2015-2016学年人教版七年级上期末教学质量检测数学试题及答案

合集下载

广东省广州市荔湾区七年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中七年级全册数学试题

广东省广州市荔湾区七年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中七年级全册数学试题

某某省某某市荔湾区2015-2016学年七年级数学上学期期末考试试题一、选择题:本大题共有10小题,每小题2分,共20分.1.的相反数是()A.﹣B.C.﹣2 D.22.﹣6的绝对值等于()A.6 B.C.﹣D.﹣63.多项式3x2﹣xy2是()A.二次四项式B.三次三项式C.四次四项式D.三次四项式4.已知下列方程:其中一元一次方程有()①x﹣2=;②﹣2=1;③;④x2﹣3x﹣4=0;⑤2x=0;⑥x﹣y=6.A.2个B.3个C.4个D.5个5.方程3x+2(1﹣x)=4的解是()A.x=B.x=C.x=2 D.x=16.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b7.若关于x的方程2x﹣4=3m与方程=﹣5有相同的解,则m的值是()A.10 B.﹣8 C.﹣10 D.88.下列几何语言描述正确的是()A.直线mn与直线ab相交于点D B.点A在直线M上C.点A在直线AB上D.延长直线AB9.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A.106元B.105元C.118元D.108元10.如图是一个三棱柱.下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分.11.2013年4月20日,某某省某某市芦山县发生7.0级地震.我市爱心人士情系灾区,积极捐款,截止到5月6日,市红十字会共收到捐款约1400000元,这个数据用科学记数法可表示为元.12.计算:﹣(﹣1)2=.13.学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为册(用含a、b的代数式表示).14.已知在月历中竖列上三个数的和是45,则这三个数中最小的数是.15.如图,C、D为线段AB上的任意两点,那么图中共有条线段.16.如图,射线OA表示的方向是.三、解答题:本题共7题,共62分.17.计算:(1)12+(﹣17)﹣(﹣23)(2).18.计算:(1)﹣72+2×(2)﹣14.19.化简:(1)5a2+3ab﹣4﹣2ab﹣5a2 (2)﹣x+2(2x﹣2)﹣3(3x+5)20.计算:(1)7(3﹣x)﹣5(x﹣3)=8(2).21.已知线段AC=8cm,点B是线段AC的中点,点D是线段BC的中点,求线段AD的长.22.汽车上坡时每小时走28km,下坡时每小时走35km,去时,下坡路的路程比上坡路的路程的2倍还少14km,原路返回比去时多用了12分钟.求去时上、下坡路程各多少千米?23.如图,已知同一平面内,∠AOB=90゜,∠AOC=60゜.(1)填空:∠COB=;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为;(3)试问在(2)的条件下,如果将题目中∠AOC=60゜改成∠AOC=2α(α<45゜),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.2015-2016学年某某省某某市荔湾区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共有10小题,每小题2分,共20分.1.的相反数是()A.﹣B.C.﹣2 D.2【考点】相反数.【专题】常规题型.【分析】根据只有符号不同的两个数互为相反数解答.【解答】解:的相反数是﹣.故选A.【点评】本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.2.﹣6的绝对值等于()A.6 B.C.﹣D.﹣6【考点】绝对值.【专题】计算题.【分析】根据绝对值的性质解答即可.【解答】解:根据绝对值的性质,|﹣6|=6,故选:A.【点评】本题考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.3.多项式3x2﹣xy2是()A.二次四项式B.三次三项式C.四次四项式D.三次四项式【考点】多项式.【分析】根据多项式的项和次数的概念解题即可.【解答】解:多项式3x2﹣xy2是三次四项式,故选D【点评】此题主要考查了多项式,此类题目时要明确以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.4.已知下列方程:其中一元一次方程有()①x﹣2=;②0.2x﹣2=1;③;④x2﹣3x﹣4=0;⑤2x=0;⑥x﹣y=6.A.2个B.3个C.4个D.5个【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:①x﹣2=是分式方程;②0.2x﹣2=1是一元一次方程;③是一元一次方程;④x2﹣3x﹣4=0是一元二次方程;⑤2x=0是一元一次方程;⑥x﹣y=6是二元一次方程;故选:B.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.5.方程3x+2(1﹣x)=4的解是()A.x=B.x=C.x=2 D.x=1【考点】解一元一次方程.【专题】计算题.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:3x+2﹣2x=4,解得:x=2,故选C.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.6.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b【考点】实数与数轴.【分析】根据数轴判断出a、b、c的正负情况,然后根据不等式的性质解答.【解答】解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.【点评】本题考查了实数与数轴,不等式的基本性质,根据数轴判断出a、b、c的正负情况是解题的关键.7.若关于x的方程2x﹣4=3m与方程=﹣5有相同的解,则m的值是()A.10 B.﹣8 C.﹣10 D.8【考点】同解方程.【分析】先求出方程x=﹣5的解,然后把x的值代入方程2x﹣4=3m,求出m值.【解答】解:解方程x=﹣5得,x=﹣10,把x=﹣10代入方程2x﹣4=3m,得﹣20﹣4=3m,解得:m=﹣8,故选:B.【点评】本题考查了同解方程,解答本题的关键是能够求解关于x的方程,要正确理解方程解的含义.8.下列几何语言描述正确的是()A.直线mn与直线ab相交于点D B.点A在直线M上C.点A在直线AB上D.延长直线AB【考点】相交线.【专题】存在型.【分析】分别根据直线的表示方法及直线的特点对四个选项进行逐一分析.【解答】解:A、因为直线可以用一个小写字母表示,所以说直线mn与直线ab是错误的,只能说直线a、直线b、直线m、直线n,故本选项错误;B、直线可用表示直线上两点的大写字母表示,而不能只用一个大写字母表示,故本选项错误;C、直线可用表示直线上两点的大写字母表示,故此说法正确,故本选项正确;D、由于直线向两方无限延伸,故本选项错误.故选C.【点评】本题考查的是直线的特点及表示方法,是一道较为简单的题目.9.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A.106元B.105元C.118元D.108元【考点】一元一次方程的应用.【专题】销售问题;压轴题.【分析】本题等量关系:利润=售价﹣进价.【解答】解:设这件衣服的进价为x元,则132×0.9=x+10%x解得:x=108故选D.【点评】注意售价有两种表示方式:标价×折数;进价+利润.10.如图是一个三棱柱.下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】利用三棱柱及其表面展开图的特点解题.三棱柱上、下两底面都是三角形.【解答】解:A、折叠后有二个侧面重合,不能得到三棱柱;B、折叠后可得到三棱柱;C、折叠后有二个底面重合,不能得到三棱柱;D、多了一个底面,不能得到三棱柱.故选B.【点评】本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且都是三角形.二、填空题:本大题共6小题,每小题3分,共18分.11.2013年4月20日,某某省某某市芦山县发生7.0级地震.我市爱心人士情系灾区,积极捐款,截止到5月6日,市红十字会共收到捐款约1400000元,这个数据用科学记数法可表示为 1.4×106元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1 400 000=1.4×106,故答案为:1.4×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.计算:﹣(﹣1)2= ﹣1 .【考点】有理数的乘方.【分析】根据有理数的乘方的定义解答.【解答】解:﹣(﹣1)2=﹣1.故答案为:﹣1.【点评】本题考查了有理数的乘方的定义,是基础题,计算时要注意符号的处理.13.学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为册(用含a、b的代数式表示).【考点】列代数式.【分析】首先根据题意可得这批图书共有ab册,它的一半就是册.【解答】解:由题意得:这批图书共有ab册,则图书的一半是:册.故答案为:.【点评】此题主要考查了列代数式,关键是弄清题目的意思,表示出这批图书的总数量,注意代数式的书写方法,除法要写成分数形式.14.已知在月历中竖列上三个数的和是45,则这三个数中最小的数是8 .【考点】一元一次方程的应用.【分析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于45求解即可.【解答】解:设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=45,解得x=15,∴x﹣7=8;x+7=22.故答案为8.【点评】考查一元一次方程的应用;得到日历中一竖列3个数之间的关系是解决本题的难点.15.如图,C、D为线段AB上的任意两点,那么图中共有 6 条线段.【考点】直线、射线、线段.【分析】根据线段的特点即可得出结论.【解答】解:∵线段有两个端点,∴图中的线段有:线段AC,线段AD、线段AB、线段CD、线段CB、线段DB,共6条.故答案为:6.【点评】本题考查的是直线、射线和线段,熟知线段有两个端点是解答此题的关键.16.如图,射线OA表示的方向是北偏东60°.【考点】方向角.【分析】先求出∠AOC的度数,再由方向角的定义即可得出结论.【解答】解:∵∠AOB=30°,∴∠AOC=90°﹣30°=60°,∴射线OA表示的方向是北偏东60°.故答案为:北偏东60°.【点评】本题考查的是方向角,熟知方向角的定义是解答此题的关键.三、解答题:本题共7题,共62分.17.计算:(1)12+(﹣17)﹣(﹣23)(2).【考点】有理数的混合运算.【分析】(1)原式利用减法法则变形,计算即可得到结果.(2)根据乘法法则,可以得到结果.【解答】解:(1)原式=12﹣17+23=18,(2)原式=×××(﹣)=﹣4【点评】此题考查了有理数的加法,乘法运算,熟练掌握运算法则是解本题的关键.18.计算:(1)﹣72+2×(2)﹣14.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣49+18﹣54=﹣103+18=﹣85;(2)原式=﹣1﹣××11=﹣1﹣=﹣.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.化简:(1)5a2+3ab﹣4﹣2ab﹣5a2 (2)﹣x+2(2x﹣2)﹣3(3x+5)【考点】合并同类项;去括号与添括号.【专题】计算题.【分析】(1)按照合并同类项的法则计算:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(2)先去括号,再按照合并同类项的法则计算即可.【解答】解:(1)原式=5a2﹣5a2+3ab﹣2ab﹣4=.0+ab﹣4=ab﹣4(2)原式=﹣x+4x﹣4﹣9x﹣15=﹣6x﹣19【点评】本题考查了合并同类项的法则以及去括号的法则,解题的关键是牢记法则,特别要注意去括号时的符号变化.20.计算:(1)7(3﹣x)﹣5(x﹣3)=8(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:21﹣7x﹣5x+15=8,移项合并得:﹣12x=﹣28,解得:x=;(2)去分母得:3(x﹣1)﹣2(2x+1)=12,去括号得:3x﹣3﹣4x﹣2=12,移项合并得:﹣x=17,解得:x=﹣17.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.已知线段AC=8cm,点B是线段AC的中点,点D是线段BC的中点,求线段AD的长.【考点】两点间的距离.【专题】计算题.【分析】根据线段的中点的概念,得AB=BC==4cm,CD==2cm,再由AD=AC﹣CD求解即可.【解答】解:因为AC=8cm,B是线段AC的中点,D是线段BC的中点,所以AB=BC==4cm所以CD==2cm所以AD=AC﹣CD=8﹣2=6cm.答:线段AD的长为6cm.【点评】本题考查两点间距离,属于基础题,关键是结合图形掌握线段的中点的概念.22.汽车上坡时每小时走28km,下坡时每小时走35km,去时,下坡路的路程比上坡路的路程的2倍还少14km,原路返回比去时多用了12分钟.求去时上、下坡路程各多少千米?【考点】一元一次方程的应用.【专题】方程思想.【分析】由已知设去时上坡路为x千米,则下坡路为(2x﹣14)千米,根据已知分别表示出去时和原路返回的时间,由原路返回比去时多用了12分钟列出方程求解.【解答】解:设去时上坡路为x千米,则下坡路为(2x﹣14)千米,根据题意得:+﹣(+)=,解得:x=42,则2x﹣14=2×42﹣14=70,答:去时上、下坡路程各为42千米、70千米.【点评】此题考查的知识点是一元一次方程的应用,解题的关键设去时上坡路为x千米,表示出下坡路,再根据原路返回比去时多用了12分钟列出方程求解.23.如图,已知同一平面内,∠AOB=90゜,∠AOC=60゜.(1)填空:∠COB=150°或30°;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为;(3)试问在(2)的条件下,如果将题目中∠AOC=60゜改成∠AOC=2α(α<45゜),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.【考点】角的计算;角平分线的定义.【分析】(1)画出符合条件的两种情况,①当射线OC在∠AOB内部时,②当射线OC在∠AOB 外部时,分别求出即可;(2)画出符合条件的两种情况,①当射线OC在∠AOB内部,②当射线OC在∠AOB外部,求出即可;(3)画出符合条件的两种情况,求出∠COD和∠COE的度数,即可求出答案.【解答】解:(1)分为两种情况::①如图1,当射线OC在∠AOB内部时,∠COB=∠AOB﹣∠AOC=90°﹣60°=30°;②如图2,当射线OC在∠AOB外部时,∠COB=∠AOB+∠AOC=90°+60°=150°;(2)在图3中,∵∠AOB=90°,∠AOC=60°,OD平分∠BOC,OE平分∠AOC,∴∠DOC=∠BOC=×30°=15°,∠COE=∠AOC=×60°=30°,∴∠DOE=∠COD+∠COE=15°+30°=45°;在图4中,∵∠AOB=90°,∠AOC=60°,OD平分∠BOC,OE平分∠AOC,∴∠DOC=∠BOC=×(90°+60°)=75°,∠COE=∠AOC=×60°=30°,∴∠DOE=∠COD﹣∠COE=75°﹣30°=45°;(3)能求出∠DOE的度数.①当OC在∠AOB内部时,如图3,∵∠AOB=90°,∠AOC=2α°,∴∠BOC=∠AOB﹣∠AOC=90°﹣2α°,∵OD、OE分别平分∠BOC,∠AOC,∴∠DOC=∠BOC=45°﹣α°,∠COE=∠AOC=α°,∴∠DOE=∠DOC+∠COE=(45°﹣α°)+α°=45°;②当OC在∠AOB外部时,如图4,∵∠AOB=90,∠AOC=2α°,∴∠BOC=∠AOB+∠AOC=90°+2α°,∵OD、OE分别平分∠BOC,∠AOC,∴∠DOC=∠BOC=45°+α°,∠COE=∠AOC=α°,∴∠DOE=∠DOC﹣∠COE=(45°+α°)﹣α°=45°;综合上述,∠DOE=45°.故答案为:150°或30°;45°.【点评】本题考查了角的有关计算的应用,主要考查学生的计算能力,注意一定要进行分类讨论.。

2015-2016学年度第一学期期末测试(数学)

2015-2016学年度第一学期期末测试(数学)

2015~2016学年度第一学期期末测试七 年 级 数 学本卷分值 100分,考试时间120分钟.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.34-的相反数是A .43-B .43C .34-D .342.单项式225x y-的系数和次数分别是A .-2,2B .2-,3C .25-,2D .25-,33.在下面的四幅图案中,通过平移图案(1)得到的是图案4.下列各组中的两项,不是..同类项的是 A .22x y 与23x y - B .3x 与3xC .232ab c -与32c b aD .1与-18 5.若关于x 的方程710x a +-=解是1x =-,则a 的值等于A .8B .-8C .6D .-6 6.从三个不同方向看一个几何体,得到的三视图 如图所示,则这个几何体是A .圆锥B .圆柱C .棱锥D .球7.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中不正确...的是 A .ab<0 B .a -b >0 C .a +b >0 D .ab <0b 0a(1) A B C D(第6题)(第7题)8. 如图,直线a ,b 被直线c 所截,则下列说法中错误..的是 A .∠1与∠2是邻补角 B .∠1与∠3是对顶角C .∠3与∠4是内错角D .∠2与∠4是同位角 9. 如图,点D 在直线AE 上,量得∠CDE=∠A=∠C ,有以下三个结论:①AB ∥CD ;②AD ∥BC ;③∠B=∠CDA .则正确的结论是A .①②③B .①②C .①D .②③ 10.王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km ,到中午12时,两人又相距36 km .求A 、B 两地间的路程.可设A 、B 两地间的路程为x km ,则下列所列方程中:①363624x x -+=;②36363622x -+=;③36362x -=⨯; ④3636x -=;其中正确的个数为A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.用科学记数法表示9600000为 ▲ .12.点A 、B 在同一条数轴上,其中点A 表示的数为-1,若点B 与点A 之间距离为3,则点B 表示的数为 ▲ . 13.已知2a b -的值是2015,则124a b -+的值等于 ▲ .14.若23(2)0x y -++=,则16xy = ▲ .15.飞机的无风航速为a 千米/小时,风速为20千米/小时.则飞机逆风飞行4小时的行程是 ▲ 千米.16.某服装店以每件180元的价格卖出两件衣服,其中一件 盈利25%,另一件亏损25%,若盈利记为正,亏损记为负,则该店卖这两件衣服总的盈亏金额是 ▲ 元.17.如图,把小河里的水引到田地A 处就作AB ⊥l ,垂足 为B ,沿AB 挖水沟,这条水沟最短的理由是 ▲ . 18. 如图,将三角板与两组对边分别平行的直尺贴在一起, 使三角板的顶点C (AC ⊥BC )落在直尺的一边上,若∠1=24°,则∠2等于 ▲ 度. 19.如图,平面内有公共端点的6条射线OA 、OB 、OC 、 OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在 射线上写上数字1、2、3、4、5、6、7…,则数字 “2016”应在射线 ▲ 上.20.已知线段AB =12㎝,若M 是AB 的三等分点,N 是AM 的中点,则线段BN 的长度为 ▲ ㎝.三、解答题(本大题共8小题,共60分.请在答题卡指定区域.......内作答,解答时应写出文ac1 234 A B C DE(第8题) (第9题)(第17题)(第18题)(第19题)字说明、证明过程或演算步骤) 21.(每小题4分,共16分)计算:(1) (20)(3)(5)(7)-++---+;(2) 111()(12)462+-⨯-;(3) 322(2)(3)(4)2(3)(2)⎡⎤-+-⨯-+--÷-⎣⎦;(4) 471127326631440-+⨯-⨯÷.22.(每小题3分,共6分)(1)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4㎝,求线段CD的长度.(2)如图,货船A 在灯塔O 的北偏东53°35′的方向上,客船B 在灯塔O 的南偏东28°12′的方向上.求∠AOB 的度数.23.(每小题4分,共8分)先化简,再求值:(1)求22113333a abc c a c +--+的值,其中1,2,36abc =-==-;(2)求2211312()()2323x x y x y --+-+的值,其中22,3x y =-=.24.(每小题4分,共8分)解方程: (1)72(33)20x x +-=; (2)121224x x+--=+.25.(本小题6分)如图,AD ∥BC ,∠1=60°,∠B =∠C ,DF 为∠ADC 的平分线. (1)求∠ADC 的度数;(2)试说明DF ∥AB . 解:(1)根据题意完成填空(括号内填写理由): ∵AD ∥BC (已知)∴∠B =∠1( ) 又∵∠B =∠C (已知) ∴ =∠1=60°C D (第22题(2)) A O B 西 东 北南 (第22题(1))又∵AD ∥BC (已知)∴∠ADC +∠C =180°( ) ∴∠ADC = .(2)请你完成第2题的解答过程:26.(本小题4分)列方程解应用题:某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名? 27.(本小题6分)如图:已知AB ∥CD ,∠ABE 与∠CDE 两个角的角平分线相交于点F . (1)如图1,若∠E =78°,则∠BFD = °;(2)如图2,若∠ABM =14∠ABF ,∠CDM =14∠CDF ,则∠M 和∠E 之间的数量关系为 ;(3)如图2,∠ABM =1n ∠MBF ,∠CDM =1n∠MDF ,设∠M =m °,直接用含有n ,m 的代数式表示出∠E = °.28.(本小题6分)如图,在∠AOB 的内部作射线OC ,使∠AOC 与∠AOB 互补.将射线OA ,OC 同时绕点O 分别以每秒12°,每秒8°的速度按逆时针方向旋转,旋转后的射线OA ,OC 分别记为OM ,ON ,设旋转时间为t 秒.已知t <30,∠AOB =114°. (1)求∠AOC 的度数;(2)在旋转的过程中,当射线OM ,ON 重合时,求 t 的值; (3)在旋转的过程中,当∠COM 与∠BON 互余时,求 t 的值.BE DFACBE DFA CM 图1图2CMNB(第27题)。

2015~2016学年度第一学期七年级期末考试数学附答案

2015~2016学年度第一学期七年级期末考试数学附答案

2015~2016学年度第一学期七年级期末考试数学第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1.在-25, 0,25,2.5这四个数中,绝对值最大的数是 A. -25 B.0 C. 25D.2.5 2.下面运算正确的是 A.369a b ab += B.33330a b ba -= C.43862a a a -= D.22111236y y -= 3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把书3120000用科学记数法表示为A.3.12×105B.3.12×106C.31.2×105D.0.312×1074.如果一个角的余角是50°,则这个角的补角的度数是A.130°B.140°C.40°D.150°5.如图是每个面都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“祝”字相对的面是A.新B.年C.快D.乐6.下图是由八个相同的小正方体组合而成的几何体,其左视图是7.已知多项式2222A x y z =+-,222=432B x y z -++,且0A B C ++=,则C 为A.2225x y z --B.22235x y z --C.22233x y z --D.22235x y z -+8.如图,点O 在直线AB 上,射线OC 、OD 在直线AB 的同侧,∠AOD =50°,∠BOC =40°,OM 、ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为A.135°B.140°C.152°D.145° 9.如图,直线l 1∥l 2,则∠α为 A.150° B.140° C.130° D.120° 10.若8,5a b ==,且a b +>0,则a b -的值为 A.3或13 B.13或-13 C.3或-3 D. -3或-1311.已知A 、B 、C 三点在同一直线上,M 、N 分别为线段AB 、BC 中点,且AB =60,BC =40,则MN 的长为A.10B.50C.20或50D.10或12.下面每个表格中的四个数都是按相同规律填写的: 根据此规律确定x 的值为A.135B.170C.209D.252第Ⅱ卷(非选择题共72分)乐快年新你祝D C B A NMD C B A l 2············第4个第3个第2个第1个35834∙∙∙···x 20b a 541054206329421二、填空题(本大题共4小题,每小题4分,共16分,请将最后答案填在题中横线上)13.312m a b 与212n a b -是同类项,则m n -=________; 14.规定符号*运算为a *b =21ab a b -++,那么-3*4=_____________;15.若代数式2245x x --的值为6,则2122x x --的值为_________; 16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为_____________________.三、解答题(本大题共6个小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)计算与化简:(1)2241325(2)4-+----⨯-()() (2)224(6)3(2)x xy x xy +---18.(本小题满分8分)先化简,再求值:2211312()()2323a a b a b ----,其中22,3a b =-=.19.(本小题满分9分)一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走了1.5千米到达商场C,又向西走了4.5千米到达超市D,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?20.(本小题满分8分)某中学初一(四)班3位教师决定带领本班a名学生在五一期间取北京旅游,A旅行社的收费标准为:教师全价,学生半价;而B旅行社的收费标准为:不分教师、学生,一律八折优惠.(1)分别用代数式表示参加这两家旅行社所需的费用;(2)如果这3位教师要带领该班30名学生参加旅游,你认为选择哪一家旅行社较为合算,为什么?21.(本小题满分10分)如图,已知AB∥CE,∠A=∠E,试说明∠CGD=∠FHB.22.(本小题满分11分)HGFEDCBA将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°,∠E=∠B=45°).(1)1若∠DCE=45°,则∠ACB的度数为_________:2 若∠ACB=140°,则∠DCE的度数为______;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE所有可能的值(不必说明理由);若不存在,请说明理由.。

2015-2016学年北京市海淀区七年级(上)期末数学试卷及答案解析

2015-2016学年北京市海淀区七年级(上)期末数学试卷及答案解析

2015-2016学年北京市海淀区七年级(上)期末数学试卷一.单项选择题(本大题共30分,每小题3分)1.(3分)的相反数为()A.2B.﹣C.D.﹣22.(3分)石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A.300×104B.3×105C.3×106D.3000000 3.(3分)下列各式结果为负数的是()A.﹣(﹣1)B.(﹣1)4C.﹣|﹣1|D.|1﹣2|4.(3分)下列计算正确的是()A.a+a=a2B.6a3﹣5a2=aC.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b5.(3分)用四舍五入法对0.02015(精确到千分位)取近似数是()A.0.02B.0.020C.0.0201D.0.02026.(3分)如图所示,在三角形ABC中,点D是边AB上的一点.已知∠ACB=90°,∠CDB=90°,则图中与∠A互余的角的个数是()A.1B.2C.3D.47.(3分)若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A.﹣1B.1C.﹣D.﹣8.(3分)一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,如果设这件夹克衫的成本价是x元,那么根据题意,所列方程正确的是()A.0.8(1+0.5)x=x+28B.0.8(1+0.5)x=x﹣28C.0.8(1+0.5x)=x﹣28D.0.8(1+0.5x)=x+289.(3分)在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0B.|b|<|c|C.|a|>|b|D.abc<0 10.(3分)已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点出发,沿着圆锥侧面经过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T 均在PB上)四个点中,它最有可能经过的点是()A.M B.N C.S D.T二.填空题(本大题共24分,每小题3分)11.(3分)在“1,﹣0.3,+,0,﹣3.3”这五个数中,非负有理数是.(写出所有符合题意的数)12.(3分)∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为°.13.(3分)计算:180°﹣20°40′=.14.(3分)某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,如果设此月人均定额是x件,那么这4名工人此月实际人均工作量为件.(用含x的式子表示)15.(3分)|a|的含义是:数轴上表示数a的点与原点的距离.则|﹣2|的含义是;若|x|=2,则x的值是.16.(3分)某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,根据题意可列方程为.17.(3分)如图所示,AB+CD AC+BD.(填“<”,“>”或“=”)18.(3分)已知数轴上动点A表示整数x的点的位置开始移动,每次移动的规则如下:当点A所在位置表示的数是7的整数倍时,点A向左移动3个单位,否则,点A向右移动1个单位,按此规则,点A移动n次后所在位置表示的数记做x n.例如,当x=1时,x3=4,x6=7,x7=4,x8=5.①若x=1,则x14=;②若|x+x1+x2+x3+…+x20|的值最小,则x3=.三.解答题(本大题共21分,第19题7分,第20题4分,第21题10分)19.(7分)计算:(1)3﹣6×;(2)﹣42÷(﹣2)3﹣×.20.(4分)如图,已知三个点A,B,C.按要求完成下列问题:(1)取线段AB的中点D,作直线DC;(2)用量角器度量得∠ADC的大小为(精确到度);(3)连接BC,AC,则线段BC,AC的大小关系是;对于直线DC上的任意一点C′,请你做一做实验,猜想线段BC′与AC′的大小关系是.21.(10分)解方程:(1)3(x+2)﹣2=x+2;(2)=1﹣.四.解答题(本大题共13分,第22、23题各4分,第24题5分)22.(4分)先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.23.(4分)如图所示,点A在线段CB上,AC=,点D是线段BC的中点.若CD=3,求线段AD的长.24.(5分)列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,亲近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由计算机精准控制,每一只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机控制.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),控制电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?五.解答题(本大题共12分,第25题6分,第26题各6分)25.(6分)一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.26.(6分)如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O 向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,….例如:当α=30°时,OA1,OA2,OA3,OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°;当α=20°时,OA1,OA2,OA3,OA4,OA5的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA5恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是.(4)(选做题)当OA i所在的射线是∠A j OA k(i,j,k是正整数,且OA j与OA k 不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α<180°),旋转是否可以停止?写出你的探究思路.2015-2016学年北京市海淀区七年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共30分,每小题3分)1.(3分)的相反数为()A.2B.﹣C.D.﹣2【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数为﹣,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.属于基础题。

四川省资阳市简阳市度七年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中七年级全册数学试题

四川省资阳市简阳市度七年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中七年级全册数学试题

某某省资阳市简阳市2015-2016学年度七年级数学上学期期末考试试题一、单项选择题:每小题3分,共30分1.的相反数是()A.2 B.﹣2 C.﹣D.2.用面值1元的纸币换成面值为1角或5角的硬币,则换法共有()A.4种B.3种C.2种D.1种3.如图,从A到B最短的路线是()A.A﹣G﹣E﹣B B.A﹣C﹣E﹣B C.A﹣D﹣G﹣E﹣B D.A﹣F﹣E﹣B4.下列计算:①0﹣(﹣5)=﹣5;②(﹣3)+(﹣9)=﹣12;③;④(﹣36)÷(﹣9)=﹣4.其中正确的个数是()A.1个B.2个C.3个D.4个5.若M=4x2﹣5x+11,N=3x2﹣5x+10,则M和N的大小关系是()A.M>N B.M=N C.M<N D.无法确定6.下列说法中,正确的是()A.3是单项式B.﹣的系数是﹣3,次数是3C.不是整式D.多项式2x2y﹣xy是五次二项式7.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90° B.105°C.120°D.135°8.如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C等于()A.35° B.75° C.70° D.80°9.观察下列图形,其中不是正方体的展开图的为()A.B.C.D.10.日常生活中我们使用的数是十进制数.而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0,1,如二进制数1101记为11012,11012通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿照上面的转换方法,将二进制数111012转换为十进制数是()A.4 B.25 C.29 D.33二、填空题:每小题3分,共18分11.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c=.12.多项式ab3﹣3a2b﹣a3b﹣3按字母a降幂排列是.13.矩形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是.14.如图所示,用两个相同的三角形按照如图方式作平行线,能解释其中道理的定理是.15.如果实数a满足a﹣|a|=2a,那么下面三个结论中正确的有.①a>0;②a<0;③a=0.16.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.三、解答题:共52分17.计算:[(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2|18.如图,在△ABC中,∠C=90°,若BD∥AE,∠DBC=20°,求∠CAE的度数.19.如图所示,∠ABC=80°,∠CBD=30°,BE平分∠ABD.求∠CBE的度数.20.一家三人(父亲、母亲、女儿)准备参加旅行团外出旅游,甲旅行社告知:“父母买全票价,女儿按半价优惠”,乙方旅行社告知:“家庭旅游可按团体票计价,即每人均按全票价的收费”,如果这两家旅行社每人的全票价都为600元,那么哪家旅行社的费用更优惠?21.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?22.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变.某某省资阳市简阳市2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、单项选择题:每小题3分,共30分1.的相反数是()A.2 B.﹣2 C.﹣D.【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数互为相反数解答即可.【解答】解:的相反数是﹣.故选C.【点评】本题考查相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a.属于基础题型,比较简单.2.用面值1元的纸币换成面值为1角或5角的硬币,则换法共有()A.4种B.3种C.2种D.1种【考点】二元一次方程的应用.【专题】应用题;压轴题.【分析】设1角的硬币为x个,5角的硬币为y个,根据面值是1元,即10角列二元一次方程,求其非负整数解即可.【解答】解:设1角的硬币为x个,5角的硬币为y个,则x+5y=10,即x=10﹣5y,∵x,y是非负整数,∴x=0,5,10,y=2,1,0.故换法共有3种.故选B.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求其整数解.3.如图,从A到B最短的路线是()A.A﹣G﹣E﹣B B.A﹣C﹣E﹣B C.A﹣D﹣G﹣E﹣B D.A﹣F﹣E﹣B【考点】两点间的距离.【分析】根据题图,要从A地到B地,一定要经过E点且必须经过线段EB,所以只要考虑A到E的路线最短即可,根据“两点之间线段最短“的结论即可解答.【解答】解:根据图形,从A地到B地,一定要经过E点且必须经过线段EB,所以只要找出从A到E的最短路线,根据“两点之间线段最短“的结论,从A到E的最短路线是线段AE,即A﹣F﹣E,所以从A地到B地最短路线是A﹣F﹣E﹣B.故选:D.【点评】此题主要考查了两点间的距离,关键时尽量缩短两地之间的里程.4.下列计算:①0﹣(﹣5)=﹣5;②(﹣3)+(﹣9)=﹣12;③;④(﹣36)÷(﹣9)=﹣4.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】有理数的除法;有理数的加法;有理数的减法;有理数的乘法.【分析】分别根据有理数的减法、加法、乘法、除法法则计算各式,然后判断.【解答】解:①0﹣(﹣5)=5,错误;②(﹣3)+(﹣9)=﹣12,正确;③,正确;④(﹣36)÷(﹣9)=4,错误.故选B.【点评】本题考查了有理数的加、减、乘、除运算法则.注意确定运算的符号.5.若M=4x2﹣5x+11,N=3x2﹣5x+10,则M和N的大小关系是()A.M>N B.M=N C.M<N D.无法确定【考点】整式的加减;非负数的性质:偶次方.【分析】利用作差法比较M与N的大小即可.【解答】解:∵M=4x2﹣5x+11,N=3x2﹣5x+10,∴M﹣N=(4x2﹣5x+11)﹣(3x2﹣5x+10)=4x2﹣5x+11﹣3x2+5x﹣10=x2+1>0,∴M>N.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.6.下列说法中,正确的是()A.3是单项式B.﹣的系数是﹣3,次数是3C.不是整式D.多项式2x2y﹣xy是五次二项式【考点】单项式;多项式.【分析】根据单项式和多项式的概念求解.【解答】解:A、3是单项式,故本选项正确;B、﹣的系数是﹣,次数是3,故本选项错误;C、是整式,故本选项错误;D、多项式2x2y﹣xy是三次二项式,故本选项错误.故选A.【点评】本题考查了单项式的知识:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.7.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90° B.105°C.120°D.135°【考点】钟面角.【分析】钟表12个数字,每相邻两个数字之间的夹角为30度.【解答】解:∵1个小时在时钟上的角度为180°÷6=30°,∴3.5个小时的角度为30°×3.5=105°.故选B.【点评】本题主要考查角度的基本概念.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.8.如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C等于()A.35° B.75° C.70° D.80°【考点】三角形内角和定理;平行线的性质.【专题】计算题.【分析】利用平行线的性质和三角形内角和的定理即可求得.【解答】解:∵∠A=35°,∠AOB=75°,根据三角形的内角和是180°,∴∠B=70°.∵AB∥CD,根据两条直线平行,内错角相等,∴∠C=∠B=70°.故选C.【点评】考查了平行线的性质:两条直线平行,内错角相等.以及三角形的内角和定理:三角形的内角和是180°.9.观察下列图形,其中不是正方体的展开图的为()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,C选项可以拼成一个正方体,而D选项,上底面不可能有两个,故不是正方体的展开图.故选D.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.10.日常生活中我们使用的数是十进制数.而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0,1,如二进制数1101记为11012,11012通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿照上面的转换方法,将二进制数111012转换为十进制数是()A.4 B.25 C.29 D.33【考点】有理数的混合运算.【专题】新定义.【分析】由题意知,111012可表示为1×24+1×23+1×22+0×2+1,然后通过计算,所得结果即为十进制的数.【解答】解:∵11012通过式子1×23+1×22+0×2+1转换为十进制数13,∴111012=1×24+1×23+1×22+0×2+1=29.故选C.【点评】本题考查二进制和十进制之间的转换.需注意观察所给例题及二进制数的特点.二、填空题:每小题3分,共18分11.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c= 2或0 .【考点】有理数的加减混合运算;绝对值.【专题】计算题.【分析】先利用绝对值的代数意义求出a,b及c的值,再根据a>b>c,判断得到各自的值,代入所求式子中计算即可得到结果.【解答】解:∵|a|=1,|b|=2,|c|=3,∴a=±1,b=±2,c=±3,∵a>b>c,∴a=﹣1,b=﹣2,c=﹣3或a=1,b=﹣2,c=﹣3,则a+b﹣c=2或0.故答案为:2或0【点评】此题考查了有理数的加减混合运算,以及绝对值,确定出a,b及c的值是解本题的关键.12.多项式ab3﹣3a2b﹣a3b﹣3按字母a降幂排列是﹣a3b﹣3a2b+ab3﹣3 .【考点】多项式.【专题】计算题.【分析】根据多项式次数的定义求解.【解答】解:多项式ab3﹣3a2b﹣a3b﹣3按字母a降幂排列是:﹣a3b﹣3a2b+ab3﹣3.故答案为:﹣a3b﹣3a2b+ab3﹣3.【点评】本题考查了多项式的定义,解题的关键是熟练掌握定义,并能灵活运用.13.矩形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是.【考点】列代数式.【专题】压轴题.【分析】能射进阳光部分的面积=长方形的面积﹣直径为2b的半圆的面积.【解答】解:能射进阳光部分的面积=2ab﹣πb2.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.阴影部分的面积一般应整理为一个规则图形的面积.14.如图所示,用两个相同的三角形按照如图方式作平行线,能解释其中道理的定理是内错角相等,两直线平行.【考点】平行线的判定.【专题】应用题.【分析】根据图形知道已知∠PAB=∠ACD,利用内错角相等,判断两直线平行.【解答】解:∵∠PAB=∠ACD,∴CD∥AP(内错角相等,两直线平行).【点评】解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.15.如果实数a满足a﹣|a|=2a,那么下面三个结论中正确的有②③.①a>0;②a<0;③a=0.【考点】绝对值.【分析】根据a≤0时,|a|=﹣a,即可得出结论.【解答】解:∵实数a满足a﹣|a|=2a,∴|a|=﹣a,即a<0,∴②正确,∵当a=0时,实数a满足a﹣|a|=2a=0,∴③正确,故答案为:②③.【点评】本题主要考查了绝对值的定义,解答本题的关键是熟练掌握:如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.16.根据如图所示的程序计算,若输入x的值为1,则输出y的值为 4 .【考点】代数式求值.【专题】图表型.【分析】观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y 的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y 的值.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.【点评】解答本题的关键就是弄清楚题图给出的计算程序.由于代入1计算出y的值是﹣2,但﹣2<0不是要输出y的值,这是本题易出错的地方,还应将x=﹣2代入y=2x2﹣4继续计算.三、解答题:共52分17.计算:[(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2|【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算法则首先计算乘方,然后计算乘除,最后计算加减,同级别运算从左向右进行计算,即可得出结果.【解答】解:[(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2|=[﹣1++1﹣18]÷|﹣2×|=﹣÷=﹣【点评】题目考查了有理数的混合运算,解决此类问题的关键是掌握有理数混合运算法则,题目整体难易程度适中,适合课后训练.18.如图,在△ABC中,∠C=90°,若BD∥AE,∠DBC=20°,求∠CAE的度数.【考点】平行线的性质.【分析】过点C作CF∥BD,根据两直线平行,内错角相等即可求解.【解答】解:过点C作CF∥BD,则CF∥BD∥AE,∴∠BCF=∠DBC=20°,∵∠C=90°,∴∠FCA=90°﹣20°=70°,∵CF∥AE,∴∠CAE=∠FCA=70°.答:∠CAE的度数为70°.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等.正确作出辅助线是解题的关键.19.如图所示,∠ABC=80°,∠CBD=30°,BE平分∠ABD.求∠CBE的度数.【考点】角的计算;角平分线的定义.【分析】首先求得∠ABD的度数,然后根据角平分线的定义求得∠EBD的度数,然后根据∠CBE=∠EBD ﹣∠CBD求解.【解答】解:∠ABD=∠ABC+∠CBD=80°+30°=110°;∵BE是∠ABD的平分线,∴∠EBD=∠ABD=55°,∴∠CBE=∠EBD﹣∠CBD=55°﹣30°=25°.【点评】本题考查了角度的计算,正确理解题目中的角的关系是关键.20.一家三人(父亲、母亲、女儿)准备参加旅行团外出旅游,甲旅行社告知:“父母买全票价,女儿按半价优惠”,乙方旅行社告知:“家庭旅游可按团体票计价,即每人均按全票价的收费”,如果这两家旅行社每人的全票价都为600元,那么哪家旅行社的费用更优惠?【考点】有理数的混合运算;有理数大小比较.【专题】应用题.【分析】按照旅行社的计算费用要求代入数据进行计算,进一步比较得出答案即可.【解答】解:甲旅行社的费用:600+600×=1500(元)乙旅行社的费用:600××3=1440(元)因为1440<1500,所以乙旅行社的费用更优惠.【点评】此题考查有理数的混合运算的实际运用,理解题意,掌握两种计算方法是解决问题的关键.21.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?【考点】角的计算;角平分线的定义.【分析】(1)先求得∠AOC的度数,然后由角平分线的定义可知∠MOC=60°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(2)先求得∠AOC=α+30°,由角平分线的定义可知∠MOC=α+15°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(3)先求得∠AOC=β+90°,由角平分线的定义可知∠MOC=β+15°,∠CON=β,最后根据∠MON=∠MOC﹣∠CON求解即可;(4)根据计算结果找出其中的规律即可.【解答】解:(1)∠AOB=90°,∠BOC=30°,∴∠AOC=90°+30=120°.由角平分线的性质可知:∠MOC=∠AOC=60°,∠CON=∠BOC=15°.∵∠MON=∠MOC﹣∠CON,∴∠MON=60°﹣15°=45°;(2)∠AOB=α,∠BOC=30°,∴∠AOC=α+30°.由角平分线的性质可知:∠MOC=∠AOC=α+15°,∠CON=∠BOC=15°.∵∠MON=∠MOC﹣∠CON,∴∠MON=α+15°﹣15°=α.(3)∠AOB=90°,∠BOC=β,∴∠AOC=β+90°.由角平分线的性质可知:∠MOC=∠AOC=β+45°,∠CON=∠BOC=β.∵∠MON=∠MOC﹣∠CON,∴∠MON=β+45°﹣β=45°.(4)根据(1)、(2)、(3)可知∠MON=∠BOC,与∠BOC的大小无关.【点评】本题主要考查的是角的计算、角平分线的定义,求得∠MOC和∠CON的大小,然后再依据∠MON=∠MOC﹣∠CON求解是解题的关键.22.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE= 6 cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变.【考点】两点间的距离.【分析】(1)由点D、E分别是AC和BC的中点,C点为AB的中点,求出AC,BC,CD,CE的长度,运用DE=CD+CE即可得出答案.(2)先求出BC,再利用中点关系求出CD,CE即可得出DE的长.(3)设AC=acm,由点D、E分别是AC和BC的中点,可得DE=CD+CE=(AC+BC)=AB=6cm,即可得出不论AC取何值(不超过12cm),DE的长不变,【解答】解:(1)∵AB=12cm,点D、E分别是AC和BC的中点,C点为AB的中点,∴AC=BC=6cm,∴CD=CE=3cm,∴DE=CD+CE=6cm,故答案为:6.(2)∵AB=12cm,AC=4cm,∴BC=8cm,∵点D、E分别是AC和BC的中点,∴CD=2cm,CE=4cm,∴DE=6cm,(3)设AC=acm,∵点D、E分别是AC和BC的中点,∴DE=CD+CE=(AC+BC)=AB=6cm,∴不论AC取何值(不超过12cm),DE的长不变,【点评】本题主要考查线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。

山东省德州市夏津县七年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中七年级全册数学试题

山东省德州市夏津县七年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中七年级全册数学试题

某某省某某市夏津县2015-2016学年七年级数学上学期期末考试试题一、选择题(本题共小题,每小题3分,共36分)1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.2.下列各式中结果为负数的是()A.﹣(﹣3)B.(﹣3)2C.﹣|﹣3| D.|﹣32|3.每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为()A.0.15×109千米B.1.5×108千米 C.15×107千米D.1.5×107千米4.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=25.下列方程中,解为x=2的方程是()A.3x﹣2=3 B.﹣x+6=2x C.4﹣2(x﹣1)=1 D.x+1=06.下列结论正确的个数是()①若a,b互为相反数,则=﹣1;②πxy的系数是;③若=,则x=y;④A,B两点之间的距离是线段AB.A.1 B.2 C.3 D.47.已知∠α=37°28′,则∠α的补角是()A.142°32′B.54°81′ C.144°81′D.52°32′8.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.9.若代数式2x2+3x的值是5,则代数式4x2+6x﹣9的值是()A.10 B.1 C.﹣4 D.﹣810.如图所示,将一X长方形纸的一角斜折过去,使顶点A落在A′处,BC为折痕,如果BD为∠A′BE的平分线,则∠CBD=()A.80° B.90° C.100°D.70°11.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏12.如图1,将一个边长为a的正方形纸片剪去两个矩形,得到一个“S”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.2a﹣4b C.4a﹣8b D.4a﹣10b二、填空题(本题共7小题,每小题4分,共28分)13.人们喜欢把弯弯曲曲的公路改为直道,其中隐含着数学道理的是.14.一个两位数是a,在它左边加上一个数字b变成三位数,则这个三位数用代数式表示为.15.如图,点D在线段BC上,已知∠BAC=90°,∠DAC+∠C=90°,则∠BAD和∠C的大小关系是,其依据是.16.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|+|a+b+c|﹣|c﹣b|=.17.若a是最小的正整数,b是绝对值最小的整数,c的绝对值是,则2a2﹣3bc+4c2的值是.18.多项式x+7是关于x的二次三项式,则m=.19.如图,连接在一起的两个正方形的边长都为1cm,一个微型机器人由点A开始按ABCDEFCGA…的顺序沿正方形的边循环移动.当微型机器人移动了2016cm时,它停在点.三、解答题(共56分)20.计算:(1)﹣32÷|﹣|﹣(﹣2)3×(﹣)(2)(﹣﹣+)÷.21.解方程:(1)2(x﹣3)﹣(3x﹣1)=1(2)﹣=1.22.已知M=2x2﹣5xy+6y2,N=3y2﹣4xy+2x2,求M﹣2N,并求当x=﹣1,y=2时,M﹣2N的值.23.双十一当天,某天猫商家举行促销活动,某件商品标价为330元,按标价的八折销售时,仍可获利20%,求这种商品每件的进价.24.如图,∠AOB是直角,OD平分∠BOC,OE平分∠AOC,求∠EOD的度数.解:因为OD平分∠BOC,所以∠DOC=∠.因为,所以∠=∠COA,所以∠EOD=∠+∠=(∠+∠)=∠,因为∠AOB是直角,所以∠EOD=.25.(1)已知:如图,点C在线段AB上,线段AC=12,BC=4,点M、N分别是AC、BC的中点,求MN的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.26.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度元收费,如果超过140度,超过部分按每度元收费.(1)若某住户四月份的用电量是a度,求这个用户四月份应交多少电费?(2)若该住户五月份的用电量是200度,则他五月份应交多少电费?2015-2016学年某某省某某市夏津县七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共小题,每小题3分,共36分)1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.【考点】正数和负数;绝对值.【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【解答】解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣最接近标准,故选:C.【点评】本题考查了绝对值和正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.2.下列各式中结果为负数的是()A.﹣(﹣3)B.(﹣3)2C.﹣|﹣3| D.|﹣32|【考点】有理数的乘方;相反数;绝对值.【分析】根据有理数乘方的法则对各选项进行逐一解答即可.【解答】解:A、﹣(﹣3)=3>0,故本选项错误;B、(﹣3)2=9>0,故本选项错误;C、﹣|﹣3|=﹣3<0,故本选项正确;D、|﹣32|=9>0,故本选项错误.故选C.【点评】本题考查的是有理数的乘方,熟知有理数乘方的法则、相反数的定义及绝对值的性质是解答此题的关键.3.每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为()A.0.15×109千米B.1.5×108千米 C.15×107千米D.1.5×107千米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于150000000有9位,所以可以确定n=9﹣1=8.【解答】解:150 000 000=1.5×108.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=2【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可求得.【解答】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.5.下列方程中,解为x=2的方程是()A.3x﹣2=3 B.﹣x+6=2x C.4﹣2(x﹣1)=1 D.x+1=0【考点】一元一次方程的解.【分析】把x=2代入选项中的方程进行一一验证.【解答】解:A、当x=2时,左边=3×2﹣2=4≠右边,即x=2不是该方程的解.故本选项错误;B、当x=2时,左边=﹣2+6=4,右边=2×2=4,左边=右边,即x=2是该方程的解.故本选项正确;C、当x=2时,左边=4﹣2(2﹣1)=2≠右边,即x=2不是该方程的解.故本选项错误;D、x+1不是方程.故本选项错误;故选B.【点评】本题考查了一元一次方程的解.把方程的解代入原方程,等式左右两边相等.6.下列结论正确的个数是()①若a,b互为相反数,则=﹣1;②πxy的系数是;③若=,则x=y;④A,B两点之间的距离是线段AB.A.1 B.2 C.3 D.4【考点】两点间的距离;相反数;单项式;等式的性质.【分析】根据相反数的概念、单项式的定义、等式的性质和两点间的距离的定义进行解答即可.【解答】解:a,b互为相反数,当a=0时,b=0,无意义,①错误;πxy的系数是π,②错误;若=,则x=y,③正确;A,B两点之间的距离是线段AB的长度,④错误.故选:A.【点评】本题考查的是相反数的概念、单项式的定义、等式的性质和两点间的距离的定义,掌握相关的概念和性质是解题的关键.7.已知∠α=37°28′,则∠α的补角是()A.142°32′B.54°81′ C.144°81′D.52°32′【考点】余角和补角;度分秒的换算.【分析】根据补角的定义回答即可.【解答】解:∠α的补角=180°﹣∠α=180°﹣37°28′=142°32′.故选:A.【点评】本题主要考查的是补角的定义,掌握补角的定义是解题的关键.8.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.【考点】方向角.【分析】根据方向角的定义,即可解答.【解答】解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.【点评】本题考查了方向角,解决本题的关键是熟记方向角的定义.9.若代数式2x2+3x的值是5,则代数式4x2+6x﹣9的值是()A.10 B.1 C.﹣4 D.﹣8【考点】代数式求值.【专题】计算题.【分析】原式前两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵2x2+3x=5,∴原式=2(2x2+3x)﹣9=10﹣9=1.故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.10.如图所示,将一X长方形纸的一角斜折过去,使顶点A落在A′处,BC为折痕,如果BD为∠A′BE的平分线,则∠CBD=()A.80° B.90° C.100°D.70°【考点】角平分线的定义.【分析】利用角平分线的性质和平角的定义计算.【解答】解:因为将顶点A折叠落在A′处,所以∠ABC=∠A′BC,又因为BD为∠A′BE的平分线,所以∠A′BD=∠DBE,因为∠ABC+∠A′BC+∠A′BD+∠DBE=180°,∴2∠A′BC+2∠A′BD=180°,所以∠CBD=∠A′BC+∠A′BD=90°.故选B.【点评】本题是角平分线性质及平角的性质的应用.11.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏【考点】一元一次方程的应用.【专题】优选方案问题.【分析】可设需更换的新型节能灯有x盏,根据等量关系:两种安装路灯方式的道路总长相等,列出方程求解即可.【解答】解:设需更换的新型节能灯有x盏,则70(x﹣1)=36×,70x=3850,x=55,则需更换的新型节能灯有55盏.故选B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意根据实际问题采取进1的近似数.12.如图1,将一个边长为a的正方形纸片剪去两个矩形,得到一个“S”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.2a﹣4b C.4a﹣8b D.4a﹣10b【考点】整式的加减.【专题】计算题.【分析】根据图形表示出新矩形的长与宽,即可确定出周长.【解答】解:根据题意得:新矩形的长为a﹣b,宽为a﹣3b,则新矩形周长为2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选C.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.二、填空题(本题共7小题,每小题4分,共28分)13.人们喜欢把弯弯曲曲的公路改为直道,其中隐含着数学道理的是两点间线段最短.【考点】直线的性质:两点确定一条直线.【分析】一条弯曲的公路改为直道,使两点之间接近线段,因为两点之间线段最短,所以可以缩短路程.【解答】解:由题意把弯曲的公路改为直道,肯定要尽量缩短两地之间的里程,其中隐含着数学道理的是:两点间线段最短.故答案为:两点间线段最短.【点评】此题主要考查了线段的性质,关键是掌握两点之间线段最短.14.一个两位数是a,在它左边加上一个数字b变成三位数,则这个三位数用代数式表示为100b+a.【考点】列代数式.【分析】b原来最高位是个位,现在最高位是百位,扩大了100倍,a不变.【解答】解:在一个两位数的左边加上一个数字b变成一个三位数,b就扩大了100倍,所以这个三位数为100b+a.故答案为:100b+a.【点评】此题考查列代数式,掌握数字的计数方法是解决问题的关键.15.如图,点D在线段BC上,已知∠BAC=90°,∠DAC+∠C=90°,则∠BAD和∠C的大小关系是∠BAD=∠C,其依据是同角的余角相等.【考点】余角和补角.【分析】首先根据∠BAC=90°,判断出∠DAC+∠BAD=90°;然后根据∠DAC+∠C=90°,可得∠BAD、∠C都是∠DAC的余角,再根据同角的余角相等,判断出∠BAD=∠C即可.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,又∵∠DAC+∠C=90°,∴∠BAD、∠C都是∠DAC的余角,∴∠BAD=∠C,其依据是:同角的余角相等.故答案为:∠BAD=∠C,同角的余角相等.【点评】此题主要考查了余角的性质和应用,要熟练掌握,解答此题的关键是要明确:等角的余角相等.16.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|+|a+b+c|﹣|c﹣b|=﹣3b.【考点】整式的加减;数轴;绝对值.【分析】由数轴上右边的数总比左边的数大,且离原点的距离大小即为绝对值的大小,判断出a+b与c﹣b的正负,利用绝对值的代数意义化简所求式子,合并同类项即可得到结果.【解答】解:由数轴上点的位置可得:c<b<0<a,且|a|<|b|,∴a﹣b>0,c﹣b<0,a+b+c<0,则|a﹣b|+|a+b+c|﹣|c﹣b|=a﹣b﹣a﹣b﹣c+c﹣b=﹣3b.故答案为:﹣3b【点评】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.17.若a是最小的正整数,b是绝对值最小的整数,c的绝对值是,则2a2﹣3bc+4c2的值是3.【考点】代数式求值;有理数;绝对值.【分析】根据最小的正整数,可得a,根据绝对值的意义,可得b、c,根据代数式求值,可得答案.【解答】解:由a是最小的正整数,b是绝对值最小的整数,c的绝对值是,得a=1,b=0,c=或c=﹣.当a=1,b=0,c=时,原式=2﹣0+4×()2=3;当a=1,b=0,c=﹣时,原式=2﹣0+4×(﹣)2=3,故答案为:3.【点评】本题考查了代数式求值,利用最小的正整数得出a,绝对值的意义得出b、c是解题关键.18.多项式x+7是关于x的二次三项式,则m=2.【考点】多项式.【分析】由于多项式是关于x的二次三项式,所以|m|=2,但﹣(m+2)≠0,根据以上两点可以确定m的值.【解答】解:∵多项式是关于x的二次三项式,∴|m|=2,∴m=±2,但﹣(m+2)≠0,即m≠﹣2,综上所述,m=2,故填空答案:2.【点评】本题解答时容易忽略条件﹣(m+2)≠0,从而误解为m=±2.19.如图,连接在一起的两个正方形的边长都为1cm,一个微型机器人由点A开始按ABCDEFCGA…的顺序沿正方形的边循环移动.当微型机器人移动了2016cm时,它停在A点.【考点】规律型:图形的变化类.【分析】观察图形不难发现,每移动8cm为一个循环组依次循环,用2014除以8,根据商的情况确定最后停的位置所在的点即可.【解答】解:∵两个正方形的边长都为1cm,∴从A开始移动8cm后回到点A,∵2016÷8=252,∴移动2016cm为回到点A处.故答案为:A.【点评】本题是对图形变化规律的考查,观察图形得到每移动8cm为一个循环组依次循环是解题的关键.三、解答题(共56分)20.计算:(1)﹣32÷|﹣|﹣(﹣2)3×(﹣)(2)(﹣﹣+)÷.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=﹣9×﹣8×=﹣12﹣2=﹣14;(2)原式=(﹣﹣+)×36=﹣27﹣20+21=﹣26.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.解方程:(1)2(x﹣3)﹣(3x﹣1)=1(2)﹣=1.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣6﹣3x+1=1,移项合并得:﹣x=6,解得:x=﹣6;(2)去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.已知M=2x2﹣5xy+6y2,N=3y2﹣4xy+2x2,求M﹣2N,并求当x=﹣1,y=2时,M﹣2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入M﹣2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=2x2﹣5xy+6y2,N=3y2﹣4xy+2x2,∴M﹣2N=2x2﹣5xy+6y2﹣6y2+8xy﹣4x2=﹣2x2+3xy,当x=﹣1,y=2时,原式=﹣2﹣6=﹣8.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.双十一当天,某天猫商家举行促销活动,某件商品标价为330元,按标价的八折销售时,仍可获利20%,求这种商品每件的进价.【考点】一元一次方程的应用.【分析】设这种商品每件的进价为x元,根据按标价的八折销售时,仍可获利20%,列方程求解.【解答】解:设这种商品每件的进价为x元,由题意得,﹣x=20%x,解得:x=220,答:这种商品每件的进价为220元.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.24.如图,∠AOB是直角,OD平分∠BOC,OE平分∠AOC,求∠EOD的度数.解:因为OD平分∠BOC,所以∠DOC=∠BOC.因为OE平分∠AOC,所以∠COE=∠COA,所以∠EOD=∠DOC+∠COE=(∠BOC+∠AOC)=∠AOB,因为∠AOB是直角,所以∠EOD=45°.【考点】角平分线的定义.【分析】直接利用角平分线的性质得出∠DOC=∠BOC,∠COE=∠COA,进而得出答案.【解答】解:因为OD平分∠BOC,所以∠DOC=∠BOC.因为OE平分∠AOC,所以∠COE=∠COA,所以∠EOD=∠DOC+∠COE=(∠BOC+∠AOC)=∠AOB,因为∠AOB是直角,所以∠EOD=45°.【点评】此题主要考查了角平分线的定义,正确把握角平分线的性质是解题关键.25.(1)已知:如图,点C在线段AB上,线段AC=12,BC=4,点M、N分别是AC、BC的中点,求MN的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.【考点】两点间的距离.【分析】(1)根据线段中点的性质,可得CM的长,的长,根据线段中点的性质,可得答案;(2)根据线段中点的性质,可得CM的长,的长,根据线段中点的性质,可得答案;【解答】解:(1)由点M、N分别是AC、BC的中点,得MC=AC,NC=BC.由线段的和差,得MN=MC+NC=AC+BC=(AC+BC)=×(12+4)=8;(2)由点M、N分别是AC、BC的中点,得MC=AC,NC=BC.由线段的和差,得MN=MC+NC=AC+BC=(AC+BC)=a.规律是:线段上的点把线段分成两条线段,这两条线段中点间的距离是原线段长的一半.【点评】本题考查了两点间的距离,利用线段中点的性质得出MC的长,NC的长是解题关键,又利用了线段的和差.26.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度元收费,如果超过140度,超过部分按每度元收费.(1)若某住户四月份的用电量是a度,求这个用户四月份应交多少电费?(2)若该住户五月份的用电量是200度,则他五月份应交多少电费?【考点】列代数式;代数式求值.【专题】应用题.【分析】(1)分类讨论:当a≤140时,则这个用户四月份应电费为元;当a>140时,这个用户四月份应电费为两部分,即140度的电费和超过140度的部分的电费;(2)由于140<200,所以五月份应交电费按第二个式子计算.【解答】解:(1)当a≤140时,这个用户四月份应电费为元;当a>140时,这个用户四月份应电费为[0.45×140+(a﹣140)]元;(2)∵140<200,∴五月份应交电费为0.45×140+•0.6=99(元).【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.注意讨论a的X围.。

辽宁省鞍山市台安县七年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中七年级全册数学试题

辽宁省鞍山市台安县七年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中七年级全册数学试题

某某省某某市台安县2015-2016学年七年级数学上学期期末考试试题一、选择题:每小题3分,共24分.1.2015的相反数是()A.2015 B.﹣2015 C.D.﹣2.如果单项式2a m b3与是同类项,则m+n=()A.4 B.5 C.6 D.103.设a、b是两个不相等的有理数,若a+b<a,那么在下列图形中表示a、b的点在数轴上的位置可以为()A.B.C.D.4.一个长方形的一边长为2a+3b,另一边长为a+b,则这个长方形的周长是()A.12a+16b B.6a+8b C.3a+4b D.2a2+5ab+3b25.下列说法不正确的是()A.近似数1.8与1.80表示的意义不同B.0.0200精确到万分位C.2.0万精确到万位D.1.0×104精确到千位6.在解方程时,去分母正确的是()A.3(x﹣1)﹣2(2x+3)=6 B.3(x﹣1)﹣2(2x+3)=1 C.2(x﹣1)﹣2(2x+3)=6 D.3(x﹣1)﹣2(2x+3)=37.若式子(m﹣2)x2+5y2+3的值与字母x的取值无关,则m的值是()A.10 B.2 C.﹣4 D.4或﹣48.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元二、填空题:每小题3分,共24分。

9.小怡家的冰箱冷藏室温度是3℃,冷冻室的温度是﹣2℃,则冷藏室温度比冷冻室温度高℃.10.已知x5m﹣4+=2是关于x的一元一次方程,那么m=.11.若|3m﹣5|+(n+3)2=0,则6m﹣(n+2)=.12.为了保护人类居住环境,我国的火电企业积极做好节能环保工作.2011年,我国火电企业的平均煤耗继续降低,仅为330000毫克/千瓦时,用科学记数法表示并保留三个有效数字为毫克/千瓦时.13.若方程2x﹣kx+1=5x﹣2的解为﹣1,则k的值为.14.已知与互为倒数,则x等于.15.已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为.16.对于大于或等于2的自然数n的平方进行如下“分裂”,分裂成n个连续奇数的和,则自然数82的分数中最大的数是.三、解答题:17题8分,18题6分,19题12题,共26分。

统编人教版七年级数学上册期末教学质量检测试题及答案

统编人教版七年级数学上册期末教学质量检测试题及答案
cc
B.如果 a b ,那么 a b
cc
D.如果 a2 3a ,那么 a 3
12.2015 年 11 月 11 日某淘宝卖家卖出两件商品,它们的售价均为 120 元,其中一件盈利 20%,
一件亏损 20%,在这次买卖中这位卖家( )
A.不赔不赚 B.赔了 10 元
C.赚了 10 元
D.赔了 50 元
第 2 页 共 14 页
20.某检修小组乘一辆检修车沿一段东西方向铁路检修,规定向东走为正,向西走为负,小 组的出发地记为 M ,某天检修完毕时,行走记录(单位:千米)如下: +12,-5,-9,+10,-4,+15,-9,+3,-6,-3,-7 (1)问收工时,检修小组距出发地 M 有多远?在东侧还是西侧? (2)若检修车每千米耗油 0.3 升,求从出发到收工时检修车共耗油多少升?
第 3 页 共 14 页
24.如图,将两块直角三角尺的 60°角和 90°角的顶点 A 叠放在一起.将三角尺 ADE 绕点 A 旋转,旋转过程中三角尺 ADE 的边 AD 始终在∠BAC 的内部在旋转过程中,探索: (1)∠BAE 与∠CAD 的度数有何数量关系,并说明理由; (2)试说明∠CAE﹣∠BAD=30°; (3)作∠BAD 和∠CAE 的平分线 AM、AN,在旋转过程中∠MAN 的值是否发生变化?若不变, 请求出这个定值;若变化,请求出变化范围.
第 6 页 共 14 页
【详解】 解:由图可得:a<﹣1<0<b<1, ∴a﹣b<0,故选项 A 不符合题意; 由图可得:a<﹣1<0<b<1, ∴a+b<0, ∴|a+b|=﹣a﹣b,故选项 B 不符合题意; 由图可得:a<﹣1<0<b<1, ∴|b|<|a|,故选项 C 不符合题意; 由图可得:a<﹣1<0<b<1, a+1<0,b﹣1<0, ∴(a+1)(b﹣1)>0,故选项 D 符合题意; 故选:D. 【点睛】 本题考查绝对值,数的大小比较以及实数的加减法和乘法运算,准确识图,理解绝对值的意 义,掌握实数加减法和乘法运算法则是解题关键. 11.B 【详解】 解:A.当 c≠0 时,由 a=b 不能推出 a c b c ,故本选项不符合题意; B.由 a b 能推出 a=b(等式两边都乘 c),故本选项符合题意;

七年级上册数学期末考试试卷及答案

七年级上册数学期末考试试卷及答案

七年级上册数学期末考试试卷及答案七年级上册数学期末考试试卷及答案期末考试对学生一个学期所学知识做全面的检测,下面是店铺为大家整理的七年级数学期末考试卷及答案,希望大家能够认真做题,查漏补缺!更多考试相关内容请及时关注我们店铺!一、选择题(共15小题,每小题3分,满分45分)1. |﹣2|等于( )A.﹣2B.﹣C.2D.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是( )A.1枚B.2枚C.3枚D.任意枚3.下列方程为一元一次方程的是( )A.y+3=0B.x+2y=3C.x2=2xD. +y=24.下列各组数中,互为相反数的是( )A.﹣(﹣1)与1B.(﹣1)2与1C.|﹣1|与1D.﹣12与15.如图,下列图形全部属于柱体的是( )A. B. C. D.6.若关于x的方程mxm﹣2﹣m+3=0是一元一次方程,则这个方程的解是( )A.x=0B.x=3C.x=﹣3D.x=27.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是( )A.8cmB.84mC.8cm或4cmD.无法确定8.一元一次方程﹣ =1,去分母后得( )A.2(2x+1)﹣x﹣3=1B.2(2x+1)﹣x﹣3=6C.2(2x+1)﹣(x﹣3)=1D.2(2x+1)﹣(x﹣3)=69.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本.其中正确的判断有( )A.1个B.2个C.3个D.4个10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于( )A.30°B.45°C.50°D.60°11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB的大小为( )A.69°B.111°C.141°D.159°12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为( )A.5B.4C.3D.213.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元14.下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB= AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB 中点.其中正确的是( )A.①③④B.④C.②③④D.③④15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是( )A. B.C. D.二、填空题(共8小题,每小题3分,满分24分)16.单项式﹣ xy2的系数是.17.若x=2是方程8﹣2x=ax的解,则a= .18.计算:15°37′+42°51′=.19.在半径为6cm的圆中,60°的圆心角所对的扇形面积等于cm2(结果保留π).20.如图,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD= cm.21.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为度.22.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为.23.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为.三、解答题(共7小题,满分51分)24.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)先化简再求值(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.25.解方程:(1)2(3﹣y)=﹣4(y+5);(2) = ;(3) ﹣ =1;(4)x﹣ =1﹣ .26.列方程解应用题:根据图中提供的信息,求出一个杯子的价格是多少元?27.列方程解应用题:已知A、B两地相距48千米,甲骑自行车每小时走18千米,乙步行每小时走6千米,甲乙两人分别A、B两地同时出发.(1)同向而行,开始时乙在前,经过多少小时甲追上乙?(2)相向而行,经过多少小时两人相距40千米?28.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间为2小时的扇形圆心角的度数.29.已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.30.已知关于x的方程的解是x=2,其中a≠0且b≠0,求代数式的值.四、选做题(共3小题,不计入总分)31.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是(请写出盈利或亏损) 元.32.|x+2|+|x﹣2|+|x﹣1|的最小值是.33.一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积.2015-2016学年山东省济南市历下区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.|﹣2|等于( )A.﹣2B.﹣C.2D.【考点】绝对值.【专题】探究型.【分析】根据绝对值的定义,可以得到|﹣2|等于多少,本题得以解决.【解答】解:由于|﹣2|=2,故选C.【点评】本题考查绝对值,解题的关键是明确绝对值的定义.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是( )A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.下列方程为一元一次方程的是( )A.y+3=0B.x+2y=3C.x2=2xD. +y=2【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、正确;B、含有2个未知数,不是一元一次方程,选项错误;C、最高次数是2次,不是一元一次方程,选项错误;D、不是整式方程,不是一元一次方程,选项错误.故选A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.下列各组数中,互为相反数的是( )A.﹣(﹣1)与1B.(﹣1)2与1C.|﹣1|与1D.﹣12与1【考点】相反数;绝对值;有理数的乘方.【专题】计算题.【分析】根据相反数得到﹣(﹣1),根据乘方得意义得到(﹣1)2=1,﹣12=﹣1,根据绝对值得到|﹣1|=1,然后根据相反数的定义分别进行判断.【解答】解:A、﹣(﹣1)=1,所以A选项错误;B、(﹣1)2=1,所以B选项错误;C、|﹣1|=1,所以C选项错误;D、﹣12=﹣1,﹣1与1互为相反数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了绝对值与有理数的乘方.5.如图,下列图形全部属于柱体的是( )A. B. C. D.【考点】认识立体图形.【专题】常规题型.【分析】根据柱体的定义,结合图形即可作出判断.【解答】解:A、左边的图形属于锥体,故本选项错误;B、上面的图形是圆锥,属于锥体,故本选项错误;C、三个图形都属于柱体,故本选项正确;D、上面的图形不属于柱体,故本选项错误.故选C.【点评】此题考查了认识立体图形的知识,属于基础题,解答本题的关键是掌握柱体和锥体的定义和特点,难度一般.6.若关于x的方程mxm﹣2﹣m+3=0是一元一次方程,则这个方程的解是( )A.x=0B.x=3C.x=﹣3D.x=2【考点】一元一次方程的定义.【专题】计算题.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.【解答】解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.7.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是( )A.8cmB.84mC.8cm或4cmD.无法确定【考点】两点间的距离.【分析】根据点B在线段AC上和在线段AC外两种情况进行解答即可.【解答】解:如图1,当点B在线段AC上时,∵AB=6cm,BC=2cm,∴AC=6+2=8cm;如图2,当点CB在线段AC外时,∵AB=6cm,BC=2cm,∴AC=6﹣2=4cm.故选:C.【点评】本题考查的是两点间的距离,正确理解题意、灵活运用分情况讨论思想是解题的关键.8.一元一次方程﹣ =1,去分母后得( )A.2(2x+1)﹣x﹣3=1B.2(2x+1)﹣x﹣3=6C.2(2x+1)﹣(x﹣3)=1D.2(2x+1)﹣(x﹣3)=6【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程两边乘以6去分母得到结果,即可作出判断.【解答】解:去分母得:2(2x+1)﹣(x﹣3)=6,故选D【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.9.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本.其中正确的判断有( )A.1个B.2个C.3个D.4个【考点】总体、个体、样本、样本容量;全面调查与抽样调查.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:①这种调查方式是抽样调查故①正确;②6000名学生的数学成绩是总体,故②错误;③每名学生的数学成绩是个体,故③正确;④500名学生是总体的一个样本,故④正确;故选:C.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于( )A.30°B.45°C.50°D.60°【考点】角的计算.【专题】计算题.【分析】从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.故选A.【点评】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB的大小为( )A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为( )A.5B.4C.3D.2【考点】两点间的距离.【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.【解答】解:∵AB=10,M是AB中点,∴BM= AB=5,又∵NB=2,∴MN=BM﹣BN=5﹣2=3.故选C.【点评】考查了两点间的距离,根据点M是AB中点先求出BM 的长度是解本题的关键.13.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.14.下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB= AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB 中点.其中正确的是( )A.①③④B.④C.②③④D.③④【考点】比较线段的长短.【专题】应用题.【分析】根据线段中点的定义:线段上一点,到线段两端点距离相等的点,可进行判断解答.【解答】解:①如图,AM=BM,但M不是线段AB的中点;故本选项错误;②如图,由AB=2AM,得AM=MB;故本选项正确;③根据线段中点的定义判断,故本选项正确;④根据线段中点的定义判断,故本选项正确;故选C.【点评】本题考查了线段中点的判断,符合线段中点的条件:①在已知线段上②把已知线段分成两条相等线段的点.15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是( )A. B.C. D.【考点】由实际问题抽象出一元一次方程.【分析】轮船沿江从A港顺流行驶到B港,则由B港返回A港就是逆水行驶,由于船速为26千米/时,水速为2千米/时,则其顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26﹣2=24千米/时.根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系:轮船从A港顺流行驶到B港所用的时间=它从B港返回A港的时间﹣3小时,据此列出方程即可.【解答】解:设A港和B港相距x千米,可得方程:= ﹣3.故选A.【点评】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度﹣水流速度.二、填空题(共8小题,每小题3分,满分24分)16.单项式﹣ xy2的系数是﹣.【考点】单项式.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣ xy2的系数是﹣,故答案为:﹣ .【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.17.若x=2是方程8﹣2x=ax的解,则a= 2 .【考点】一元一次方程的解.【分析】把x=2,代入方程得到一个关于a的方程,即可求解.【解答】解:把x=2代入方程,得:8﹣4=2a,解得:a=2.故答案是:2.【点评】本题考查了方程的解的定义,理解定义是关键.18.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.19.在半径为6cm的圆中,60°的圆心角所对的扇形面积等于6πcm2(结果保留π).【考点】扇形面积的计算.【分析】直接利用扇形面积公式计算即可.【解答】解:=6π(cm2).故答案为6π.【点评】此题主要考查了扇形的面积公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形= .熟记公式是解题的关键.20.如图,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD= 15 cm.【考点】比较线段的长短.【专题】计算题.【分析】已知AB和AC的长度,即可求出BC的长度,点D是BC的中点,则可求出CD的长度,AD的长度等于AC的长度加上CD 的长度.【解答】解:因为AB=24cm,AC=6cm,所以BC=18cm,点D是BC中点,所以CD的长度为:9cm,AD=AC+CD=15cm.【点评】本题关键是根据题干中的图形得出各线段之间的关系,然后根据这些关系并结合已知条件即可求出AD的长度.21.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为20 度.【考点】角平分线的定义.【分析】先求出∠BOC=140°,再由OD平分∠BOC,求出∠COD= ∠BOC=70°,即可求出∠DOE=20°.【解答】解:∵∠AOC=40°,∴∠BOC=180°﹣∠AOC=140°,∵OD平分∠BOC,∴∠COD= ∠BOC=70°,∵∠COE=90°,∴∠DOE=90°﹣70°=20°;故答案为:20.【点评】本题考查了角平分线的定义;弄清各个角之间的数量关系是解决问题的关键.22.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为55 .【考点】轴对称的性质.【分析】根据轴对称的性质可得∠B′OG=∠BOG,再根据∠AOB′=70°,可得出∠B′OG的度数.【解答】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=70°,可得∠B′OG+∠BOG=110°∴∠B′OG= ×110°=55°.【点评】本题考查轴对称的性质,在解答此类问题时要注意数形结合的应用.23.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为(﹣1)n+1•2n•xn.【考点】单项式.【专题】规律型.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵2x=(﹣1)1+1•21•x1;﹣4x2=(﹣1)2+1•22•x2;8x3=(﹣1)3+1•23•x3;﹣16x4=(﹣1)4+1•24•x4;第n个单项式为(﹣1)n+1•2n•xn,故答案为:(﹣1)n+1•2n•xn.【点评】本题考查了单项式的应用,解此题的关键是找出规律直接解答.三、解答题(共7小题,满分51分)24.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)先化简再求值(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.【考点】整式的加减—化简求值;有理数的减法;有理数的乘方.【专题】计算题;整式.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式去括号合并得到最简结果,把a的`值代入计算即可求出值.【解答】解:(1)原式=﹣1﹣5×(2﹣9)=﹣1+35=34;(2)原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13,当a=﹣1时,原式=﹣3﹣34﹣13=﹣50.【点评】此题考查了整式的加减﹣化简求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.25.解方程:(1)2(3﹣y)=﹣4(y+5);(2) = ;(3) ﹣ =1;(4)x﹣ =1﹣ .【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣2y=﹣4y﹣20,移项合并得:2y=﹣26,解得:x=﹣13;(2)去分母得:6x﹣4=3,移项合并得:6x=7,解得:x= ;(3)去分母得:6(3x+4)﹣(7﹣2x)=12,去括号得:18x+24﹣7+2x=12,移项合并得:20x=﹣5,解得:x=﹣0.25;(4)去分母得:6x﹣3(3﹣2x)=6﹣(x+2),去括号得:6x﹣9+6x=6﹣x﹣2,移项合并得:13x=13,解得:x=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.26.列方程解应用题:根据图中提供的信息,求出一个杯子的价格是多少元?【考点】一元一次方程的应用.【分析】设一个杯子的价格是x元,则一把暖瓶为(43﹣x)元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设一个杯子的价格是x元,则一把暖瓶为(43﹣x)元,依题意得:3x+2(43﹣x)=94,解得x=8.答:一个杯子的价格为8元.【点评】本题考查了一元一次方程的应用.关键是根据图,得出保温瓶与杯子的价钱之间的数量关系,再根据数量关系的特点,选择合适的方法进行计算.27.列方程解应用题:已知A、B两地相距48千米,甲骑自行车每小时走18千米,乙步行每小时走6千米,甲乙两人分别A、B两地同时出发.(1)同向而行,开始时乙在前,经过多少小时甲追上乙?(2)相向而行,经过多少小时两人相距40千米?【考点】一元一次方程的应用.【分析】(1)根据题意可以列出相应的方程,本题得以解决;(2)根据题意,分两种情况,一种是相遇前相距40千米,一种是相遇后相距40千米,从而可以分别写出两种情况下的方程,本题得以解决.【解答】解:(1)设同向而行,开始时乙在前,经过x小时甲追上乙,18x﹣6x=48解得,x=4即同向而行,开始时乙在前,经过4小时甲追上乙;(2)设相向而行,经过x小时两人相距40千米,18x+6x=48﹣40或18x+6x=48+40,解得x= 或x=即相向而行,经过小时或小时两人相距40千米.【点评】本题考查一元一次方程的应用,解题的关键是明确题意,列出相应的方程,注意第(2)问有两种情况.28.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间为2小时的扇形圆心角的度数.【考点】频数(率)分布直方图;扇形统计图.【分析】(1)根据时间是1小时的有32人,占40%,据此即可求得总人数;(2)利用总人数乘以百分比即可求得时间是0.5小时的一组的人数,即可作出直方图;(3)利用360°乘以活动时间是2小时的一组所占的百分比即可求得圆心角的度数.【解答】解:(1)调查人数=32÷40%=80(人);(2)户外活动时间为0.5小时的人数=80×20%=16(人);补全频数分布直方图见下图:(3)表示户外活动时间2小时的扇形圆心角的度数= ×360°=48°.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.29.已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.【考点】角平分线的定义.【分析】先根据角平分线的性质求出∠AOC的度数,再由AO⊥DO求出∠AOD的度数,根据∠COD=∠AOD﹣∠AOC即可得出结论.【解答】解:∵∠AOB=150°,OC平分∠AOB,∴∠AOC= ∠AOB=75°.∵AO⊥DO,∴∠AOD=90°,∴∠COD=∠AOD﹣∠AOC=90°﹣75°=15°.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.30.已知关于x的方程的解是x=2,其中a≠0且b≠0,求代数式的值.【考点】一元一次方程的解;代数式求值.【专题】计算题.【分析】此题把x的值代入,得出与的值,即可得出此题答案.【解答】解:把x=2代入方程得:,∴3(a﹣2)=2(2b﹣3),∴3a﹣6=4b﹣6,∴3a=4b,∴ ,,∴ .【点评】此题考查的是一元一次方程的解,关键在于解出关于a,b的比值.四、选做题(共3小题,不计入总分)31.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是亏损(请写出盈利或亏损) 80 元.【考点】一元一次方程的应用.【分析】设盈利20%的电子琴的成本为x元,设亏本20%的电子琴的成本为y元,再根据(1+利润率)×成本=售价列出方程,解方程计算出x、y的值,进而可得答案.【解答】解:设盈利20%的电子琴的成本为x元,x(1+20%)=960,解得x=800;设亏本20%的电子琴的成本为y元,y(1﹣20%)=960,解得y=1200;∴960×2﹣(800+1200)=﹣80,∴亏损80元,故答案为:亏损;80.【点评】此题主要考查了一元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.32.|x+2|+|x﹣2|+|x﹣1|的最小值是 4 .【考点】绝对值.【分析】根据|x﹣a|表示数轴上x与a之间的距离,因而原式表示:数轴上一点到﹣2,2和1距离的和,当x在﹣2和2之间的1时距离的和最小.【解答】解:|x+2|+|x﹣2|+|x﹣1|表示:数轴上一点到﹣2,2和1距离的和,当x在﹣2和2之间的1时距离的和最小,是4.故答案为:4.【点评】本题主要考查了绝对值的意义,正确理解|x﹣a|表示数轴上x与a之间的距离,是解决本题的关键.33.一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积.【考点】圆柱的计算.【专题】计算题.【分析】结合图形,知水的体积不变,从而根据第二个图空着的部分的高度是2cm,可以求得水与空着的部分的体积比为4:2=2:1.结合第一个图中水的体积,即可求得总容积.【解答】解:由已知条件知,第二个图上部空白部分的高为7﹣5=2cm,从而水与空着的部分的体积比为4:2=2:1.由第一个图知水的体积为10×4=40,所以总的容积为40÷2×(2+1)=60立方厘米.【点评】此题的关键是解决不同底的问题,能够有机地把两个图形结合起来,求得水与空着的部分的体积比.下载全文。

成都七中育才学校2015-2016学年七年级上期末数学试卷含解析

成都七中育才学校2015-2016学年七年级上期末数学试卷含解析

2015-2016学年四川省成都七中育才学校七年级(上)期末数学试卷一、选择题1. 3的相反数是( )A .3B .C .﹣3D .﹣2.某物体从不同方向看到的三种形状图如图所示,那么该物体的形状是( )A .圆柱体B .正方体C .长方体D .球体3.下列调查方式合适的是( )A .为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B .为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C .为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式D .为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式4.去年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为1260000平方米,这个总面积用科学记数法表示为( )平方米.A .126×104B .1.26×104C .1.26×106D .1.26×1075.下列计算正确的是( )A .2x+3y=5xyB .5a 2﹣3a 2=2C .(﹣7)÷=﹣7D .(﹣2)﹣(﹣3)=1 6.代数式3x a y b 与x 2y 是同类项,则a ﹣b 的值为( )A .1B .0C .﹣2D .27.有理数a 、b 在数轴上的位置如图所示,则下列结论正确的是( )A .B .a ﹣b >0C .ab >0D .a+b <08.用代数式表示“a 与b 两数的差的平方”,正确的是( )A .a 2﹣bB .a ﹣b 2C .a 2﹣b 2D .(a ﹣b )29.如果关于x的方程2x m+1=0是一元一次方程,则m的值为()A.0 B.1 C.﹣1 D.任何数10.已知下列一组数:1,,,,,…;用代数式表示第n个数,则第n个数是()A.B.C.D.二、填空题11.单项式4x2y的系数是.12.如果x=2是关于x的方程x﹣1=a的解,那么a的值是.13.|a﹣1|+|b﹣2|=0,则a+b= .14.如图,已知O是直线CD上的点,OA平分∠BOC,∠BOD=120°,则∠AOC的度数是.15.下列说法正确的是(填番号).①﹣3.1是负数、分数、整式②一个数的绝对值不小于它本身③0既不是正数,也不是负数④整数和分数统称为有理数.三、解答题(本大题共5个小题,共55分)16.(1)计算:1﹣(﹣3)+(+2)(2)计算:(3)解方程:2x﹣(2﹣x)=4(4)解方程:.17.化简并求值:2ab﹣[ab2(ab﹣ab2)],其中a=﹣1,b=2.18.(1)如图,点B,D都在线段AC上,点D是线段AB的中点,BD=4,BC=2,求线段AC的长度.(2)列方程解应用题:一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?19.最近以来,我市持续大面积的雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,我校在全校学生中抽取400名同学做了一次调查,调查结果共分为四个等组A.非常了解; B.比较了解:C.基本了解; D.不了解根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生选择“A.非常了解”的人数为人,m= ,n= ;(2)请在图1中补全条形统计图;(3)请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?20.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨价格为2元,当用水超过4吨而不超过7吨时,超过部分每吨水的价格为3元,当用水超过7吨时,超过部分每吨水的价格为5元.(1)若某户某月用了6吨水,应付多少元水费?(2)若某户某月用了x吨水(x>7),应付水费多少元?(2)若某户某月付了水费32元,你能算出用了多少吨水吗?2015-2016学年四川省成都七中育才学校七年级(上)期末数学试卷参考答案与试题解析一、选择题1.3的相反数是()A.3 B.C.﹣3 D.﹣【考点】相反数.【分析】根据相反数的定义,即可解答.【解答】解:3的相反数是﹣3,故选:C.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.某物体从不同方向看到的三种形状图如图所示,那么该物体的形状是()A.圆柱体B.正方体C.长方体D.球体【考点】由三视图判断几何体.【分析】根据三视图的知识,主视图以及左视图都是矩形,俯视图为一个圆,故易判断该几何体为圆柱.【解答】解:根据主视图和左视图是矩形,得出该物体的形状是柱体,根据俯视图是圆,得出该物体是圆柱体.故选:A.【点评】本题考查由三视图确定几何体的形状,同时考查学生空间想象能力,从主视图、左视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状.3.下列调查方式合适的是()A.为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式D.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式【考点】全面调查与抽样调查.【分析】根据抽样调查和全面调查的特点即可作出判断.【解答】解:A、要了解市民对电影《南京》的感受,应随机抽查一部分市民,只采访了8名初三学生,具有片面性;B、要了解全校学生用于做数学作业的时间,应从全校中随机抽查部分学生,不能在网上向3位好友做调查,不具代表性;C、要了解全国青少年儿童的睡眠时间,范围广,宜采用抽查方式;D、要保证“嫦娥一号”卫星零部件的状况,是精确度要求高、事关重大的调查,往往选用全面调查.故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.去年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为1260000平方米,这个总面积用科学记数法表示为()平方米.A.126×104B.1.26×104C.1.26×106D.1.26×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1 260 000=1.26×107,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列计算正确的是()A.2x+3y=5xy B.5a2﹣3a2=2 C.(﹣7)÷=﹣7 D.(﹣2)﹣(﹣3)=1 【考点】合并同类项;有理数的混合运算.【分析】直接利用合并同类项法则以及有理数混合运算法则分别分析得出答案.【解答】解:A、2x+3y,无法计算,故此选项错误;B、5a2﹣3a2=2a2,故此选项错误;C、(﹣7)÷=﹣,故此选项错误;D、(﹣2)﹣(﹣3)=1,正确.故选:D.【点评】此题主要考查了合并同类项以及有理数混合运算,正确掌握运算法则是解题关键.6.代数式3x a y b与x2y是同类项,则a﹣b的值为()A.1 B.0 C.﹣2 D.2【考点】同类项.【专题】计算题;整式.【分析】利用同类项定义求出a与b的值,即可求出a﹣b的值.【解答】解:∵3x a y b与x2y是同类项,∴a=2,b=1,则a﹣b=2﹣1=1.故选A【点评】此题考查了同类项,熟练掌握同类项定义是解本题的关键.7.有理数a、b在数轴上的位置如图所示,则下列结论正确的是()A.B.a﹣b>0 C.ab>0 D.a+b<0【考点】数轴.【分析】根据数轴可以判断a、b的正负和它们的绝对值的大小,从而可以解答本题.【解答】解:由数轴可得,a<0<b且|a|>|b|,∴<0,故选项A错误,a﹣b<0,故选项B错误,ab<0,故选项C错误,a+b<0,故选项D正确,故选D.【点评】本题考查数轴,解题的关键是明确数轴的特点.8.用代数式表示“a与b两数的差的平方”,正确的是()A.a2﹣b B.a﹣b2C.a2﹣b2D.(a﹣b)2【考点】列代数式.【分析】a与b两数的差的平方则是先分别计算差再计算乘方.【解答】解:a与b两数的差的平方表示为(a﹣b)2;故选D【点评】本题考查了列代数式:根据题中的已知数量利用代数式表示其他相关的量.9.如果关于x的方程2x m+1=0是一元一次方程,则m的值为()A.0 B.1 C.﹣1 D.任何数【考点】一元一次方程的定义.【分析】根据一元一次方程的定义可以得到方程中x的次数应该为1,从而可以解答本题.【解答】解:∵方程2x m+1=0是一元一次方程,∴m=1,故选B.【点评】本题考查一元一次方程的定义,解题的关键是明确一元一次方程中未知数的次数是一次.10.已知下列一组数:1,,,,,…;用代数式表示第n个数,则第n个数是()A.B.C.D.【考点】规律型:数字的变化类.【分析】仔细观察给出的数字,找出其中存在的规律从而解题即可.【解答】解:∵1=;;;∴第n个数是:故选B.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.二、填空题11.单项式4x2y的系数是 4 .【考点】单项式.【分析】根据单项式的概念即可求出答案.【解答】解:故答案为:4;【点评】本题考查单项式的概念,属于基础题型.12.如果x=2是关于x的方程x﹣1=a的解,那么a的值是0 .【考点】一元一次方程的解.【分析】把x=2代入方程即可得到一个关于a的方程求得a的值.【解答】解:把x=2代入方程得1﹣1=a,解得:a=0.故答案是:0.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.13.|a﹣1|+|b﹣2|=0,则a+b= 3 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质可求出a、b的值,再将它们代代数式中求解即可.【解答】解:根据题意得:,解得:,则a+b=1+2=3.故答案是:3.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.14.如图,已知O是直线CD上的点,OA平分∠BOC,∠BOD=120°,则∠AOC的度数是30°.【考点】角平分线的定义.【分析】根据邻补角定义可得∠BOC的度数,再根据角平分线定义可得∠AOC的度数.【解答】解:∵∠BOD=120°,∴∠BOC=180°﹣120°=60°,∵OA平分∠BOC,∴∠AOC=∠BOC=60°=30°,故答案为:30°.【点评】此题主要考查了角平分线,关键是掌握角平分线把角分成相等的两部分.15.下列说法正确的是①②③④(填番号).①﹣3.1是负数、分数、整式②一个数的绝对值不小于它本身③0既不是正数,也不是负数④整数和分数统称为有理数.【考点】有理数;绝对值.【专题】常规题型.【分析】①单独的一个数和字母是单项式,所以﹣3.1是整式;②可通过正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0做出判断;③0特殊的有理数,它有很多特殊的性质,它是数轴上正负数的分界点;④是有理数的定义.【解答】解:﹣3.1是单项式,所以﹣3.1是负数,是分数也是整式故①正确;当a为实数时,|a|≥a,所以一个数的绝对值不小于它本身,故②正确;0是特殊的有理数,不是正数也不负数,故③正确;整数和分数统称有理数,故④正确.故答案为:①②③④【点评】本题考查了数的分类、绝对值的性质、0及有理数的定义.0是特殊的有理数,它不是正数与不是负数,它的绝对值和相反数都是它本身,它没有倒数.三、解答题(本大题共5个小题,共55分)16.(1)计算:1﹣(﹣3)+(+2)(2)计算:(3)解方程:2x﹣(2﹣x)=4(4)解方程:.【考点】解一元一次方程;有理数的混合运算.【专题】计算题;实数;一次方程(组)及应用.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方及乘法运算,再计算加减运算即可得到结果;(3)方程去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=1+3+2=6;(2)原式=﹣1+3﹣2=0;(3)去括号得:2x﹣2+x=4,移项合并得:3x=6,解得:x=2;(4)去分母得:2x+2=x﹣1+6,移项合并得:x=3.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.17.化简并求值:2ab﹣[ab2(ab﹣ab2)],其中a=﹣1,b=2.【考点】整式的混合运算—化简求值.【分析】先根据整式的混合运算顺序和运算法则化简原式,再代入求值可得.【解答】解:原式=2ab﹣(a2b3﹣a2b4)=2ab﹣a2b3+a2b4,当a=﹣1,b=2时,原式=2×(﹣1)×2﹣(﹣1)2×23+(﹣1)2×24=﹣4﹣8+16=4.【点评】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和运算法则是解题的关键.18.(1)如图,点B,D都在线段AC上,点D是线段AB的中点,BD=4,BC=2,求线段AC的长度.(2)列方程解应用题:一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?【考点】两点间的距离;一元一次方程的应用.【分析】(1)先根据中点的定义,求得AB长,再根据BC的长求得AC长即可;(2)成本价×(1+20%)×90%=270元,根据此等量关系列方程即可.【解答】解:(1)∵点D是线段AB的中点,BD=4,∴AB=2BD=8,又∵BC=2,∴AC=AB+BC=8+2=10,故线段AC的长度为10;(2)设这种商品的成本价为x元,依题意得:x(1+20%)×90%=270,解得:x=250.答:这种商品的成本价是250元.【点评】本题主要考查了两点间的距离以及一元一次方程的应用,解题关键是要读懂题目的意思,理清线段之间的和差关系;根据题目给出的条件,找出合适的等量关系,列出方程求解.19.最近以来,我市持续大面积的雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,我校在全校学生中抽取400名同学做了一次调查,调查结果共分为四个等组A.非常了解; B.比较了解:C.基本了解; D.不了解根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生选择“A.非常了解”的人数为20 人,m= 15% ,n= 35% ;(2)请在图1中补全条形统计图;(3)请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?【考点】条形统计图;统计表;扇形统计图.【分析】(1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;(2)求出D的学生人数,然后补全统计图即可;(3)用D的百分比乘360°计算即可得解.【解答】解:(1)非常了解的人数为20,60÷400×100%=15%,1﹣5%﹣15%﹣45%=35%,故答案为:20;15%;35%;(2)∵D等级的人数为:400×35%=140,∴补全条形统计图如图所示:(3)D部分扇形所对应的圆心角:360°×35%=126°.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨价格为2元,当用水超过4吨而不超过7吨时,超过部分每吨水的价格为3元,当用水超过7吨时,超过部分每吨水的价格为5元.(1)若某户某月用了6吨水,应付多少元水费?(2)若某户某月用了x吨水(x>7),应付水费多少元?(2)若某户某月付了水费32元,你能算出用了多少吨水吗?【考点】一元一次方程的应用;列代数式.【分析】(1)根据题意可以求得某户某月用了6吨水,应付的水费;(2)根据题意可以求得某户某月用了x吨水(x>7),应付的水费;(3)根据题意可以判断出32元水费在哪个用水范围内,从而可以解答本题.【解答】解:(1)由题意可得,某户某月用了6吨水,应付水费为:4×2+(6﹣4)×3=14(元),即某户某月用了6吨水,应付14元的水费;(2)由题意可得,某户某月用了x吨水(x>7),应付水费为:4×2+(7﹣4)×3+(x﹣7)×5=(5x﹣18)元,即某户某月用了x吨水(x>7),应付水费(5x﹣18)元;(3)当x=7时,收费为:4×2+(7﹣4)×3=17,∵17<32,∴32=5x﹣18,解得,x=10即某户某月付了水费32元,用水10吨.【点评】本题考查一元一次方程的应用,解题的关键是明确题意,找出所求问需要的条件.。

2016-2017年七年级上学期期末考试数学试题及答案

2016-2017年七年级上学期期末考试数学试题及答案

2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。

四川省广元市利州区嘉陵第一初级中学2015-2016学年七年级上学期期末考试数学试题解析(解析版)

四川省广元市利州区嘉陵第一初级中学2015-2016学年七年级上学期期末考试数学试题解析(解析版)

四川省广元市利州区嘉陵第一初级中学2015-2016学年七年级上学期期末考试数学试题时间:120分钟满分:120分一.选择题(每小题3分,共30分)1. 下列等式正确的是()A. -︱3︱=︱-3︱B. ︱3︱=︱-3︱C. ︱-3︱=-3D. -﹙-3﹚=-︱-3︱【答案】B2. 下列结论中正确的是()A. 单项式错误!未找到引用源。

的系数是错误!未找到引用源。

,次数是4B. 单项式m的次数是1,没有系数C. 单项式﹣xy2z的系数是﹣1,次数是4D. 多项式2x2+xy2+3是二次三项式【答案】C【解析】因为单项式错误!未找到引用源。

的系数是错误!未找到引用源。

,次数是3,所以A选项是错误的;因为单项式m的次数是1,系数是1,所以B选项是错误的;因为多项式2x2+xy2+3是三次三项式,所以D选项是错误的;故选C。

点睛:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.在确定单项式的系数和次数时紧紧抓住此定义是解决问题的关键;常见的错误有(1)把数字指数和字母指数混为一谈,如指出4.1╳103ab的系数和指数,错解为系数是4.1、次数是3;(2) 把错误!未找到引用源。

当做字母;(3) 忽视“1”的省略。

3. 某市在去年4月份突遇大风,冰雹灾害性天气,造成直接经济损失5 000万元.5 000万元用科学记数法表示为()A. 5000万元B. 5×102万元C. 5×103万元D. 5×104万元【答案】C【解析】5000万元=错误!未找到引用源。

万元;故选C。

点睛:把一个大于10的数表示成a×10n(1≤a<10,n为正整数)的形式,其中得到a的方法是:最后面的零都去掉,在第一位数后面加上小数点;得到n的方法是:原数的小数点前的整数数位的个数减1。

4. 下列运算正确的是()A. 5x﹣3x=2B. 2a+3b=5abC. 2ab﹣ba=abD. ﹣(a﹣b)=b+a【答案】C【解析】因为5x-3x=2x,所以A是错误的;因为2a和3b不是同类项,所以B选项是错误的;因为-(a-b)=b-a,所以D选项是错误的;故选C。

山东省青岛市黄岛区2015~2016学年度七年级(上)期末数学试卷(解析版)

山东省青岛市黄岛区2015~2016学年度七年级(上)期末数学试卷(解析版)

山东省青岛市黄岛区2015~2016学年度七年级上学期期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.﹣3的倒数是()A.3 B.﹣C.﹣3 D.2.如图,南偏东15°和北偏东25°的两条射线组成的角(即∠AOB)等于()度.A.40°B.80°C.50°D.140°3.下列调查中,适合用普查方式的是()A.了解一批节能灯泡的使用寿命B.了解一批炮弹的杀伤半径C.了解某校2015~2016学年度八年级(3)班学生的身高情况D.了解一批袋装食品中是否含有防腐剂4.把方程中分母化整数,其结果应为()A.B.0C.D.05.如图,点C为线段AB的中点,点D为线段AC的中点、已知AB=8,则BD=()A.2 B.4 C.6 D.86.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.67.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60 B.12(x+10)=13x+60C.D.8.下列第一行所示的四个图形,每个图形均是由四种简单的图形a、b、c、d(圆、直线、三角形、长方形)中的两种组成.例如由a、b组成的图形记作a⊙b,那么由此可知,下列第二行的图中可以记作a⊙d的是()A. B.C.D.二、填空题(共9小题,每小题3分,满分32分)9.下列各数:﹣(﹣2),|﹣2|,(﹣3),﹣|0|,﹣,其中负数有个.10.若ab m和﹣a n b3是同类项,则n﹣m=.11.请写出一个解为x=2的一元一次方程.12.比较大小:52°52′52.52°.(填“>”、“<”或“=”)13.如图,是某晚报“百姓热线”一周内接到的热线电话的统计图,其中有关环境保护问题最多,共有70个,则有关道路交通问题的电话有个.14.已知在平面内,∠AOB=60°,OD是∠AOB的角平分线,∠BOC=20°,则∠COD的度数是.15.将一个底面直径是10厘米、高为40厘米的圆柱锻压成底面直径为16厘米的圆柱,则锻压后圆柱的高为厘米.16.如图是幼儿园小朋友用火柴拼出的一列图形,请仔细观察,找出规律,并计算第2016个图形中共有根火柴.17.(1)如图1,是由几个大小完全一样的小正方体搭成的几何体从上面看的图,小正方形中的数字表示在该位置小正方体的个数,请你画出该几何体从正面看和左面看的形状图.(2)已知图2:线段a、b,求作一条线段c,使c=2a﹣b.三、解答题(共7小题,满分64分)18.计算与化简:(1)(﹣)×(﹣12)(2)(﹣3)2÷(2)﹣4×(﹣)2(3)x2y﹣3×(xy2﹣yx2)+y2x,其中x=﹣2,y=1.19.解方程:(1)4x﹣3=3 (2)y﹣.20.如图,∠AOB,∠DOC都是直角.(1)如果∠AOD=128°,∠BOC的度数.(2)除直角外,找出图中其他相等的角.21.A、B两城市间有一条300千米的高速公路,现有一长途客车从A城市开往B城市,平均速度为85千米/时,有一小汽车同时B城市开往A城市平均速度是115千米/时,问两车相遇时离A城市有多远?22.为了解某校“阅读工程”的开展情况.市教育局从该校初中生中随机抽取了150名学生进行了阅读情况的问卷调查,绘制了如下不完全的统计图:根据上述统计图提供的信息,解答下列问题:(1)每天阅读时间在1﹣2小时学生有多少人?(2)采用“笔记积累”阅读方式的学生有多少人?(3)补全条形统计图.(4)若将写读后感、笔记积累、画圈点读三种方式称为记忆阅读,求笔记积累人数占有记忆阅读人数的百分比.23.王志和孙尚到图书城去买书,两人在书城购买书共花费了206元,共购买了16本书,其中王志平均每本书的价格为12元,孙尚平均每本书的价格为14元.(1)王志和孙尚各购买书多少本?(2)如果在书城办会卡买书可以享受7折优惠,那么两人合办一张会员卡(会员卡8元),请问此次购书两人共可以节省多少钱?24.如图是由边长为1cm的若干个正方形叠加行成的图形,其中第一个图形由1个正方形组成,周长为4cm,第二个图形由4个正方形组成,周长为10cm.第三个图形由9个正方形组成,周长为16cm,依次规律…(1)第四个图形有个正方形组成,周长为cm.(2)第n个图形有个正方形组成,周长为cm.(3)若某图形的周长为58cm,计算该图形由多少个正方形叠加形成.山东省青岛市黄岛区2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.﹣3的倒数是()A.3 B.﹣C.﹣3 D.【考点】倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣3的倒数是﹣,故选:B.【点评】本题考查了倒数,分子分母交换位置是求倒数的关键.2.如图,南偏东15°和北偏东25°的两条射线组成的角(即∠AOB)等于()度.A.40°B.80°C.50°D.140°【考点】方向角.【分析】根据角的和差,可得答案.【解答】解:如图,南偏东15°和北偏东25°,得∠AOC=25°,∠BOD=15°.由角的和差,得∠AOB=180°﹣∠AOC﹣∠BOD=180°﹣25°﹣15°=140°,故选:D.【点评】本题考查了方向角,利用角的和差是解题关键.3.下列调查中,适合用普查方式的是()A.了解一批节能灯泡的使用寿命B.了解一批炮弹的杀伤半径C.了解某校2015~2016学年度八年级(3)班学生的身高情况D.了解一批袋装食品中是否含有防腐剂【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:了解一批节能灯泡的使用寿命用抽样调查,A错误;了解一批炮弹的杀伤半径用抽样调查,B错误;了解某校2015~2016学年度八年级(3)班学生的身高情况用普查方式,C正确;了解一批袋装食品中是否含有防腐剂用抽样调查,D错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.把方程中分母化整数,其结果应为()A.B.0C.D.0【考点】解一元一次方程.【专题】计算题.【分析】方程两边同乘以10化分母为整数,乘的时候分母及分子都要乘以10.【解答】解:根据分式的性质,每个分式分子分母同乘以10得:.故选C.【点评】本题考查了化分母为整数,注意方程两边每一项都要同乘以同一个数.注意分式的基本性质与等式的性质的不同点.5.如图,点C为线段AB的中点,点D为线段AC的中点、已知AB=8,则BD=()A.2 B.4 C.6 D.8【考点】比较线段的长短.【专题】计算题.【分析】根据两中点进行解答.【解答】解:∵点C为线段AB的中点,AB=8,则BC=AC=4.点D为线段AC的中点,则AD=DC=2.∴BD=CD+BC=6.故选C.【点评】利用中点性质转化线段之间的长短关系是解题的关键.6.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.6【考点】频数(率)分布直方图.【专题】图表型.【分析】由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.【解答】解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.【点评】本题主要考查学生对频率直方图的认识和对频数的计算.7.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60 B.12(x+10)=13x+60C.D.【考点】由实际问题抽象出一元一次方程.【专题】应用题.【分析】首先理解题意,找出题中存在的等量关系:实际12小时生产的零件数=原计划13小时生产的零件数+60,根据此等式列方程即可.【解答】解:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选B.【点评】列方程解应用题的关键是找出题目中的相等关系.8.下列第一行所示的四个图形,每个图形均是由四种简单的图形a、b、c、d(圆、直线、三角形、长方形)中的两种组成.例如由a、b组成的图形记作a⊙b,那么由此可知,下列第二行的图中可以记作a⊙d的是()A.B.C.D.【考点】认识立体图形.【分析】结合已知图形,先判断a,b,c,d所代表的图形,再判断记作a⊙d的图形即可.【解答】解:根据题意,知a代表长方形,d代表直线,所以记作a⊙d的图形是长方形和直线的组合,故选A.【点评】读懂题意,结合图形组合的特点,判断出a,b,c,d所代表的图形,是解决问题的关键.二、填空题(共9小题,每小题3分,满分32分)9.下列各数:﹣(﹣2),|﹣2|,(﹣3),﹣|0|,﹣,其中负数有2个.【考点】正数和负数.【专题】推理填空题.【分析】将题目的数据进行化简,然后根据负数的定义,即可判断题目中负数的个数.【解答】解:∵﹣(﹣2)=2,|﹣2|=2,(﹣3)=﹣3,﹣|0|=0,﹣=﹣,∴﹣(﹣2),|﹣2|,(﹣3),﹣|0|,﹣中负数有2个,故答案为:2.【点评】本题考查正数和负数,解题的关键是明确负数的定义,可以对题目中的数据进行化简.10.若ab m和﹣a n b3是同类项,则n﹣m=﹣2.【考点】同类项.【分析】直接利用同类项的定义得出n,m的值进而得出答案.【解答】解:∵ab m和﹣a n b3是同类项,∴n=1,m=3,则n﹣m=1﹣3=﹣2.故答案为:﹣2.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.11.请写出一个解为x=2的一元一次方程x﹣2=0.【考点】一元一次方程的解.【专题】开放型.【分析】根据方程的解的定义,只要使x=2能使方程左右两边相等即可.(答案不唯一).【解答】解:写出一个解为x=2的一元一次方程是x﹣2=0.故答案是:x﹣2=0.【点评】本题考查了方程的解的定义,方程的解是能使方程的左右两边相等的未知数的值.12.比较大小:52°52′>52.52°.(填“>”、“<”或“=”)【考点】角的大小比较;度分秒的换算.【分析】将角的度数换算成度分秒的形式,再进行比较即可得出结论、【解答】解:∵0.52×60=31.2,0.2×60=12,∴52.52°=52°31′12″,52°52′>52°31′12″,故答案为:>.【点评】本题考查的度分秒的换算以及角的大小比较,解题的关键是将角的度数换算成度分秒的形式,再进行比较.13.如图,是某晚报“百姓热线”一周内接到的热线电话的统计图,其中有关环境保护问题最多,共有70个,则有关道路交通问题的电话有40个.【考点】用样本估计总体;条形统计图.【专题】图表型.【分析】根据条形统计图可以看出:环境保护70个占总体的35%,即可求得热线电话的总的个数,再根据交通问题所占的比例即可求解.【解答】解:有关道路交通问题的电话有:70÷35%=200个,20%×200=40.【点评】能够从条形统计图中发现环境保护占总体的多少,然后根据已知部分求全体用除法计算.14.已知在平面内,∠AOB=60°,OD是∠AOB的角平分线,∠BOC=20°,则∠COD的度数是50°或10°.【考点】角平分线的定义.【分析】分类讨论:OC在∠AOB外,OC在∠AOB内两种情况.根据角平分线的性质,可得∠BOD 与∠AOB的关系,再根据角的和差,可得答案.【解答】解:①OC在∠AOB外,如图1,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D+∠BOC=30°+20°=50°;②OC在∠AOB内,如图2,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D﹣∠BOC=30°﹣20°=10°.故答案为:50°或10°.【点评】本题考查了角的计算,先根据角平分线的性质,求出∠BOD,在由角的和差,得出答案,分了讨论是解题关键.15.将一个底面直径是10厘米、高为40厘米的圆柱锻压成底面直径为16厘米的圆柱,则锻压后圆柱的高为15.625厘米.【考点】一元一次方程的应用.【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积,根据圆柱的体积计算公式表示出体积列出方程解答即可.【解答】解:设锻压后圆柱的高为x厘米,由题意得:π()2x=π()2×40,解得:x=15.625.答:锻压后圆柱的高为15.625厘米.故答案为:15.625.【点评】此题考查一元一次方程的实际运用,关键是掌握体积公式,并找准题中的等量关系.16.如图是幼儿园小朋友用火柴拼出的一列图形,请仔细观察,找出规律,并计算第2016个图形中共有6049根火柴.【考点】规律型:图形的变化类.【专题】推理填空题;实数.【分析】将第1、2、3、4个图形中火柴数量拆分成序数的3倍与1的和,据此可知第2016个图形中火柴的数量.【解答】解:第一个图中,有火柴1+1×3=4根;第二个图形中,有火柴1+2×3=7根;第三个图形中,有火柴1+3×3=10根;第四个图形中,有火柴1+4×3=13根;…则第2016个图形中,有火柴1+2016×3=6049根.故答案为:6049.【点评】本题主要考查图形的变化规律,将图形的变化规律转化为数字规律是关键.17.(1)如图1,是由几个大小完全一样的小正方体搭成的几何体从上面看的图,小正方形中的数字表示在该位置小正方体的个数,请你画出该几何体从正面看和左面看的形状图.(2)已知图2:线段a、b,求作一条线段c,使c=2a﹣b.【考点】作图-三视图;作图—复杂作图.【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有2列,每列小正方形数目分别为3,2.据此可画出图形.(2)在射线AM上依次截取AB=BC=a,再截取DC=b,则AD=2a﹣b.【解答】解:(1)如图所示:(2)如图,AD即为所作.【点评】(1)考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.(2)复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.三、解答题(共7小题,满分64分)18.计算与化简:(1)(﹣)×(﹣12)(2)(﹣3)2÷(2)﹣4×(﹣)2(3)x2y﹣3×(xy2﹣yx2)+y2x,其中x=﹣2,y=1.【考点】有理数的混合运算;整式的加减—化简求值.【专题】计算题;实数.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=8﹣3+10=15;(2)原式=9×﹣4×=(9﹣4)×=5×=;(3)原式=x2y+xy2+2yx2+y2x=3x2y+2xy2,当x=﹣2,y=1时,原式=12﹣4=8.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.解方程:(1)4x﹣3=3(2)y﹣.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)按照解一元一次方程的步骤:去括号、移项、合并同类项、系数化为1可得方程的解;(2)按照解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1可得方程的解.【解答】解:(1)去括号,得:4x﹣60+3x=3,移项,得:4x+3x=3+60,合并同类项,得:7x=63,系数化为1,得:x=9;(2)去分母,得:6y﹣3(y﹣1)=12﹣(y+2),去括号,得:6y﹣3y+3=12﹣y﹣2,移项,得:6y﹣3y+y=12﹣2﹣3,合并同类项,得:4y=7,系数化为1,得:x=.【点评】本题主要考查解一元一次方程的基本能力,严格遵循解方程的基本步骤是关键.20.如图,∠AOB,∠DOC都是直角.(1)如果∠AOD=128°,∠BOC的度数.(2)除直角外,找出图中其他相等的角.【考点】余角和补角.【分析】(1)根据直角定义可得∠AOB=90°,∠COD=90°,然后利用∠AOD=128°可得∠AOC=128°﹣90°=38°,进而可得∠BOC的度数;(2)根据同角的余角相等可得答案.【解答】解:(1)∵∠AOB,∠DOC都是直角,∴∠AOB=90°,∠COD=90°,∵∠AOD=128°,∴∠AOC=128°﹣90°=38°,∴∠BOC=90°﹣38°=52°;(2)∠AOC=∠BOD,∵∠AOB=90°,∠COD=90°,∴∠AOC+∠BOC=∠BOD+∠BOC,∴∠AOC=∠BO D.【点评】此题主要考查了余角,以及角的计算,关键是掌握余角的性质:同角的余角相等,理清角之间的和差关系.21.A、B两城市间有一条300千米的高速公路,现有一长途客车从A城市开往B城市,平均速度为85千米/时,有一小汽车同时B城市开往A城市平均速度是115千米/时,问两车相遇时离A城市有多远?【考点】一元一次方程的应用.【分析】设两车经过x小时相遇,根据两车所行的路程和为300千米列方程求得相遇时间,进一步利用相遇时间乘客车速度得出答案即可.【解答】解:设两车经过x小时相遇,由题意得85x+115x=300解得:x=1.585x=85×1.5=127.5答:两车相遇时离A城市有127.5千米.【点评】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系是解决问题的关键.22.为了解某校“阅读工程”的开展情况.市教育局从该校初中生中随机抽取了150名学生进行了阅读情况的问卷调查,绘制了如下不完全的统计图:根据上述统计图提供的信息,解答下列问题:(1)每天阅读时间在1﹣2小时学生有多少人?(2)采用“笔记积累”阅读方式的学生有多少人?(3)补全条形统计图.(4)若将写读后感、笔记积累、画圈点读三种方式称为记忆阅读,求笔记积累人数占有记忆阅读人数的百分比.【考点】条形统计图;扇形统计图.【分析】(1)每天阅读时间在1﹣2小时学生数=每天阅读时间在1﹣2小时的百分比×总人数;(2)采用“笔记积累”阅读方式的学生数=总人数﹣其他方式的总人数;(3)根据(2)中计算结果,可补全条形图;(4)笔记积累人数占有记忆阅读人数的百分比=笔记积累人数÷记忆阅读的人数×100%.【解答】解:(1)每天阅读时间在1﹣2小时学生有:(1﹣10%﹣20%﹣40%)×150=45人;(2)采用“笔记积累”阅读方式的学生有:150﹣(18+22+70)=40人;(3)补全条形图如下:(4)笔记积累人数占有记忆阅读人数的百分比为:×100%=50%.【点评】本题主要考查条形统计图和扇形统计图,从不同的统计图中获取有用的信息是解题的关键.23.王志和孙尚到图书城去买书,两人在书城购买书共花费了206元,共购买了16本书,其中王志平均每本书的价格为12元,孙尚平均每本书的价格为14元.(1)王志和孙尚各购买书多少本?(2)如果在书城办会卡买书可以享受7折优惠,那么两人合办一张会员卡(会员卡8元),请问此次购书两人共可以节省多少钱?【考点】一元一次方程的应用.【分析】(1)设王志购买书x本,则孙尚购买书(16﹣x)本,根据两人在书城购买书共花费了206元列出方程,求解即可;(2)先求出办会卡购书一共需要的钱数,再用206元减去这个钱数即可.【解答】解:(1)设王志购买书x本,则孙尚购买书(16﹣x)本,根据题意得12x+14(16﹣x)=206,解得x=9,16﹣x=7.答:王志购买书9本,孙尚购买书7本;(2)办会卡购书一共需要:8+206×0.7=152.2(元),206﹣152.2=53.8(元).答:此次购书两人共可以节省53.8元钱.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.如图是由边长为1cm的若干个正方形叠加行成的图形,其中第一个图形由1个正方形组成,周长为4cm,第二个图形由4个正方形组成,周长为10cm.第三个图形由9个正方形组成,周长为16cm,依次规律…(1)第四个图形有16个正方形组成,周长为22cm.(2)第n个图形有n2个正方形组成,周长为6n﹣2cm.(3)若某图形的周长为58cm,计算该图形由多少个正方形叠加形成.【考点】规律型:图形的变化类;列代数式;代数式求值.【专题】推理填空题.【分析】(1)将第1、2、3个图形中正方形个数写成序数的平方,周长是序数6倍与2的差,根据规律得到第4个图形中正方形个数和周长;(2)延续(1)中规律写出第n个图形中正方形的个数和周长;(3)若周长为58,可列方程,求出n的值,根据n的值从而求出其正方形个数;【解答】解:(1)根据题意,知:第一个图形:正方形有1=12个,周长为4=4+6×0;第二个图形:正方形有:4=22个,周长为10=4+6×1;第三个图形:正方形有:9=32个,周长为16=4+6×2;故第四个图形:正方形有:42=16个,周长为4+6×3=22;(2)根据以上规律,第n个图形有正方形n2个,其周长为:4+6(n﹣1)=6n﹣2;(3)若某图形的周长为58cm,则有:6n﹣2=58,解得:n=10,即第10个图形的周长为58cm,则第10个图形中正方形有102=100个.故答案为:(1)16,22;(2)n2,6n﹣2.【点评】本题主要考查图形的变化规律,将图形的变化规律转化为数字的规律是关键.- 21 -。

重庆市南岸区2015-2016学年七年级上学期期末考试数学试题(解析版)

重庆市南岸区2015-2016学年七年级上学期期末考试数学试题(解析版)

2015-2016学年重庆市南岸区七年级(上)期末数学试卷一、选择题(48分)1.(2014•自贡)比﹣1大1的数是()A.2 B.1 C.0 D.﹣22.(2013•烟台)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1073.(2015•重庆)下列调查中,最适宜采用全面调查方式(普查)的是()A.对重庆市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对重庆市初中学生课外阅读量的调查4.(2015•新疆)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B5.(2015秋•南岸区期末)下列计算正确的是()A.﹣12﹣8=﹣4 B.C.﹣5﹣(﹣2)=﹣3 D.﹣32=96.(2015秋•南岸区期末)买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(4m+7n)元B.28mn元C.(7m+4n)元D.11mn元7.(2007•常州)下面各个图形是由6个大小相同的正方形组成的,其中能沿正方形的边折叠成一个正方体的是()A.B.C.D.8.(2015秋•南岸区期末)下列各组单项式中,为同类项的是()A.a3与a2B.﹣3与a C.2xy与2x D.与2a29.(2015•邯郸二模)如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A.75°B.90°C.105°D.125°10.(2015•临淄区一模)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.若用餐的人数有90人,则这样的餐桌需要()张?A.15 B.16 C.21 D.2211.(2014•邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长12.(2015秋•南岸区期末)王明和李丽是邻居,星期天他们两家人准备去郊外的湿地公园玩,早上两家人同时乘坐了两辆不同价格的出租车,王明家乘坐的是起步4公里10元,以后每公里收1.2元,李丽家乘坐的起步3公里8元,以后每公里收1.3元,两家人几乎同时到公园,付款后王明发现两家人的车费仅差1元,则两家住地离公园的路程是()A.20公里B.21公里C.22公里D.25公里二、填空题(24分)13.(2000•福建)若|a|=2,则a=.14.(2015秋•南岸区期末)36.42°=度分秒.15.(2015秋•南岸区期末)若x=2是方程mx+3=x﹣5的解,则m的值为.16.(2015秋•南岸区期末)小慧在一张日历的一横排上圈了连续的四个数,它们的和为22,这四个数中最小的为.17.(2015秋•南岸区期末)请第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案.若一个同学报给第二个同学的数是5,而第四个同学报出的答案是.18.(2015秋•南岸区期末)一个正方体的六个面上分别涂有红、白、黄、绿、蓝、紫六种不同的颜色,其中红、白、黄、绿、蓝、紫,分别代表的是数字﹣1、﹣2、﹣3、﹣4、﹣5、﹣6中的一个数,如图是这个正方体的三种放置方法,若三个正方体下底面所标颜色代表的数字分别是a,b,c,则a+b+c+abc=.三、解答题(14分)19.(7分)(2015秋•南岸区期末)计算:(1)2﹣(+10)﹣(﹣3)+4(2).20.(7分)(2015秋•南岸区期末)如图,已知四点A、B、C、D,请用尺规作图完成(保留作图痕迹)(1)画直线AB;(2)画射线AC;(3)求作点P,使PA+PB+PC+PD的值最小.四、解答题(40分)21.(10分)(2015秋•南岸区期末)解方程:(1)4﹣x=3(2﹣x)(2).22.(10分)(2015秋•南岸区期末)重庆新天地陶瓷厂计划一周生产陶瓷工艺品350个,平均每天生产50个,但实际每天生产量与计划相比有出入,下表是某周的生产情况(以50个为标准,超产记为正、减产记为负):(1)根据记录的数据,请直接写出该厂本周产量最多的一天比最少的一天多生产的工艺品的个数;(2)该工艺厂在本周实际生产工艺品的数量为多少个?(列式计算)(3)已知该厂实行每周计件工资制,每周结算一次,每生产一个工艺品可得5元,若超额完成任务(以350个为标准),则超过部分每个另奖10元,少生产每个扣3元,试求该工艺厂在这一周应付出的工资总额.23.(10分)(2012•莱芜)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=,b=;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.24.(10分)(2015秋•南岸区期末)一位打工者来到一个新城市,想租一套房子,A家房主的条件是:先交1000元,每个月租金680元,B家房主的条件是:每月租金780元(1)这位打工者想在这座城市住半年,租哪家的房子合算?(2)如果这位打工者想住一年,租哪家的房子合算?(3)这位打工者住多长时间时,租两家的房子费用都一样?五、解答题(24分)25.(12分)(2015秋•南岸区期末)概念:如果一个n×n矩阵(教材中表现为方格图)的每行,每列及两条对角线的元素之和都相等,且这些元素都是从1到n的自然数,这样的矩阵就称为n阶幻方.有关幻方问题的研究在我国已流传了两千多年,这是一类形式独特的填数字问题.下面介绍一种构造三阶幻方方法﹣﹣﹣杨辉法:(如图(1))口诀:“九子斜排,上下对易,左右相更,四维挺出”学以致用:(1)请你将下列九个数:﹣18、﹣16、﹣14、﹣12、﹣10、﹣8、﹣6、﹣4、﹣2,分别填入方格1中,使得每行、每列、每条对角线上的三个数之和都相等;(2)将方格2中左边方格中的9个数填入右边方格中,使每一行、每一列、每条对角线中的三个数相加的和相等;(3)将9个连续自然数填入方格3的方格内,使每一横行、每一竖行及两条对角线的3个数之和都等于60;(4)用﹣3~5这九个数补全方格4中的幻方.方格1方格2方格3方格426.(12分)(2015秋•南岸区期末)如图,在数轴上点A、B、C表示的数分别为﹣2、1、6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC(1)请直接写出AB、BC、AC的长度;(2)若点D从A点出发,以每秒1个单位长度的速度向左运动,点E从B点出发以每秒2个单位长度的速度向右运动,点F从C点出发以每秒5个单位长度的速度向右运动.设点D、E、F同时出发,运动时间为t秒,试探索:EF﹣DE的值是否随着时间t的变化而变化?请说明理由.(3)若点M以每秒4个单位的速度从A点出发,点N以每秒3个单位的速度运动从C点出发,设点M、N同时出发,运动时间为t秒,试探究:经过多少秒后,点M、N两点间的距离为14个单位.2015-2016学年重庆市南岸区七年级(上)期末数学试卷参考答案与试题解析一、选择题(48分)1.(2014•自贡)比﹣1大1的数是()A.2 B.1 C.0 D.﹣2【考点】有理数的加法.【分析】根据有理数的加法,可得答案.【解答】解:(﹣1)+1=0,故比﹣1大1的数是0,故选:C.【点评】本题考查了有理数的加法,互为相反数的和为0.2.(2013•烟台)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将210000000用科学记数法表示为:2.1×108.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2015•重庆)下列调查中,最适宜采用全面调查方式(普查)的是()A.对重庆市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对重庆市初中学生课外阅读量的调查【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市中学生每天学习所用时间的调查,人数众多,适宜采用抽样调查,故此选项错误;B、对全国中学生心理健康现状的调查,人数众多,适宜采用抽样调查,故此选项错误;C、对某班学生进行6月5日是“世界环境日”知晓情况的调查,人数不多,适宜采用全面调查,故此选项正确;D、对重庆市初中学生课外阅读量的调查,人数众多,适宜采用抽样调查,故此选项错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(2015•新疆)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B,据此解答即可.【解答】解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.【点评】此题主要考查了线段的性质,要熟练掌握,解答此题的关键是要明确:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.5.(2015秋•南岸区期末)下列计算正确的是()A.﹣12﹣8=﹣4 B.C.﹣5﹣(﹣2)=﹣3 D.﹣32=9【考点】有理数的除法;有理数的减法;有理数的乘方.【专题】计算题.【分析】原式利用有理数的乘方,乘法,以及除法法则计算得到结果,即可做出判断.【解答】解:A、﹣12﹣8=﹣20,错误;B、(﹣)÷(﹣4)=﹣×(﹣)=,错误;C、﹣5﹣(﹣2)=﹣5+2=﹣3,正确;D、﹣32=﹣9,错误.故选C.【点评】此题考查了有理数的除法,乘方,以及乘法,熟练掌握运算法则是解本题的关键.6.(2015秋•南岸区期末)买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(4m+7n)元B.28mn元C.(7m+4n)元D.11mn元【考点】列代数式.【分析】用4个足球的价钱加上7个篮球的价钱即可.【解答】解:买4个足球、7个篮球共需要(4m+7n)元.故选:A.【点评】此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.7.(2007•常州)下面各个图形是由6个大小相同的正方形组成的,其中能沿正方形的边折叠成一个正方体的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体;B、折叠后缺少下底面,故不能折叠成一个正方体;C、可以折叠成一个正方体;D、折叠后有两个面重合,缺少一个侧面,所以也不能折叠成一个正方体.故选C.【点评】只要有“田”字格的展开图都不是正方体的表面展开图.8.(2015秋•南岸区期末)下列各组单项式中,为同类项的是()A.a3与a2B.﹣3与a C.2xy与2x D.与2a2【考点】同类项.【分析】根据同类项的定义:含有相同的字母,且相同字母的次数相同,即可作出判断.【解答】解:A、相同字母的次数不同,故不是同类项,选项错误;B、所含字母不同,则不是同类项,选项错误;C、所含字母不同,则不是同类项,选项错误;D、正确;故选A.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.9.(2015•邯郸二模)如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A.75°B.90°C.105°D.125°【考点】角的计算.【分析】由图示可得,∠2与∠BOC互余,结合已知可求∠BOC,又因为∠AOC=∠COB+∠1,即可解答.【解答】解:∵∠2=105°,∴∠BOC=180°﹣∠2=75°,∴∠AOC=∠1+∠BOC=15°+75°=90°.故选:B.【点评】本题考查了角的计算,解决本题的关键是利用补角求出∠BOC.10.(2015•临淄区一模)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.若用餐的人数有90人,则这样的餐桌需要()张?A.15 B.16 C.21 D.22【考点】规律型:图形的变化类.【分析】根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步列方程解答即可.【解答】解:1张长方形餐桌的四周可坐4+2=6人,2张长方形餐桌的四周可坐4×2+2=10人,3张长方形餐桌的四周可坐4×3+2=14人,…n张长方形餐桌的四周可坐4n+2人;4n+2=90解得n=22答:这样的餐桌需要22张.故选:D.【点评】此题考查图形的变化规律,首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.11.(2014•邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长【考点】生活中的平移现象.【专题】操作型.【分析】分别利用平移的性质得出各图形中所用铁丝的长度,进而得出答案.【解答】解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选:D.【点评】此题主要考查了生活中的平移现象,得出各图形中铁丝的长是解题关键.12.(2015秋•南岸区期末)王明和李丽是邻居,星期天他们两家人准备去郊外的湿地公园玩,早上两家人同时乘坐了两辆不同价格的出租车,王明家乘坐的是起步4公里10元,以后每公里收1.2元,李丽家乘坐的起步3公里8元,以后每公里收1.3元,两家人几乎同时到公园,付款后王明发现两家人的车费仅差1元,则两家住地离公园的路程是()A.20公里B.21公里C.22公里D.25公里【考点】一元一次方程的应用.【分析】首先设出未知数,然后用x表示出王明和李丽的打车费用,然后根据题意列出一元一次方程,求出x的值即可.【解答】解:设两家住地离公园的路程为x公里,王明打车费用为10+1.2×(x﹣4),李丽打车费用为8+1.3×(x﹣3),根据题意,得10+1.2×(x﹣4)+1=8+1.3×(x﹣3),解得x=25.答:两家住地离公园的路程是25公里,故选D.【点评】本题主要考查了一元一次方程的应用,解答本题的关键是用未知数x表示出两人乘车所收费用,此题难度不大.二、填空题(24分)13.(2000•福建)若|a|=2,则a=±2.【考点】绝对值.【专题】计算题.【分析】理解绝对值的意义:一个数的绝对值表示在数轴上表示这个数的点到原点的距离.显然根据绝对值的意义,绝对值等于2的数有两个,为2或﹣2.【解答】解:∵|a|=2,∴a=±2.故本题的答案是±2.【点评】理解绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.14.(2015秋•南岸区期末)36.42°=36度25分12秒.【考点】度分秒的换算.【专题】计算题.【分析】进行度、分、秒转化运算,注意以60为进制.【解答】解:36.42°=36度25分12秒.【点评】此类题是进行度、分、秒转化运算,相对比较简单,注意以60为进制即可.15.(2015秋•南岸区期末)若x=2是方程mx+3=x﹣5的解,则m的值为﹣3.【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x=2代入方程计算即可求出m的值.【解答】解:把x=2代入方程得:2m+3=2﹣5,解得:m=﹣3,故答案为:﹣3【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.(2015秋•南岸区期末)小慧在一张日历的一横排上圈了连续的四个数,它们的和为22,这四个数中最小的为4.【考点】一元一次方程的应用.【分析】可设最小的数为未知数,表示出其余3个数,让4个数的和相加等于22列式求值即可.【解答】解:设圈住的最小的数为x,其余数为(x+1),(x+2),(x+3),x+(x+1)+(x+2)+(x+3)=22,解得x=4,则x+1=5,x+2=6,x+3=7.故答案为:4.【点评】本题考查一元一次方程的应用,得到4个数的代数式是解决本题的突破点;用到的知识点为:日历上横行中相邻的数相隔1.17.(2015秋•南岸区期末)请第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案.若一个同学报给第二个同学的数是5,而第四个同学报出的答案是35.【考点】规律型:数字的变化类.【分析】根据叙述:第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案即可表示出每个同学报出的数.【解答】解:第一个同学报5,第二个同学报6,第三个同学报36,第四个同学报36﹣1=35.故答案为:35.【点评】此题考查数字的变化规律,理解题意,按照题目给出的运算方法即可解决问题.18.(2015秋•南岸区期末)一个正方体的六个面上分别涂有红、白、黄、绿、蓝、紫六种不同的颜色,其中红、白、黄、绿、蓝、紫,分别代表的是数字﹣1、﹣2、﹣3、﹣4、﹣5、﹣6中的一个数,如图是这个正方体的三种放置方法,若三个正方体下底面所标颜色代表的数字分别是a,b,c,则a+b+c+abc=﹣85.【考点】专题:正方体相对两个面上的文字.【分析】先根据图中正方形的摆放方式可知与白色面相邻的面有紫、蓝、绿、红,然后再确定出其中相对的面,从而得出a、b、c的值,最后代入计算即可.【解答】解:∵根据图形可知:白色面相邻的面有紫、蓝、绿、红,∴“紫”与“绿”是对面,“红”与“蓝”是对面,“白”与“黄”是对面.∴第一个正方体的底面是黄色,第二个正方体的底面是紫色,第三个正方体的底面是绿色.∴a=﹣3,b=﹣6,c=﹣4.∴a+b+c+abc=(﹣3)+(﹣6)+(﹣4)+(﹣3)×(﹣6)×(﹣4)=﹣13+(﹣72)=﹣85.故答案为:﹣85.【点评】本题主要考查的是正方形相对两个面上的文字,确定出正方体的对面是解题的关键.三、解答题(14分)19.(7分)(2015秋•南岸区期末)计算:(1)2﹣(+10)﹣(﹣3)+4(2).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣10+3+4=9﹣10=﹣1;(2)原式=﹣1+2﹣8=﹣9+2=﹣7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(7分)(2015秋•南岸区期末)如图,已知四点A、B、C、D,请用尺规作图完成(保留作图痕迹)(1)画直线AB;(2)画射线AC;(3)求作点P,使PA+PB+PC+PD的值最小.【考点】直线、射线、线段.【专题】作图题.【分析】(1)根据直线没有端点,是向两方无限延伸的画出图形即可;(2)根据射线有1个端点,是向一方无限延伸的画出图形即可;(3)使PA+PB+PC+PD的值最小的点P,应在AC、BD连线的交点上,由此画出即可.【解答】解:如图所示:.【点评】此题考查直线、射线、线段的画法,掌握直线、射线、线段的意义和特征是解决问题的关键.四、解答题(40分)21.(10分)(2015秋•南岸区期末)解方程:(1)4﹣x=3(2﹣x)(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4﹣x=6﹣3x,移项合并得:2x=2,解得:x=1;(2)去分母得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.(10分)(2015秋•南岸区期末)重庆新天地陶瓷厂计划一周生产陶瓷工艺品350个,平均每天生产50个,但实际每天生产量与计划相比有出入,下表是某周的生产情况(以50个为标准,超产记为正、减产记为负):(1)根据记录的数据,请直接写出该厂本周产量最多的一天比最少的一天多生产的工艺品的个数;(2)该工艺厂在本周实际生产工艺品的数量为多少个?(列式计算)(3)已知该厂实行每周计件工资制,每周结算一次,每生产一个工艺品可得5元,若超额完成任务(以350个为标准),则超过部分每个另奖10元,少生产每个扣3元,试求该工艺厂在这一周应付出的工资总额.【考点】正数和负数.【分析】(1)根据有理数的加法运算,再根据最大数减最小数,可得答案;(2)利用表格中数据进行加减运算即可;(3)根据产量乘以单价,可得工资,根据超产数量乘以超产的奖励单价,可得奖金,根据有理数的加法,可得答案.【解答】解:(1)由图表可得:周一:40+5=45(个);周二:40﹣6=34(个);周三:40﹣5=35(个);周四:40+15=55(个);周五:40﹣10=30(个);周六:40+16=56(个);周日:40﹣8=32(个);所以本周产量最多的一天比最少的一天多生产56﹣32=26(个).(2)由题意可得:5﹣6﹣5+15﹣10+16﹣8+50×7=357(个),所以工艺厂在本周实际生产工艺品的数量为357个;(3)357×5+(357﹣350)×10=1855(元).答:该厂工人这一周的工资总额是1855元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.23.(10分)(2012•莱芜)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=100,b=0.15;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是144°;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.【考点】频数(率)分布表;全面调查与抽样调查;用样本估计总体;扇形统计图.【分析】(1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;(2)①用喜欢书画类的频数除以喜欢书画类的频率即可求得a值,用喜欢棋牌类的人数除以总人数即可求得b值.②求得器乐类的频率乘以360°即可.③用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数.【解答】解:(1)∵调查的人数较多,范围较大,∴应当采用随机抽样调查,∵到六年级每个班随机调查一定数量的同学相对比较全面,∴丙同学的说法最合理.(2)①∵喜欢书画类的有20人,频率为0.20,∴a=20÷0.20=100,b=15÷100=0.15;②∵喜欢器乐类的频率为:1﹣0.25﹣0.20﹣0.15=0.4,∴喜欢器乐类所对应的扇形的圆心角的度数为:360×0.4=144°;③喜欢武术类的人数为:560×0.25=140人.【点评】本题考查的用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.24.(10分)(2015秋•南岸区期末)一位打工者来到一个新城市,想租一套房子,A家房主的条件是:先交1000元,每个月租金680元,B家房主的条件是:每月租金780元(1)这位打工者想在这座城市住半年,租哪家的房子合算?(2)如果这位打工者想住一年,租哪家的房子合算?(3)这位打工者住多长时间时,租两家的房子费用都一样?【考点】一元一次方程的应用.【分析】设这位打工者要住x个月,则A家租金为:680x+1000,B家租金为:780x,(1)当x=6时,代入各式,分别求出A家和B家的租金,选择租金便宜的方案;(2)当x=12时,代入各式,分别求出A家和B家的租金,选择租金便宜的方案;(3)根据A家租金=B家租金,求出x的值.。

人教版七年级数学上学期期末质量检测试题(含答案)

人教版七年级数学上学期期末质量检测试题(含答案)

人教版七年级数学上学期期末质量检测试题及答案注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分120分,考试时间90分钟,答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在答题纸规定的位置,考试结束后,将本试卷和答题纸一并交回.2.答题注意事项见答题纸,答在本试卷上不得分.第I 卷(选择题共42分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给的四个选项中,只有一项是符合题目要求的,请将正确答案涂到答题卡中.1.在2,-4,3,-1这四个数中,最小的数是( )A.2B.-4C.3D.-12.一年之中地球与太阳之间的距离随时间变化而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km ,用科学记数法表示1.496亿km 是( )A.1.496×107 kmB.14.96×108kmC.0.1496×108kmD.1.496×108km3.下列计算正确的是( )A.254a a a =+B.268=-y yC.y x yx y x 222583-=-D.ab b a 624=+4.单项式22xy π-的系数和次数分别是( )A.-2和4B.π2和3C.2和4D.π2-和35.若方程3x+5=11的解也是关于x 的方程6x+3a=22的解.则a 的值是( ) A. 310 B.103 C.-6 D.-8 6.如图所示是正方体的展开图,原正方体“4”的相邻面上的数字之和是( )A.2B.12C.14D.157.下列说法中正确的有( )①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④若AC=BC ,则点C 是线段AB 的中点.A.1个B.2个C.3个D.4个8.A ,B ,C 在同一条直线上,线段AB=7cm ,BC=3cm ,则A ,C 两点间的距离是( )A.4cmB.10cmC.10cm 或4cmD.无法确定9.如图,甲从A 点出发向北偏东60°方向走到点B ,乙从点A 出发向南偏西20°方向走到点C ,则∠BAC 的度数是( )A.80°B.100"C.120°D.140"10.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%,那么商店在这次交易中( )A.赚了10元B.亏了10元C.赚了20元D.亏了20元第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题纸规定的区域内,在试卷上答题不得分.二、填空题(本题共8小题,每小题3分,共24分)11.一1的相反数是.12.在数轴上与表示2的点距离等于5的点所表示的数是.13.化简⎪⎭⎫ ⎝⎛--x 5115得. 14.一件外衣的进价为200元,按标价的8折销售时,利润率为20%,则这件外衣的标价是元.15.小马虎在解关于x 的方程2a -5x=21时,误将“-5x”看成了“+5x”,得方程的解为x=3,则原方程的解为.16.一个角的补角是它的余角的4倍,那么这个角的度数是.17.如图,点A ,O ,E 在同一直线上,∠AOB=40°,∠EOD=28°46´,OD 平分∠COE ,则∠COB 的度数是.18.如图是用棋子摆成的“H”,摆成第一个“H”需要7个棋子,第二个“H”需要棋子12个;按这样的规律摆下去,摆成第2021个“H”需要个棋子.三、解答题(本大题共7小题,共66分)19.(本题满分6分)计算:()()()24923122021-÷--⨯-+-20.(本题满分8分)化简求值:()()b a ab b a ab b a 22222323---+-,其中a=-1,b=2.21.(本题满分8分) 解方程:332121x x +=--.22.(本题满分l0分)如图,线段AD=20cm ,线段AC=BD=14cm ,E 、F 分别是线段AB 、CD 的中点,求线段EF 的长.23.(本题满分10分)“水是生命之源”,临沂市自来水公司为鼓励居民节约用水,按以下标准收取水费:(1)如果1月份某用户用水量为9m3,那么该用户1月份应该缴纳水费多少元?(2)某用户2月份共缴纳水费78元,那么该用户2月份用水多少m3?24.(本题满分12分)如图1,已知∠MON=120°,∠AOC与∠BOC互余,OC平分∠MOB.(1)在图1中,若∠AOC=35°,则∠BOC=° ,∠NOB=°;(2)在图1中,设∠AOC=a,∠NOB=β,请探究a与β之间的数量关系(写出过程);(3)在(2)的条件下,当∠AOB绕着点O顺时针转动到如图2的位置,此时a与β之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请直接写出a与β之间的数量关系.25.(本题满分12分)【阅读材料】我们知道“在数轴上表示的两个数,右边的数总比左边的数大”,利用此规律,我们可以求数轴上两个点之间的距离,具体方法是:用右边的数减去左边的数的差就是表示这两个数的两点之间的距离.若点M 表示的数1x ,点N 表示的数是2x ,点M 在点N 的右边(即21x x >),则点M ,N 之间的距离为21x x -,即MN=21x x -.例如:若点C 表示的数是-5,点D 表示的数是-9,则线段CD=-5-(-9)=4.【理解应用】(1)已知在数轴上,点E 表示的数是-2021,点F 表示的数是2021,求线段EF 的长:【拓展应用】如图,数轴上有三个点,点A 表示的数是-2,点B 表示的数是3,点P 表示的数是x .(2)当A ,B ,P 三个点中,其中一个点是另外两个点所连线段的中点时,求x 的值;(3)在点A 左侧是否存在一点Q ,使点Q 到点A ,点B 的距离和为21?若存在,求出点Q 表示的数;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给的四个选项中,只有一项是符合题目要求的,请将正确答案涂到答题卡中.1-5 BDCDA 6-10 DBCDB二、填空题(本题共8小题,每小题3分,共24分)11、112、-3或713、5-x14、30015、3-=x16、60°17、82°28´18、10107三、解答题(本大题共7小题,共66分)19、320、原式=22ab 原式=-821、313-=x 22、EF=14cm23、(1)31.5元(2)20 m 324、(1)55° 10°(2)2a -β=60°(3)不成立 4a+β=60°25、(1)4042 (2)-7或8或21 (3)-10。

广东省深圳市龙华新区2015~2016学年度七年级上学期期末数学试卷【解析版】

广东省深圳市龙华新区2015~2016学年度七年级上学期期末数学试卷【解析版】

广东省深圳市龙华新区2015~2016学年度七年级上学期期末数学试卷一、选择题:本题共12小题,每小题3分,共36分.每小题有四个选项,其中只有一个是正确的.1.6的相反数是()A.6 B.﹣6 C.D.﹣2.如图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是()A.B.C.D.3.在2015年深圳高交会上展出了现实版“钢铁侠”战衣﹣﹣马丁飞行喷射包,可连续飞行30分钟,载重120公斤,其网上预售价为160万元,数据160万元用科学记数法表示为()A.1.6×104元B.1.6×105元C.1.6×106元D.0.16×107元4.如图,现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,可以为()A.过一点有无数条直线B.两点之间线段的长度,叫做这两点之间的距离C.两点确定一条直线D.两点之间,线段最短5.小明每个月收集废电池a个,小亮比小明多收集20%,则小亮每个月收集的废电池数为()A.(a+20%)个B.a(1+20%)个C.个D.个6.当前,“低头族”已成为热门话题之一,小颖为了解路边行人步行边低头看手机的情况,她应采用的收集数据的方式是()A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在路边行走的行人随机发放问卷进行调查D.对在图书馆里看书的人发放问卷进行调查7.如图,下列表示角的方法中,不正确的是()A.∠A B.∠E C.∠αD.∠18.若x=3是方程ax+2x=14﹣a的解,则a的值为()A.10 B.5 C.4 D.29.小亮为表示出2015年他们家在“生活开支”项目的变化情况,他应该采用的统计图是()A.折线统计图B.条形统计图C.扇形统计图D.以上均可以10.当x的值变大时,代数式﹣2x+3的值()A.变小 B.不变 C.变大 D.无法确定11.下列各式一定成立的是()A.﹣B.|﹣a|=a C.(﹣a)3=a3D.(﹣a)2=a212.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、B、D三点在同一直线上,BM 为∠CBE的平分线,BN为∠DBE的平分线,则∠MBN的度数是()A.60°B.67.5° C.75°D.85°二、填空题:每小题3分,共12分.请把答案填在答题卷相应的表格里.13.如果节约20元记作+20元,那么浪费10元记作元.14.若3a m+3b n+2与﹣2a5b是同类项,则mn=.15.一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中与“价”字相对的字是.16.如图是用小棒按一定规律摆成的一组图案,第1个图案中有5根小棒,第2个图案中有9个小棒,…,若第n个图案中有65根小棒,则n的值为.三、解答题:本题7题,共52分.17.计算:(1)﹣14﹣(﹣22)+(﹣36).(2)﹣22+|﹣36|×().18.(1)化简:﹣3(x2+2xy)+6(x2﹣xy)(2)先化简,再求代数式的值:2(x2y+xy2)﹣2(x2y﹣2)﹣(xy2+2),其中x=2015,y=﹣1.19.(1)解方程:5x+12=2x﹣9(2)解方程:.20.2015年,深圳市人居环境委通报了2014年深圳市大气PM2.5来源研究成果.报告显示主要来源有,A:机动车尾气,B:工业VOC转化及其他工业过程,C:扬尘,D:远洋船,E:电厂,F:其它.某教学学习小组根据这些数据绘制出了如下两幅尚不完整的统计图(图1,图2).请你根据统计图中所提供的信息解答下列问题:(1)图2的扇形统计图中,x的值是;(2)请补全图1中的条形统计图;(3)图2的扇形统计图中,“A:机动车尾气”所在扇形的圆心角度数为度.21.如图,平面上有射线AP和点B、点C,按下列语句要求画图:(1)连接AB;(2)用尺规在射线AP上截取AD=AB;(3)连接BC,并延长BC到E,使CE=BC;(4)连接DE.列方程解应用题:本题共3小题,第(1)小题4分,第(2)小题5分,共9分。

2015-2016年辽宁省大连市高新区七年级(上)期末数学试卷和参考答案

2015-2016年辽宁省大连市高新区七年级(上)期末数学试卷和参考答案

24. (11 分) O 为直线 AD 上一点, 以 O 为顶点作∠COE=90°, 射线 OF 平分∠AOE. (1)如图 1,∠AOC 与∠DOE 的数量关系为 系为 ; ,∠COF 和∠DOE 的数量关
(2)若将∠COE 绕点 O 旋转至图 2 的位置,OF 仍然平分∠AOE,请写出∠COF 和∠DOE 之间的数量关系,并说明理由;
21. (9 分)有一群鸽子和一些鸽笼,如果每个鸽笼住 6 只鸽子,则剩余 3 只鸽 子无鸽笼可住,如果再飞来 5 只鸽子,连同原来的鸽子,每个鸽笼刚好住 8 只鸽 子,原有多少只鸽子和多少个鸽笼? 22. (9 分)自主观察:观察下列等式: 第 1 个等式:a1= 第 3 个等式:a3= = (1﹣ ) ;第 2 个等式:a2= = ( ) ;第 4 个等式:a4= = ( = ( ) ; ) ;…
A.圆柱
B.圆锥
C.球体
D.棱锥 )
6. (3 分)已知代数式 x+2y 的值是 2,则代数式 2x+4y﹣1 的值是( A.3 B.4 C.5 D.6
7. (3 分) 点 C 在线段 AB 上, 下列条件中不能确定点 C 是线段 AB 中点的是 ( A.AC=BC B.AC+BC=AB C.AB=2AC D.BC= AB
15. (3 分)一件商品按成本价提高 20%标价,然后打九折出售,此时仍可获利 8 元,则该商品的成本价为 元.
16. (3 分)点 A,B,C 在同一条数轴上,其中 A,B 表示的数为﹣5,2,若 BC=3, 则 AC= .
三、解答题(共 10 小题,满分 102 分) 17. (9 分)计算: (1)3﹣4+5﹣(﹣6)﹣7 (2)﹣12+(﹣4)2×|﹣ |﹣82÷(﹣4)3. 18. (9 分)解方程: (1)2(x+8)=3x﹣3 (2) .

2015-2016学年七年级(上)期末数学试卷(解析版)

2015-2016学年七年级(上)期末数学试卷(解析版)

2015-2016学年七年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×1062.下列各式计算正确的是()A.5a+a=5a2B.5a+b=5abC.5a2b﹣3ab2=2a2b D.2ab2﹣5b2a=﹣3ab23.如图,是由一个圆柱体和一个长方体组成的几何体.其主视图是()A.B.C.D.4.下列图形经过折叠不能围成棱柱的是()A.B.C.D.5.有理数a、b在数轴上的位置如图所示,则化简|a+b|﹣|a﹣b|的结果为()A.2a B.﹣2b C.﹣2a D.2b6.如图,直线AB、CD相交于点O,OD平分∠BOE,则∠AOD的补角的个数为()A.1个B.2个C.3个D.4个7.下列说法错误的是()A.两点确定一条直线B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.过一点有且只有一条直线与已知直线平行D.若两条直线相交所成的角是直角,则这两条直线互相垂直8.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,…按照这种移动规律进行下去,第51次移动到点A51,那么点A51所表示的数为()A.﹣74 B.﹣77 C.﹣80 D.﹣83二、填空题(本大题共有10小题,每小题3分,共30分)9.一个数的绝对值是5,这个数是.10.若方程3x m﹣2﹣2=0是关于x的一元一次方程,则m的值为.11.已知∠β=48°30′,则∠β的余角是.12.下午2点时,时针与分针的夹角的度数是.13.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠FEC=56°,则∠AED=.14.已知整式x2﹣2x+6的值为9,则﹣2x2+4x+6的值为.15.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.16.已知∠AOB=80°,以O为顶点,OB为一边作∠BOC=20°,OD平分∠AOC,则∠BOD 度数为.17.小明和小丽同时从甲村出发到乙村,小丽的速度为4km/h,小明的速度为5km/h,小丽比小明晚到15分钟,则甲、乙两村的距离是km.18.生活中,有人喜欢把传送的便条折成如图的形状,折叠过程是这样的(阴影部分表示纸条的反面):为了美观,人们希望纸条两端超出点P的长度相等(即AP=MB),若纸条的长为26cm,纸条的宽为2cm,则在开始折叠时起点M与点A的距离为cm.三、解答题(本大题共有10小题,共96分)19.计算:(1)﹣2+6÷(﹣2)×;(2)﹣14+(﹣2)2﹣6×(﹣).20.解方程:(1)3(x﹣5)=﹣12;(2).21.先化简,再求值:3a2﹣4ab+[a2﹣2(a2﹣3ab)],其中|a+1|+(b﹣)2=0.22.已知关于x的方程=3x﹣2的解与方程3(x﹣m)=6+2m的解相同,求m的值.23.(1)由大小相同的小正方体搭成的几何体如图,请在如图的方格中画出该几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加个小正方体.24.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG AH.(填写下列符号>,<,≤,≥之一)25.我校群星文学社若干名师生准备集体外出采风,现有30座的小客车和45座大客车两种车型供选择.学校根据两种车型的座位数计算后得知:如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位.(1)求这次准备外出采风的师生共多少人?(2)现决定同时租用大、小客车共6辆,且确保每个师生均有座位,那么至少要租用大客车几辆?26.如图,线段AB=10cm,C是线段AB上一点,BC=6cm,M是AB的中点,N是AC的中点.(1)图中共有条线段;(2)求线段AN的长;(3)求线段MN的长.27.1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升,两个气球都匀速上升了50分钟.设气球球上升时间为x分(0≤x≤50)(1)根据题意,填写下表:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 …2号探测气球所在位置的海拔/米30 …(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当两个气球所在位置的海拔相差7.5米时,这时气球上升了多长时间?28.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=120°,则∠DOE=;若∠AOC=140°,则∠DOE=;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣3∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.2015-2016学年江苏省扬州中学教育集团树人学校七年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.B.2.D.3.B.4.B.5.A 6.C.7.C.8.B.二、填空题(本大题共有10小题,每小题3分,共30分)9.±510.3 11.41°30″12.60°13.62°14.0 15.7 16.30°或50°.17.小明和小丽同时从甲村出发到乙村,小丽的速度为4km/h,小明的速度为5km/h,小丽比小明晚到15分钟,则甲、乙两村的距离是5km.【考点】一元一次方程的应用.【分析】设甲、乙两村之间的距离为xkm,根据已知两人的速度结合行驶的路程相等,时间差为15分钟得出方程,再求出答案即可.【解答】解:设甲、乙两村之间的距离为xkm.根据题意可得:﹣=,解得:x=5,答:甲、乙两村之间的距离为5km;故答案为:5.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.生活中,有人喜欢把传送的便条折成如图的形状,折叠过程是这样的(阴影部分表示纸条的反面):为了美观,人们希望纸条两端超出点P的长度相等(即AP=MB),若纸条的长为26cm,纸条的宽为2cm,则在开始折叠时起点M与点A的距离为10cm.【考点】翻折变换(折叠问题).【分析】将折叠纸条展开,分析其中的三角形,梯形的特点,再进行计算.【解答】解:将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即2cm,下底等于纸条宽的2倍,即4cm,两个三角形都为等腰直角三角形,斜边为纸条宽的2倍,即4cm,故超出点P的长度为(26﹣10)÷2=8,AM=8+2=10cm,故答案为:10.【点评】本题考查了折叠的性质.关键是将折叠图形展开,分析每个图形形状及与纸条宽的关系.三、解答题(本大题共有10小题,共96分)19.计算:(1)﹣2+6÷(﹣2)×;(2)﹣14+(﹣2)2﹣6×(﹣).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣2﹣=﹣3;(2)原式=﹣1+4﹣3+2=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)3(x﹣5)=﹣12;(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣15=﹣12,移项合并得:3x=3,解得:x=1;(2)去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.先化简,再求值:3a2﹣4ab+[a2﹣2(a2﹣3ab)],其中|a+1|+(b﹣)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用绝对值以及偶次方的性质得出a,b的值,再利用整式加减运算法则化简求出原式,进而代入a,b的值求出答案.【解答】解:∵|a+1|+(b﹣)2=0,∴a+1=0,b﹣=0,解得:a=﹣1,b=,∴3a2﹣4ab+[a2﹣2(a2﹣3ab)]=3a2﹣4ab+a2﹣2a2+6ab,=2a2+2ab,将a,b的值代入上式可得:原式=2×(﹣1)2+2×(﹣1)×=2﹣1=1.【点评】此题主要考查了偶次方、绝对值的性质以及整式加减运算法则,正确求出a,b的值是解题关键.22.已知关于x的方程=3x﹣2的解与方程3(x﹣m)=6+2m的解相同,求m的值.【考点】同解方程.【分析】先求出方程=3x﹣2的解,再代入方程3(x﹣m)=6+2m,即可解答.【解答】解:方程=3x﹣2的解为:x=1,把x=1代入方程3(x﹣m)=6+2m得:3(1﹣m)=6+2m,解得:m=﹣0.6.【点评】本题考查了同解方程的知识,解答本题的关键是理解方程解得含义.23.(1)由大小相同的小正方体搭成的几何体如图,请在如图的方格中画出该几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加2个小正方体.【考点】作图-三视图;由三视图判断几何体.【分析】(1)主视图有3列,每列小正方数形数目分别为2,1,1,俯视图有3列,每列小正方形数目分别为1,2,1,左视图有2列,每列小正方形数目分别为2,1.据此可画出图形;(2)保持这个几何体的俯视图和左视图不变的情况下添加小正方体即可.【解答】解:(1)如图所示:;(2)可以在①和②的位置上各添加一个小正方体,这个几何体的俯视图和左视图都不变,最多添加2个,故答案为:2.【点评】此题主要考查了画三视图,关键是在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.24.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段AG的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG<AH.(填写下列符号>,<,≤,≥之一)【考点】作图—基本作图;垂线段最短;点到直线的距离.【分析】(1)根据网格结构特点,过点C作长2宽1的长方形的对角线即可;(2)根据网格结构以及长方形的性质作出即可;(3)根据点到直线的距离的定义解答;(4)结合图形直接进行判断即可得解.【解答】解:(1)如图所示,直线CD即为所求作的直线AB的平行线;(2)如图所示:(3)线段AG的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG<AH.故答案为:AG;<.【点评】本题考查了基本作图,利用网格结构作垂线,平行线,点到直线的距离的定义,都是基础知识,需熟练掌握.25.我校群星文学社若干名师生准备集体外出采风,现有30座的小客车和45座大客车两种车型供选择.学校根据两种车型的座位数计算后得知:如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位.(1)求这次准备外出采风的师生共多少人?(2)现决定同时租用大、小客车共6辆,且确保每个师生均有座位,那么至少要租用大客车几辆?【考点】一元一次不等式组的应用;一元一次方程的应用.【分析】(1)先设小客车租了x辆,根据如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位,列出方程,求出x的值,即可得出答案;(2)先设至少要租用大客车x辆,根据同时租用大、小客车共6辆,且确保每个师生均有座位,列出不等式,求出解集即可.【解答】解:(1)设小客车租了x辆,根据题意得:30x=45(x﹣2)﹣30,解得:x=8,则这次准备外出采风的师生共有30×8=240(人),答:这次准备外出采风的师生共240人;(2)至少要租用大客车x辆,根据题意得:45x+30(6﹣x)≥240,解得:x≥4,答:至少要租用大客车4辆.【点评】此题考查了一元一次不等式的应用,关键是读懂题意,根据题目中的数量关系,列出方程和不等式.26.如图,线段AB=10cm,C是线段AB上一点,BC=6cm,M是AB的中点,N是AC的中点.(1)图中共有10条线段;(2)求线段AN的长;(3)求线段MN的长.【考点】两点间的距离.【分析】(1)根据线段有两个端点,写出所有线段后计算个数;(2)由N是AC中点知AN=AC,而AC=AB﹣BC,根据AB、BC的长度可得;(3)由图可知,MN=AM﹣AN,由M是AB中点且AB=10cm可得AM长度,由(2)知AN的长度,可得MN长.【解答】解:(1)图中的线段有AN、AC、AM、AB、NC、NM、NB、CM、CB、MB这10条;(2)∵AB=10cm,BC=6cm,∴AC=AB﹣BC=4cm,又∵N是AC的中点,∴AN=AC=2cm;(3)∵AB=10cm,M是AB的中点,∴AM=AB=5cm,由(1)知,AN=2cm,∴MN=AM﹣AN=3cm;故答案为:(1)10.【点评】本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.距离是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.27.1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升,两个气球都匀速上升了50分钟.设气球球上升时间为x分(0≤x≤50)(1)根据题意,填写下表:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 35…x+52号探测气球所在位置的海拔/米2030 …0.5x+15(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当两个气球所在位置的海拔相差7.5米时,这时气球上升了多长时间?【考点】一元一次方程的应用.【分析】(1)根据“1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升”,得出1号探测气球、2号探测气球的函数关系式;(2)两个气球能位于同一高度,根据题意列出方程,即可解答;(3)两个气球所在位置的海拔相差7.5米,分两种情况:①2号探测气球比1号探测气球海拔高7.5米;②1号探测气球比2号探测气球海拔高7.5米;分别列出方程求解即可.【解答】解:(1)根据题意得:1号探测气球所在位置的海拔:m1=x+5,2号探测气球所在位置的海拔:m2=0.5x+15;当x=30时,m1=30+5=35;当x=10时,m2=5+15=20.填表如下:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 35 …x+52号探测气球所在位置的海拔/米20 30 …0.5x+15故答案为:35,x+5,20,0.5x+15;(2)两个气球能位于同一高度,根据题意得:x+5=0.5x+15,解得:x=20,有x+5=25,答:此时,气球上升了20分钟,都位于海拔25米的高度;(3)分两种情况:①2号探测气球比1号探测气球海拔高7.5米,根据题意得(0.5x+15)﹣(x+5)=7.5,解得x=5;②1号探测气球比2号探测气球海拔高7.5米,根据题意得(x+5)﹣(0.5x+15)=7.5,解得x=35.答:当两个气球所在位置的海拔相差7.5米时,这时气球上升了5分或35分.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,列出函数解析式.28.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=120°,则∠DOE=60°;若∠AOC=140°,则∠DOE=70°;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣3∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.【考点】角的计算;角平分线的定义.【分析】(1)首先利用补角的定义可得出∠BOC,再利用角平分线的定义可得出∠COE,易得∠DOE;(2)同理由(1)可得;(3)设∠DOE=x,∠AOF=y,根据已知和(2)的结论可得出x﹣y=45°,从而得出结论.【解答】解:(1)若∠AOC=120°,则∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣30°=60°;若∠AOC=140°,则∠BOC=180°﹣140°=40°,∵OE平分∠BOC,∴,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣20°=70°;故答案为:60°;70°;(2);∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90)=,故答案为:;(3)∠DOE﹣∠AOF=45°.理由:设∠DOE=x,∠AOF=y,左边=∠AOC﹣3∠AOF=2∠DOE﹣3∠AOF=2x﹣3y,右边=2∠BOE+∠AOF=2(90°﹣x)+y=180°﹣2 x+y,∴2x﹣3y=180﹣2 x+y 即4x﹣4y=180°,∴x﹣y=45°∴∠DOE﹣∠AOF=45°.【点评】此题考查的知识点是角平分线的性质及角的计算,关键是正确运用好有关性质准确计算角的和差倍分.。

青山区2015~2016学年度第一学期期末考试七年级数学试卷

青山区2015~2016学年度第一学期期末考试七年级数学试卷

三、解答题
17.(1)计算: 32 34
(2)化简: 4xy 3 2xy y2 y2
18.解下列方程:
(1) 3x 7 32 2x
(2) 5x 1 3x 1 2 x
4
23
19.如图,已知四点 A、B、C、D.
(1)连接 AB;(2)画直线 BC;
青山区 2015-2016 学年度七年级上学期期末测试数学试卷
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)
1. 3 的值是( )
1
A.
B. 1
C. 3
D. -3
3
3
2.从正面、上面、左面三个方向看某一个物体得到的图形如图所示,则这个物
体是( )
A. 三棱锥
B. 三棱柱
C. 圆锥
B. x 9 2x 3 C. x2 3x 5 1 2
5.下图所示的四条射线中,表示北偏西 30°的是( )
D. x 1 1 x
A. 射线 OA B.射线 OB C. 射线 OC D. 射线 OD
6.下列关于多项式 m3n 4n3 5 的说法中,正确的是(

2
A.它是七次三项式
图1
图2
22. (本题满分 10 分)张先生准备在沙坪坝购买一套小户型商品房,他去某楼盘了解情况得知, 该户型商 品房的单价是 12000 元/㎡,面积如图所示(单位:米,卧室的宽为 a 米,卫生间的宽为 米), (1)用含 a 和 x 的式子表示该户型的面积; (2)售房部为张先生提供了以下两种优惠方案: 方案一:整套房的单价是 12000 元/㎡,其中厨房只算的面积; 方案二:整套房按原销售总金额的 9 折出售. 若张先生购买的户型 a = 3,且分别用两种方案购房金额相等,求 x 的值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淮南市2015-2016学年度第一学期期终教学质量检测
七年级数学试卷
温馨提示:亲爱的同学,今天是展示你才能的时候了,只要你仔细审题.认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力!
一、选择题(本题共10个小题,每小题3分,共30分)
1. -11
4
的倒数是( )
A .―54
B .54
C .―45
D .45
2. 我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长
了180倍,达到2100000册。

把2100000用科学记数法表示为( )
A .0.218
10⨯
B .2.16
10⨯
C .2.17
10⨯
D .216
10⨯
3. 下列关于单项式5
32
xy -的说法中,正确的是( )
A .系数是5
3
-
,次数是2 B .系数是53,次数是2
C .系数是3-,次数是3
D .系数是5
3
-,次数是3
4. 如图,是一个正方体的表面展开图,则原正方体中与“建”字
所在的面相对的面上标的字是( ) A .美 B .丽 C .淮 D .南 5. 下面的计算正确的是( )
A.156=-a a
B. 3
232a a a =+ C.b a b a +-=--)( D.b a b a +=+2)(2
6. 下列各题中合并同类项,结果正确的是( )
A.22
2
532a
a a =+
B.222632a a a =+
C.134=-xy xy
D.0222
2=-mn n m
7.一次知识竞赛共有20道选择题,规定答对一道得5分,不做或做错一题扣1分,结果某学生得分为76分,则他做对题数为( )
A.16
B.17
C.18
D.19
8. 如图是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是( )
A
C D
9. 为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文a ,b ,c ,d 对应密文,b a 2+,c b +2,d c 32+,d 4.例如:明文1,2,3,4对应的密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )
A. 4,6,1,7
B. 4,1,6,7
C. 6,4,1,7
D. 1,6,4,7 10. 如果∠A 和∠B 互补,且∠A >∠B ,给出下列四个式子:①90°-∠B ;②∠A -90°;③
)(21B A ∠+∠;④)(2
1
B A ∠-∠.其中表示∠B 余角的式子有( ). A. 4个 B. 3个 C. 2个 D. 1个 二、填空题(本题共8个小题,每小题3分,共24分)
11. 如果“节约10%”记为+10%,那么“浪费6%”记作: . 12. 多项式162
2
3
--y x x 的次数是: .
13. 若关于x 的一元一次方程x ax 23=-的解于方程915-=+x 的解相同,
则a 的值为___________.
14. 线段AB=10cm,BC=5cm,A 、B 、C 三点在同一条直线上,则AC=_ _. 15. 2.42º= º ′ ″.
16. 某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10
人,两种都会的有7人。

设会弹古筝的有m 人,则该班同学共有___ _ ___人(用含有m 的代数式表示).
17. 安徽省2012年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人
去台湾旅游,计划花费20000元.在向旅行社缴纳每人x 元费用后,共剩5000元用于购物和品尝台湾美食.根据题意,列出方程为 . 18. 每一个多边形都可以按图甲的方法分割成若干个三角形.
那么按这种方式,n 边形能分割成 个三角形.
三、解答题(本大题共46分) 19.(本题8分,每小题4分)计算: (1))12()216141(-⨯-+ (2)()3
12612014-⨯-÷--
20. (本题6分)化简求值: )2()2(322xy x xy x ---,其中3,2==y x .
21.(本题10分,每题5分)解下列方程:
(1)x x 2463-=- (2)16
1
5312=--+x x
22.(本题6分)如图,已知平面上有四个点A ,B ,C ,D . (1)连接AB ,并画出AB 的中点P ; (2)作射线AD ;
(3)作直线BC 与射线AD 交于点E .
D
C B
A
23.(本题8分)苏宁电器元旦促销,将某品牌彩电按原价提高40%,然后在广告上写“元
旦大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电原价是多少元?
24.(本题8分)如图,OM是∠AOC的平分线,ON是∠BOC的平分线.
(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?
(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON = ________(直接写出结果).
(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON = __________(直接写出结果).
七年级数学试卷参考答案及评分标准

11. 6-% ; 12. 4;13. 2
1
; 14. 5cm 或15cm ;15. 2 º25′12″; 16. 2m+3 ; 17. 120
)121201(
6=++x ; 18. n-2. 三.解答题 19.(1)原式= )12(12
1
-⨯-
………………………………………2分 =1 ………………………………………4分 (或用分配律) (2)原式= 3
1
21)6(1⨯⨯
--- ………………………………………2分 =0 ……………………………………………4分 20..原式=xy x 52
- ………………………………………4分 当3,2==y x 时,原式=26- ………………………………………6分 21. (1)x=2 (2)x=3-
22.略
23.解:设彩电进价为x 元。

…………………………………………… 1分 0.8(1+40%)x-x=270 ……………………………………… 4分 X=2250 ……………………………………… 7分 答:彩电进价为2250元。

……………………………………… 8分 24. (1)∠ MON=45°. …………………………………………… 2分 理由:∵∠AOB=90°,∠BOC =60°,
∴ ∠AOC=∠AOB+∠BOC =90°+60°=150°. ∵ OM 是∠AOC 的平分线,ON 是∠BOC 的平分线,
∴ ∠AOM=
12∠AOC=1
2×150°=75°. ∠NOC=12∠BOC =1
2
×60°=30°.
∴ ∠MON=∠AOC -∠AOM -∠NOC =150°-75°-30°=45° ………… 4分 (2)∠MON=35° …………………………… 6分
1 2 …………………………… 8分
(3)∠MON=。

相关文档
最新文档