3.3泰勒公式 [兼容模式] (1)

合集下载

3.3 泰勒公式

3.3 泰勒公式

=
n
R n (x ) − R n (x 0 )
(x − x 0 )
n +1
−0
=
(n + 1) (ξ1 − x 0 )
R n′ (ξ1 )
n

+ 1) (t − x 0 )
在以 x 0 及 ξ1 为端点的区间上满足柯西中值定理的
R n′ (ξ1 ) − R n′ ( x 0 )
n
条件,于是有 ξ2 介于 x 0 及 ξ1 之间,满足
R n′ (ξ1 )
n
=
n ( n + 1) (ξ2 − x 0 )
= R n(
n + 1)
R n′′ (ξ2 )
n −1
=L =
n +1 R n( ) (ξ )
(n
+ 1) !

这里 ξ 介于 x 0 及 ξn 之间,注意到 f (n +1) (x )
R n (x ) =
n +1 f ( ) (ξ )
于是
f (4) = 2 , f ′ ( 4) =
1 , f ′′ ( 4 ) = − 1 , f ′′′ ( 4 ) = 3 , 4 32 256
按x
− 4 的幂展开,得到带有拉格朗日型余项的
3 阶泰勒公式为
x = 2+
2 3 1 1 1 (x − 4 ) − 64 (x − 4 ) + 512 (x − 4 ) + R 3 (x ) , 4
n f ′ ( x ) = f ′′ ( x ) = L = f ( ) ( x ) = e x ,
于是 f (0)
n = f ′ ( 0 ) = f ′′ ( 0 ) = L = f ( ) ( 0 ) = 1 ,麦克劳林公式为

taylor公式(泰勒公式)通俗+本质详解

taylor公式(泰勒公式)通俗+本质详解

泰勒公式,也称为泰勒展开式,是微积分中非常重要的定理之一。

它是以17世纪英国数学家布饶·泰勒(Brook Taylor)的名字命名的,用于将一个函数在某一点附近用多项式逼近的方法。

泰勒公式可以说是微积分中的瑰宝,它不仅在数学领域有着重要的应用,而且在物理、工程等其他领域也有着广泛的应用。

让我们来深入了解泰勒公式的本质。

泰勒公式的本质是利用函数在某一点的导数来逼近函数的值。

具体来说,对于一个光滑的函数f(x),在点a处的泰勒展开式可以表示为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + f'''(a)(x-a)³/3! + ...其中f'(a)、f''(a)等分别表示函数f(x)在点a处的一阶、二阶导数等。

这意味着,通过泰勒公式,我们可以用函数在某一点的导数来逼近函数在该点附近的取值。

泰勒公式的通俗理解可以通过一个简单的例子来说明。

假设我们要计算sin(x)在x=0处的近似值,我们可以利用泰勒公式展开sin(x):sin(x) = x - x³/3! + x⁵/5! - x⁷/7! + ...如果我们只取前面几项,就可以得到sin(x)在x=0处的近似值。

这就是泰勒公式在实际问题中的应用,通过泰勒公式,我们可以用多项式函数来近似表示复杂的函数,从而简化计算和分析。

对于泰勒公式的书写方式,我个人建议采用序号标注的方式,如下所示:1. 泰勒公式的本质是利用函数在某一点的导数来逼近函数的值。

2. 泰勒公式可以通过一个多项式来近似表示一个光滑的函数。

3. 通过泰勒公式,我们可以用函数在某一点的导数来逼近函数在该点附近的取值。

我想共享一下我的个人观点和理解。

泰勒公式的重要性不仅在于它可以简化复杂函数的计算和分析,还在于它揭示了光滑函数在某一点附近的局部性质。

常用泰勒公式

常用泰勒公式

常用泰勒公式泰勒公式是一种近似计算函数值的方法,它是通过函数在某一点的导数值来逼近该点附近的函数值。

在数学和物理学领域,泰勒公式被广泛应用于函数近似、函数求导和数值计算等方面。

下面将介绍泰勒公式的常用形式和应用。

泰勒公式的一般形式是:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! +f'''(a)(x-a)³/3! + ...其中,f(x) 是要求解的函数,在点 x 处的近似值;f(a) 是函数在点 a 处的值;f'(a) 是函数在点 a 处的导数值;f''(a) 是函数在点 a 处的二阶导数值;以此类推。

泰勒公式的原理是利用导数将函数表示为一系列单项式的和,然后根据需要的精度截断级数,得到函数的近似值。

当级数的项数增加时,近似值的精度也会提高。

泰勒公式的应用十分广泛。

例如,在计算机科学领域,泰勒公式被用于开发数值计算算法,例如计算机图形学中的曲线和曲面绘制,以及物理引擎中的碰撞检测和运动模拟等。

在物理学中,泰勒公式被用于近似解析解不存在的问题,例如非线性的运动方程。

此外,泰勒公式还可以用于求解微积分中的极限、导数和积分等问题。

泰勒公式有很多变种形式,例如麦克劳林级数、希尔伯特级数和泊松级数等,它们在不同的数学和物理学问题中具有不同的应用。

总结起来,泰勒公式是一种常用的近似计算函数值的方法。

它通过函数在某一点的导数值来逼近该点附近的函数值,具有广泛的应用领域和实际价值。

无论是在数学、物理还是计算机科学领域,我们都可以看到泰勒公式的身影。

高数上3.3 泰勒公式

高数上3.3 泰勒公式

f ( x) f ( x0 ) f '( x0 )( x x0 )
f
(n)
(x 0
)
(x
x
)n
R
(x)
n!
0
n
用类似的证明方法,我们可以证得另外一种带有 皮亚诺余项的泰勒公式.
设 f (x (n) ) 存在,则 0
f ( x) f ( x0 ) f '( x0 )( x x0 )
例 2 求 f ( x) e x 的 n 阶麦克劳林公式.
解 f ( x) f ( x) f (n)( x) e x ,
f (0) f (0) f (0) f (n)(0) 1,
注意到 f ( (n1) x) e x 代入泰勒公式, 得
e
x
1
x
x2 2!
xn n!
ex (n 1)!
但这种近似等式存在明显不足, 首先是精度 不高,误差会比较大,其次是误差无法估计.
能否用其它较简单的曲线函数来近似替代 复杂的连续函数f(x)呢?
事实上多项式函数
Pn (x) a0 a1x a2 x2 an xn
是一种处处连续可导分析性质很好的函数, 在n>1时,它是一条连续的曲线函数。 因此在讨论较复杂的连续函数f(x)在某一个 邻域内的分析性质时,经常用多项式函数来 近似代替较复杂的连续函数。
f
(5)
(
)
6
2
.
例1 写出函数 f ( x) x3ln x 在 x0 1 处的四阶
泰勒公式.

f
(4) ( x)
6 x
,
f (4)(1) 6,
f
(5)(
x)
6 x2

泰勒公式常用公式

泰勒公式常用公式

泰勒公式常用公式在数学中,泰勒公式是一个非常有用的工具,它用于求解函数类型的函数的极限,例如求解一元函数,二元函数,幂函数和指数函数的极限。

泰勒公式而言,它是一种通过分析函数关于某一点的导数来求解函数极限的方法,其原理是使用附近函数值与其导数的变化进行乘积求和来求解函数极限。

泰勒公式是一种特殊类型的数学公式,它可以用来求解连续函数的极限,从而计算函数在某一点的导数,这里所谓的极限是指函数的导数和函数的值的比值在某一点的值趋近于某一值。

泰勒公式即可以用来求解连续函数的极限,也可以用来解决连续函数的微分方程。

一般来说,泰勒公式是一个非常有用的数学工具,它可以用来准确的求解函数的极限,从而得出函数的导数,因此有许多学术研究中使用到了它,比如物理学、工程学和系统工程等领域中,泰勒公式更经常用于求解微分方程。

泰勒公式的具体表达形式是,在某一点x处,函数f的n阶邻域的值可以使用以下公式来表示:f(x) = f(x) + (x-x)f’(x) + (x x)^2*f’’(x)/2! + + (x x)^n*f^(n)(x)/n! +其中,f(x)表示函数f在点x处的值,f’(x)表示函数f关于点x的一阶导数,f’’(x)表示函数f关于点x的二阶导数,f^(n)(x)表示函数f关于点x的n阶导数,(x x)^n表示x与x之间的差的n 次方,n!表示n的阶乘。

泰勒公式的有效性被越来越多的科学研究验证,它的应用领域也越来越广泛,无论是在物理学,工程学还是系统工程等学科,泰勒公式都有着不可替代的作用,从而提高了研究的效率,有利于科学的发展。

在实际应用中,我们通常使用以下几种泰勒公式:1.函数的泰勒公式:在实际计算中,我们可以使用以下泰勒公式来计算x处幂函数的极限:f^(n)(x) = f(x) + (x-x)f’(x) + (x x)^2*f’’(x)/2! + + (x x)^n*f^(n)(x)/n!2. 一元函数的泰勒公式:对于一元函数的计算,我们可以使用以下泰勒公式:f(x) = f(x) + (x-x)f’(x) + (x x)^2*f’’(x)/2! + + (x x)^n*f^(n)(x)/n!3. 二元函数的泰勒公式:对于二元函数的极限计算,我们可以使用以下公式:f(x,y) = f(x,y) + (x-x)f’_x(x,y) + (y-y)f’_y(x,y) + (x x)^2*f”_xx(x,y)/2! + (x x)*(y-y)*f”_xy(x,y)+ (y y)^2*f”_yy(x,y)/2! +4.数函数的泰勒公式:对于指数函数的极限计算,我们可以使用以下公式:f(x) = e^x = f(x) + (x-x)f’(x) + (x x)^2*f’’(x)/2! + + (x x)^n*f^(n)(x)/n!总之,泰勒公式是一种非常重要的计算工具,它可以使我们精准的求解函数的极限,从而得出函数的导数,它的应用领域也越来越广泛,从而为科学研究提供了有力的帮助。

泰勒公式ppt课件精选全文完整版

泰勒公式ppt课件精选全文完整版
令n=2m,于是有
sin x
x
x3 3!
x5 5!
(1)m1 x2m1 (2m 1)
!
R2m
(
x)
其中 R2m (x)
s(in1()mxcos2(m2x1) ) x2m1 (0 1)
(2m 1) !
精选编辑ppt
18
机动 目录 上页 下页 返回 结束
类似地,可得
cos x
1 x2 2!
x4 4!
f (k)( x0 )
n!an f (n) ( x0 ). (k 0,1,2,, n)
代入 Pn ( x)中得
Pn ( x)
f ( x0 )
f ( x0 )( x x0 )
f
( x0 2!
)
(
x
x0
)2f(n)( x n!)(x
x0
)n
精选编辑ppt
10
机动 目录 上页 下页 返回 结束
三、泰勒(Taylor)中值定理
泰勒(Taylor)中值定理 如果函数 f ( x) 在含有 x0 的某个开区间(a, b) 内具有直到(n 1) 阶的导数,则
当 x在(a,b)内时, f ( x)可以表示为( x x0 )的一个 n次多项式与一个余项Rn ( x)之和:
f (x)
f ( x0 )
精选编辑ppt
16
机动 目录 上页 下页 返回 结束
例1:求函数 f (x) ex 的n阶麦克劳林展开式.
解:因为 f'x f''x fn x e x ,
所以 f0 f'0 f''0 fn 0 1 .

ex
1 x x2

3.3 泰勒公式

3.3 泰勒公式
答案
2
2 4

cos( ) 2+2

+1
cos = 1 − + − ⋯ + (−1)
+ (−1)

,
2! 4!
(2)!
(2 + 2) !
(0 < < 1)
第三节 泰勒公式
第三章 微分中值定理与导数的应用
例3 求() = ln( 1 + )的阶麦克劳林公式.



() (0) = (−1)−1 ( − 1)!,
称为函数()在0 处(或按( − 0 )的幂展开)的次泰勒多项式.

() (0 )
(2) () = ෍
( − 0 ) + () ≈ ()
!
=0
∎佩亚诺余项 () = (( − 0 ) ) 不能具体估算出误差的大小.
+1 ( )
∎拉格朗日余项 () =
″ ( )
( − 0 )2 , 在0 与之间.
产生的误差为 1 () =
2!
第三节 泰勒公式
第三节 泰勒公式
第三章 微分中值定理与导数的应用
第三章 微分中值定理与导数的应用
(3)当 = 0时, 拉格朗日余项的泰勒公式变成拉格朗日中值公式
() = (0 ) + ′ ( )( − 0 )

2
() = (0) + (0) +
+ ⋯+
+ ( )
2!
!
称为麦克劳林(Maclaurin)公式.
第三节 泰勒公式
第三节 泰勒公式
第三章 微分中值定理与导数的应用

3.3 Taylor(泰勒)定理

3.3 Taylor(泰勒)定理

x0 )n1 . (

x0

x
之间)
13
3.3 Taylor定理
定理 3.8 设函数 f 在 x0 的某邻域 N ( x0 ) 内具有 n 1阶导
数,则对 x N ( x0 ) ,有
f (x)
f ( x0 )
f ( x0 )(x x0 )
f
( 2
x0 !
)
(
x
x0
)2
f
(n) ( x0 ) n!
(k 1)! (1 x)k

故 ak
f (k ) (0) (1)k1 (k 1)! (1)k1
k!
k!
k
(k 1,2, , n) ,
ln(1 x) x x 2 x 3 x4 (1)n1 x n o( x n ) ,
234
n
9
3.3 Taylor定理
(3) f ( x) sin x ∵ f (n)( x) sin( x n ) ,
f ( x0 )( x x0 )
f
(n)( x0 n!
)
(
x
x0
)n
],
Rn( x) f ( x) Pn( x) 在 (a, b) 内具有直到 (n 1) 阶的导数,且
Rn ( x0 ) 0 , Rn ( x0 ) 0 , Rn( x0 ) 0 ,…, Rn(n) ( x0 ) 0 由洛必达法则知 lim Rn ( x) lim Rn ( x)
f 在 x0 处带有 Peano 余项的 n 阶 Taylor 公式。
特别地,称在 x0 0 的泰勒公式为 Maclaurin(麦克劳林)公式:
f ( x) f (0) f (0)x f (0) x2 f (n) (0) xn o( xn )

泰勒公式展开式大全

泰勒公式展开式大全

泰勒公式展开式大全泰勒公式是数学中的一个重要概念,它可以用来表示函数在某一点的光滑性质。

通过泰勒公式,我们可以将一个复杂的函数表示为一个无穷级数的形式,这对于分析函数在某一点的性质和行为非常有帮助。

在本文中,我们将为您详细介绍泰勒公式的展开式,并给出一些常见函数的泰勒展开式的具体表达。

泰勒公式是一个非常重要的数学工具,它可以用来近似表示函数在某一点的取值。

泰勒公式的一般形式如下:\[ f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots \]其中,\( f(x) \) 是要表示的函数,\( a \) 是展开点,\( f'(a) \) 是函数在点 \( a \) 处的一阶导数,\( f''(a) \) 是函数在点 \( a \) 处的二阶导数,以此类推。

通过泰勒公式,我们可以将函数 \( f(x) \) 在点 \( a \) 处展开为一个无穷级数的形式,这对于研究函数在该点的性质和行为非常有帮助。

接下来,我们将给出一些常见函数的泰勒展开式的具体表达。

1. 指数函数的泰勒展开式:指数函数 \( e^x \) 在点 \( a \) 处的泰勒展开式为:\[ e^x = e^a + e^a(x-a) + \frac{e^a}{2!}(x-a)^2 + \frac{e^a}{3!}(x-a)^3 + \cdots \]2. 三角函数的泰勒展开式:正弦函数 \( \sin(x) \) 在点 \( a \) 处的泰勒展开式为:\[ \sin(x) = \sin(a) + \cos(a)(x-a) \frac{\sin(a)}{2!}(x-a)^2 \frac{\cos(a)}{3!}(x-a)^3+ \cdots \]余弦函数 \( \cos(x) \) 在点 \( a \) 处的泰勒展开式为:\[ \cos(x) = \cos(a) \sin(a)(x-a) \frac{\cos(a)}{2!}(x-a)^2 + \frac{\sin(a)}{3!}(x-a)^3 + \cdots \]通过以上的例子,我们可以看到泰勒展开式的具体表达形式。

泰勒公式泰勒公式是什么

泰勒公式泰勒公式是什么

泰勒公式泰勒公式是什么知道泰勒公式么?小编为大家带来了泰勒公式是什么,谢谢查看。

泰勒公式是什么在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。

如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。

泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

泰勒公式得名于英国数学家布鲁克·泰勒。

他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。

实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。

泰勒公式的余项可以用于估算这种近似的误差。

简介数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。

如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值的相应倍数作为系数构建一个多项式来近似函数在这一点的邻域中的值。

带拉格朗日余项的泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

泰勒公式得名于英国数学家布鲁克·泰勒。

他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。

公式定义泰勒公式(Taylor's formula)形式1:带Peano余项的Taylor公式:若f(x)在x0处有n阶导数,则存在x0的一个邻域(x0-δ,x0+δ)内任意一点x(δ>0),成立下式:f(x)=f(x0)+f'(x0)/1!*(x-x0)+f''(x0)/2!*(x-x0)^2+…+f(n)(x0)/n!(x-x0)^n+o((x-x0)^n)f(n)(x)表示f(x)的n阶导数,f(n) (x0)表示f(n)(x)在x0处的取值(可以反复使用L'Hospital法则来推导)形式2::带Lagrange余项的Taylor公式:若函数f(x)在闭区间[a,b]上有n阶连续导数,在(a,b)上有n+1阶导数。

泰勒原理知识点总结

泰勒原理知识点总结

一、泰勒公式泰勒公式是泰勒原理的重要内容之一。

对于一个光滑函数f(x),泰勒公式给出了在某一点a处的函数值和导数值的近似表达式。

泰勒公式的一般形式如下:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ... + f^n(a)(x-a)^n/n! + R_n(x)其中,f^n(a)代表函数f在点a处的n阶导数,R_n(x)称为余项,用来表示近似值和实际值之间的误差。

当n趋向于无穷大时,余项R_n(x)趋于零,即泰勒公式能够准确地描述函数在点a附近的行为。

泰勒公式的应用范围非常广泛,它可以用来求函数值的近似解、计算函数在某一点的导数值、估计误差范围等。

泰勒公式的证明依赖于泰勒中值定理,它是微积分中的一个基本定理,用来描述函数在某一区间内的平均变化率。

泰勒中值定理的一般形式如下:f(b) - f(a) = f'(c)(b-a)其中,a和b是区间[a, b]内的两个点,c是在a和b之间的某个点,且f(x)是一个可微函数。

泰勒中值定理表明,对于一个可微函数f(x),在区间[a, b]内存在一个点c,使得区间两端的函数值的差等于该点处的导数值与区间长度的乘积。

泰勒中值定理是泰勒公式的重要基础,它为泰勒公式的推导提供了重要的支持。

二、泰勒级数泰勒级数是泰勒公式的一种特殊形式,它用无限项级数的形式来表达函数在某一点的近似值。

泰勒级数的一般形式如下:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...泰勒级数的收敛性是泰勒原理的一个重要性质,它决定了泰勒级数在某一点附近的逼近程度。

对于一个可微函数,如果它的泰勒级数在某一点收敛,那么该函数在该点附近可以用泰勒级数来近似表示。

高等数学期末复习:3-3n 泰勒公式

高等数学期末复习:3-3n 泰勒公式

(1 x)100 1 100x 100 99 x2 o( x2 ) 2
(1
1 2 x )40
1 40 (2x)
(40)(41) (2x)2 2
o( x2 )
(1
1 2 x )60
1 60 2x
(60)(61) (2x)2 2
o( x2 )
分子 1 60x 1950x2 o( x2 ) 1 60x
误差 Rn( x) f ( x) Pn( x)
Pn和 Rn的确定
分析:
1.若在 x0 点相交
y

似 程Biblioteka Pn ( x0 ) f ( x0 )
度 越
2.若有相同的切线
来 越
Pn( x0 ) f ( x0 )
好 3.若弯曲方向相同
Pn( x0 ) f ( x0 )
o
x0
y f (x)
x
假设 Pn(k) ( x0 ) f (k) ( x0 ) k 1,2,, n
原式
lim
x0
1950x2 x2
o(
x2
)
1950.
例3 求极限lim[ x x2 ln(1 1 )]
x
x

ln(1 x) x x2 x3 o(x3 ) 23
111 1
1
ln(1
) x
x
2x2
3x3
o( x3 )
x2 ln(1 1 ) x 1 1 o( 1 )
x
2 3x x
当n 0时,泰勒公式变成拉氏中值公式
f ( x) f ( x0 ) f ( )( x x0 ) (在x0与x之间)
例7.证明当x 0时,
x2 x3 x4

同济第3版-高数-(3.3) 第三节 泰勒公式

同济第3版-高数-(3.3) 第三节 泰勒公式
R n( x )= o[( x - x 0)]n .
(1) 泰勒中值定理及其意义
泰勒中值定理
如果函数 f( x )在含有 x 0 的某个开区间( a ,b )内具 有直到 n + 1 阶的导数,则对任一 x ( a ,b ),有
f x
f x0
f x0 x x0
1 2!
f x0 x x0 2 L
究竟有多小,即 R n( x )具体是( x - x 0 )的几阶无穷小。 由高阶无穷小阶的定义,就是要由极限
lim
xx0
Rn x x x0k
A0
去推断 k 的值有多大。
因此余项 R n( x )定量估计的问题最终归结为确定 k
的值。从计算精度考虑,自然希望 k 的值越大越好。
从形式上看
lim
于 x 和 0 之间,故可表为 = x ,0 < < 1 . 通常称此
时的泰勒公式为马克劳林公式,即
f x
f 0
f 0 x
1 2!
f 0 x 2 L
1 n!
f n 0 x n
f n1 x
n 1 !
x n1.
马克劳林公式形式简单,应用方便,且以马克劳
林公式对函数进行讨论并不会损失讨论的一般性。
(2) 多项式系数的选择及相应条件的设置 考虑在点 x = x0 的邻域内用多项式 P n( x )表示函数
f( x ),就是选择合当系数 a 0 ,a1,a 2,… , a n,使多项式 曲线 y = Pn( x )与函数曲线 y = f( x )尽可能“吻合”。
从理论和实际两个方面考虑,选择多项式 P n( x ) 的适当系数 a 0 ,a1,a 2,… , a n 在点 x 0 的邻域内表示函数 f( x )应满足两个基本要求: • 有较好的精度,使得 f( x ) P n( x ); • 能够估计误差,即能对误差 R n( x )= f( x )- P n( x )作

3.3泰勒公式

3.3泰勒公式

R(x)
R(n1) (x)
lim
x x0
(x
x0
)n
lim xx0 n!(x x0 )
用定义求导
0
1 lim
n! xx0
R(n1) (x) x
R(n1) (x0 ) x0
设想两个运动的质点的运动方程在某一时刻有 相同的 0∼2 阶导数:
s1(t0) = s2(t0): 它们在时刻 t0 有相同的位置
s1’(t0) = s2’(t0): 它们在时刻 t0 有相同的速度
s1’’(t0) = s2’’(t0): 它们在时刻 t0 有相同的加速度
November, 2004
1.5
ln(1 x) x 1
0.5
yx y ln(1 x)
0.5
0
0.5
1
1.5
2
0.5
November, 2004
f (x) f (x0 ) f (x0 )(x x0 )
令 p(x) f (x0 ) f (x0 )(x x0 )
这是 y = f(x) 在 (x0, y0) 处的切线
在 x = x0 处,y = f(x) 与 y = p(x) 有: (1)相同的函数值:f(x0) = p(x0) ( y = f(x) 与 y = p(x) 相交于点 (x0, y0) ) (2)相同的导数值: f ’(x0) = p’(x0) ( y = f(x) 与 y = p(x) 相切于点 (x0, y0) )
洛必达法则
lim
x x0
n(n
R( x) 1)(x x0 )n2
...... lim R(n1) (x) xx0 n!(x x0 )
洛必达法则
November, 2004
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3泰勒(Taylor)公式泰勒公式的建立泰勒(Taylor) (英)1685-1731泰勒公式常用函数的麦克劳林公式多项式函数特点一、泰勒公式的建立简单函数复杂的函数近似表示:(1)易计算函数值;(2)导数仍为多项式;用怎样的多项式去逼近给定的函数误差又如何呢,)(0存在若x f 'xx x ∆+=0记xx f x f x x f ∆'≈-∆+)()()(000回想微分一次多项式在x 0附近有=)(x f ))(()()(000x x x f x f x f -'+≈,0时当x x →))(()(000x x x f x f -'+)(0x x o -+其误差是比(x –x 0)高阶的无穷小.需要解决的问题如何提高精度?如何估计误差?{不足 1. 精确度不高; 2. 误差不能定量的估计.))(()(000x x x f x f -'+)(x f ≈希望一次多项式在x 0附近用适当的高次多项式2问题(1)系数怎么定?(2)误差(如何估计)表达式是什么?nn n x x a x x a x x a a x P )()()()(002010-++-+-+= )(x f ≈nn n x x a x x a x x a a x P )()()()(0202010-++-+-+= ,)(00a x P n =f ')()(0)(0)(x f x P k k n=),(00x f a =),()(00x f x P n =又,)(10a x P n ='),()(x f x P '='又0000nk ,,2,1,0 =因为因为所以所以3.3 泰勒公式n 次多项式系数的确定),(101x a =⋅)(!202x f a ''=⋅, )(10)(x f a k k =得)(!0)(x f a n n n =⋅00n 同理代入P n (x )中得=)(x P n .)(0nx x -+ ),,2,1,0(n k =20)(x x -+)(0x f )(0x x -+)(0x f '!2)(0x f ''!)(0)(n x f n 能满足要求.有x x x f x x x f x f )(!2)())(()(200000-''+-'+阶内有在若)1(),()()(0+∈n b a x x f ,),(时则当b a x ∈二、泰勒公式导数,泰勒中值定理:nn x x n x f )(!)(00)(-++ )(x R n +10)1()()!1()()(++-+=n n n x x n f x R ξ其中).(0之间与在x x ξ的幂展开的按称为)()(0x x x f -n 阶泰勒公式.的幂展开的按称为)()(0x x x f -n 次泰勒多项式.拉格朗日型余项1.泰勒公式就是拉格朗日中值公式200000)(!2)())(()()(x x x f x x x f x f x f -''+-'+=).(0之间与在x x ξ10)1(00)()()!1()()(!)(++-++-++n n n n x x n f x x n xf ξ n 阶泰勒公式00000000时当.2. 在泰勒公式中,故之间介于则,,0x ξ),10(<<=θθξξx 可表为这时的泰勒公式, 按x 的幂(在零点)展开的泰勒公式;带有拉格朗日型余项的麦克劳林公式.,0=n ,00=x 若称为或称为f (x )的麦克劳林(Maclaurin)公式nn xn f x f x f f x f !)0(!2)0()0()0()()(2++''+'+= 1)1()!1()(++++n n x n x f θ)10(<<θ近似公式误差估计式为1||)!1(||++≤n n x n M R 带有拉格朗日型余项≈)(x f nn xn f x f x f f !)0(!2)0()0()0()(2++''+'+当不需要余项的精确表达式时,n 阶泰勒公式也可写成带有佩亚诺(Peano)0()[()]nn R x o x x =-佩亚诺型余项.的泰勒公式.称为!n 型余项0()()f x x x -称按为的幂展开的解,e )()()()(xn x f x f x f ===''=' x x e )(=的n 阶带有拉格朗日型余项麦克劳林公式.因为(P 142, 例1)三、常用函数的麦克劳林公式nn xn f x f x f f x f !)0(!2)0()0()0()()(2++''+'+= 1)1()!1()(++++n n x n x fθ)10(<<θn 阶带有拉格朗日型余项的麦克劳林公式1)0()0()0()0()(===''='=n ff f f .e )()1(xn x fθθ=+代入公式=xe ).10(,)!1(e !!2112<<+++++++θθn xnx n n x x x 所以得.!!21e 2n x x x nx++++≈ xe 有的近似表达公式这时产生的误差为1)!1(e ++=n xn x n R θ1e (1)!xn xn +<+)10()!1(e !!21e 12<<++++++=+θθn xn xx n n x x x 3.3 泰勒公式(01)θ<<时当1=x ,!1!2111e n ++++≈ 得到.)!1(3+<n 其误差n R )!1(e +<n ,8=n 若取其误差8R .!93<,718279.2e ≈可算出解),,2,1,0(2πsin )()( =⎪⎭⎫ ⎝⎛+=n n x x f n ,0)0(=f 例,1)0(='f ,0)0(=''f ,,1)0( -='''f 因为所以x x f sin )(=求的n 阶带有拉格朗日型余项麦克劳林公式.(P 143, 例2)=x sin ≈x sin .)!12()1(!5!3212153m m m R m x x x x +--+-+--- ,)!12()1(!5!312153--+-+---m x x x x m m 的麦克劳林公式为从而x sin 的多项式近似表达式为所以x sin=mR 2).10(,)!12(12<<+≤+θm xm mm m R m x x x 212153)!12()1(!5!3+--+-+--- ξ),,2,1,0(2πsin )()( =⎪⎭⎫ ⎝⎛+=n n x x f n x θ,3x≤12)!12(]2π)12(sin[++++m x m m ,1时当=m ,001.0要使误差小于,2时当=m ,001.0要使误差小于,sin x x ≈有.1817.0<x 必须2R 误差,!3sin 3x x x -≈有4R 误差.6544.0<x 必须6,1205x ≤xy =泰勒多项式逼近xsin xy sin =泰勒多项式逼近xsin mm 2)!12(!5!3-xy =xy sin =!33xx y -=o泰勒多项式逼近xsin mm 2)!12(!5!3-xy =xy sin =!33xx y -=o!5!353xx x y +-=泰勒多项式逼近xsin mm 2)!12(!5!3-xy =!7!5!3753xx x x y -+-=xy sin =!33xx y -=!5!353xx x y +-=o泰勒多项式逼近xsin mm 2)!12(!5!3-!11!9!7!5!3119753xx x x x x y -+-+-=xy sin =o类似地, 有)!2()1(!4!21cos 242m x x x x mm -+-+-= ]π)22(cos[++m x θ,)!22(222+++m x m ).10(<<θ例.()(1),(),0.f x x R x αα=+∈=()()(1)(1)(1),n nfx n x αααα-=--++ ()(0)(1)(1),n fn ααα=--+ 解2(1)(1)12!x x x αααα-+=+++(1)(1)().!nnn x o x n ααα--+++特别,有,n =α21(1)1)1.2!n n n n n x nx x nx x --+=+++++ (二项式展开公式1,α=-当时有2311(1)(),1n n n x x x x o x x=-+-++-++ 2311().1n n x x x x o x x =++++++-1253-=x x m ⎪⎩⎪⎨⎧+++++=!!21e 2n x x x n x 常用函数的麦克劳林公式带佩氏余项),0()(→x x o n 带拉氏余项,)!1(e 1++n x x n θ)10(<<θ(P 142--144))!12()1(!5!3sin 1--++---m x x x m ),0()(2→x x o m ⎪⎩⎪⎨⎧+带佩氏余项带拉氏余项,)!12(]2π)12(sin[12++++m x m m x θ)10(<<θ)!2()1(!6!4!21cos 2642m x x x x x m m -++-+-= ⎪⎩⎪⎨⎧+),0()(12→+x x o m 带佩氏余项带拉氏余项,)!22(]2π)22(cos[22++++m x m m x θ3.3 泰勒公式),0()(→x x o n )10(<<θnx x x x x n n 132)1(32)1ln(--+-+-=+ ⎪⎩⎪⎨⎧+带佩氏余项带拉氏余项,)1)(1()1(11++++-n n n x x n θ)10(<<θ带佩氏余项2(1)(1)12!(1)(1)!n x x x n x n ααααααα-+=+++--++ ),0()(→x x o n⎧3.3 泰勒公式带拉氏余项⎪⎩⎪⎨+11(1)(1)()(1),(1)!n n n n x x n αααααθ--+--+-++ )10(<<θ例解用间接展开的方法较简便.-x )(!!21e 2n nx x o n x x x +++++= 1112----+n n n x x xx 取代用-(带佩亚诺型余项).阶麦克劳林公式展开为把n x x f x-=e )(3.3 泰勒公式=e 两端同乘x , 得).()!1()1(!2e 132n n n x x o n x x x x x +--+-+-=-- )()!1()1(!21+--+-x o n x例.()30sin cos lim sin x x x x x →-利用带有佩亚诺型余项的麦克劳林公式求3.3 泰勒公式(P 144, 例3)解33sin ()3!x x x o x =-+22x 33x cos 1()2!x o x =-+()2!x o x =-+[]x x 注:两个比x 3高阶无穷小的代数和还是比x 3的高阶无穷小()30sin cos lim sin x x x x x →-则3330()3=lim x x o x x →+1=333()3x o x +=-x x x cos sin处的在求函数1423)(023-=+-+=x x x x x f 解5)1(-=-'f 8)1(=-f 263)(2-+='x x x f 一阶和三阶泰勒公式及相应的拉格朗日型余项.)()!)()(000)(x R x x k x f x f n k n k k +-=∑=3.3 泰勒公式66)(+=''x x f 6)(='''x f 0)1(=-''f 6)1(=-'''f )()1(58)(1x R x x f ++-=f (x )的一阶泰勒公式是!2)1)((21+''=x f R ξ2)1(!2)1(6++=x ξ其中.)1(之间与介于x -ξ三阶泰勒公式是.0)(3≡x R )()1()1(58)(33x R x x x f ++++-=)0)(()4(=x f 因。

相关文档
最新文档