列表与图像题注意几个问题

合集下载

python序列课后思考题

python序列课后思考题

python序列课后思考题
在Python中,有许多类型的序列,如列表(list)、元组(tuple)、字符串(str)等。

这些序列都是有序的元素集合,可以对其进行迭代操作。

以下是一些关于Python序列的思考题:
1.什么是Python序列?列举几种常见的Python序列类型。

2.序列有哪些基本操作?例如,如何添加元素、删除元素、访问元素等。

3.解释Python中的迭代器(iterator)和可迭代对象(iterable)的概念,并说明它
们在序列中的应用。

4.什么是切片(slice)操作?如何使用切片操作来提取序列的子序列?
5.解释Python中的列表推导式(list comprehension)的概念,并说明如何使用
它来创建新的列表。

6.什么是元组(tuple)?元组和列表有哪些区别?
7.什么是字典(dictionary)?字典和列表有哪些区别?
8.解释Python中的排序(sort)和排序函数sorted()的区别。

9.如何对序列进行排序?Python提供了哪些排序方法?
10.什么是生成器(generator)?生成器有哪些应用场景?如何创建生成器?
以上问题可以帮助你更深入地理解Python序列的概念和操作,以及它们在Python编程中的应用。

2022-2023学年河南省邓州市张村乡中学数学九年级第一学期期末教学质量检测试题含解析

2022-2023学年河南省邓州市张村乡中学数学九年级第一学期期末教学质量检测试题含解析

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P=Fs(S≠0),这个函数的图象大致是()A.B.C.D.2.关于x的方程ax2+bx+c=0是一元二次方程,则满足()A.a≠0 B.a>0 C.a≥0 D.全体实数3.已知y是x的反比例函数,下表给出了x与y的一些值,表中“▲”处的数为()x1-13y33-▲A.3B.9-C.1D.1-4.如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连结CD,过点B作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:①AG FGAB FB=;②点F是GE的中点;③23AF AB=;④5∆∆=ABC BDFS S,其中正确的结论个数是()A .4个B .3个C .2个D .1个5.如图,AB 切⊙O 于点B ,C 为⊙O 上一点,且OC ⊥OA ,CB 与OA 交于点D ,若∠OCB =15°,AB =23,则⊙O 的半径为( )A .3B .2C .3D .46.如图,阳光透过窗户洒落在地面上,已知窗户AB 高1.5m ,光亮区的顶端距离墙角3m ,光亮区的底端距离墙角1.2m ,则窗户的底端距离地面的高度(BC )为( )A .1mB .1.2mC .1.5mD .2.4m7.用公式法解一元二次方程2231x x =时,化方程为一般式当中的a b c 、、依次为( )A .2,3,1﹣B .231,,﹣C .231﹣,﹣,﹣D .231﹣,,8.如图,已知a ∥b ∥c ,直线AC ,DF 与a 、b 、c 相交,且AB=6,BC=4,DF=8,则DE=( )A .12B .163C .245D .3 9.如图所示,Rt ABC ∆中,30B ∠=,3AC =,点M 为BC 中点,将ABC ∆绕点C 旋转,N 为11A B 中点,则线段MN 的最小值为( )A .12B .332-C .15D .312- 10.下列几何体中,主视图是三角形的是( )A .B .C .D .11.已知x 1=是一元二次方程2x mx 20+-=的一个解,则m 的值是( )A .1B .1-C .2D .2-12.在单词probability (概率)中任意选择一个字母,选中字母“i ”的概率是( )A .211B .29C .12D .911二、填空题(每题4分,共24分)13.我市博览馆有A ,B ,C 三个入口和D ,E 两个出口,小明入馆游览,他从A 口进E 口出的概率是____.14.如图,已知等边ABC ∆的边长为6D ,E 分别为BC ,AC 上的两个动点,且AE =CD ,连接BE ,AD 交于点P ,则CP 的最小值_______.15.一元二次方程x 2﹣5x =0的两根为_________.16.如图,矩形ABCD 中,AB =1,AD =2.以A 为圆心,AD 的长为半径做弧交BC 边于点E ,则图中DE 的弧长是_______.17.如图,将ABC 绕顶点A 顺时针旋转60︒后得到11AB C △,且1C 为BC 的中点,AB 与11B C 相交于D ,若2AC =,则线段1B D 的长度为________.18.若⊙O 是等边△ABC 的外接圆,⊙O 的半径为2,则等边△ABC 的边长为__.三、解答题(共78分)19.(8分)如图1,水平放置一个三角板和一个量角器,三角板的边AB 和量角器的直径DE 在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm ,开始的时候BD=1cm ,现在三角板以2cm/s 的速度向右移动. (1)当点B 于点O 重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B 点和E 点重合时,AC 与半圆相切于点F ,连接EF ,如图2所示.①求证:EF 平分∠AEC ;②求EF 的长.20.(8分)如图,AB 是⊙O 的直径,C 是⊙O 上一点,且AC=2,∠CAB=30°,求图中阴影部分面积.21.(8分)计算:2212cos 60sin 45--︒-︒+()02019tan 30-︒ 22.(10分)如图,已知二次函数 ()()121348y x x m =++的图像过点A (-4,3),B (4,4).(1)求抛物线二次函数的解析式.(2)求一次函数直线AB 的解析式.(3)看图直接写出一次函数直线AB 的函数值大于二次函数的函数值的x 的取值范围.(4)求证:△ACB 是直角三角形.23.(10分)一个不透明的口袋中装有红、白两种颜色的小球(除颜色外其余都相同),其中红球3个,白球1个. (1)求任意摸出一球是白球的概率;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用画树状图或列表的方法求两次摸出都是红球的概率.24.(10分)小明和同学们在数学实践活动课中测量学校旗杆的高度.如图,已知他们小组站在教学楼的四楼,用测角仪看旗杆顶部的仰角为35︒,看旗杆底部的俯角是为65︒,教学楼与旗杆的水平距离是5m ,旗杆有多高(结果保留整数)?(已知sin350.57︒≈,cos350.82︒≈,tan350.70︒≈,sin650.91︒≈,cos550.42︒≈tan65 2.14︒≈)25.(12分)如图,利用135︒的墙角修建一个梯形ABCD 的储料场,其中BC AD ∥,并使90C ∠=︒,新建墙BC 上预留一长为1米的门EF .如果新建墙BE FC CD --总长为15米,那么怎样修建才能使储料场的面积最大?最大面积多少平方米?26.如图,在△ABC 中,AB=AC ,以AC 为直径的⊙O 交BC 于点D ,交AB 于点E ,过点D 作DF ⊥AB ,垂足为F ,连接DE .(1)求证:直线DF 与⊙O 相切;(2)若AE=7,BC=6,求AC 的长.参考答案一、选择题(每题4分,共48分)1、C【分析】根据实际意义以及函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【详解】解:当F 一定时,P 与S 之间成反比例函数,则函数图象是双曲线,同时自变量是正数.故选:C .【点睛】此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.2、A【解析】根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.【详解】由于关于x 的方程ax 2+bx +c =1是一元二次方程,所以二次项系数不为零,即a ≠1.故选:A .【点睛】此题考查一元二次方程的定义,熟记一元二次方程满足的条件即可正确解题.3、D【分析】设出反比例函数解析式,把13x y =-=,代入可求得反比例函数的比例系数,当3x =时计算求得表格中未知的值.【详解】y 是x 的反比例函数,k y x∴=, 1x =-,3y =,133k xy ∴==-⨯=-,∴当3x =时,313y -==-, 故选:D.【点睛】本题考查了用待定系数法求反比例函数解析式;点在反比例函数图象上,点的横纵坐标适合函数解析式,在同一函数图象上的点的横纵坐标的积相等.4、C【分析】易得AG ∥BC ,进而可得△AFG ∽△CFB ,然后根据相似三角形的性质以及BA =BC 即可判断①;根据余角的性质可得∠ABG =∠BCD ,然后利用“角边角”可证明△ABG ≌△BCD ,可得AG =BD ,于是有AG =12BC ,由①根据相似三角形的性质可得12FG AGFB BC==,进而可得FG=12FB,然后根据FE≠BE即可判断②;根据相似三角形的性质可得12AF AGCF BC==,再根据等腰直角三角形的性质可得AC=2AB,然后整理即可判断③;过点F作FM⊥AB于M,如图,根据相似三角形的性质和三角形的面积整理即可判断④.【详解】解:在Rt△ABC中,∵∠ABC=90°,∴AB⊥BC,∵AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴AG FG BC FB=,∵BA=BC,∴AG FGAB FB=,故①正确;∵∠ABC=90°,BG⊥CD,∴∠ABG+∠CBG=90°,∠BCD+∠CBG=90°,∴∠ABG=∠BCD,又∵BA=BC,∠BAG=∠CBD=90°,∴△ABG≌和△BCD(ASA),∴AG=BD,∵点D是AB的中点,∴BD=12 AB,∴AG=12 BC,∵△AFG∽△CFB,∴12 FG AGFB BC==,∴FG=12FB,∵FE≠BE,∴点F是GE的中点不成立,故②错误;∵△AFG∽△CFB,∴12 AF AGCF BC==,∴AF=13 AC,∵AC=2AB,∴23AF AB=,故③正确;过点F作FM⊥AB于M,如图,则FM∥CB,∴△AFM∽△ACB,∴13 AF FMAC BC==,∵12 BDBA=,∴1111212362BDFABCBD FMS BD FMS AB BCAB BC⋅==⋅=⨯=⋅,故④错误.综上所述,正确的结论有①③共2个.故选:C.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质和等腰直角三角形的性质等知识,属于常考题型,熟练掌握全等三角形和相似三角形的判定和性质是解题的关键.5、B【分析】连接OB,由切线的性质可得∠OBA=90°,结合已知条件可求出∠A=30°,因为AB的长已知,所以⊙O的半径可求出.【详解】连接OB,∵AB切⊙O于点B,∴OB ⊥AB ,∴∠ABO =90°,∵OC ⊥OA ,∠OCB =15°,∴∠CDO =∠ADO =75°,∵OC =OB ,∴∠C =∠OBD =15°,∴∠ABD =75°,∴∠ADB =∠ABD =75°,∴∠A =30°,∴BO =12AO , ∵AB =23,∴BO 2+AB 2=4OB 2,∴BO =2,∴⊙O 的半径为2,故选:B .【点睛】本题考查了切线的性质、等腰三角形的判定和性质以及勾股定理的运用,求出∠A=30°,是解题的关键. 6、A【分析】根据光沿直线传播的原理可知AE ∥BD ,则BCD ∽ACE △,根据相似三角形的对应边成比例即可解答.【详解】解:∵AE ∥BD∴BCD ∽ACE △∴BC CD CA CE= ∵ 1.5AB m =, 1.2CD m =,3CE m ∴1.21.53BC BC =+ 解得:1BC =经检验1BC =是分式方程的解.故选:A .【点睛】本题考查了相似三角形的判定及性质,解题关键是熟知:平行于三角形一边的直线和其他两边或延长线相交,所截得的三角形与原三角形相似.7、B【分析】先整理成一般式,然后根据定义找出a b c 、、即可. 【详解】方程2231x x +=化为一般形式为:22310x x +﹣=,231a b c ∴=,=,=﹣.故选:B .【点睛】题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax 2+bx+c=0(a ≠0).其中a 是二次项系数,b 是一次项系数,c 是常数项.8、C【解析】解:∵a ∥b ∥c , ∴AB DE AC DF=, ∵AB =6,BC =4,DF =8, ∴6648DE =+, ∴DE =245. 故选C .【点睛】本题考查了平行线分线段成比例定理,熟练掌握定理内容是关键:三条平行线截两条直线,所得的对应线段成比例. 9、B【分析】如图,连接CN .想办法求出CN ,CM ,根据MN ≥CN−CM 即可解决问题.【详解】如图,连接CN .在Rt△ABC中,∵AC=4,∠B=30°,∴AB=2AC=2 3BC3=3,∵CM=MB=12BC=32,∵A1N=NB1,∴CN=12A1B13,∵MN≥CN−CM,∴MN332,即MN332,∴MN3 32,故选:B.【点睛】本题考查解直角三角形,旋转变换等知识,解题的关键是用转化的思想思考问题,属于中考常考题型.10、C【分析】主视图是从正面看所得到的图形,据此判断即可.【详解】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.【点睛】此题主要考查了几何体的三视图,解此题的关键是熟练掌握几何体的主视图.11、A【解析】把x=1代入方程x2+mx﹣2=0得到关于m的一元一次方程,解之即可.【详解】把x =1代入方程x 2+mx ﹣2=0得:1+m ﹣2=0,解得:m =1.故选A .【点睛】本题考查了一元二次方程的解,正确掌握一元二次方程的解的概念是解题的关键.12、A【解析】字母“i ”出现的次数占字母总个数的比即为选中字母“i ”的概率.【详解】解:共有11个字母,每个字母出现的可能性是相同的,字母i 出现两次,其概率为211. 故选:A .【点睛】本题考查简单事件的概率,利用概率公式求解是解答此题的关键.二、填空题(每题4分,共24分)13、16. 【解析】根据题意作出树状图,再根据概率公式即可求解. 【详解】根据题意画树形图:共有6种等情况数,其中“A 口进E 口出”有一种情况,从“A 口进E 口出”的概率为16; 故答案为:16. 【点睛】此题主要考查概率的计算,解题的关键是依题意画出树状图.14、2【分析】根据题意利用相似三角形判定ABE ∆≌CAD ∆,并求出OC 的值即有CP 的最小值'(),CP OC r =-从而求解.【详解】解:如图∵AE CD =∴ABE ∆≌CAD ∆∴120APB ∠=∴P 点的路径是一段弧(以O 点为圆心的圆上)∴120AOB ∠=∴30OBA ∠=,90OBC ∠= ∵26AB = ∴22OB r == ∴2242OC OB BC +=所以CP 的最小值'()422222CP OC r =-==【点睛】本题结合相似三角形相关性质考查最值问题,利用等边三角形以及勾股定理相关等进行分析求解.15、0或5【解析】分析:本题考查的是一元二次方程的解法——因式分解法.解析:()1250,0, 5.x x x x -===故答案为0或5.162 【分析】根据题意可得2,则可以求出sin∠AEB,可以判断出可判断出∠AEB=45°,进一步求解∠DAE=∠AEB=45°,代入弧长得到计算公式可得出弧DE 的长度.【详解】解:∵AD 半径画弧交BC 边于点E ,2∴,又∵AB=1,∴sin2AB AEB AE ∠=== ∴∠AEB=45°,∵四边形ABCD 是矩形∴AD ∥BC∴∠DAE=∠AEB=45°,故可得弧DC 的长度为=452180π⋅⋅=4π,故答案为:4π. 【点睛】 此题考查了弧长的计算公式,解答本题的关键是求出∠DAE 的度数,要求我们熟练掌握弧长的计算公式及解直角三角形的知识.17、3【分析】根据旋转的性质可知△ACC 1为等边三角形,进而得出BC 1=CC 1=AC 1=2,△ADC 1是含20°的直角三角形,得到DC 1的长,利用线段的和差即可得出结论.【详解】根据旋转的性质可知:AC =AC 1,∠CAC 1=60°,B 1C 1=BC ,∠B 1C 1A =∠C ,∴△ACC 1为等边三角形,∴∠AC 1C =∠C =60°,CC 1=AC 1.∵C 1是BC 的中点,∴BC 1=CC 1=AC 1=2,∴∠B =∠C 1AB =20°.∵∠B 1C 1A =∠C =60°,∴∠ADC 1=180°-(∠C 1AB +∠B 1C 1A )=180°-(20°+60°)=90°,∴DC 1=12AC 1=1, ∴B 1D =B 1C 1-DC 1=4-1=2.故答案为:2.【点睛】本题考查了旋转的性质以及直角三角形的性质,得出△ADC 1是含20°的直角三角形是解答本题的关键. 18、23【解析】试题解析:如图:连接OA 交BC 于D ,连接OC ,ABC 是等边三角形,O 是外心,30,2,OCD OC ∴∠==11,2OD OC == 3,CD BD ∴==2 3.BC = 故答案为2 3.三、解答题(共78分)19、(1)2s (2)①证明见解析,②33√【解析】试题分析:(1)由当点B 于点O 重合的时候,BO=OD+BD=4cm ,又由三角板以2cm/s 的速度向右移动,即可求得三角板运动的时间;(2)①连接OF ,由AC 与半圆相切于点F ,易得OF ⊥AC ,然后由∠ACB=90°,易得OF ∥CE ,继而证得EF 平分∠AEC ;②由△AFO 是直角三角形,∠BAC=30°,OF=OD=3cm ,可求得AF 的长,由EF 平分∠AEC ,易证得△AFE 是等腰三角形,且AF=EF ,则可求得答案.试题解析:(1)∵当点B 于点O 重合的时候,BO=OD+BD=4cm ,∴t=42=2(s);∴三角板运动的时间为:2s ;(2)①证明:连接O 与切点F ,则OF ⊥AC ,∵∠ACE=90°,∴EC⊥AC,∴OF∥CE,∴∠OFE=∠CEF,∵OF=OE,∴∠OFE=∠OEF,∴∠OEF=∠CEF,即EF平分∠AEC;②由①知:OF⊥AC,∴△AFO是直角三角形,∵∠BAC=30°,OF=OD=3cm,∴tan30°=3AF,∴AF=33cm,由①知:EF平分∠AEC,∴∠AEF=∠CEF=12∠AEC=30°,∴∠AEF=∠EAF,∴△AFE是等腰三角形,且AF=EF,∴EF=33cm.20、33+29【分析】根据扇形的面积公式进行计算即可.【详解】解:连接OC且过点O作AC的垂线,垂足为D,如图所示.∵OA=OC∴AD=1在Rt △AOD 中∵∠DAO=30°∴2222OD AD OA 4OD +==∴OD=3,OA =∴AOC 11S AC OD 22233∆=•=⨯⨯= 由OA=OC ;∠DAO=30可得∠COB=60°∴S 扇形BOC=260323609⎛⨯ ⎝⎭=ππ ∴S 阴影=S △AOC + S 扇形BOC=3+29π 【点睛】本题考查扇形的面积公式,熟记扇形的面积公式是解题的关键.21、1【分析】先计算特殊的三角函数值和去绝对值,再从左至右计算即可.【详解】解:原式= 22112122⎛⎛⎫-⋅-+ ⎪ ⎝⎭⎝⎭ 112221=--=【点睛】本题考查的是实数与特殊角的三角函数值的混合运算,能够熟知特殊角的三角函数值是解题的关键.22、(1)()()12132048y x x =+-;(2)1782y x =+;(3)﹣4﹤x ﹤4;(4)见解析 【分析】(1)由题意把A 点或B 点坐标代入得到20m =-,即可得出抛物线二次函数的解析式;(2)根据题意把A 点或B 点坐标代入y=kx+b ,利用待定系数法即可求出一次函数直线AB 的解析式;(3)由题意观察函数图像,根据y 轴方向直线在曲线上方时,进而得出x 的取值范围;(4)根据题意求出C 点坐标,进而由两点的距离公式或者是构造直角三角形进行分析求证即可.【详解】解:(1)把A 点或B 点坐标代入得到20m =-, ∴抛物线二次函数的解析式为:()()=+-12132048y x x . (2)把A 点或B 点坐标代入y=kx+b 列出方程组3444k b k b ⎧⎨⎩-++==,解得7218k b ⎧⎪⎪⎨⎪⎪⎩==, 得出一次函数直线AB 的解析式为:.1782y x =+. (3)由图象可以看出:一次函数直线AB 的函数值大于二次函数的函数值的x 的取值范围为:﹣4﹤x ﹤4. (4)由抛物线的表达式得:C 点坐标为(-2,0),由两点的距离公式或者是构造直角三角形得出,13AC =,52BC =,65AB =.∴222AB AC BC =+,∴△ACB 是直角三角形.【点睛】本题考查的是二次函数综合运用,由题意结合一次函数和勾股定理的运用等进行分析是解题的关键.23、(1)14;(2)12【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出两次摸出都是红球的结果数,然后根据概率公式求解.【详解】解:(1)任意摸出一球是白球的概率=14; (2)画树状图为:共有12种等可能的结果数,其中两次摸出都是红球的结果数为6,∴两次摸出都是红球的概率=612=12. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.24、旗杆的高约是14m .【分析】过点B 作BC AD ⊥于点C ,由题意知,5BC =,35ABC ∠=︒,65CBD ∠=︒,根据锐角三角函数即可分别求出AC 和CD ,从而求出结论.【详解】解:过点B 作BC AD ⊥于点C ,由题意知,5BC =,35ABC ∠=︒,65CBD ∠=︒∵tan 65CD BC ︒=, ∴5tan6510.7CD =⨯︒=m ,∵tan35AC BC︒=, ∴5tan35 3.5AC =⨯︒=m ,∴10.7 3.514.214AD =+=≈m ,答:旗杆的高约是14m .【点睛】此题考查的是解直角三角形的应用,掌握利用锐角三角函数解直角三角形是解决此题的关键.25、当与AD 垂直的墙CD 长为163米时,储料场面积最大值为1283平方米 【分析】过点A 作AG ⊥BC ,则四边形ADCG 为矩形,得出BG AG x ==,再证明△ABG 是等腰直角三角形,得出162AD GC x =--,然后根据梯形的面积公式即可求出S 与x 之间的函数关系式,根据二次函数的性质直接求解.【详解】设CD 的长为cm x ,则BC 长为()16cm x -过点A 作AG BC ⊥,垂足为G .如图所示:∵AD BC ∥,90C ∠=︒,135BAD ∠=︒∴90ADC ∠=︒,45ABC ∠=︒∴四边形ADCG 是矩形∴AG CD x ==,AD GC =∴在Rt ABG ∆中BG AG x ==∴162AD GC x =-- ∴()213162161622ADCB S x x x x x =-+-=-+梯形 ∴2316128233ADCBS x ⎛⎫=--+ ⎪⎝⎭梯形 ∴当163x =时,()max 1283ADCB S =梯形 答:当与AD 垂直的墙CD 长为163米时,储料场面积最大值为1283平方米 【点睛】此题考查二次函数的运用,利用梯形的面积建立二次函数,进一步利用函数的性质解决问题.26、(1)证明见解析;(2)1.【分析】(1)首先连接OD ,根据等腰三角形的性质可证∠C =∠ODC ,从而可证∠B =∠ODC ,根据DF ⊥AB 可证DF ⊥OD ,所以可证线DF 与⊙O 相切;(2)根据圆内接四边形的性质可得:△BCA ∽△BED ,所以可证:376BE BE =+,解方程求出BE 的长度,从而求出AC 的长度.【详解】解:(1)如图所示,连接OD ,∵AB AC =,∴B C ∠=∠,∵OD OC =,∴ODC C ∠=∠,∴ODC B ∠=∠,∴OD ∥AB ,∵DF AB ⊥,∴DF OD ⊥;∵点D 在⊙O 上,∴直线DF 与⊙O 相切;(2)∵四边形ACDE 是⊙O 的内接四边形, ∴180AED ACD ∠+∠=︒,∵180AED BED ∠+∠=︒,∴BED ACD ∠=∠,∴△BED ∽△BCA , ∴BD BE AB BC, ∵OD ∥AB ,AO CO =, ∴132BD CD BC ===, ∵7AE =,∴376BE BE =+, ∴2BE =,∴729AC AB AE BE ==+=+=【点睛】本题考查切线的判定与性质;相似三角形的判定与性质.。

HTML期末复习题含答案

HTML期末复习题含答案

HTML期末复习题(含答案)单选题(1)WWW是万维网的意思。

答案:BA.网页B.万维网C.浏览器D.超文本传输协议(2)在网页中显示特殊字符,如果要输入“<”,应使用_&lt________。

答案:DA.lt; B.&Lt; C.&lt D.&lt;(3)以下有关列表的说法中,错误的是:。

答案:DA.有序列表和无序列表可以互相嵌套。

B.指定嵌套列表时,也可以具体指定项目符号或编号样式。

C.无序列表应使用UL 和LI 标记符进行创建。

D.在创建列表时,LI 标记符的结束标记符不可省略。

(4)以下关于FONT标记符的说法中,错误的是:答案:DA.可以使用color 属性指定文字颜色。

B.可以使用size 属性指定文字大小(也就是字号)。

C.指定字号时可以使用1~7 的数字。

D.语句<FONT size="+2">这里是2号字</FONT> 将使文字以2号字显示。

(5)以下关于JPEG图像格式中,错误的是:答案:BA.适合表现真彩色的照片。

B.最多可以指定1024种颜色。

C.不能设置透明度。

D.可以控制压缩比例。

(6)如果要在表单里创建一个普通文本框,以下写法中正确的是:。

答案:A A.<INPUT>B.<INPUT type="password">C.<INPUT type="checkbox">D.<INPUT type="radio">(7)以下有关表单的说明中,错误的是:。

答案:CA.表单通常用于搜集用户信息。

B.在FORM 标记符中使用action 属性指定表单处理程序的位置。

C.表单中只能包含表单控件,而不能包含其他诸如图片之类的内容。

D.在FORM 标记符中使用method 属性指定提交表单数据的方法。

八年级函数图像练习题

八年级函数图像练习题

八年级函数图像练习题[函数的图像]一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.[描点法画函数图形的一般步骤]第一步:列表;第二步:描点;第三步:连线。

[函数的表示方法]列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

二、试题1、设电报收费标准是每个字0.1元,写出电报费y 与字数x之间的函数关系式,自变量的取值范围是。

2、y?3x?5x自变量x的取值范围是yx的取值范围是;2自变量x的取值范围是; n?8x?43、当x=-4时,函数y?的值是。

x?3s?4、汽车以80千米/小时的速度匀速行驶,行驶路程为s千米,行驶时间为t小时,用含t的式子表示s得;在这个问题中,是变量,是常量。

5、写出下列函数的自变量的取值范围。

函数y?2的自变量x的取值范围是。

x?1函数y?x的取值范围是。

函数y?2x?3的自变量x的取值范围是函数y??2x2?5的自变量x的取值范围是*函数y?x的取值范围是。

、写出等腰三角形中底角的度数y与顶角度数x的函数关系式y?_________,其中自变量x的取值范围。

7、甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示。

这时一次米赛跑;甲、乙两人中先到达终点的是;甲在这次赛跑中的速度为米/秒。

8、小明的爷爷吃过晚饭后,出门散步,在报亭看了一会报纸才回家,小明绘制了爷爷离家的路程s与外出的时间t之间的关系图。

报亭离爷爷家米;爷爷在报亭看了分钟报纸;爷爷走去报亭的平均速度是米/分。

9、下列图形不能体现y是x的函数关系式是A、B、C、D、10、一根蜡烛厂20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度h与燃烧时间t的函数关系用图象表示为A、 B、 C、 D、11、已知点A、B、C、D,其中在函数y?3x2的图象上的点有个。

(江苏专用版)2020版高考物理总复习第六章微专题4电场中的图像问题带电粒子在交变电场中的运动课件

(江苏专用版)2020版高考物理总复习第六章微专题4电场中的图像问题带电粒子在交变电场中的运动课件

加油小站
用等效法解决电场、重力场中圆周运动的临界极值问题 带电粒子在匀强电场和重力场组成的复合场中做圆周运动的问题, 是高中物理教学中一类重要而典型的题型。对于这类问题,若采用常规 方法求解,过程复杂,运算量大。若采用“等效法”求解,则能避开复杂 的运算,过程比较简捷。先求出重力与电场力的合力,将这个合力视为
例5 (多选)如图甲所示,两平行金属板竖直放置,左极板接地,中间有小 孔,右极板电势随时间变化的规律如图乙所示。电子原来静止在左极板 小孔处(不计重力作用)。下列说法中正确的是 ( )
A.从t=0时刻释放电子,电子将始终向右运动,直到打到右极板上
B.从t=0时刻释放电子,电子可能在两板间振动
C.从t= T 时刻释放电子,电子可能在两板间振动,也可能打到右极板上
4
D.从t= T 时刻释放电子,电子必将打到左极板上
4
答案 AC 根据题中条件作出带电粒子的速度-时间图像,根据速度时间图像包围的面积分析粒子的运动。由图1知,t=0时释放电子,电子 的位移始终是正值,说明一直向右运动,一定能够击中右板,选项A正 确、B错误。
由图2知,t= T 时释放电子,电子向右的位移与向左的位移大小相等,
A.粒子由a点到b点运动过程中加速度逐渐增大 B.b点的电场强度一定为零 C.Q1的电荷量一定小于Q2的电荷量 D.粒子由a点到b点向远处运动的过程中,粒子的电势能先增大后减小
答案 B 速度-时间图线上每一点的切线斜率表示瞬时加速度,从图像
可见正电荷从a到b做加速度减小的加速运动,故A项错误;在b点时粒子
方法技巧 把握三点,正确解答该类问题 (1)把电场力和重力合成一个等效力,称为等效重力。 (2)等效重力的反向延长线与圆轨迹的交点为带电体在等效重力场中运 动的最高点。 (3)类比“绳球”“杆球”模型临界值的情况进行分析解答。

地理答题技巧十大问答

地理答题技巧十大问答

地理答题技巧十大问答特约特级教师学而思培优文综女神红飞老师针对性的回答了同学们提出关于地理学习的问题。

小编在这里整理了相关知识,快来看看吧!高考地理综合题答题技巧总结一、前提:熟悉区域地理,掌握双基和主干知识。

二、基础:明确高考地理常见简答题的答题思路。

三、关键:熟悉近几年地理考题常见的答题模式◇近几年地理考题常见答案的组织模式之归纳:1) 原因(自然、人为) 2) 条件(有利、不利) 3) 影响(正面、负面) 4) 区位(自然、社会、经济)5) 效益(经济、社会、环境) 6) 措施(生物、工程、技术)7) 重大工程意义(两端、中间)或(政治、经济、民族、国防) 8) 要素(总量、结构) 9) 评价( 积极、消积)◇近几年考题常见的地理特征描述答案组织模式之归纳:1) 自然地理特征(地形、气候、土壤、水源、生物、矿产或其它资源)2) 位置特征(经纬度位置、海陆位置、半球位置、相邻位置)3) 水系特征(支流、流程、流域、流向)4) 水文特征(流量、水位变化、流速、含沙量、结冰期)5) 降水特征(降水总量、雨季长短、季节变化)6) 气候特征(气温、降水、季节组合)7) 地形特征(地形类型、地势起伏、主要地形区、海拔状况)8) 农业生产特征(主要从农业地域类型、农作物种类、种植历史经验和单位面积产量、农业各部门结构(所占比重)、农业机械化水平、农业生产经营方式和专门化水平等方面概括)9) 工业生产特征(主要从工业的发达程度、工业部门结构、工业技术水平、工业产品的销售和工业原料能源对国际市场的依赖程度等方面概括)10)地理事物的分布特征和分布规律(主要从空间分布(是否均匀、空间变化规律)和时间分配(季节和年际变化的大小)两方面概括) ◇分布规律问题:从总体上看是把握"点""线""面"是哪种分布趋势?1) "点"状分布一般有"沿某个方向区域较稀或较密";或该地理事物在某地理事物的分布方位。

第16招 如何解与函数图象有关的问题

第16招 如何解与函数图象有关的问题

第16招 如何解与函数图象有关的问题? 函数图象是研究函数性质的重要工具,有关函数图象的问题在高考中是常考的知识点,且近几年有加强的趋势。

解法指导与经典范例与函数图象有关的问题常见的有以下几种题型: (一) 已知函数解析式,作函数图象 1. 描点法2. 利用函数图象的变换 具体步骤如下:(1)确定函数的定义域;(2)化简函数表达式;(3)讨论函数的性质(如奇偶性、单调性、周期性等)(4)利用描点法或利用基本函数图象的变化作出所要做的图象。

(二) 函数图象的变换 1. 平移变换(1) 水平平移:()()0>±=a a x f y 的图象可由y=f(x)的图象向左(+号)或向右(-号)平移a 个单位(简记:左加右减,加左减右)而得到。

(2) 竖直平移:()()0>±=b b x f y 的图象可由y=f(x)的图象相上(+号)或向下(-号)平移b 个单位而得到。

2. 对称变换(1) 由y=f(x)的图象关于y 轴对称可得y=f(-x)的图象;关于x 轴对称可得y=-f(x)的图象; 关于原点对称可得y=-f(-x)的图象;关于直线y=x 对称可得y=)(1x f-的图象。

(2)()x f y =的图象的作法:将()轴的图象在x x f y =下方的部分以x 轴为对称轴翻折到x 轴上方,并保留原图像在x 轴上方的部分(包括x 轴上的点),既得()x f y =的图象。

(3)()x f y =的图象的作法:先作出y=f(x)在y 轴右方的部分图象,然后以y 轴为对称轴将它翻折到y 轴左方,既得()x f y =的图象.3.伸缩变换(1)y=Af(x)的图象可将y=f(x)图象上多有点的纵坐标分别乘以A ,横坐标不变而得到. (2)y=f ()()0>ωωχ的图象可将y=f(x)图象上所有点的横坐标分别除以ω,纵坐标不变而得到.【例1】作出下列函数的图象:(1)x x y -=2(2)y=()21log 2++x(1) 解一(描点法).41,21x .y 0002-==-=≥y x x x 顶点横坐标时,列表如下:X<0时,⎪⎭⎫ ⎝⎛--+=41212,,顶点x x y描点作图如图2-17所示.解二 x x x x y -=-=22若设f(x)=().,2x f y x x =-则先作出y=f(x)(x ≥0)的图象,在沿y 轴翻折过去,既()x x x f y -==2的图象(如图2-17) (2) 作x y 2log =的图象(如图2-18),将x y 2log =图象向左平移1个单位得到y=log()12+x 的图象;将这图象在x 轴下方的部分沿x 轴翻折上去,既得()1log 2+=x y 的图象,再将这图象向上平移2个单位,既得()21log 2++=x y 的图象【例2】2004.湖北文一(5)若函数()101≠>-+=a a b a y x且的图象经过第二、三、四象限,则一定有( )A .0<a<1且b>0 B.a>1且b>0 C.0<a<1且b<0 D.a>1且b<0解 的图象到的图象上、下平移而得的图象可由xx x a y a b a y ==-+=.y 1如图2-19所示,要使函数的图象1-+=b a y x经过第二、三、四象限,须0<a<1,且,01a 0<-+b 即b<0.故选C.(三) 函数图象的识别 给出几个图象,要求在其中选出是所给函数的图象的问题称为函数图象识别问题,其解题方法一般用排除法或特殊值判断法. 1. 当所给函数只有一个时可从所给函数的定义域、值域、单调性、奇偶性、有界性、周期性等方面去分析适合题意得图形的形状特征、分布的位置与范围等,再与所给出的几个图象相对照,排除掉不具备这些特殊的图形,从而筛选所要求的图形.也可用特殊值到断法,这时要注意特殊嗲的定位意义,有时还可利用图象变换.【例3】1995.全国文理一(2)函数y 11+-=x 的图象(如图2-20)是( )解一 (排除法)函数11+-=x y 的定义域为{},1,-≠∈x R x x 可排除A 、C.又由x=0时y=-1可排除D ,故选B.解二 (特殊值判断法)令x=1得y=-21,对照各选项A 、C 、D 应排除,故选B. 解三 (图象变换) 先做出y=x 1的图象如图2-21所示,作X 轴对称图形既得xy 1-=的图象,再向左平移1个单位,既得11+-=x y 的图象.可见应选B.【例4】2000.全国、天津、广东文理一(5)函数y=-xcosx 的图象是( )解(排除法)令y=f(x)=-xcosx ,则f(-x)=-(-x)cos(-x)=xcosx=-f(x),()x f ∴是奇函数,且f(0)=0.f(x)的图象关于原点中心对称,排除A 、C.又当0<x<时,2πf(x)<0,排除B. 故选D. 2. 当所给函数有两个时可先假定其中一个是正确的,由此确定出题目中参数的取值范围,在根据它去判断另一个图象是否正确,若不正确,则这一个选择支就是错误的.解这种类型的选择题一般也用排除法或特殊值判断法.【例5】在同一个坐标系中,2,1ax y aax y =+=的图象只能是下图中的( ) 解一 (排除法) 当a>0时,直线aax y 1+=的斜率为正,截距为正,抛物线2ax y =的开口向上,对照图2-23,B 、C 应排除.当a<0时,直线的斜率为负。

高考地理的复习技巧

高考地理的复习技巧

高考地理的复习技巧高考地理复习技巧一、抓住一轮复习,全面掌握基础知识“能力为主导,知识为基础”是高考永恒的话题。

高考试题无论怎样变化,都是地理基础知识的不同演绎和迁移,即使是综合试题也是在基础之上的综合。

如果基础知识不扎实,就很容易在考试过程中遇到障碍。

一轮复习正是对基础知识进行全面盘点的阶段,因此,同学们一定要重视这个阶段的复习,力争做到“当天内容及时消化,每单元知识及时巩固”,力争吃透每个知识点。

二、重视地图,将地理知识落实到地图上地图是地理学科的第二语言,高考试题也往往以地图为切入点,近年来高考试题的采点甚至出现微观、局部地区,这就要求同学们有很强的读图能力和区域定位能力。

因此,同学们平时应注重读图、填图、默图、甚至描图训练,只有把所有的知识都落实到地图上,才能切实提高解题能力。

三、关注时事、联系生活实际地理时事热点问题、生活中的地理问题都是地理学科非常关注的问题,也是历年高考命题的理想切入点。

因此我们要时刻关注这些问题,分析生活中地理事物(现象)的形成原因、提出某些问题的解决、了解某些工程发展的最新进展、将某些时事与相关地理知识联系起来等。

同学们平时应注意经常看报,学会发现时事中隐含的地理信息,不妨可以自编一些地理时事题与同学交流、互相考查提高。

四、学会用规范的地理语言表述地理高考说明中要求“进行文字准确、条理清楚、逻辑严密的表述”。

有的同学客观性试题做得相当不错,但进行文字表述时却常常不能到位,不守键字抓不住,就是语言逻辑出现问题,使本该得到的分丢失。

关键在于,平时就没有使用规范的地理语言进行记忆与表述。

课本是我们学习规范地理语言的重要工具,从现在起,同学们应尽量使用课本语言进行表述和记忆,逐步形成良好的语言表述习惯。

高应该提高的四种能力一、进一步深化统整地理知识的能力在第一阶段复习时,知识点落实到章节,用的时间较长,是以单元为单位重点讲解知识点之间的联系。

在第二阶复习时,应重点复习地理学科的主干知识,加强知识的归纳整理,形成自己的知识体系,提高分析问题和解决问题的能力。

2021-2022学年华东师大版八年级数学下册第十七章函数及其图像必考点解析试题(含答案及详细解析)

2021-2022学年华东师大版八年级数学下册第十七章函数及其图像必考点解析试题(含答案及详细解析)

八年级数学下册第十七章函数及其图像必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法错误的是( )A .平面内两条互相垂直的数轴就构成了平面直角坐标系B .平面直角坐标系中两条数轴是互相垂直的C .坐标平面被两条坐标轴分成了四个部分,每个部分称为象限D .坐标轴上的点不属于任何象限2、如图,在平面直角坐标系中,已知11,02A ⎛⎫- ⎪⎝⎭,以1OA 为直边构造等腰12Rt OA A ,再以2OA 为直角边构造等腰23Rt OA A ,再以3OA 为直角边构造等腰34Rt OA A ,…,按此规律进行下去,则点1033A 的坐标为( )A .()5152,0-B .()5155152,2-C .()5145142,2-D .()5142,0-3、甲、乙两人沿同一条路从A 地出发,去往100千米外的B 地,甲、乙两人离A 地的距离(千米)与时间t (小时)之间的关系如图所示,以下说法正确的是( )A .甲的速度是60km/hB .乙的速度是30km/hC .甲乙同时到达B 地D .甲出发两小时后两人第一次相遇4、若实数a 、c 满足0a c +=且a c >,则关于x 的一次函数y cx a =-的图像可能是()A .B .C .D .5、如图,树叶盖住的点的坐标可能是( )A .()2,3B .()2,3-C .()3,4--D .()2,4-6、在平面直角坐标系的第二象限内有一点P ,点P 到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标是( )A .(2,3)-B .(3,2)-C .(3,2)-D .(2,3)-7、已知点A (x ,5)在第二象限,则点B (﹣x ,﹣5)在( )A .第一象限B .第二象限C .第三象限D .第四象限8、在平面直角坐标系中,点()8,15-所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9、某工厂投入生产一种机器,每台成本y (万元/台)与生产数量x (台)之间是函数关系,函数y 与自变量x 的部分对应值如表:则y 与x 之间的解析式是( )A .y =80- 2xB .y =40+ 2xC .y =65-1x 2 D .y =60-1x 210、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (单位:kPa )是气体体积V (单位:m 3)的反比例函数,其图象如图所示,当气球内的气压大于144kPa 时,气球将爆炸,为了安全起见,气球的体积应( )A .不大于23m 3 B .不小于23m 3 C .不大于32m 3 D .不小于32m 3 第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、一般地,形如y =kx +b (k ≠0,k 、b 为常数)的函数,叫做______函数.注意:k 是常数,k ≠0,k 可以是正数、也可以是负数;b 可以取______ .2、如图,一次函数y kx b =+与3y x的图象相交于点(,5)P m ,则方程组3y x y kx b =+⎧⎨=+⎩的解是________.3、点(1,)A m ,(2,)B n 是直线y x =-上的两点,则m __n .(填<,>或)=4、建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为______,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点______任何象限.如图中,点A 是第______象限内的点,点B 是第______象限内的点,点D 是______上的点.5、如图,直线y =kx +b 交坐标轴于A ,B 两点,则关于x 的不等式kx +b <0的解集是_____.6、将直线2y x =向上平移1个单位后的直线的表达式为______.7、函数y =-7x 的图象在______象限内,从左向右______,y 随x 的增大而______.函数y =7x 的图象在______象限内,从左向右______,y 随x 的增大而______.8、我们用含有两个数的表达方式来表示一个确定的___________,其中两个数各自表示不同的含义,这种________的两个数a 与b 组成的数对,叫做有序数对,记作( ),___ ).注意:①数a 与b 是有顺序的;②数a 与b 是有特定含义的;③有序数对表示平面内的点,每个点与有序数对________.9、若点(),2P m m +在x 轴上,则m 的值为______.10、一般地,任何一个二元一次方程都可以转化为一次函数y =kx +b (k 、b 为常数,且k ≠0)的形式,所以每个二元一次方程都对应一个_____,也对应一条直线.这条直线上每个点的坐标(x ,y )都是这个二元一次方程的解.由含有未知数x 和y 的两个二元次一方程组成的每个二元一次方程组,都对应两个一次函数,于是也对应两条直线.从数的角度看,解这样的方程组,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从形的角度看,解这样的方程组,相当于确定两条相应直线_____的坐标.因此,我们可以用画一次函数图象的方法得到方程组的解.三、解答题(5小题,每小题6分,共计30分)1、如图,在平面直角坐标系xOy 中,直线1:1l y x =+与x 轴交于点A ,直线2l :与x 轴交于点(1,0)B ,与2l 相交于点(,3)C m .(1)求直线2l 的解析式;(2)过x 轴上动点(,0)D t ,作垂直于x 轴的直线,分别与直线1l ,2l 交于P ,Q 两点.若2AQC ABC S S =△△,求此时点Q 的坐标.2、某地区现有荔枝树24000棵,计划今后每年栽荔枝树3000棵.(1)试写出荔枝树棵数y 与年数x 之间的函数关系式;(2)求当5x =时,y 的值.3、画出反比例函数6y x=和6y x =-的函数图象,并回答下列问题: (1)可以用函数图象画法 法,步骤为列表、 、连线.(2)观察图象可知,它们都是由两支曲线组成,因此称反比例函数的图象为 .函数6y x =的两支曲线分别位于第 象限;函数6y x=-的两支曲线分别位于第 象限.4、已知y -3与x 成正比例,并且x =4时,y =7,求y 与x 之间的函数关系式.5、如图,ABCD 中,8AB cm =,3BC cm =,E 是DC 中点,P 是线段AB 上一动点,连接PE ,设P ,A 两点间的距离为x cm ,P ,E 两点间的距离为y cm .(当点P 与点A 重合时,x 的值为0)小东根据学习一次函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程:(1)通过取点、画图、测量,得到了x与y的几组值,如下表,请补充完整(说明:相关数值保留一位小数);(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:①当y取最小值时,x的值约为cm.(结果保留一位小数)②当APE是等腰三角形时,PA的长度约为cm.(结果保留一位小数)-参考答案-一、单选题【解析】略2、A【解析】【分析】根据等腰直角三角形的性质得到OA 1=12,OA 2,OA 3OA 1033A 1、A 2、A 3、…,每8个一循环,再回到x 轴的负半轴的特点可得到点A 1033在x 轴负半轴,即可确定点A 1033的坐标.【详解】解:∵等腰直角三角形OA 1A 2的直角边OA 1在x 轴的负半轴上,且OA 1=A 1A 2=12,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,∴OA 1=12,OA 22,OA 3=22,……,OA 1033 ∵A 1、A 2、A 3、…,每8个一循环,再回到x 轴的负半轴,1033=8×129+1,∴点A 1033在x 轴负半轴,∵OA 10335152=, ∴点A 1033的坐标为:()5152,0-,故选:A .【点睛】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜倍.也考查了直角坐标系中各象限内点的坐标特征.【解析】【分析】根据函数图象中的数据,可以计算出各个选项中的说法是否正确,然后即可判断哪个选项中的说法是否正确.【详解】解:由图象可得,甲的速度是(10040)(32)60(/)km h -÷-=,故选项A 符合题意;乙的速度为:60320(/)km h ÷=,故选项B 不符合题意;甲先到达B 地,故选项C 不符合题意; 甲出发240603÷=小时后两人第一次相遇,故选项D 不符合题意; 故选:A .【点睛】本题考查一次函数的应用,解题的关键是利用数形结合的思想解答.4、B【解析】【分析】根据实数a 、c 满足0a c +=可知,a 、c 互为相反数,再根据a c >,可确定a 、c 的符号,进而确定图象的大致位置.【详解】解:∴实数a 、c 满足0a c +=,∴a 、c 互为相反数,∵a c >,∴0a >,0c <,∴0a -<∴一次函数y cx a =-的图像经过二、三、四象限,故选:B .【点睛】本题考查了一次函数图象的性质,解题关键是根据已知条件,确定a 、c 的符号.5、B【解析】【分析】根据平面直角坐标系的象限内点的特点判断即可.【详解】∵树叶盖住的点在第二象限,∴()2,3-符合条件.故选:B .【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键.6、C【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数以及点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.【详解】解:∵第二象限的点P 到x 轴的距离是2,到y 轴的距离是3,∴点P的横坐标是-3,纵坐标是2,∴点P的坐标为(-3,2).故选:C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.7、D【解析】【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案.【详解】∵点A(x,5)在第二象限,∴x<0,∴﹣x>0,∴点B(﹣x,﹣5)在四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、D【解析】【分析】根据第四象限内横坐标大于零,纵坐标小于零,可得答案.解:点()8,15-所在的象限是第四象限,故选:D .【点睛】本题考查了点的坐标,熟记各象限内点的坐标特征是解题关键.9、C【解析】略10、B【解析】【分析】根据题意得出当温度不变时,气球内的气体的气压P 是气体体积V 的反比例函数,且其图象过点(1.5,64),求出其解析式.从而得出当气球内的气压不大于144kPa 时,气体体积的范围.【详解】解:设球内气体的气压P (kPa)和气体体积V (m 3)的关系式为k P V=, ∵图象过点(1.5,64), ∴64 1.5k = 解得:k =96, 即96P V=. 在第一象限内,P 随V 的增大而减小,∴当144P ≤时,39621443V m ≥=.【点睛】本题考查了反比例函数的应用.根据图象上的已知点的坐标,利用待定系数法求出函数解析式是解答本题的关键.二、填空题1、一次任意实数【解析】略2、25xy=⎧⎨=⎩##52yx=⎧⎨=⎩【解析】【分析】先利用y=x+3确定P点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标求得结论.【详解】解:把P(m,5)代入y=x+3得m+3=5,解得m=2,所以P点坐标为(2,5),所以方程组3y xy kx b=+⎧⎨=+⎩的解是25xy=⎧⎨=⎩,故答案为:25xy=⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.3、>【解析】【分析】根据正比例函数的增减性进行判断即可直接得出.【详解】k=-<,解:10∴y随着x的增大而减小,<,12∴>.m n故答案为:>.【点睛】题目主要考查正比例函数的增减性质,理解题意,熟练掌握运用函数的增减性是解题关键.4、象限不属于一三y轴【解析】略5、x<-2【解析】【分析】根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.【详解】∵点A坐标为(-2,0),∴关于x的不等式kx+b<0的解集是x<-2,故答案为:x <-2【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.6、21y x =+【解析】【分析】直线向上平移1个单位,将表达式中x 保持不变,等号右面加1即可.【详解】解:由题意知平移后的表达式为:21y x =+故答案为21y x =+.【点睛】本题考查了一次函数的平移.解题的关键在于明确一次函数图象平移时左加右减,上加下减.7、 第二、四象限 下降 减少 第一、三象限 上升 增大【解析】略8、 位置 有顺序 a b 一一对应【解析】略9、2-【解析】【分析】根据x 轴上点的纵坐标为0,即可求解.【详解】∵点(),2P m m +在x 轴上,∴20m += ,解得:2m =- .故答案为:2-【点睛】本题考查了x 轴上点的坐标特征,解决本题的关键是熟练掌握坐标轴上的点的坐标的特征:x 轴上的点的纵坐标为0.10、 一次函数 交点【解析】略三、解答题1、 (1)33y x =-(2)点Q 的坐标为(0,3)或(4,9)【解析】【分析】(1)根据直线1l 的解析式求得C 的坐标,然后根据待定系数法即可求得直线2l 的解析式;(2)分两种情况得到Q 的纵坐标,代入直线2l 的解析式即可求得t 的值,从而求得Q 的坐标.(1) 解:直线1:1l y x =+与2l 相交于点(,3)C m .31m ∴=+,解得2m =,(2,3)C ∴,设直线2l 为y kx b =+,直线2l :与x 轴交于点(1,0)B ,与2l 相交于点(2,3)C .∴023k b k b +=⎧⎨+=⎩,解得33k b =⎧⎨=-⎩, ∴直线2l 的解析式为33y x =-;(2)当点D 在B 的左侧时,ΔΔ2AQC ABC S S =,(2,3)C ,(),3Q t ∴-,代入33y x =-得,333t -=-,0t ∴=,()0,3Q ∴-;当点D 在B 的右侧时,ΔΔ2AQC ABC S S =,(2,3)C ,(),9Q t ∴,代入33y x =-得,933t =-,4t ∴=,()4,9Q ∴;综上,点Q 的坐标为(0,3)或(4,9).【点睛】本题是两条直线相交或平行问题,待定系数法求一次是的解析式,一次函数图象上点的坐标特征,求得交点坐标是解题的关键.2、 (1)240003000y x =+;(2)39000y =【解析】【分析】(1)本题的等量关系是:荔枝树的总数=现有的荔枝树的数量+每年栽树的数量×年数,由此可得出关于荔枝树总数与年数的函数关系式.(2)根据(1)即可求出第5年的果树的数量.(1)解:240003000y x =+.(2)解:当5x =时,240003000539000y =+⨯=.【点睛】本题考查了一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出函数式,然后利用函数关系式即可解决题目的问题.3、 (1)描点;描点(2)双曲线;一、三;二、四【解析】略4、y=x+3【解析】【详解】解:依题意,设y-3与x之间的函数关系式为y-3=kx.∵x=4时,y=7,∴7-3=4k,解得k=1.∴y-3=x,即y=x+3.5、 (1)4.5,3.0;(2)见解析;(3)①5.8;②3.3或6.3【解析】【分析】(1)利用测量方法得到答案;(2)利用描点法作图;(3)①通过测量解答;②根据等腰三角形的定义画出图象,并测量x 及y 的值,由此得到答案.(1)解:通过取点、画图、测量可得 2.0x =时, 4.5y cm =, 4.0x =时, 3.0y cm =, 故答案为:4.5,3.0;(2)解:利用描点法,图象如图所示.(3)①由函数图象得,当y 取最小值时,x 的值约为5.8cm ;②当APE ∆是等腰三角形时,有两种情况,如图:0x =时, 6.3y cm =,2 6.3AP cm ∴=,由函数图象得, 3.3x ≈时, 3.3y cm ≈,∴当APE ∆是等腰三角形时,PA 的长度约为3.3或6.3cm .故答案为:①5.8;②3.3或6.3.【点睛】本题考查函数综合题、描点法画函数图象等知识,解题的关键是理解题意,学会用测量法、图象法解决实际问题,属于中考常考题型.。

2020年河南中考数学试卷(附答案)

2020年河南中考数学试卷(附答案)

2020年河南省普通高中招生考试试卷数学考生须知:1.本试卷满分120分,考试时间为120分钟.2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3.请按照题号顺序在答题卡各题目的区域内作答,超出答题区域的答案无效;在草稿纸上、试题纸上答案无效.4.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 2的相反数是()A.12- B.12C. 2D. 2-【答案】D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.2.如下摆放的几何体中,主视图与左视图有可能不同的是()A. B.C. D.【答案】D【解析】【分析】分别确定每个几何体的主视图和左视图即可作出判断.【详解】A .圆柱的主视图和左视图都是长方形,故此选项不符合题意;B .圆锥的主视图和左视图都是三角形,故此选项不符合题意;C .球的主视图和左视图都是圆,故此选项不符合题意;D .长方体的主视图是长方形,左视图可能是正方形,故此选项符合题意,故选:D .【点睛】本题考查了简单几何体的三视图,熟练掌握确定三视图的方法是解答的关键.3.要调查下列问题,适合采用全面调查(普查)的是( )A. 中央电视台《开学第--课》 的收视率B. 某城市居民6月份人均网上购物的次数C. 即将发射的气象卫星的零部件质量D. 某品牌新能源汽车的最大续航里程【答案】C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】A 、中央电视台《开学第--课》 的收视率适合采用抽样调查方式,故不符合题意;B 、某城市居民6月份人均网上购物的次数适合采用抽样调查方式,故不符合题意;C 、即将发射的气象卫星的零部件质量适合采用全面调查方式,故符合题意;D 、某品牌新能源汽车的最大续航里程适合采用抽样调查方式,故不符合题意,故选:C .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.如图,1234//,//l l l l ,若170∠=︒,则2∠的度数为( )A. 100︒B. 110︒C. 120︒D. 130︒【答案】B【解析】【分析】利用平行线的性质即可求解.【详解】如图,∵34//l l ,∴∠1+∠3=180º,∵∠1=70º,∴∴∠3=180º-70º=110º,∵12l l //,∴∠2=∠3=110º,故选:B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答的关键.5.电子文件的大小常用, ,,B KB MB GB 等作为单位,其中10101012,12,12GB MB MB KB KB B ===,某视频文件的大小约为1,1GB GB 等于( )A. 302BB. 308BC. 10810B ⨯D. 30210B ⨯【答案】A【解析】【分析】根据题意及幂的运算法则即可求解.【详解】依题意得1010101010101222222GB MB KB B ==⨯=⨯⨯=302B故选A .【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的运算法则.6.若点()()()1231,,2,,3,A y B y C y -在反比例函数6y x =-的图像上,则123,,y y y 的大小关系为( ) A. 123y y y >>B. 231y y y >>C. 132y y y >>D. 321y y y >> 【答案】C【解析】【分析】根据点()()()1131,,2,,3,A y B y C y -在反比例函数6y x =-的图象上,可以求得123,,y y y 的值,从而可以比较出123,,y y y 的大小关系.【详解】解:∵点()()()1131,,2,,3,A y B y C y -在反比例函数6y x =-的图象上, ∴1661y =-=-,2632y =-=-,3623y =-=-, ∵326--<<,∴132y y y >>,故选:C .【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.7.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 只有一个实数根【答案】A【解析】【分析】先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案.【详解】解:根据定义得:2110,x x x =--=☆1,1,1,a b c ==-=-()()22414115b ac ∴∆=-=--⨯⨯-=>0, ∴ 原方程有两个不相等的实数根,故选.A【点睛】本题考查了新定义,考查学生的学习与理解能力,同时考查了一元二次方程的根的判别式,掌握以上知识是解题的关键.8.国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x .则可列方程为( )A. ()5000127500x +=B. ()5000217500x ⨯+=C. ()2500017500x += D. ()()2500050001500017500x x ++++= 【答案】C【解析】【分析】设我国2017年至2019年快递业务收入的年平均增长率为x ,根据增长率的定义即可列出一元二次方程.【详解】设我国2017年至2019年快递业务收入的年平均增长率为x ,∵2017年至2019年我国快递业务收入由5000亿元增加到7500亿元即2019年我国快递业务收入为7500亿元, ∴可列方程:()2500017500x +=, 故选C .【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系得到方程. 9.如图,在ABC ∆中,90ACB ∠=︒.边BC 在x 轴上,顶点,A B 的坐标分别为()2,6-和()7,0.将正方形OCDE 沿x 轴向右平移当点E 落在AB 边上时,点D 的坐标为( )A. 3,22⎛⎫ ⎪⎝⎭B. ()2,2C. 11,24⎛⎫ ⎪⎝⎭D. ()4,2【答案】B【解析】【分析】先画出E 落在AB 上的示意图,如图,根据锐角三角函数求解O B '的长度,结合正方形的性质,从而可得答案.【详解】解:由题意知:()2,0,C -四边形COED 为正方形,,CO CD OE ∴== 90,DCO ∠=︒()()2,2,0,2,D E ∴-如图,当E 落在AB 上时,()()2,6,7,0,A B -6,9,AC BC ∴== 由tan ,AC EO ABC BC O B'∠==' 62,9O B∴=' 3,O B '∴=734,2,OO OC ''∴=-==()2,2.D ∴故选.B【点睛】本题考查的是平移的性质的应用,同时考查了正方形的性质,图形与坐标,锐角三角函数,掌握以上知识是解题的关键.10.如图,在ABC ∆中,3,30AB BC BAC ==∠=︒ ,分别以点,A C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接,,DA DC 则四边形ABCD 的面积为( )A. 63B. 9C. 6D. 33【答案】D【解析】【分析】 连接BD 交AC 于O ,由已知得△ACD 为等边三角形且BD 是AC 的垂直平分线,然后解直角三角形解得AC 、BO 、BD 的值,进而代入三角形面积公式即可求解.【详解】连接BD 交AC 于O ,由作图过程知,AD=AC=CD ,∴△ACD 为等边三角形,∴∠DAC=60º,∵AB=BC,AD=CD ,∴BD 垂直平分AC 即:BD ⊥AC ,AO=OC ,在Rt △AOB 中,3,30AB BAC =∠=︒∴BO=AB ·sin30º3AO=AB ·cos30º=32,AC=2AO=3, 在Rt △AOD 中,AD=AC=3,∠DAC=60º,∴DO=AD ·sin60º=332, ∴ABC ADC ABCD S S S ∆∆=+四边形=1313333332222⨯⨯+⨯⨯=, 故选:D .【点睛】本题考查了作图-基本作图、等边三角形的判定与性质、垂直平分线、解直角三角形、三角形的面积等知识,解题的关键是灵活运用所学知道解决问题,属于中考常考题型.二、填空题:(每题3分,共15分)11.请写出一个大于1且小于2的无理数: .【答案】2(答案不唯一).【解析】【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【详解】大于1且小于2的无理数可以是2,?3,?2π-等,故答案为:2(答案不唯一).考点:1.开放型;2.估算无理数的大小.12.已知关于x 的不等式组x a x b>⎧⎨>⎩,其中,a b 在数轴上的对应点如图所示,则这个不等式组的解集为__________.【答案】x >a .【解析】【分析】先根据数轴确定a ,b 的大小,再根据确定不等式组的解集原则:大大取大,小小取小,大小小大中间找,小小大大找不了(无解)确定解集即可.【详解】∵由数轴可知,a >b ,∴关于x 的不等式组x a x b>⎧⎨>⎩的解集为x >a , 故答案为:x >a . 【点睛】本题考查的是由数轴确定不等式组的解集,根据“大大取大,小小取小,大小小大中间找,小小大大找不了(无解)”得出不等式组的解集是解答此题的关键.13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是__________.【答案】14 【解析】【分析】 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次颜色相同的情况数,再利用概率公式求解即可求得答案. 【详解】画树状图得:∵共有16种等可能的结果,两次颜色相同的有4种情况,∴两个数字都是正数的概率是41164=, 故答案为:14. 【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.14.如图,在边长为22的正方形ABCD 中,点,E F 分别是边,AB BC 的中点,连接,,EC FD 点,G H 分别是,EC FD 的中点,连接GH ,则GH 的长度为__________.【答案】1【解析】【分析】过E 作EP DC ⊥,过G 作GQ DC ⊥,过H 作HR BC ⊥,HR 与GQ 相交于I ,分别求出HI 和GI 的长,利用勾股定理即可求解.【详解】过E 作EP DC ⊥,过G 作GQ DC ⊥,过H 作HR BC ⊥,垂足分别P ,R ,R ,HR 与GQ相交于I ,如图,∵四边形ABCD 是正方形,∴22AB AD DC BC ====90A ADC ∴∠=∠=︒,∴四边形AEPD 是矩形,∴22EP AD ==,∵点E ,F 分别是AB ,BC 边的中点,∴12PC DC ==12FC BC == EP DC ⊥,GQ DC ⊥,GQ EP ∴//∵点G 是EC 的中点,GQ ∴是EPC ∆的中位线,12GQ EP ∴==同理可求:HR =,由作图可知四边形HIQP 是矩形,又HP=12FC ,HI=12HR=12PC , 而FC=PC ,∴ HI HP =,∴四边形HIQP 是正方形,∴2IQ HP ==,∴GI GQ IQ HI =-=== HIG ∴∆是等腰直角三角形,1GH ∴==故答案为:1.【点睛】此题主要考查了正方形的判定与性质,三角形的中位线与勾股定理等知识,正确作出辅助线是解答此题的关键.15.如图,在扇形BOC 中,60,BOC OD ∠=︒平分BOC ∠交狐BC 于点D .点E 为半径OB 上一动点若2OB =,则阴影部分周长的最小值为__________.【答案】2.3π【解析】【分析】 如图,先作扇形OCB 关于OB 对称的扇形,OAB 连接AD 交OB 于E ,再分别求解,AD CD 的长即可得到答案.【详解】解:C 阴影=,CE DE CD ++∴ C 阴影最短,则CE DE +最短,如图,作扇形OCB 关于OB 对称的扇形,OAB 连接AD 交OB 于E ,则,CE AE =,CE DE AE DE AD ∴+=+=此时E 点满足CE DE +最短,60,COB AOB OD ∠=∠=︒平分,CB30,90,DOB DOA ∴∠=︒∠=︒2,OB OA OD ===222222,AD ∴=+=而CD 的长为:302,1803ππ⨯= ∴ C 阴影最短为22.3π 故答案为:2.3π【点睛】本题考查的是利用轴对称求最短周长,同时考查了圆的基本性质,扇形弧长的计算,勾股定理的应用,掌握以上知识是解题的关键.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中51a = 【答案】1a -5【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 值代入计算即可.【详解】原式=(1)(1)1a a a a a+-+=1a -, 当51a =时,原式5115-=【点睛】本题考查的是分式的化简求值,解答的关键是熟练掌握分式的混合运算顺序和运算法则,注意运算结果要化成最简分式或整式.17.为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g ,与之相差大于10g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g )如下:甲: 501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 512 499 499 501[整理数据]整理以上数据,得到每袋质量()x g 的频数分布表.[分析数据]根据以上数据,得到以下统计量.根据以上信息,回答下列问题:()1表格中的a = b =()2综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由. 【答案】(1)501a =,=15%b .(2)选择乙分装机,理由见解析;【解析】【分析】 (1)把乙的数据从小到大进行排序,选出10、11两项,求出他们的平均数即为乙组数据的中位数;由题可得合格产品的范围是490510x ≤≤,根据这个范围,选出不合格的产品,除以样本总量就可得到结果;(2)根据方差的意义判断即可;【详解】(1)把乙组数据从下到大排序为:487 490 491 493 498 499 499 499 499 501 501 501 502 502 502 503 505 505 506 512,可得中位数=501+501=5012; 根据已知条件可得出产品合格的范围是490510x ≤≤,甲生产的产品有3袋不合格,故不合格率为3100%=15%20⨯. 故501a =,=15%b .(2)选择乙分装机;根据平均数相同,中位数乙跟接近标准适质量,方差的意义可知:方差越小,数据越稳定,由于22甲乙=42.01>=31.81S S ,并且乙的不合格率要低于甲,综上则应选取乙分装机.【点睛】本题主要考查了根据图标数据进行中位数的求解,准确理解表中各项数据是解题的关键. 18.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水 平步道MP 上架设测角仪,先在点M 处测得观星台最高点A 的仰角为22︒,然后沿MP 方向前进16m 到达点N 处,测得点A 的仰角为45︒.测角仪的高度为1.6m ,()1求观星台最高点A 距离地面的高度(结果精确到0.1m .参考数据:220.37,220.93,220.40,2 1.41sin cos tan ︒≈︒≈︒≈≈);()2“景点简介”显示,观星台的高度为12.6m ,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【答案】(1)12.3m ;(2)0.3m ,多次测量,求平均值【解析】【分析】(1)过点A 作AE ⊥MN 交MN 的延长线于点E ,交BC 的延长线于点D ,根据条件证出四边形BMNC 为矩形、四边形CNED 为矩形、三角形ACD 与三角形ABD 均为直角三角形,设AD 的长为xm ,则CD=AD=xm ,BD=BC+CD=(16+x )m ,在Rt △ABD 中,解直角三角形求得AD 的长度,再加上DE 的长度即可; (2)根据(1)中算的数据和实际高度计算误差,建议是多次测量求平均值.【详解】解:(1)如图,过点A 作AE ⊥MN 交MN 的延长线于点E ,交BC 的延长线于点D ,设AD 的长为xm ,∵AE ⊥ME ,BC ∥MN ,∴AD ⊥BD ,∠ADC=90°,∵∠ACD=45°,∴CD=AD=xm ,BD=BC+CD=(16+x )m ,由题易得,四边形BMNC 为矩形,∵AE ⊥ME ,∴四边形CNED 为矩形,∴DE=CN=BM=1.6m ,在Rt △ABD 中,tan ABD=0.4016AD x BD x==+∠, 解得:10.7x ≈,即AD=10.7m ,AE=AD+DE=10.7+1.6=12.3m ,答:观星台最高点A 距离地面的高度为12.3m .(2)本次测量结果的误差为:12.6-12.3=0.3m ,减小误差的合理化建议:多次测量,求平均值.【点睛】本题考查解直角三角形的实际应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 19.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠;设某学生暑期健身x (次),按照方案一所需费用为1y ,(元),且11y k x b =+;按照方案二所需费用为2y (元) ,且22.y k x =其函数图象如图所示. ()1求1k 和b 的值,并说明它们的实际意义;()2求打折前的每次健身费用和2k 的值;()3八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【答案】(1)k 1=15,b=30;k 1=15表示的是每次健身费用按六折优惠是15元,b=30表示购买一张学生暑期专享卡的费用是30元;(2)打折前的每次健身费用为25元,k 2=20;(3)方案一所需费用更少,理由见解析.【解析】【分析】(1)用待定系数法代入(0,30)和(10,180)两点计算即可求得1k 和b 的值,再根据函数表示的实际意义说明即可;(2)设打折前的每次健身费用为a 元,根据(1)中算出的1k 为打六折之后的费用可算得打折前的每次健身费用,再算出打八折之后的费用,即可得到2k 的值;(3)写出两个函数关系式,分别代入x=8计算,并比较大小即可求解.【详解】解:(1)由图象可得:11y k x b =+经过(0,30)和(10,180)两点,代入函数关系式可得:13018010b k b =⎧⎨=+⎩, 解得:13015b k =⎧⎨=⎩, 即k 1=15,b=30,k 1=15表示的是每次健身费用按六折优惠是15元,b=30表示购买一张学生暑期专享卡的费用是30元; (2)设打折前的每次健身费用为a 元,由题意得:0.6a=15,解得:a=25,即打折前的每次健身费用为25元,k 2表示每次健身按八折优惠的费用,故k 2=25×0.8=20;(3)由(1)(2)得:11530y x =+,220y x =,当小华健身8次即x=8时,115830150y =⨯+=,2208160y =⨯=,∵150<160,∴方案一所需费用更少,答:方案一所需费用更少.【点睛】本题考查一次函数的实际应用,用待定系数法求解函数关系式并结合题意计算出原价是解题的关键.20.我们学习过利用用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的,人们根据实际需要,发明了一种简易操作工具--------三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线 上,且AB 的长度与半圆的半径相等;DB 与AC 重直F 点 ,B DB 足够长.使用方法如图2所示,若要把MEN ∠三等分,只需适当放置三分角器,使DB 经过MEN ∠的顶点E ,点A 落在边EM 上,半圆O 与另一边EN 恰好相切,切点为F ,则,EB EO 就把MEN ∠三等分了. 为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点在,,,A B O C 同一直线上,,EB AC ⊥垂足为点B ,求证:【答案】E 在BD 上,ME 过点A ,,AB OB OC == EN 为半圆O 的切线,切点为F ;EB ,EO 为∠MEN 的三等分线.证明见解析.【解析】【分析】如图,连接OF .则∠OFE=90°,只要证明EAB EOB ≌,OBE OFE ≌,即可解决问题;【详解】已知:如图2,点在,,,A B O C 同一直线上,,EB AC ⊥垂足为点B , E 在BD 上,ME 过点A ,,AB OB OC ==EN 为半圆O 的切线,切点为F .求证: EB ,EO 为∠MEN 的三等分线..证明:如图,连接OF .则∠OFE=90°,∵EB ⊥AC ,EB 与半圆相切于点B ,∴∠ABE=∠OBE=90°,∵BA=BO .EB=EB ,EAB EOB ∴≌∴∠AEB=∠BEO ,∵EO=EO .OB=OF ,∠OBE=∠OFE 90=︒,∴OBE OFE ≌,∴∠OEB=∠OEF , ∴∠AEB=∠BEO=∠OEF ,∴EB ,EO 为∠MEN 的三等分线.故答案为:E 在BD 上,ME 过点A ,,AB OB OC ==EN 为半圆O 的切线,切点为F .EB ,EO 为∠MEN 三等分线.【点睛】本题考查的是全等三角形的判定和性质、切线的性质等知识,解题的关键学会添加常用辅助线,构造全等三角形解决问题.21.如图,抛物线22y xx c =-++与x 轴正半轴,y 轴正半轴分别交于点,A B ,且,OA OB =点G 为抛物线的顶点. ()1求抛物线的解析式及点G 的坐标;()2点,M N 为抛物线上两点(点M 在点N 的左侧) ,且到对称轴的距离分别为3个单位长度和5个单位长度,点Q 为抛物线上点,M N 之间(含点,M N )的一个动点,求点Q 的纵坐标Q y 的取值范围.【答案】(1)2y x 2x 3=-++,G (1,4);(2)﹣21≤Q y ≤4.【解析】【分析】(1)根据,OA OB =用c 表示出点A 的坐标,把A 的坐标代入函数解析式,得到一个关于c 的一元二次方程,解出c 的值,从而求出函数解析式,求出顶点G 的坐标.(2)根据函数解析式求出函数图像对称轴,根据点M,N 到对称轴的距离,判断出M,N 的横坐标,进一步得出M,N 的纵坐标,求出M,N 点的坐标后可确定Q y 的取值范围.【详解】解:(1)∵抛物线22y xx c =-++与y 轴正半轴分别交于点B , ∴B 点坐标为(c ,0),∵抛物线22y x x c =-++经过点A ,∴﹣c 2+2c+c=0,解得c 1=0(舍去),c 2=3,∴抛物线的解析式为2y x 2x 3=-++∵2y x 2x 3=-++=﹣(x -1)2+4,∴抛物线顶点G 坐标为(1,4).(2)抛物线2y x 2x 3=-++的对称轴为直线x=1,∵点M,N 到对称轴的距离分别为3个单位长度和5个单位长度 ,∴点M 的横坐标为﹣2或4,点N 的横坐标为﹣4或6,点M 的纵坐标为﹣5,点N 的纵坐标为﹣21,又∵点M 在点N 的左侧,∴当M 坐标为(﹣2,﹣5)时,点N 的坐标为(6,﹣21),则﹣21≤Q y ≤4当当M 坐标为(4,﹣5)时,点N 的坐标为(6,﹣21),则﹣21≤Q y ≤﹣5,∴Q y 的取值范围为﹣21≤Q y ≤4.【点睛】本题考查的是二次函数的基本的图像与性质,涉及到的知识点有二次函数与坐标轴交点问题,待定系数法求函数解析式,对称轴性质等,解题关键在于利用数形结合思想正确分析题意,进行计算. 22.小亮在学习中遇到这样一个问题:如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y 的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.23.将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ' ,记旋转角为α.连接BB ',过点D 作DE 垂直于直线BB ',垂足为点E ,连接,DB CE ',()1如图1,当60α=︒时,DEB '∆的形状为,连接BD ,可求出BB CE'的值为 ;()2当0360α︒<<︒且90α≠︒时,①()1中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由; ②当以点,,,B E C D '为顶点的四边形是平行四边形时,请直接写出'BE B E的值.【答案】(12(2)①结论不变,理由见解析;②3或1.【解析】 【分析】(1)根据题意,证明ABB '是等边三角形,得60AB B '∠=,计算出45DB E ︒'∠=,根据DE BB '⊥,可得DEB '∆为等腰直角三角形;证明BDB CDE '△△,可得BB CE'的值; (2)①连接BD ,通过正方形性质及旋转,表示出45EB D AB D AB B ︒'''∠=∠-∠=,结合DE BB '⊥,可得DEB '∆为等腰直角三角形;证明B DB EDC '△△,可得BB CE '的值; ②分为以CD 为边和CD 为对角线两种情况进行讨论即可.【详解】(1)由题知60BAB '∠=°,90BAD ∠=°,AB AD AB '==∴30B AD '∠=°,且ABB '为等边三角形∴60AB B '∠=°,1(18030)752AB D ︒︒︒'∠=-= ∴180607545DB E ︒︒︒︒'∠=--=∵DE BB '⊥∴90DEB '∠=°∴45B DE '∠=°∴DEB '△为等腰直角三角形连接BD ,如图所示∵45BDC B DE '∠=∠=°∴BDC B DC B DE B DC '''∠-∠=∠-∠即BDB CDE '∠=∠ ∵22CD DE BD DB ==' ∴BDB CDE '△△ ∴==22BB BD CE CD '= 故答案为:等腰直角三角形,2(2)①两个结论仍然成立连接BD ,如图所示:∵AB AB '=,BAB α'∠=∴902ABB α︒'∠=-∵90,B AD AD AB α︒''∠=-=∴1352AB D α︒'∠=-∴45EB D AB D AB B ︒'''∠=∠-∠=∵DE BB '⊥∴45EDB EB D ︒''∠=∠=∴DEB '△是等腰直角三角形 ∴2DB DE '= ∵四边形ABCD 为正方形∴2,45BD BDC CD︒=∠= ∴BD DB CD DE '= ∵EDB BDC '∠=∠∴B DB EDC '∠=∠∴B DB EDC '△△∴2BB BD CE CD'== ∴结论不变,依然成立②若以点,,,B E C D '为顶点的四边形是平行四边形时,分两种情况讨论第一种:以CD 为边时,则//CD B E ',此时点B '在线段BA 的延长线上,如图所示:此时点E 与点A 重合,∴BE CE B E '==,得1BE B E='; ②当以CD 为对角线时,如图所示:此时点F 为CD 中点,∵DE BB '⊥∴CB BB ''⊥∵90BCD ︒∠=∴BCF CB F BB C ''△△△ ∴2BC CB BB CF B F CB ''===''∴4BB B F ''=∴6,2BE B F B E B F '''==∴3BE B E=' 综上:BE B E '的值为3或1. 【点睛】本题考查了正方形与旋转综合性问题,能准确的确定相似三角形,是解决本题的关键.考试小提示试卷一张一张,发的是希望;考试一场一场,考的是能力;笔尖一动一动,动的是梦想;问候一声一声,道的是真情;考试日,愿你们认真、细心做题,取得好成绩。

中考数学题型及方法总结

中考数学题型及方法总结

初中数学中的固定题型及惯性思维一、角平分线的考点1。

定义2。

性质(垂直于角的两边) 3.对称性(垂直于角平分线,构造全等,得到中点)二、中点的三个考点1.斜边中线(直角与中点)2.三线合一(等腰与中点)3.中位线(两个中点)附注:中点常见作辅助线方法:过其中一个端点作另一个端点所在直线的平行线交延长线与一点。

如果其中一个端点所在直线有多条,要结合题目已知条件进行判断,一般以已知线段长度的为主。

三、等腰三角形的考点1。

等角对等边2。

等边对等角 3.三线合一四、全等三角形1.五个全等三角形的判定定理2.对应边对应角相等五、轴对称图形1。

角的对称性(性质) 2.线段的对称性(性质) 3.等腰三角形的对称性(三线合一)附注:对称轴是直线,轴对称图形既可以是一个图形本身,比如等腰三角形是轴对称图形,也可以说两个图形关于某条直线呈轴对称图形。

六、勾股定理1。

勾股定理的公式2。

勾股定理的逆定理(可以用来证明直角或者一个三角形是直角三角形)附注:利用图形证明勾股定理一般都是利用部分面积之和等于整体面积,另外记住几组常见的勾股数,3,4,5;6,8,10;5,12,13; 7,24,25七、平面直角坐标系1。

平面直角坐标系是用来确定点及图像的位置的 2.坐标轴及象限的划分附注:如果题目说不经过第二象限,应该有两种情况,一是经过一三四象限,二是经过一三象限,做此类题目不要思维定势.八、二次根式1。

二次根式的非负性 2.同类二次根式3。

最简二次根式 4.二次根式的比较大小 5.二次根式的加减乘除附注:如果题目的计算结果包含根式,一定要习惯性地判断是否是最简二次根式,切记因为细节问题失分;另外代数式有意义也要注意开方数大于等于0,千万不要漏掉等号。

九、一元二次方程1。

定义(二次项系数不为0)2。

四种解法(优先考虑因式分解法,主要是十字相乘) 3。

一元二次方程根的个数的判别式4。

一元二次方程根与系数的关系,即韦达定理附注:只要一个题目是求解有关一元二次方程的根的代数式的值的题目,只有两种方法,代入法与韦达定理,如果满足韦达定理的形式就用韦达定理,除此之外,一律使用代入法.十、二次函数1.定义(最高次为2,二次项系数不为0)2。

动力学的图像问题精准突破含解析

动力学的图像问题精准突破含解析

专题1.7 动力学的图像问题【专题诠释】 1.“两大类型”(1)已知物体在某一过程中所受的合力(或某个力)随时间的变化图线,要求分析物体的运动情况. (2)已知物体在某一过程中速度、加速度随时间的变化图线.要求分析物体的受力情况. 2.“一个桥梁”:加速度是联系v ­t 图象与F ­t 图象的桥梁. 3.解决图象问题的方法和关键(1)分清图象的类别:分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点.(2)注意图象中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等表示的物理意义.(3)明确能从图象中获得哪些信息:把图象与物体的运动情况相结合,再结合斜率、特殊点、面积等的物理意义,确定从图象中得出的有用信息.这些信息往往是解题的突破口或关键点. (4)动力学中常见的图象:v -t 图象、x -t 图象、F -t 图象、F -a 图象等. 【高考引领】【2019·全国卷Ⅲ】如图a ,物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。

t =0时,木板开始受到水平外力F 的作用,在t =4 s 时撤去外力。

细绳对物块的拉力f 随时间t 变化的关系如图b 所示,木板的速度v 与时间t 的关系如图c 所示。

木板与实验台之间的摩擦可以忽略。

重力加速度取10 m/s 2。

由题给数据可以得出( )A .木板的质量为1 kgB .2~4 s 内,力F 的大小为0.4 NC .0~2 s 内,力F 的大小保持不变D .物块与木板之间的动摩擦因数为0.2 【答案】 AB【解析】 木板和实验台间的摩擦忽略不计,由题图b 知,2 s 后木板滑动,物块和木板间的滑动摩擦力大小F 摩=0.2 N 。

由题图c 知,2~4 s 内,木板的加速度大小a 1=0.42m/s 2=0.2 m/s 2,撤去外力F 后的加速度大小a 2=0.4-0.21m/s 2=0.2 m/s 2,设木板质量为m ,据牛顿第二定律,对木板有:2~4 s 内:F -F摩=ma 1,4 s 以后:F 摩=ma 2,解得m =1 kg ,F =0.4 N ,A 、B 正确。

中考数学专题复习函数过程探究性问题

中考数学专题复习函数过程探究性问题

中考数学专题复习函数过程探究性问题学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、解答题1.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数2241x y x -=+的性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在给出的图中补全该函数的大致图象; x… -5-4-3-2 -1 0 1 2 3 4 5 …2241x y x -=+… -2126 -1217 -12 0 324 0 …(2)请根据这个函数的图象,写出该函数的一条性质;(3)已知函数332y x =-+的图象如图所示.根据函数图象,直接写出不等式2234321x x x --+>+的解集.(近似值保留一位小数,误差不超过0.2)2.探究函数性质时,我们经历了列表、描点、连线函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数|26|y x x m =+-++性质及其应用的部分过程,请按要求完成下列各小题. x…2-1-0 1 2 3 4 5 …y (6)54a 2 1b 7 …(1)写出函数关系式中m 及表格中a ,b 的值:m =________,=a _________,b =__________;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质:__________; (3)已知函数16y x=的图象如图所示,结合你所画的函数图象,直接写出不等式16|26|x x m x+-++>的解集.3.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261xy x =+性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充..完整,并在图中补全..该函数图象; x… -5 -4-3 -2 -1 0 1 2 3 4 5 …261xy x =+…1513-2417-125--3 0 3 12524171513…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打“√”,错误的在相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y 轴;( )①该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;( )①当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;( ) (3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211xx x >-+的解集(保留1位小数,误差不超过0.2).4.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数2122=-+yx的图象并探究该函数的性质.x①-4-3-2-101234①y①23-a-2-4b-4-21211-23-①(1)列表,写出表中a,b的值:a=____ ,b=.描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数2122=-+yx的图象关于y轴对称;①当x=0时,函数2122=-+yx有最小值,最小值为-6;①在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数21033y x=--的图象如图所示,结合你所画的函数图象,直接写出不等式212210233xx-<--+的解集.5.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义(0)(0)a aaaa≥⎧=⎨-⎩<.结合上面经历的学习过程,现在来解决下面的问题在函数3y kx b=-+中,当2x=时,4y=-;当0x=时,y 1.=-(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象井并写出这个函数的一条性质;(3)已知函1y32x=-的图象如图所示,结合你所画的函数图象,直接写出不等式1323kx b x-+≤-的解集.6.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数2||y x =-的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数2||2y x =-+和2| 2|y x =-+的图象如图所示. x … ﹣3 ﹣2 ﹣1 0 1 2 3 …y …﹣6﹣4﹣2﹣2﹣4﹣6…(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数-2|2|y x =+的对称轴.(2)探索思考:平移函数2||y x =-的图象可以得到函数2||2y x =-+和2|2|y x =-+的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数2|3|1y x =--+的图象.若点()11,x y 和(22,)x y 在该函数图象上,且213x x >>,比较1y ,2y 的大小.参考答案:1.(1)从左到右,依次为:311221,,,221726--,图见解析;(2)该函数图象是轴对称图象,对称轴是y 轴;(3)0.3,12x x <-<< 【解析】 【分析】(1)直接代入求解即可;(2)根据函数图象,写出函数的性质即可; (3)根据图象交点写出解集即可. 【详解】解:(1)表格中的数据,从左到右,依次为:311221,,,221726--.函数图象如图所示.;(2)①该函数图象是轴对称图象,对称轴是y 轴;①该函数在自变量的取值范围内,有最大值,当0x =,函数取得最大值4;①当0x <是,y 随x 的增大而增大;当0x >是,y 随x 的增大而减小;(以上三条性质写出一条即可)(3)当0.2x =-时,33 3.32x -+=,224 3.81x x -≈+;当0.4=-x 时,33 3.62x -+=,224 3.311x x -≈+;所以0.3x =-是2234321x x x --+=+的一个解;由图象可知1x =和2x =是2234321x x x --+=+的另外两个解;①2234321x x x --+>+的解集为0.3,12x x <-<<.【点睛】本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.2.(1)2-;3;4;(2)作图见解析;当3x <时,y 随x 的增大而减小,当3x >时,y 随x 的增大而增大;(3)0x <或4x > 【解析】 【分析】(1)将表格中的已知数据任意选择一组代入到解析式中,即可求出m ,然后得到完整解析式,再根据表格代入求解其余参数即可;(2)根据作函数图象的基本步骤,在网格中准确作图,然后根据图象写出一条性质即可;(3)结合函数图象与不等式之间的联系,用函数的思想求解即可. 【详解】(1)由表格可知,点()3,1在该函数图象上,①将点()3,1代入函数解析式可得:13236m =+-⨯++, 解得:2m =-,①原函数的解析式为:|26|2y x x =+-+-; 当1x =时,3y =; 当4x =时,4y =; 故答案为:2-;3;4;(2)通过列表-描点-连线的方法作图,如图所示;根据图像可知:当3x <时,y 随x 的增大而减小,当3x >时,y 随x 的增大而增大;故答案为:当3x <时,y 随x 的增大而减小,当3x >时,y 随x 的增大而增大; (3)要求不等式16|26|x x m x+-++>的解集, 实际上求出函数|26|y x x m =+-++的图象位于函数16y x=图象上方的自变量的范围, ①由图象可知,当0x <或4x >时,满图条件, 故答案为:0x <或4x >.【点睛】本题考查新函数图象探究问题,掌握研究函数的基本方法与思路,熟悉函数与不等式或者方程之间的联系是解题关键.3.(1)95-,95;(2)①× ①√ ①√;(3)x <−1或−0.3<x <1.8.【解析】 【分析】(1)代入x=3和x=-3即可求出对应的y 值,再补全函数图象即可; (2)结合函数图象可从增减性及对称性进行判断; (3)根据图象求解即可. 【详解】解:(1)当x=-3时,2618911x y x -==++95=-,当x=3时,2618911x y x ===++95, 函数图象如下:(2)①由函数图象可得它是中心对称图形,不是轴对称图形; 故答案为:× ,①结合函数图象可得:该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3; 故答案为:√ ,①观察函数图象可得:当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大; 故答案为:√.(3)1x <-,0.28 1.78(0.280.2 1.780.2)x x -<<-±<<±26211xx x =-+时,()2(1)2310x x x +--=得11x =-,2 1.8x ,30.3x ≈-, 故该不等式的解集为: x <−1或−0.3<x <1.8. 【点睛】本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键. 4.(1)1211-,6-,作图见解析;(2)①√;①√;①×;(3)x <-4或-2<x <1. 【解析】 【分析】(1)把对应的x 的值代入即可求出a 和b 的值,通过描点,用平滑的曲线连接,即可作出图象;(2)观察图象即可判断;(3)找出函数2122=-+y x 的图象比函数21033y x =--的图象低时对应的x 的范围即可. 【详解】(1)当3x =-时,212121132a =-=-+;当0x =时,1262b =-=-; ①1211a =-,6b =-, 故答案为:1211-,6-. 所画图象,如图所示.(2)①观察图象可知函数2122=-+y x 的图象关于y 轴对称,故该说法正确; ①观察图象可知,当x =0时,函数2122=-+y x 有最小值,最小值为6-,故该说法正确; ①观察图象可知,当0x <时,y 随x 的增大而减小,当0x >时,y 随x 的增大而增大,故该项题干说法错误.(3)不等式212210233x x -<--+表现在图象上面即函数2122=-+y x 的图象比函数21033y x =--的图象低,因此观察图象,即可得到212210233x x -<--+的解集为:x <-4或-2<x <1.【点睛】本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.5.(1)3342y x =--;(2)见解析,当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小;(3)14x ≤≤.【解析】【分析】(1)根据在函数y=|kx -3|+b 中,当x=2时,y=-4;当x=0时,y=-1,可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象并写出它的一条性质;(3)根据图象可以直接写出所求不等式的解集.【详解】解:(1)由题意,可得23431k b b ⎧-+=-⎪⎨-+=-⎪⎩ 324k b ⎧=⎪∴⎨⎪=-⎩ ∴函数的解析式为:3342y x =-- (2)当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小;(3)14x ≤≤;【点睛】本题考查一次函数的应用、一元一次不等式与一次函数的关系,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.6.(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)根据图形即可得到结论;(2)根据函数图形平移的规律即可得到结论;(3)根据函数关系式可知将函数2||y x =-的图象向上平移1个单位,再向右平移3个单位得到函数2|-3|1y x =-+的图象.根据函数的性质即可得到结论.【详解】解:(1)(0,2)A ,(2,0)B -,函数2| 2|y x =-+的对称轴为2x =-;(2)将函数2||y x =-的图象向上平移2个单位得到函数2||2y x =-+的图象; 将函数2||y x =-的图象向左平移2个单位得到函数2|2|y x =-+的图象;(3)将函数2||y x =-的图象向上平移1个单位,再向右平移3个单位得到函数2|3|1y x =--+的图象.所画图象如图所示,当213x x >>时,12y y >.【点睛】本题考查了一次函数与几何变换,一次函数的图象,一次函数的性质,平移的性质,正确的作出图形是解题的关键.。

网页制作题库 带答案

网页制作题库 带答案

《网页制作》题库(含参考答案)HTML 基础第1题判断正误(1)HTML标记符的属性一般不区分大小写.(对)(2)网站就是一个链接的页面集合.(对)(3)将网页上传到Internet时通常采用FTP方式。

(对)(4)所有的HTML标记符都包括开始标记符和结束标记符。

(错)(5)可以用文本编辑器编辑HTML文件。

(对)(6)文本编辑器和HTML编辑器软件都可以用来编辑HTML文件。

(对)(7)TITLE 标记符通常位于BODY标记符之间。

(错)(8)TITLE 标记符通常位于HEAD标记符之间.(对)(9)title标记符和title属性的作用是相同的.(错)第2题单选题(1)WWW是的意思。

答案:BA.网页B.万维网C.浏览器D.超文本传输协议(2)在网页中显示特殊字符,如果要输入“〈",应使用_________。

答案:D A.lt; B.&Lt; C.&lt D.&lt;(3)以下说法中,错误的是:。

答案:DA.获取WWW服务时,需要使用浏览器作为客户端程序。

B.WWW服务和电子邮件服务是Internet提供的最常用的两种服务。

C.网站就是一系列逻辑上可以视为一个整体的页面的集合。

D.所有网页的扩展名都是.htm。

(4)以下说法中,错误的是:。

答案:BA.网页的本质就是HTML源代码.B.网页就是主页。

C.使用“记事本”编辑网页时,通常应将其保存为 .htm 或。

html 后缀. D.本地网站通常就是一个完整的文件夹。

(5)以下说法中,错误的是:。

答案:DA.主页是网站中的一个特定页面.B.网页中的注释可以放在任何位置.C.在HTML中,&nbsp;表示空格。

D.在HTML中,&lt;表示〉。

(6)浏览网页时,通常使用以下协议:A.mailto B.FTP C.HTTP D.TCP/IP(7)在网页中显示特殊字符,如果要输入空格,应使用_________。

专题33 电磁感应中的电路和图像问题(解析版)

专题33 电磁感应中的电路和图像问题(解析版)

2020年高考物理一轮复习限时训练专题33电磁感应中的电路和图像问题(限时:45min)一、选择题(本大题共14小题)1.(2019·杭州调研)在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图甲所示,当磁场的磁感应强度B随时间t按图乙所示变化时,下列选项中能正确表示线圈中感应电动势E变化的是()【答案】A【解析】根据楞次定律得,0~1 s内,感应电流为正方向;1~3 s内,无感应电流;3~5 s内,感应电流为负方向;再由法拉第电磁感应定律得:0~1 s内的感应电动势为3~5 s内的二倍,故A正确。

2.(多选)一环形线圈放在匀强磁场中,设第1 s内磁感线垂直线圈平面向里,如图甲所示。

若磁感应强度B 随时间t变化的关系如图乙所示,那么下列选项正确的是()A.第1 s内线圈中感应电流的大小逐渐增加B.第2 s内线圈中感应电流的大小恒定C.第3 s内线圈中感应电流的方向为顺时针方向D.第4 s内线圈中感应电流的方向为逆时针方向【答案】BD【解析】由题给图像分析可知,磁场在每1 s内为均匀变化,斜率恒定,线圈中产生的感应电流大小恒定,因此A错误,B正确;由楞次定律可判断出第3 s、第4 s内线圈中感应电流的方向均为逆时针方向,C错误,D正确。

3.(多选)如图所示,导体棒沿两平行导轨从图中位置以速度v 向右匀速通过一正方形abcd 磁场区域。

ac 垂直于导轨且平行于导体棒,ac 右侧磁场的磁感应强度是左侧磁场的2倍且方向相反,导轨和导体棒的电阻均不计。

下列关于导体棒中感应电流和所受安培力随时间变化的图像正确的是(规定电流由M 经R 到N 为正方向,安培力向左为正方向)( )【答案】AC 【解析】设ac 左侧磁感应强度大小为B ,导轨间距为L ,导体棒在左半区域时,根据右手定则,通过导体棒的电流方向向上,电流由M 经R 到N 为正值,大小为I =B ·2vt ·v R =2Bv 2t R,根据左手定则,导体棒所受安培力向左,大小为F =BI ·2vt =4B 2v 3t 2R;同理可得导体棒在右半区域时,电流为负值,大小为I =2(22)B L vt v R⋅-⋅=4BLv -4Bv 2t R ,安培力向左,大小为F =2BI ·(2L -2vt )=2216()B L vt v R -;根据数学知识,A 、C 正确,B 、D 错误。

2022-2023学年山东省单县北城第三初级中学数学九上期末达标测试试题含解析

2022-2023学年山东省单县北城第三初级中学数学九上期末达标测试试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题4分,共48分)1.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为( ) A .相交B .相切C .相离D .无法确定2.下列命题正确的是( ) A .对角线相等四边形是矩形 B .相似三角形的面积比等于相似比 C .在反比例函数3y x=-图像上,y 随x 的增大而增大 D .若一个斜坡的坡度为1:3,则该斜坡的坡角为303.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E 的正方体平移至如图2所示的位置,下列说法中正确的是( )A .左、右两个几何体的主视图相同B .左、右两个几何体的左视图相同C .左、右两个几何体的俯视图不相同D .左、右两个几何体的三视图不相同4.掷一枚质地均匀的硬币10次,下列说法正确的是( ) A .必有5次正面朝上 B .可能有5次正面朝上 C .掷2次必有1次正面朝上D .不可能10次正面朝上5.如图,点C D 、在以AB 为直径的半圆上,点O 为圆心,55DCO ∠=︒,则CAD ∠的度数为( )A .30B .35︒C .40︒D .45︒6.数据4,3,5,3,6,3,4的众数和中位数是( ) A .3,4B .3,5C .4,3D .4,57.将含有30°角的直角三角板OAB 如图放置在平面直角坐标系中,OB 在x 轴上,若OA =2,将三角板绕原点O 顺时针旋转75°,则点A 的对应点A ′的坐标为( )A .(3,﹣1)B .(1,﹣3)C .(2,﹣2)D .(﹣2,2)8.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( ) A .16B .13C .12D .569.如图,已知矩形ABCD 的对角线AC 的长为8,连接矩形ABCD 各边中点E 、F 、G 、H 得到四边形EFGH ,则四边形EFGH 的周长为( )A .12B .16C .24D .3210.下列方程中,属于一元二次方程的是( ) A .231x y +=B .211x x+= C .()2251x x +=+ D .()35x x +=11.sin 30°的值为( ) A 2 B .12C .1D 312.根据下面表格中的对应值: x 3.24 3.25 3.26 ax 2+bx+c﹣0.020.010.03判断关于x 的方程ax 2+bx+c =0(a ≠0)的一个解x 的范围是( )二、填空题(每题4分,共24分)13.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.1.根据上述数据,估计口袋中大约有_______个黄球14.已知二次函数y =x 2﹣5x+m 的图象与x 轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为_____.15.如图,已知⊙O 的半径为2,四边形ABCD 是⊙O 的内接四边形,∠ABC =∠AOC ,且AD =CD ,则图中阴影部分的面积等于______.16.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF=DC ,若∠ADF=25°,则∠BEC=________.17.如图所示:点A 是反比例函数(0)2ky k x=≠,图像上的点,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,7ABOC S =矩形,则k =______.18.点(-2,5)关于原点对称的点的坐标是 _____________. 三、解答题(共78分)19.(8分)如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD=88°,求∠BCD 的度数.20.(8分)小彬做了探究物体投影规律的实验,并提出了一些数学问题请你解答:(1)如图1,白天在阳光下,小彬将木杆AB水平放置,此时木杆在水平地面上的影子为线段A B''.①若木杆AB的长为1m,则其影子A B''的长为m;②在同一时刻同一地点,将另一根木杆CD直立于地面,请画出表示此时木杆CD在地面上影子的线段DM;(2)如图2,夜晚在路灯下,小彬将木杆EF水平放置,此时木杆在水平地面上的影子为线段E F''.①请在图中画出表示路灯灯泡位置的点P;②若木杆EF的长为1m,经测量木杆EF距离地面1m,其影子E F''的长为1.5m,则路灯P距离地面的高度为m. 21.(8分)一个不透明的布袋里装有3个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率1 2 .(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,求出两次都摸到白球的概率.22.(10分)如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线:(2)若BF=8,DF=40,求⊙O的半径;(3)若∠ADB=60°,BD=1,求阴影部分的面积.(结果保留根号)23.(10分)在平面直角坐标系中,抛物线y=x2﹣4x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.(1)若点P(﹣1,2)在图象G上,求n的值.(2)当n=﹣1时.①若Q(t,1)在图象G上,求t的值.(3)当以A(﹣3,3)、B(﹣3,﹣1)、C(2,﹣1)、D(2,3)为顶点的矩形ABCD的边与图象G有且只有三个公共点时,直接写出n的取值范围.24.(10分)甲、乙、丙、丁四个人做“击鼓传花”游戏,游戏规则是:第一次由甲将花随机传给乙、丙、丁三人中的某一人,以后的每一次传花都是由接到花的人随机传给其他三人中的某一人.(1)求第一次甲将花传给丁的概率;(2)求经过两次传花,花恰好回到甲手中的概率.25.(12分)在推进城乡生活垃圾分类的行动中,某校数学兴趣小组为了了解居民掌握垃圾分类知识的情况,对A B、两小区各600名居民进行测试,从中各随机抽取50名居民成绩进行整理得到部分信息:(信息一)A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);(信息二)上图中,从左往右第四组成绩如下:75 77 77 79 79 79 80 8081 82 82 83 83 84 84 84(信息三)A B、两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1 ___________ 79 40% 277B75.1 77 76 45% 211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数;(2)请估计A小区600名居民成绩能超过平均数的人数;(3)请尽量从多个角度,选择合适的统计量分析A B、两小区参加测试的居民掌握垃圾分类知识的情况.26.公司经销的一种产品,按要求必须在15天内完成销售任务.已知该产品的销售价为62元/件,推销员小李第x天的销售数量为y件,y与x满足如下关系:y=8(05)510(515) x xx x⎧⎨+<⎩(1)小李第几天销售的产品数量为70件?(2)设第x天销售的产品成本为m元/件,m与x的函数图象如图,小李第x天销售的利润为w元,求w与x的函数关系式,并求出第几天时利润最大,最大利润是多少?参考答案一、选择题(每题4分,共48分)1、B【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.2、D【分析】根据矩形的判断定理、相似三角形的性质、反比例函数的性质、坡度的定义及特殊的三角函数值解答即可. 【详解】对角线相等的平行四边形是矩形,故A错误;相似三角形的面积比等于相似比的平方,故B错误;在反比例函数3yx=-图像上,在每个象限内,y随x的增大而增大,故C错误;若一个斜坡的坡度为3tan坡角3,该斜坡的坡角为30,故D正确.故选:D本题考查的是矩形的判断定理、相似三角形的性质、反比例函数的性质、坡度的定义及特殊的三角函数值,熟练的掌握各图形及函数的性质是关键.3、B【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.4、B【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【详解】解:掷一枚质地均匀的硬币10次,不一定有5次正面朝上,选项A不正确;可能有5次正面朝上,选项B正确;掷2次不一定有1次正面朝上,可能两次都反面朝上,选项C不正确.可能10次正面朝上,选项D不正确.故选:B.本题考查的是随机事件,掌握随机事件的概念是解题的关键,随机事件是指在一定条件下,可能发生也可能不发生的事件.5、B【分析】首先由圆的性质得出OC=OD,进而得出∠CDO=∠DCO,∠COD=70°,然后由圆周角定理得出∠CAD. 【详解】由已知,得OC=OD∴∠CDO=∠DCO=55°∴∠COD=180°-∠CDO-∠DCO=180°-55°-55°=70°∵∠COD为弧CD所对的圆心角,∠CAD为弧CD所对的圆周角∴∠CAD=12∠COD=35°故答案为B.【点睛】此题主要考查对圆周角定理的运用,熟练掌握,即可解题.6、A【分析】根据众数和中位数的定义解答即可.【详解】解:在这组数据中出现次数最多的是3,即众数是3;把这组数据按照从小到大的顺序排列3,3,3,4,4,5,6,∴中位数为4;故选:A.【点睛】本题考查一组数据的中位数和众数,一组数据中出现次数最多的数据叫做众数;在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.7、C【解析】试题解析:∵三角板绕原点O顺时针旋转75°,∴旋转后OA与y轴夹角为45°,∵OA=2,∴OA′=2,∴点A′的横坐标为2×2,纵坐标为-2×2,所以,点A′,) 故选C. 8、A【解析】直接得出2的个数,再利用概率公式求出答案.【解答】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是2的概率为:1.6故选A.【点评】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比. 9、B【分析】根据三角形中位线定理易得四边形EFGH 的各边长等于矩形对角线的一半,而矩形对角线是相等的,都为8,那么就求得了各边长,让各边长相加即可. 【详解】解:∵H 、G 是AD 与CD 的中点, ∴HG 是△ACD 的中位线, ∴HG=12AC=4cm , 同理EF=4cm ,根据矩形的对角线相等,连接BD ,得到:EH=FG=4cm , ∴四边形EFGH 的周长为16cm . 故选:B . 【点睛】本题考查了中点四边形.解题时,利用了“三角形中位线等于第三边的一半”的性质. 10、D【分析】根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0,对各选项分析判断后利用排除法求解.【详解】解:A. 231x y +=不是一元二次方程; B.211x x+=不是一元二次方程; C. ()2251x x +=+整理后可知不是一元二次方程; D. ()35x x +=整理后是一元二次方程; 故选:D. 【点睛】ax2+bx+c=0(且a≠0).11、B【分析】直接根据特殊角的三角函数值进行选择.【详解】sin 30°=12,故选:B.【点睛】此题考查特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.12、B【解析】根据表中数据可得出ax2+bx+c=0的值在-0.02和0.01之间,再看对应的x的值即可得.【详解】∵x=3.24时,ax2+bx+c=﹣0.02;x=3.1时,ax2+bx+c=0.01,∴关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是3.24<x<3.1.故选:B.【点睛】本题考查了估算一元二次方程的近似解:用列举法估算一元二次方程的近似解,具体方法是:给出一些未知数的值,计算方程两边结果,当两边结果愈接近时,说明未知数的值愈接近方程的根.二、填空题(每题4分,共24分)13、2【详解】解:∵小明通过多次摸球实验后发现其中摸到红色球的频率稳定在0.1,设黄球有x个,∴0.1(x+10)=10,解得x=2.答:口袋中黄色球的个数很可能是2个.14、(4,0).【分析】先把(1,0)代入y=x2-5x+m求出m得到抛物线解析式为y=x2-5x+4,然后解方程x2-5x+4=0得到抛物线与x 轴的另一个交点的坐标.【详解】解:把(1,0)代入y=x2-5x+m得1-5+m=0,解得m=4,所以抛物线解析式为y=x2-5x+4,当y=0时,x2-5x+4=0,解得x1=1,x2=4,所以抛物线与x轴的另一个交点的坐标为(4,0).故答案为(4,0).【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程问题.15、43π﹣3【分析】根据题意可以得出三角形ACD是等边三角形,进而求出∠AOD,再根据直角三角形求出OE、AD,从而从扇形的面积减去三角形AOD的面积即可得出阴影部分的面积.【详解】解:连接AC,OD,过点O作OE⊥AD,垂足为E,∵∠ABC=∠AOC,∠AOC=2∠ADC,∠ABC+∠ADC=180°,∴∠ABC=120°,∠ADC=60°,∵AD=CD,∴△ACD是正三角形,∴∠AOD=120°,OE=2×cos60°=1,AD=2×sin60°×2=23,∴S阴影部分=S扇形OAD﹣S△AOD=120360×π×22﹣12×23×1=43π﹣3,故答案为:43π﹣3.【点睛】本题主要考察扇形的面积和三角形的面积,熟练掌握面积公式及计算法则是解题关键.16、115°【解析】由∠ADF求出∠CDF,再由等腰三角形的性质得出∠DFC,从而求出∠BCE,最后用等腰三角形的性质即可.【详解】解:∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,BE=CE.∵∠ADF=25°,∴∠CDF=∠ADC﹣∠ADF=90°﹣25°=65°.∵DF=DC,∴∠DFC=∠DCA=(180°-∠CDF)÷2=(180°-65°)÷2=1152,∴∠BCE =∠BCD ﹣∠DCA =90°﹣1152=652. ∵BE =CE , ∴∠BEC =180°﹣2∠BCE =180°﹣65°=115°.故答案为115°.【点睛】本题是矩形的性质,主要考查了矩形的性质,等腰三角形的性质和判定,解答本题的关键是求出∠DFC .是一道中考常考的简单题.17、14-【分析】根据题意可以先设出点A 的坐标,然后根据矩形的面积公式即可求解.【详解】解:设点A 的坐标为(,2k x x) ∵AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,∴AB=2k x,AC=||x ∴=||72矩形=⨯⨯=ABOC k S AB AC x x 解得||14=k又反比例函数经过第二象限,∴14=-k .故答案为:14-.【点睛】本题考查反比例函数系数k 的几何意义,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质和数形结合的思想解答.18、(2,-5)【解析】点(-2,5)关于原点的对称点的点的坐标是(2,-5).故答案为(2,-5).点睛:在平面直角坐标系中,点P (x ,y )关于原点的对称点的坐标是(-x ,-y ).三、解答题(共78分)19、136°【解析】试题分析:由∠BOD=88°,根据“圆周角定理”可得∠BAD 的度数;由四边形ABCD 是⊙O 的内接四边形,可得∠BAD+∠BCD=180°,由此即可解得∠BCD 的度数.试题解析:∵∠BOD=88°, ∴∠BAD=88°÷2=44°, ∵四边形ABCD 是⊙O 的内接四边形,∴∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°. 20、(1)①1;②见解析;(2)①见解析;②3【分析】(1)①根据题意证得四边形AA B B ''为平行四边形,从而求得结论;②根据平行投影的特点作图:过木杆的顶点作太阳光线的平行线;(2)①分别过影子的端点及其线段的相应的端点作射线,两条射线的交点即为光源的位置;②根据EF ∥E F '',可证得PEF PE F ''∆∆,利用相似三角形对应高的比等于相似比即可求得结论.【详解】(1)①根据题意:AA '∥BB ',AB ∥A B '',∴四边形AA B B ''为平行四边形,∴1A B AB cm ='=';②如图所示,线段DM 即为所求;(2)①如图所示,点P 即为所求;②过点P 作PH E F ''⊥分别交EF 、E F ''于点G 、H∵EF ∥E F ''∴PEF PE F ''∆∆::EF E F PG PH ''∴=1EF =, 1.5E F ''=,1GH =()1:1.5:1PG PG ∴=+解得:2PG =,3PH ∴=∴路灯P 距离地面的高度为3米.【点睛】本题考查平行投影问题以及相似三角形的判定和性质,平行光线得到的影子是平行光线经过物体的顶端得到的影子,利用相似三角形对应高的比等于相似比是解决本题的关键.21、 (1)红球的个数为2个;(2)15. 【分析】(1)设红球的个数为x ,根据白球的概率可得关于x 的方程,解方程即可;(2)画出树形图,即可求出两次摸到的球都是白球的概率.【详解】解:(1)设红球的个数为x ,由题意可得:31312x =++, 解得:2x =,经检验2x =是方程的根,即红球的个数为2个;(2)画树状图如下:两次都摸到白球的概率:61305=. 【点睛】 此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)证明见解析;(2)6;(3. 【解析】(1)连接OA 、OD,如图,利用垂径定理的推论得到OD ⊥BE,再利用CA=CF 得到∠CAF= ∠CFA,然后利用角度的代换可证明∠OAD+∠CAF=o 90,则OA ⊥AC,从而根据切线的判定定理得到结论;(2)设⊙0的半径为r,则OF=8-r,在Rt △ODF 中利用勾股定理得到2228-r +r (),然后解方程即可;(3)先证明△BOD 为等腰直角三角形得到OB=2,则OA=2,再利用圆周角定理得到∠AOB=2∠ADB=120o ,则∠AOE=60o ,接着在Rt △OAC 中计算出AC,然后用一个直角三角形的面积减去一个扇形的面积去计算阴影部分的面积.【详解】(1)证明:连接OA 、OD ,如图,∵D 为BE 的下半圆弧的中点,∴OD ⊥BE ,∴∠ODF+∠OFD=90°, ∵CA=CF ,∴∠CAF=∠CFA ,而∠CFA=∠OFD ,∴∠ODF+∠CAF=90°, ∵OA=OD ,∴∠ODA=∠OAD ,∴∠OAD+∠CAF=90°,即∠OAC=90°, ∴OA ⊥AC ,∴AC 是⊙O 的切线;(2)解:设⊙O 的半径为r ,则OF=8﹣r ,在Rt△ODF中,(8﹣r)2+r2=()2,解得r1=6,r2=2(舍去),即⊙O的半径为6;(3)解:∵∠BOD=90°,OB=OD,∴△BOD为等腰直角三角形,∴OB=BD=,∴OA=,∵∠AOB=2∠ADB=120°,∴∠AOE=60°,在Rt△OAC中,AC=OA=,∴阴影部分的面积=••﹣=.【点睛】本题主要考查圆、圆的切线及与圆相关的不规则阴影的面积,需综合运用各知识求解.23、(1)n的值为﹣3或1;(2)①t=26或﹣4或0,②﹣210≤k≤﹣2;(3)当n=0,n=5,1<n<3时,矩形ABCD的边与图象G有且只有三个公共点.【分析】(1)先确定图像G2的顶点坐标和解析式,然后就P分别在图象G1和G2上两种情况讨论求解即可;(2)①先分别求出图象G1和G2的解析式,然后就P分别在图象G1和G2上两种情况讨论求解即可;②结合图像如图1,即可确定k的取值范围;(3)结合图像如图2,根据分n的取值范围分类讨论即可求解.【详解】(1)∵抛物线y=x2﹣4x+n=(x﹣2)2+n﹣4,∴顶点坐标为(2,n﹣4),∵将G1绕坐标原点旋转180°得到图象G2,∴图象G2的顶点坐标为(﹣2,﹣n+4),∴图象G2的解析式为:y=﹣(x+2)2+4﹣n,若点P(﹣1,2)在图象G1上,∴2=9+n﹣4,∴n=﹣3;若点P(﹣1,2)在图象G2上,∴2=﹣1+4﹣n,∴n=1;综上所述:点P(﹣1,2)在图象G上,n的值为﹣3或1;(2)①当n=﹣1时,则图象G1的解析式为:y=(x﹣2)2﹣5,图象G2的解析式为:y=﹣(x+2)2+5,若点Q(t,1)在图象G1上,∴1=(t﹣2)2﹣5,∴t=2±6,若点Q(t,1)在图象G2上,∴1=﹣(t+2)2+5,∴t1=﹣4,t2=0②如图1,当x=2时,y=﹣5,当x=﹣2时,y=5,对于图象G1,在y轴右侧,当y=5时,则5=(x﹣2)2﹣5,∴x=103,对于图象G2,在y轴左侧,当y=﹣5时,则﹣5=﹣(x+2)2+5,∴x=﹣2﹣10,∵当k≤x≤3(k<3)时,图象G对应函数的最大值为5,最小值为﹣5,∴﹣2﹣10≤k≤﹣2;(3)如图2,∵图象G2的解析式为:y=﹣(x+2)2+4﹣n,图象G1的解析式为:y=(x﹣2)2+n﹣4,∴图象G2的顶点坐标为(﹣2,﹣n+4),与y轴交点为(0,﹣n),图象G1的顶点坐标为(2,n﹣4),与y轴交点为(0,n),当n≤﹣1时,图象G1与矩形ABCD最多1个交点,图象G2与矩形ABCD最多1交点,当﹣1<n<0时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有3交点,当n=0时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有2交点,共三个交点,当0<n≤1时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有1交点,当1<n<3时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有2交点,共三个交点,当3≤n<7时,图象G1与矩形ABCD有2个交点,当3≤n<5时,图象G2与矩形ABCD有2个交点,n=5时,图象G2与矩形ABCD有1个交点,n>5时,没有交点,∵矩形ABCD的边与图象G有且只有三个公共点,∴n=5,当n≥7时,图象G1与矩形ABCD最多1个交点,图象G2与矩形ABCD没有交点,综上所述:当n=0,n=5,1<n<3时,矩形ABCD的边与图象G有且只有三个公共点.【点睛】本题属于二次函数综合题,考查了二次函数图像的性质、二次函数的解析式以及二次函数图像上的点,掌握分类讨论思想是解答本题的关键.24、(1)13;(2)13【分析】(1)直接利用概率公式计算得出答案;(2)直接利用树状图法得出所有符合题意情况,进而求出概率.【详解】(1)P(第一次甲将花传给丁)=13;(2)如图所示:,共有9种等可能的结果,其中符合要求的结果有3种,故P(经过两次传花,花恰好回到甲手里)=39=13.【点睛】此题主要考查了树状图法求概率,正确画出树状图是解题关键.25、(1)76;(2)300人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B 小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数【分析】(1)因为有50名居民,中位数应为第25名和第26名成绩的平均值,所以中位数落在第四组,再根据信息二中的表格数据可得出结果;(2)先求出A小区超过平均数的人数,即(16-1)+10=25(人),再根据A小区600名居民成绩能超过平均数的人数=600×2550,即可得出结果;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【详解】解:(1)因为有50名居民,中位数应为第25名和第26名成绩的平均值.而前三组的总人数为:4+8+12=24(人),所以中位数落在第四组,第25名的成绩为75分,第26名的成绩为77分,所以中位数为76,故答案为:76;(2)根据题意得,600×(161)1050-+=300(人),答:A 小区600名居民成绩能超过平均数的人数300人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B 小区居民对垃圾分类知识掌握的情况比A 小区稳定;从中位数看,B 小区至少有一半的居民成绩高于平均数.(答案不唯一,合理即可;)【点睛】本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.26、(1)小李第1天销售的产品数量为70件;(2)第5天时利润最大,最大利润为880元.【分析】(1)根据y 和x 的关系式,分别列出方程并求解,去掉不符合情况的解后,即可得到答案;(2)根据m 与x 的函数图象,列出m 与x 的关系式并求解系数;然后结合利润等于售价减去成本后再乘以销售数量的关系,利用一元一次函数和一元二次函数的性质,计算得到答案.【详解】(1)如果8x =70得x =354>5,不符合题意; 如果5x +10=70得x =1.故小李第1天销售的产品数量为70件;(2)由函数图象可知:当0≤x ≤5,m =40当5<x ≤15时,设m =kx +b将(5,40)(15,60)代入,得5401560k b k b +=⎧⎨+=⎩∴2k =且b=30∴m =2x +30①当0≤x ≤5时w =(62﹣40)•8x =176x∵w 随x 的增大而增大∴当x =5时,w 最大为880;②当5<x ≤15时w =(62﹣2x ﹣30)(5x +10)=﹣10x 2+140x +320∴当x=7时,w最大为810∵880>810∴当x=5时,w取得最大值为880元故第5天时利润最大,最大利润为880元.【点睛】本题考察了从图像获取信息、一元一次函数、一元二次函数的知识;求解本题的关键为熟练掌握一元一次和一元二次函数的性质,并结合图像计算得到答案.。

2015年高考函数的图像专题讲义

2015年高考函数的图像专题讲义

2015年高考函数的图像专题讲义河南省三门峡市卢氏县第一高级中学山永峰图像是函数刻画变量之间的函数关系的一个重要途径,是研究函数性质的一种常用方法,是数形结合的基础和依据。

在今后的高考中将会加大对函数图像的考查力度。

主要以选择题、填空题的形式出现,属于中偏高档题。

主要考查形式有:知图选式、知式选图、图像变换(平移、对称、翻折、伸缩变换),以及自觉的运用图像解题。

因此要注意识图、读图能力的提高以及数形结合思想的灵活运用。

笔者以近几年高考题为载体,结合自己的教学经验整理如下,不足之处敬请斧正![备考方向要明了][归纳·知识整合]1.利用描点法作函数图象其基本步骤是列表、描点、连线.首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等).其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象(1)平移变换:y =f (x )―――――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a ); y =f (x )―――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b . (2)伸缩变换:y =f (x )1011ωωωω−−−−−−−−→<<,伸长为原来的倍>1,缩短为原来的 y =f (ωx ); y =f (x )―――――――――→A >1,伸为原来的A 倍0<A <1,缩为原来的A 倍y =Af (x ). (3)对称变换:y =f (x )―――――→关于x 轴对称 y =-f (x ); y =f (x )―――――→关于y 轴对称 y =f (-x );y =f (x )――――――→关于原点对称y =-f (-x ). (4)翻折变换:y =f (x )――――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图象翻折到左边去y =f (|x |); y =f (x )―――――――――→留下x 轴上方图将x 轴下方图翻折上去y =|f (x )|.[探究] 1.函数y=f(x)的图象关于原点对称与函数y=f(x)与y=-f(-x)的图象关于原点对称一致吗?2.一个函数的图象关于y轴对称与两个函数的图象关于y轴对称有何区别?提示:一个函数的图象关于y轴对称与两个函数的图象关于y轴对称不是一回事.函数y=f(x)的图象关于y轴对称是自身对称,说明该函数为偶函数;而函数y=f(x)与函数y=f(-x)的图象关于y轴对称,是两个函数的图象对称.3.若函数y=f(x)的图象关于点(a,0)(a>0)对称,那么其图象如何变换才能使它变为奇函数?其解析式变为什么?提示:向左平移a个单位即可;解析式变为y=f(x+a).[自测·牛刀小试]1.(教材习题改编)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车行驶的路程s看作时间t的函数,其图象可能是()2.函数y=x|x|的图象经描点确定后的形状大致是()3.函数y=ln(1-x)的图象大致为()4.已知下图(1)中的图象对应的函数为y=f(x),则下图(2)中的图象对应的函数在下列给出的四个式子中,可能是________(填序号).①y=f(|x|);②y=|f(x)|;③y=-f(|x|);④y=f(-|x|).5.(2012·镇江模拟)函数f(x)是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f(x)cos x<0的解集为________.考点一:作函数的图象[例1]分别画出下列函数的图象:(1)y=|lg(x-1)|;(2)y=2x+1-1;(3)y=x2-|x|-2.画函数图象的一般方法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数或解析几何中熟悉的曲线时,可根据这些函数或曲线的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.(3)描点法:当上面两种方法都失效时,则可采用描点法.为了通过描少量点,就能得到比较准确的图象,常常需要结合函数的单调性、奇偶性等性质讨论. 强化训练: 1.分别画出下列函数的图象.(1)y =|x 2-4x +3|;(2)y =2x +1x +1;(3)y =10|lg x |. 考点二:识图与辨图[例2] (1)(2012·山东高考)函数y =cos 6x 2x -2-x的图象大致为( )(2)已知定义在区间[0,2]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )例3:[2014年福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1 A BC D寻找图象与函数解析式之间的对应关系的方法(1)知图选式:①从图象的左右、上下分布,观察函数的定义域、值域;②从图象的变化趋势,观察函数的单调性;③从图象的对称性方面,观察函数的奇偶性;④从图象的循环往复,观察函数的周期性.利用上述方法,排除错误选项,筛选正确的选项.(2)知式选图:①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;结合图像的特殊点(极值点、与坐标轴的交点等)。

初中化学化合价知识与化学压轴题解题思路

初中化学化合价知识与化学压轴题解题思路

初中化学化合价知识与化学压轴题解题思路一、什么是化合价化合价是由一定元素的原子构成的化学键的数量。

一个原子是由原子核和外围的电子组成的,电子在原子核外围是分层运动的,化合物的各个原子是以和化合价同样多的化合键互相连接在一起的。

化合键有两种:因为惰性气体最外层电子数已经达到了2个或8个,所以惰性气体(现统称稀有气体)一般不能和其他物质化合。

各元素的化合价参考元素氧化态列表。

化合价的概念就由此而来,那么元素的核外电子相互化合的数目,就决定了这种元素的化合价,便表示原子相互化合的数目而设置的。

学习化合价时你应该了解化合物中元素化合价的规定。

化合价是化合物物质中的原子得失的电子数或共用电子对偏移的数目。

化合价表示原子之间互相化合时原子的得失电子的数目。

化合价也是元素或根在形成化合物时表现出的一种性质。

注意:元素的“化合价”是元素的一种重要性质,这种性质只有跟其他元素相化合时才表现出来。

就是说,当元素以游离态存在时,即没有跟其他元素相互结合成化合物时,该元素是不表现其化合价的,因此单质元素的化合价为“0”。

比如Zn、C、H等。

元素化合价的表示方法1、元素化合价的表示方法:化合价用+1、+2、+3、-1、-2……表示,标在元素符号的正上方,要注意化合价的表示方法与离子符号的区别,离子所带电荷符号用+、2+、-、2-……表示,标在元素符号的右上角,如:Na+、Cl-、Mg2+、O2-。

试区别与Ca2+,与S2-中数字的含义。

表示钙元素显+2价(或钙元素的化合价为+2价);表示硫元素显-2价。

Ca2+表示一个钙离子带2个单位的正电荷;S2-表示1个硫离子带2个单位的负电荷。

2、元素化合价的一般规律:(1)氢元素的化合价通常显+1价,氧元素的化合价显-2价。

(2)在化合物中,金属元素为正价。

(3)非金属与氢或金属化合时,非金属元素显负价;非金属与氧元素化合时,非金属元素显正价。

元素在不同(或相同)的物质中可显不同的化合价。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列表与图像题注意几个问题一、根据列表画出图像
路程/千米
630
540
450
360
270
180
90
1 2 3 4 5 6 7 8 9 10 时间/时
小结:从原点画起,右端不向外延伸。

路程/千米
630
540
450
360
270
180
90
1 2 3 4 5 6 7 8 9 10 时间/时
小结:开口表格同封闭表格属性相同。

路程
/千米 630 540 450 360 270 180 90 0
1 2 3 4 5 6 7 8 9 10 时间/时
小结:从原点画起。

由于表格中是省略号,所以图像右端向外延伸。

路程/千米 35 30 25 20 15 10 5
1 2 3 4 5 6 7 8 9 10 时间/时
小结:有关图形题,从原点画起,但由于不含(0,0),所以原点是空心的。

现价/元 48 40 32 24 16 8 0 10 20 30 40 50 原价/元
小结:有关折扣类型题,从原点画起,但是不含(0,0),所以原点是空心的。

二、根据图像填表。

1、商店新进一种衣服,每件40元,进货数量与总价图像如下: 总价(元) 280 240 200 160 120 80 40 0
1 2 3 4 5 6 7 8 9 10 数量(件)
小结:在表格中,从(0,0)写起,到(7、280)止。

2、商店新进一种衣服,每件40元,购买数量与总价图像如下:
总价(元) 280 240 200 160 120 80 40 0
1 2 3 4 5 6 7 8 9 10 数量(件)
根据上面图像,填写下面表格。

小结:在表格中,从(0,0)写起,由于图像已经延伸出去,所以表格中后面要有省略号。

3、平行四边形底6厘米,高和面积关系图像如下: 面积(平方厘米) 84 72 60 48 36 24 12
1 2 3 4 5 6 7 8 9 10 高(厘米)
小结:虽然图形(折扣)类型题不含原点(0,0),但在表格中,仍然要从(0,0)开始写起。

4、甲乙两地相距600千米,一辆汽车行驶的速度和时间关系如下图像:
时间(时)
60
50
40
30
20
10
小结:由于反比例图像两端都无限趋近于两条轴,所以,表格两端都是省略号。

相关文档
最新文档