABE=90°-∠A.∴∠BOC=∠ABE+∠BDC=90°-∠A+90°=180°-∠A.∴∠BOC+∠A=180°.11.3多边形及其内角和一.选择题1.正多边形的每个内角为135度,则多边形为()A.4 B.6 C.8D.102.若一个多边形减去一个角后,内角和为720°,则原多边形不可能是几边形()A.四边形B.五边形C.六边形D.七边形3.一个四边形的四个内角度数之比为1:2:4:5,则这个四边形中,最小的内角为()A.30°B.40°C.50°D.60°4.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3 B.4 C.6D.125.如图,已知一个五边形ABCDE纸片,一条直线将该纸片分割成两个多边形.若这两个多边形内角和分别为m和n,则m+n不可能是()A.540°B.720°C.900°D.1080°6.如图,在五边形ABCDE中,AE∥BC,延长DE至点F,连接BE,若∠A=∠C,∠1 =∠3,∠AEF=2∠2,则下列结论正确的是()①∠1=∠2 ②AB∥CD ③∠AED=∠A ④CD⊥DEA.1个B.2个C.3个D.4个7.如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°<α<90°),若DE⊥B′C′,则∠α为()A.36°B.54°D.72°8.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P=()A.10°B.15°C.30°D.40°9.设BF交AC于点P,AE交DF于点Q.若∠APB=126°,∠AQF=100°,则∠A-∠F=()A.60°B.46°C.26°D.45°10.如图,已知四边形ABCD中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°11.如图,在六边形ABCDEF中,若∠A+∠B+∠C+∠D=500°,∠DEF与∠AFE的平分线交于点G,则∠G等于()A.55°C.70°D.80°12.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°二.填空题13.八边形的内角和为;一个多边形的每个内角都是120°,则它是边形.14.一个多边形,除了一个内角外,其余各角的和为2750°,则内角和是.15.如图,已知在四边形ABCD中,∠A+∠C=135°,∠ADE=125°,则∠B= .16.如图所示,若∠DBE=78°,则∠A+∠C+∠D+∠E= °.17.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= °.三.解答题18.(1)已知一个正多边形的每个内角比它的每个外角的4倍多30°,求这个多边形的边数;(2)一个多边形的外角和是内角和的七分之二,求这个多边形的边数.19.如图,在四边形ABCD中,BD⊥CD,EF⊥CD,且∠1=∠2.(1)求证:AD∥BC;(2)若BD平分∠ABC,∠A=130°,求∠C的度数.20.如图,四边形ABCD中,∠BAD=106°,∠BCD=64°,点M,N分别在AB,BC上,将△BMN沿MN翻折得△FMN,若MF∥AD,FN∥DC.求(1)∠F的度数;(2)∠D的度数.21.将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为.22.已知,在四边形ABCD中,∠A+∠C=160°,BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线.(1)如图1,若BE∥DF,求∠C的度数;(2)如图2,若BE,DF交于点G,且BE∥AD,DF∥AB,求∠C的度数.参考答案1-5:CAACD 6-10:CBBBC 11-12:CB13、1080°;六14、2880°15、170°16、10217、72018、:(1)设这个多边形的每个内角是x°,每个外角是y°,则得到一个方程组得而任何多边形的外角和是360°,则多边形内角和中的外角的个数是360÷30=12,则这个多边形的边数是12边形;(2)设这个多边形的边数为n,依题意得:(n-2)180°=360°,解得n=9,答:这个多边形的边数为9.19、:(1)证明:∵BD⊥CD,EF⊥CD(已知),∴BD∥EF(垂直于同一直线的两条直线平行),∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AD∥BC(内错角相等,两直线平行).(2)∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=25°.∴∠C=90°-∠3=65°.20、:(1)∵MF∥AD,FN∥DC,∠BAD=106°,∠BCD=64°,∴∠BMF=106°,∠FNB=64°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=53°,∠FNM=∠MNB=32°,∴∠F=∠B=180°-53°-32°=95°;(2)∠F=∠B=95°,∠D=360°-106°-64°-95°=95°.21、:(1)如图,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1-∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.22、:(1)过点C作CH∥DF,∵BE∥DF,∴BE∥DF∥CH,∴∠FDC=∠DCH,∠BCH=∠EBC,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,∴∠FDC=∠CDM,∠EBC=∠CBN,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.。

人教版八年级数学上11.1.3三角形的稳定性精选练习2.docx

人教版八年级数学上11.1.3三角形的稳定性精选练习2.docx

初中数学试卷
桑水出品
11.1.3 三角形的稳定性
1.起重机的底座、人字架、输电线路支架等,在日常生产生活中,很多物体都采用三角形结构,是利用三角形的__________.
2.有下列图形:①正方形;②长方形;③直角三角形;④平行四边形.其中具有稳定性的是_________.(填序号).
3.如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是
_________.
4.要使五边形木架(用5根木条钉成)不变形,至少要钉上_________根木条.
5.铁栅门和多功能挂衣架能够伸缩自如,是利用四边形的_________.
6.在建筑工地我们常可看见如图7-31所示,用木条EF固定矩形门框ABCD的情形.这种做法根据( )
A.两点之间线段最短
B.两点确定一条直线
C.三角形的稳定性
D.矩形的四个角都是直角
7.探究:如图,用钉子把木棒AB、BC和CD分别在端点B、C处连接起来,用橡皮筋把AD连接起来,设橡皮筋AD的长是x,
(1)若AB=5,CD=3,BC=11,试求x的最大值和最小值;
?
(2)在(1)的条件下要围成一个四边形,你能求出x的取值范围吗
答案:(1)三角形的稳定性和四边形的不稳定性 (2)由折叠示意图b的第三个图形和第四个图形可知,在折叠过程中有:AB+AD=CD+BC,即6+AD=15+30,AD=39[ ]
参考答案:1. 稳定性 2.③ 3.三角形具有稳定性 4.2 5.不稳定性
6.C
7. (1)最大值为19,最小值为3 (2)3<x<19。

人教版八年级上册数学 11.1.3+三角形的稳定性 同步练习

人教版八年级上册数学   11.1.3+三角形的稳定性   同步练习

11.1.3三角形的稳定性同步练习一.选择题1.下列图形中,不具有...稳定性的是()A.B.C.D.2.下列图形具有稳定性的是()A.菱形B.三角形C.圆形D.正方形A.三角形的内角和是180C.三角形两边之和大于第三边4.如图是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,木条不能固定形状时的两点是(A.B.C.D.6.如图中的五角星是用螺栓将两端打有孔的5根木条连接而构成的,它的形状不稳定.如果用在图中木条交叉点打孔加装螺栓的办法来达到使其形状稳定的目的,且所加螺栓尽可能少,那么需要添加螺栓()A.1个B.2个C.3个D.4个7.图所示,建筑工地上的塔吊机的框架设计成很多个三角形组成,这样做的数学根据是()A.三角形的内角和等于180 B.三角形两边的和大于第三边C.三角形两边的差小于第三边D.三角形具有稳定性8.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为使它稳固,需要在窗框上钉一根木条,这根木条应钉在()A.E,H两点之间B.E,G两点之间C.F,H两点之间D.A,B两点之间9.在实际生活中,我们经常利用一些几何图形的稳定性或不稳定性,下列实物图中利用了稳定性的是()A.升降台B.电动伸缩门C.栅栏D.窗户10.杨师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根二、填空题1.如图,工程建筑中的屋顶钢架经常采用三角形的结构,其中的数学道理是三角形具有性.2.下列四个图形中,具有稳定性的是(填序号)①正方形②长方形③平行四边形④直角三角形3.随着人们物质生活的提高,手机成为一种生活中不可缺少的东西,手机很方便携带,但唯一的缺点就是没有固定的支点.为了解决这一问题,某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的.4.如图,张叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.5.如图是一座通信塔的一部分,可以看到它由三角形结构组成,其应用的数学原理是:____________.6.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上_____根木条.三、解答题1.如图,ABCD是四根木条钉成的四边形,为了使它不变形,小明加了根木条AE,小明的做法正确吗?说说你的理由.2.乐乐用7根木条钉成一个七边形的木架,他为了使该木架稳固,想在其中加上四根木条,请你在图1、2、3中画出你的三种想法,并说明加上木条后使该木架稳固所用的数学道理3.我们知道,四边形不稳定,易变形.工人师傅现做了一个正方形窗框(如图),为了防止它在安装前变形,你有什么办法?请画图说明.4.木工师傅在做完门框后为防止变形,常像下图中所示的那样,钉上两条斜的木条,即图中的AB,CD两个木条,这是根据数学上什么原理?5.被外界赞誉为世界奇迹的港珠澳大桥(下图),是连接香港、珠海、澳门的超大型跨海通道,全长55公里,无论从施工难度,还是从施工的复杂度,甚至从施工周期的长短来看,都足以配得上这样的称赞.(1)观察大桥图形,有好多的拉线,这些拉线和大桥的其他部位组成的图形形状是三角形,这样设计是利用了三角形的;(2)用八根木条钉成的如图所示的八边形木架,要使它不变形,至少要再钉根木条,在图上画出来.。

人教版八年级数学上册 11.1.3三角形的稳定性 同步训练

人教版八年级数学上册    11.1.3三角形的稳定性    同步训练

人教版八年级数学上册11.1.3三角形的稳定性同步训练一、选择题(共10小题,3*10=30)1.工人师傅砌门时,常用木条固定长方形门框,使其不变形,这样做的根据是()A.两点之间线段最短B.长方形的对称性C.三角形的稳定性D.长方形的四个角都是直角2.如图,盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,使其不变形,这种做法的根据是()A.两点之间,线段最短B.三角形的稳定性C.长方形的四个角都是直角D.四边形的稳定性3.下列图形具有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形4.下列图形具有稳定性的是()5.下列没有利用三角形的稳定性的是()A.自行车的三角形车架B.三角形房架C.照相机的三脚架D.长方形门框的斜拉条6. 下列图形中不具有稳定性的是()7.下列图形中,不具有稳定性的是()8.如图,工人师傅加工了一个长方形窗框ABCD,点E,F,G,H分别是四条边的中点,为使四边形稳固,需要钉一根木条,这根木条不应钉在()A.A,C两点B.E,G两点C.B,F两点D.G,H两点9.如图所示的五角星是用螺栓将两端打有孔的5根木条连接而构成的,它的形状不稳定.如果用在图中木条交叉点打孔加装螺栓的办法来达到使其形状稳定的目的,那么至少需要添加螺栓() A.1个B.2个C.3个D.4个10.如图,人字梯中间一般会设计一“拉杆”,这样设计的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等11.在生活中,我们常常看到在电线杆的两侧拉有两根钢线用来固定电线杆(如图),这样做的数学原理是________________.12. 人站在晃动的公共汽车上,若分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了________________.13.如图所示,建高楼常需要用塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是应用了三角形的哪个性质?答:____________.(填“稳定性”或“不稳定性”)14.如图,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案是______________ (填序号).15.如图是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是在_________两点上钉木条.16.有下列图形:①正方形;②长方形;③直角三角形;④平行四边形.其中具有稳定性的是_________.(填序号).17.铁栅门和多功能挂衣架能够伸缩自如,是利用四边形的_________.18.如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是_________.19.(6分) 如图①是用四根木条钉的四边形,为了使它不变形,小芳加了木条AE,如图②所示.小芳的做法对吗?并说明理由20.(6分)如图,说说下列装置哪些应用了三角形的稳定性,哪些应用了四边形的不稳定性.21.(7分) 如图,用钉子把木棒AB、BC和CD分别在端点B、C处连接起来,用橡皮筋把AD连接起来,设橡皮筋AD的长是x,(1)若AB=5,CD=3,BC=11,试求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出x的取值范围吗?22.(9分) 根据所了解的平面图形的特性说明下列设计中的数学原理.(1)用两个钉子把木条固定在墙上;(2)有一个不稳当的凳子,一名同学找来两根木条钉成如图①所示的样子;(3)如图②,用三个边长相同的四边形做成的挂衣架.23.(9分)如图,我们知道要使四边形木架不变形,至少要钉一根木条,要使五边形木架不变形,至少要钉几根木条?要使六边形木架不变形,至少要钉几根木条?要使n边形木架不变形,又至少要钉多少根木条?(1)请完成下表:(2)要使12边形木架不变形,至少要钉________根木条;(3)有一个多边形木架,至少要钉18根木条,才能使它不变形,则这个多边形的边数是________.24.(9分)六边形钢架ABCDEF由六条钢管连接而成,如图所示,为使这一钢架稳固,试用三条钢管连接使之不能活动,请画出三种方法.参考答案1-5CBCAD 6-10BBBAC11. 三角形的稳定性12. 三角形的稳定性13. 稳定性14. ③15.E,F16. ③17. 不稳定性18. 三角形具有稳定性19. 解:小芳的做法对.理由是三角形具有稳定性.20. 解:应用了三角形稳定性的有:钢架桥、起重机、屋顶钢架;应用了四边形不稳定性的有:活动滑门21. 解:(1)最大值为19,最小值为3(2)3<x<1922. 解:(1)两点确定一条直线.(2)三角形的稳定性.(3)四边形的不稳定性.23. 解:(1)2,3,n-3(2)9(3)2124. 解:如图所示.(答案不唯一)。

人教版八年级上册数学11.1.3三角形的稳定性练习及答案解析

人教版八年级上册数学11.1.3三角形的稳定性练习及答案解析

11.1.3 三角形的稳固性基础知识一、选择题1.如图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这类做法的根据是()A .两点之间线段最短B .矩形的对称性C.矩形的四个角都是直角 D .三角形的稳固性答案: D2.王师傅用 4 根木条钉成一个四边形木架,如图.要使这个木架不变形,他起码还要再钉上几根木条?(A.0 根 B.1 根)C. 2 根D. 3 根答案: B3.如图,一扇窗户翻开后,用窗钩AB 可将其固定,这里所运用的几何原理是()A .三角形的稳固性B .两点之间线段最短C.两点确立一条直线 D .垂线段最短答案:A4.以下图形中拥有稳固性的是(A .直角三角形B.长方形)C.正方形D.平行四边形答案:A5.以下图中拥有稳固性的是()A.B.C.D.答案: C6.如图小明做了一个方形框架,发现很简单变形,请你帮他选择一个最好的加固方案()A.B.C.D.答案: B7..用八根木条钉成以下图的八边形木架,要使它不变形,起码要钉上木条的根数是()A.3 根 B.4 根C.5 根D.6 根答案: C6.以下图形中,不拥有稳固性的是()A.B.C.D.答案: B7.为了使一扇旧木门不变形,木匠师傅在木门的反面加钉了一根木条,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形拥有稳固性D.两直线平行,内错角相等答案: C8.不是利用三角形稳固性的是()A .自行车的三角形车架B.三角形房架C.照相机的三角架 D .矩形门框的斜拉条答案: C8.用五根木棒钉成以下四个图形,拥有稳固性的有()A.1个B. 2个C.3个D. 4个答案: A9.以下图,拥有稳固性的有()A.只有( 1),( 2)B.只有( 3),( 4)C.只有( 2),( 3)D.( 1),( 2),( 3 )答案: C10.图中的五角星是用螺栓将两头打有孔的 5 根木条连结而组成的,它的形状不稳固.假如用在图中木条交错点打孔加装螺栓的方法来达到使其形状稳固的目的,且所加螺栓尽可能少,那么需要增添螺栓()A.1 个 B.2 个C.3 个D.4 个答案: A二、填空题1.(2012?茂名)以下图,建高楼常需要用塔吊来吊建筑资料,而塔吊的上部是三角形构造,这是应用了三角形的哪个性质?答:.(填“稳固性”或“不稳固性”)答案:稳固性2.在生活中,我们经常会看到以下图的状况,在电线杆上拉两根钢筋来加固电线杆,这样做的依照是.答案:三角形拥有稳固性3.空调安装在墙上时,一般都会象以下图的方法固定在墙上,这类方法应用的数学知识是.答案:三角形拥有稳固性人站在晃动的公共汽车上.若你分开两腿站立,则需伸出一只手去抓栏杆才能站稳,这是利用了.答案:三角形的稳定性4.如图,是边长为 25cm 的活动四边形衣帽架,它应用了四边形的.答案:四边形的不稳固性.三、解答题答案:答案:能力提高答案:答案:答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7、一个等腰三角形,一条边长8厘米, 另一边长3厘米,第三条边长( 8 ) 厘米。
8、在ΔABC中,AB=9,BC=2,并 且AC为奇数,那么ΔABC的周长 20 。 为
9.若一个等腰三角形的周长为18厘米, 一边长为4厘米,求其余两边长.
10.等腰三角形的一边长是另一边长 的两倍,周长等于20厘米,求三边 长.
4、为了使一扇旧木门不变形,木工师傅在木门的背 三角形具有稳定性 面加钉了一根木条这样做的道理是__________
5、已知一个三角形的两条边是7厘米和8 厘米,则第三条边不可能是( D) A、2厘米 B、3厘米 C、14厘米 D、1厘米 6、有四根长2厘米,7厘米,6厘米,10厘 米的小棒,冬冬从中取出三根围成三角 形,这样的三角形一共能围成( 2 ) 个,这些三角形的周长,最大的是( 23 ) 厘米,最小的是( 15 )厘米。
13.已知在正方形网格中,每个小方格都是边 长为1的正方形,A,B两点在小方格的顶点上, 位置如图所示,点C也在小方格的顶点上,且以 A,B,C为顶点的三角形面积为1,则点C的个 数为( D )
A.3个 C.5个 将:且以A,B,C为顶点的 三角形面积为1,改为等腰 三角形呢
以A为圆心,AB为半径画圆,得4点 以B为圆心,AB为半径画圆,得4点
16.你会数三角形吗?下列各图中各 有几个三角形?

(1) (2) (3) (n)
( 1+2 ) ( 1+2+3 )(1+2+3+4)
数完后请说出你发现的规律。
( )
1+2+3+....+(n+1)=[1+(n+1)](n+1) ÷2
17.已知x,y,z是三角形的三条边,化简式子: ∣x-y-z∣+∣-x+y-z∣+∣z-x-y∣ 18.已知a,b,c为△ABC的三边长,b,c满足 (b-2)2+∣c-3∣=0,且a为方程 ∣x-4∣=2的解,求△ABC的周长,并判断 △ABC的形状。
三角形具有稳定性, 而四边形具有灵活性
三角形的 角平分线
三角形的 中线
三角形的三条 重要的线段
锐角三角形的中线
钝,锐,直角三角 形的角平分线
锐,直,钝角 三角形的高
三角形的高
锐,直,钝角三 角形三条高的 交点位置
面积问题
三角形特性的认识 1、由三条 线段围成的图形,叫做三角形,三 角形具有 稳定 性。 2、一个三角形最多可以画( C)条高。 A、一 B、二 C、三 D、四 3、下面各组中的三条线段,可以围成一个三角 形的是( B ) A、2、4、6 B、2、5、5 C、2、2、5 D、3、4、7
解: ∵ △ABD的周长=AB+AD+BD △ACD的周长=AC+AD+DC 5 3 ∴ △ABD的周长与△ACD的周长之差 = (AB+AD+BD)-(AC+AD+DC) ∵ AD是中线,∴ BD=CD B D E C ∴上式=AB-AC=5-3=2 而BD=DC ∵ AE是高 1 ∴ △ABD与△ACD ∴ S△ABD= 2 BD×AE 的面积相等. 1 S△ACD= 2 DC×AE
11.如图, △ABC是钝角三角形,请你作出: (1)BC边上的高 (2)AC边的中线 (3) ∠C的平分线
D E A C
F
B
12.如下图中,已知AD、AE分别是△ABC的 中线、高. 有AB=5cm,AC=3cm,则△ABD 2 与△ACD的周长之差为 _____, △ABD与 相等 △ACD的面积关系为_______. A
三角形三 边的关系
按角分: 直角三角形, 锐角三角形, 钝角三角形
三角形的边
特殊的三 角形 三角形 的分类
三角形的有 关概念和表 示方法 按边分
等边三角形
三边都不相 等的三角形 底边和腰 不相等的 等腰 等腰三角形 三角 形 等边三角形
直角三角形的中线
钝角角形 的中线
三角形的一条中线 把三角形分成面积 相等的两部分
B.4个
作AB的垂直平分线,得4点
则共12个
. . . . . .
D.6个
14.如图7-18,△ABC中,∠ACB=90°, 把△ABC沿直线AC翻折180°,使B点落 在B′点的位置,则线段AC是△AB B′ 的 高,中线,角平分线 ______.
15.如图7-19,在△ABC中,已知点D、E、F 分别为BC、AD、CE的中点, 1 且S△ABC=4c m2,则S阴影=__________.
昨天作业第8题答案 解:∵AD和CE都是△ABC的高 1 1 ∴S △ABC = 2 BC ﹒AD= 2 AB ﹒CE ∴ BC ﹒AD= AB ﹒CE A 即 4AD=2CE E ∴AD:CE=1:2
B
D
C
注意:同一个三角形的面积是相等的
三角形练习
三角形两边之和 大于第三边,两 边之差小于第三 边 等腰三角形
相关文档
最新文档