通信原理PCM
南昌大学通信原理实验五 PCM编码、译码原理实验

实验五 PCM编码、译码原理实验一、实验目的1、加深对PCM 编码过程的理解;2、熟悉PCM 编、译码专用集成芯片的功能和使用方法;3、了解PCM 系统的工作过程;4、了解帧同步信号的时序状态关系;5、掌握时分多路复用的工作过程;6、用同步正弦波信号观察PCM 八比特编码的实验。
二、实验原理脉冲调制就是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号后在信道中传输。
脉冲编码调制就是对模拟信号先抽样,量化、编码的过程。
所谓抽样,就是在抽样脉冲来到的时刻提取对模拟信号在该时刻的瞬时值,抽样把时间上连续的信号变成时间上离散的信号。
抽样速率的下限是由抽样定理确定的。
在该实验中,抽样速率采用8Kbit/s。
所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。
所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值。
然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D。
PCM原理框图三、实验内容1、用同步正弦波信号观察PCM 八比特编码的实验;2、脉冲编码调制(PCM)及系统实验;3、PCM 八比特编码时分复用输出波形观察测量实验。
四、实验步骤及结果1、打开实验箱右侧电源开关,电源指示灯亮;2、编码部分:SP401 接入模拟信号,输入正弦波信号;SP405 接入2048KHz 主时钟信号;SP406 接入8KHz 脉冲信号;SP407 接入可选发码时钟,有64K、512K、2048K 三种频率。
3、译码部分:SP408 接入8KHz 脉冲信号;SP409 接入可选发码时钟,有64K、512K、2048K 三种频率。
4、连接SP402、SP403 两点,测试译码输出电路各点波形,在TP404能观察到稳定的正弦输出信号。
用音乐信号源取代函数信号发生器测试各点。
TP401:模拟信号输入TP402:数字编码输出; TP403:数字译码输入TP404:模拟信号输出TP405:主时钟TP407/409 :512KHz5、实验现象TP401TP402TP403TP404TP405TP403 405TP406TP407 409TP408五、测量点说明TP401:该点为输入的音频信号,用连接线连接模拟信号源与TP401,若幅度过大,则被限幅电路限幅成方波,因此信号波形幅度尽量小一些。
《通信原理》PCM(一)实验报告

课程名称:_______________项目名称:_______________
姓名:______专业:_______班级:____学号:____同组成员________________
一、实验预习部分:
本实验使用PCM编译码模块。
1.点到点PCM多路电话通信原理
图1点到点PCM多路电话通信原理框图
本实验模块可以传输两路话音信号。
2译码原理方框图
本模块上有三个开关K5、K6和K8,K5、K6用来选择两个编码器的输入信号,开关手柄处于左边(STA-IN、STB-IN)时选择外部信号、处于右边(STA-S、STB-S)时选择模块内部音频正弦信号。K8用来选择SLB信号为时隙同步信号SL1、SL2、SL5、SL7中的某一个。
由于时钟频率为2.048MHz,抽样信号频率为8KHz,故PCM-A及PCM-B的码速率都是2.048MB,一帧中有32个时隙,其中1个时隙为PCM编码数据,另外31个时隙都是空时隙。
PCM信号码速率也是2.048MB,一帧中的32个时隙中有29个是空时隙,第0时隙为帧同步码(×1110010)时隙,第2时隙为信号A的时隙,第1(或第5、或第7 —由开关K8控制)时隙为信号B的时隙。
二、实验过程记录:
实验目的:
1.掌握PCM编译码原理。
2.掌握PCM基带信号的形成过程及分接过程。
实验步骤及实验数据:
三、实验结果与讨论:
实验报告成绩(百分制)__________实验指导教师签字:__________
pcm编译码模块原理4096khz晶振分频器1分频器2帧同步信号产生器正弦信号源as1s2s3s4pcm编译码器a复接器抽样信号产生信号pcm编译码器bpcmpcmasrbsrapcmb256khzs3s2s18khz2048khzclkslasl2slbstaink5slaslb?????????sl7sl5sl2sl1sl0k8正弦信号源bstbinstbk6stasstastbs图2pcm编译码原理方框图本模块上有三个开关k5k6和k8k5k6用来选择两个编码器的输入信号开关手柄处于左边stainstbin时选择外部信号处于右边stasstbs时选择模块内部音频正弦信号
数字通信原理第二章 PCM

19
抽样示意图
m (t)
M ( )
t (a ) T (t)
t
(c ) m s(t)
- H O H (b )
T ( )
2
T
(d )
M s( )
t (e )
H O H
2
T
(f )
20
证明
设:被抽样的信号是m(t),它的频谱表达式是 M(ω),频带限制在(0,fH)内。理想的抽样 就是用单位冲击脉冲序列与被抽样的信号相 乘,即
图 连续信号抽样示意图
8
抽样定义
所谓抽样是把时间上连续的模拟信号变成一系列 时间上离散的样值序列的过程:
图 抽样的输入与输出
满足:抽样信号可以无失真地恢复出原始 信号
图2-2 抽样器及抽样波形示意
图 相乘器抽样模型 图 开关函数
思考
关于抽样需要解决两个问题: 由抽样信号完全恢复出原始的模拟 信号,对 fs (t)和抽样频率有什么限制 条件? 如何从抽样信号中还原出原始信号?
ms(t)m(t)T(t)
这里的抽样脉冲序列是一个周期性冲击序列, 它可以表示为
T(t) (t nTS)
21
由于δT(t)是周期性函数,其频谱δT(ω) 必然是 离散的:
2
δT(ω)= Ts δ(ω-nωs),
ωs=2πfs= 2π/Ts
根据冲击函数性质和频率卷积定理:
M s()21 M ()T()
抽样:按抽样定理把时间上连续的模拟信号转换成时间上离散 的抽样信号。 量化:把幅度上仍连续的抽样信号进行幅度离散,即指定M 个规定的电平,把抽样值用最接近的电平表示。 编码:用二进制码组表示量化后的M个样值脉冲。
编码器送出来的是串行二进制码,是典型的数字信号,经变换调制
数字通信原理3-PCM(例题)

32 256 128 64 32
16 128 64 32 16
8
64 32 16 8
4
32 16 8 4
2
16 8 4 2
1
8 4 21
1
813折线A律编码,设最小的量化级为1个单 位,已知抽样样值为+635个单位。
(1)试求此时编码器的输出码组,并计算量化 误差(段内码用自然二进制码);
(1) 当输入抽样信号的幅度为-3.984375V时, 编码器的输出码组和量化误差;
(2) 对应该码组(不包括极性码)的11位线 性码;
(3)译码电平和译码后的量化误差。
例3 PCM系统中,输入模拟话音信号m(t)的带宽为4000Hz,对其进行 13折线A律编码。已知编码器的输入信号范围为(-5,+5)V,最小量 化间隔为1个量化单位,试求:
折叠码(FBC) b1 b2 b3 b4
15
1111
14
1110
13
1101
12
1100
11
1011
10
1010
9
1001
8
1000
1111 1110 1101 1100 1011 1010 1001 1000
7
0111
6
0110
5
0101
4
0100
3
0011
2
0010
1
0001
0
0000
0000 0001 0010 0011 0100 0101 0110 0111
(1)
段内码为折叠二进制码
0100
自然二进制码
0011
例2 采用13折线A律编码电路,设接端收到的信号码组为 “01010100”,最小量化单位为1个量化单位,并已知段内码为折叠二 进制码:
通信原理讲义-第四章PCM体制

在第 2 折线段,间隔取 16 个,均匀划分间隔,间 隔值取 4。量化电平取每间隔的中点,即有如下表格: 对应 x 的输入区 量化电 量化电平 编码器输出 间 平值 编号 编码 64-68 66 33 10100000 68-72 70 34 10100001 72-76 74 35 10100010 124-128 126 48 10111111
2)均匀量化和非均匀量化
对输入信号幅度x,如果量化选择的区间 长度均相等,则为均匀量化,否则为非 均匀量化。例如: 在-1及+1之间,取四个量化区间,分别 为[-1,-0.5)、 [-0.5,-0)、 [0, 0.5)、 [0.5,1],则为均匀量化。
区间1 区间2 区间3 区间4
-1
-0.5
量化编码带来的误差
例如:发送端用两位编码(00,01,10,11)表示0 到1之间的模拟值 即:00对应[0,0.25); 01对应[0.25,0.5) 10对应[0.5,0.75);11对应[0.75,1] 在接收端,一旦接收到00则认为其电平为0.125, 这就意味着尽管发送端输入的是不同的模拟信号,例 如0.1,0.2,但因二者经量化编码后的结果均为00, 接收端得到的编码均是00,故恢复出的电平值相同, 都是0.125。 可见模拟信号的信息会因量化而损失,这种误差被称 为量化误差,量化误差是不可恢复的。
在实际应用中,A律输入的动态范围并未 归一化为 [-1,1],而是[-4096,+4096] 至于-4096到+4096对应的实际输入电压 是多大,可以在具体应用中自行确定, 例如可以是5V,也可以是12V甚至是 220V。
量化电平(离散幅度)的取法 及编码方法(A律)
4.pcm编译码 - 通信原理实验报告

4.pcm编译码 - 通信原理实验报告
PCM是指Pulse Code Modulation(脉冲编码调制)的缩写,是一种数字通信技术,
它常用于将模拟信号转换为数字信号,并将其传输到接收站。
它通过将实时信号转换为一
系列数字并进行抽样数据,以到达目标呈现出模拟信号序列从而实现数据通信的传输。
一般来说,编码技术会将模拟信号处理成“文本”,PCM 将处理成已经精确编号的digit,最后的处理都是电信号。
PCM编码的完整过程可以分为三步:第一步是模拟信号的采样,把时域中的信号采集成数次采样,第二步是编码,将采样的信号的值编码成digits,第三步是字节组装,把编码的digits 放进字节中,再发出。
下面就重点介绍PCM编码的
模拟信号采样过程和字符组装过程。
首先介绍模拟信号采样。
PCM编码首先会把信号采样,即把时间域中的模拟信号,采
集成离散点并组织成序列,如此会确定数字采样值。
采样频率越高、采样数据越多,就可
以更好地反映出模拟信号的变化,即保留越多的信号特性,由此可以看出,采样是PCM编
码的重要环节。
接下来介绍字节组装。
PCM编码会将采样的数据进行编码,将数据放入字节中,最后
进行发送。
数据编码是将A/D转换的精确采样数据转换为一个数字码,以便可以传输或存
储数据。
通常压缩率会越高,所需的传输带宽也会越小,这就可以大幅度节省传输成本。
以上就是PCM编码的基本流程。
PCM编码是一种把模拟信号转换为数字信号的重要技术,被广泛应用于通信系统、数字音频传输系统中。
优点是能够实现远程传输、信号增强,同时有较高的稳定性。
通信原理PCM编译码实验

实验一PCM编译码实验一、实验目的1、掌握脉冲编码调制与解调的原理。
2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。
3、了解脉冲编码调制信号的频谱特性。
4、熟悉了解W681512.二、实验器材1、主控&信号源模块、3号、21号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图图1—1 21号模块W681512芯片的PCM编译码实验图1-2 3号模块的PCM编译码实验图1-3 A/μ律编码转换实验2、实验框图说明图1—1中描述的是信号源经过芯片W681512经行PCM编码和译码处理。
W681512的芯片工作主时钟为2048KHz,根据芯片功能可选择不同编码时钟进行编译码。
在本实验的项目一中以编码时钟取64K为基础进行芯片的幅频特性测试实验。
图1—2中描述的是采用软件方式实现PCM编译码,并展示中间变换的过程。
PCM编码过程是将音乐信号或正弦波信号,经过抗混叠滤波(其作用是滤波3。
4kHz以外的频率,防止A/D转换时出现混叠的现象)。
抗混滤波后的信号经A/D转换,然后做PCM编码,之后由于G.711协议规定A律的奇数位取反,μ律的所有位都取反。
因此,PCM编码后的数据需要经G.711协议的变换输出。
PCM译码过程是PCM编码逆向的过程,不再赘述。
A/μ律编码转换实验中,如实验框图1-3所示,当菜单选择为A律转μ律实验时,使用3号模块做A律编码,A律编码经A转μ律转换之后,再送至21号模块进行μ律译码。
同理,当菜单选择为μ律转A律实验时,则使用3号模块做μ律编码,经μ转A律变换后,再送入21号模块进行A律译码.四、实验步骤实验项目一测试W681512的幅频特性概述:该项目是通过改变输入信号频率,观测信号经W681512编译码后的输出幅频特性,了解芯片W681512的相关性能。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A律编码观测实验】。
pcm编码原理

pcm编码原理PCM编码原理。
PCM(Pulse Code Modulation)脉冲编码调制是一种常用的数字信号处理技术,它将模拟信号转换为数字信号,广泛应用于语音、音频和视频等领域。
本文将介绍PCM编码的原理及其在数字通信中的应用。
PCM编码的原理是通过对模拟信号进行采样、量化和编码,将连续的模拟信号转换为离散的数字信号。
首先,模拟信号经过采样器进行采样,将连续的模拟信号转换为一系列离散的采样值。
然后,采样值经过量化器进行量化,将连续的幅度值转换为一系列离散的量化级别。
最后,量化后的采样值经过编码器进行编码,将量化级别转换为对应的二进制码字。
这样就得到了一系列离散的数字信号,即PCM信号。
在PCM编码中,采样频率、量化位数和编码方式是关键参数。
采样频率决定了信号的采样率,影响了信号的频率响应范围,常见的采样频率有8kHz、16kHz、44.1kHz等。
量化位数决定了信号的动态范围和分辨率,常见的量化位数有8位、16位、24位等。
编码方式通常采用直接编码或补偿编码,用于将量化级别转换为二进制码字。
PCM编码在数字通信中有着重要的应用。
在数字音频中,CD音质采用16位PCM编码,采样频率为44.1kHz,能够还原出高质量的音频信号。
在数字通信中,PCM信号可以通过数字信道进行传输,保证了信号的稳定性和可靠性。
此外,PCM编码还可以通过压缩算法进行数据压缩,减小数据量,提高传输效率。
总之,PCM编码是一种重要的数字信号处理技术,通过采样、量化和编码将模拟信号转换为数字信号,广泛应用于语音、音频和视频等领域。
在数字通信中,PCM编码保证了信号的稳定传输,为数字通信技术的发展提供了重要支持。
pcm光端机原理

pcm光端机原理
PCM光端机是一种用于光纤通信系统的设备,它的原理涉及到
脉冲编码调制(PCM)和光端机的结合。
光端机的作用是将电信号转
换为光信号,然后通过光纤传输,再将光信号转换回电信号。
下面
我将从几个方面来解释PCM光端机的原理。
首先,PCM光端机的原理涉及到脉冲编码调制技术。
在PCM中,模拟信号通过取样、量化和编码的过程转换为数字信号。
这些数字
信号随后被调制成脉冲形式,以便在数字通信系统中传输。
因此,PCM光端机首先将输入的模拟信号进行取样、量化和编码,然后将
其转换为数字信号,并最终调制成脉冲信号。
其次,光端机的原理涉及到光的传输和转换。
光端机通过光调
制器将电信号转换为光信号,然后通过光纤进行传输。
在接收端,
光端机通过光检测器将光信号转换回电信号。
这样就实现了光信号
的传输和转换,光端机在其中起到了关键的作用。
此外,PCM光端机的原理还涉及到信号的解调和解码。
在接收端,光端机接收到光信号后,需要将其解调为电信号,并进行解码
和解调制,最终得到原始的模拟信号。
这一过程也是PCM光端机原
理中的重要部分。
总的来说,PCM光端机的原理涉及到脉冲编码调制技术、光信号的传输和转换,以及信号的解调和解码。
通过这些过程,PCM光端机实现了模拟信号到数字信号再到光信号的转换和传输,为光纤通信系统的稳定运行提供了重要支持。
通信原理-模拟信号数字化与PCM

信号类型不同,影响D,影响量化信噪比。
峰值信噪比:D=1时(理论上D的最大值)
NS qPk_dB 6.02n 4.77
最大幅度均匀分布信号
Ps
(2V )2 12
V2 3
NS qAvr_dB 6.02n
Dmax
Ps V
4.77 4.77
1 3
6.02n
(dB)
第6章 模拟信号数字化与PCM:量化信噪比与对数量化
k n
2fH n
第6章 模拟信号数字化与PCM:模拟信号的抽样
19
综合两种情况,取样频率为
fs
2fH n
其中
n
fH
B
2B fs 4B
恢复原信号时需使用带通滤波器。
第6章 模拟信号数字化与PCM:模拟信号的抽样
20
例6.1:假定带通信号的中心频率为4 MHz、带宽 为2 MHz。(1)试求带通抽样的频率并绘出抽样信 号的频谱示意图;(2)将采样率提高0.5MHz是否还
ms(t) m(nTs)(t nTs) * h(t)
Ms(f
) 1 Ts
n
M(f nfs)H (f
n
) Ts
sinc(f
n
)M (f
nfs )
第6章 模拟信号数字化与PCM:模拟信号的抽样
13
平顶抽样的频谱具有孔径失真,脉冲宽度
越小,失真越小。
可用均衡电路进行校正
H
eq
(f
量化器要点
区间个数M,即量化电平数,一般M=2n; 区间的分界xi,即分层或阈值电平; 区间对应的输出yi,即输出电平。
第6章 模拟信号数字化与PCM:均匀量化与最佳量化
25
数字通信原理实验PCM编译码实验

数字通信原理实验PCM编译码实验
PCM编码实验是数字通信原理实验的其中一部分。
PCM是指把数字信号转换成模拟信
号的技术。
它是“数字信号-模拟信号”转换的基础,在现代数字通信系统中起着重要的
作用。
Pulse控制调制(PCM)的技术被用来把数字信号转换成模拟信号,以作为示波器的被测量信号。
PCM也可以作为存储和传输数据的信号,用于标准电话和数据网络。
PCM编码实验一般包括PCM编码系统的实验设备、信号源、低通滤波器、PCM编码和
调制器以及PCM解码器等部分。
在实验中,学生首先要选择相应的实验设备,连接各部件,配置信号源,使其具有调制、编码、采样等能力。
学生还要根据实验要求,选择PCM编码
的码率,设置编码和调制参数。
随后,PCM编码、调制及低通滤波器的输出结果要被观察
分析。
其次,学生要给定解码参数,计算PCM的误码概率,并要求各模块的性能。
最后,
学生还要比较PCM编码和解码之间的差异,并且分析不同码率编码系统带来的性能差异。
此外,PCM编码实验还可以让学生了解和掌握噪声的模型和误码分析,体验不同信号
处理理论的实际应用,同时使学生了解码率和PCM的性能。
因此,PCM编码实验对学生掌
握和运用PCM编码系统的方法至关重要,是进行数字通信原理研究、实践的必要环节。
通信原理pcm实验报告

通信原理pcm实验报告通信原理PCM实验报告一、实验目的本实验旨在通过实践操作,深入理解脉冲编码调制(PCM)的原理和应用,并掌握PCM信号的产生和解调方法。
二、实验原理PCM是一种数字通信技术,通过将模拟信号转换为数字信号,实现信号的传输和处理。
PCM的基本原理是将连续的模拟信号进行采样、量化和编码,使之转换为离散的数字信号,然后再通过解码和重构,将数字信号转换为与原信号相似的模拟信号。
三、实验步骤1. 准备工作:a. 连接实验仪器:将信号源与示波器相连,示波器与编码解码器相连。
b. 调节信号源:设置信号源的频率和幅度,使之适合实验要求。
2. 信号采样:a. 打开示波器,选择合适的时间基准和触发方式。
b. 调节示波器的水平和垂直幅度,使得信号波形清晰可见。
c. 通过示波器触发功能,采集模拟信号的样本。
3. 信号量化:a. 将采样得到的模拟信号通过编码解码器进行量化处理。
b. 调节编码解码器的量化步长和量化级别,使得数字信号能够准确地表示原信号。
4. 信号编码:a. 将量化后的数字信号通过编码解码器进行编码处理。
b. 调节编码解码器的编码方式和编码速率,使得编码后的信号能够方便传输和解码。
5. 信号解码:a. 将编码后的数字信号通过编码解码器进行解码处理。
b. 调节编码解码器的解码方式和解码速率,使得解码后的信号能够准确地还原为原信号。
6. 信号重构:a. 将解码后的数字信号通过编码解码器进行重构处理。
b. 调节编码解码器的重构滤波器和重构参数,使得重构后的信号能够与原信号相似。
四、实验结果与分析通过实验操作,我们成功地实现了PCM信号的产生和解调。
经过采样、量化、编码、解码和重构等步骤,原始的模拟信号被转换为数字信号,并通过解码和重构后恢复为与原信号相似的模拟信号。
在实验过程中,我们发现信号的采样频率和量化级别对信号的还原质量有着重要影响。
较高的采样频率和较大的量化级别可以提高信号的还原精度,但同时也会增加数据传输和处理的复杂度。
通信原理第3章 脉冲编码调制(PCM)

第3章 脉冲编码调制(PCM)
下面举2个例题来说明其编码方法:
例题1 设输入取样值I S 444个量化单位(444), 试按A律13折线编出8位码. 解 : (1)由于取样值为正, 故M 1 1 (2)由于256 I S 512, 位故位于第6段, 得M 2 M 3 M 4 101 (3)确定段内码M 5 M 6 M 7 M 8 M 5 : I W 256 128 384, I S I W , 故取M 5 1 M 6 : I W 384 64 488, I S I W , 故取M 6 0 M 7 : I W 384 32 416, I S I W , 故取M 7 1 M 8 : I W 416 16 432, I S I W , 故取M 8 1 (4)最后得 : M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 11011011
第3章 脉冲编码调制(PCM)
A律 PCM
量化级数为256→一个码组的长度为8位
编码方法
自然码(NBC,Natural Binary Code) 折叠码(FBC,Folded Binary Code)
PCM采用折叠码进行编码
格雷码(RBC,Grayor Reflected Binary Code)
压缩器:对弱小信号有比较大的放大倍 数(增益),而对大信号的增益却比较 小→对大信号压缩; 扩张器:特性与压缩器相反→对小信号 压缩,对大信号扩张; 要求压缩特性与扩张特性合成后是一条 直线。
第3章 脉冲编码调制(PCM)
y
1
压缩特性
1
0
1
1 x
扩张特性
第3章 脉冲编码调制(PCM)
对数压缩
PCM通信原理

PCM通信原理PCM(脉冲编码调制)是一种数字通信技术,通过将模拟信号转换为数字信号进行传输和处理。
PCM通信原理涉及信号采样、量化、编码和解码等过程。
首先是信号采样。
模拟信号具有连续性,为了进行数字处理,需要将其转换为离散的数字信号。
采样是将连续信号在一定时间间隔内进行测量和采集,将其转换为离散的采样值。
采样间隔应根据信号的最高频率进行抽样,常用的采样频率是原始信号的两倍以上。
接下来是量化。
采样得到的信号是连续的模拟量,需要将其转换为离散的数字量。
量化是指给采样获得的连续值分配一些近似的离散值,将其映射到特定的量化级别。
量化级别的数量取决于所使用的ADC(模数转换器)的分辨率。
较高的分辨率可以提供更好的信号质量,但同时会增加存储和传输的成本。
然后是编码。
在PCM中,通过将量化后的信号映射到一组固定的二进制位来进行编码。
每个量化级别分配一个特定的二进制代码。
编码的目的是将数字信号以一种可传输和可存储的形式表示出来。
不同的编码方案有不同的优缺点,例如二进制编码、格雷编码等。
最后是解码。
在接收端,需要对收到的二进制编码进行解码,恢复出原来的模拟信号。
解码过程是编码过程的逆过程,通过将二进制码映射回对应的量化级别,并进行逆量化,即可恢复原始信号。
解码后的信号再经过滤波和重构等处理,可以恢复出最初的模拟信号。
然而,PCM也存在一些限制。
它需要较高的采样频率和分辨率,以实现高质量的信号重建。
这将导致信号处理和传输的开销增加。
此外,PCM对信号带宽的要求较高,对于较宽频带的信号,需要更高的采样频率来保证采样定理的有效性。
数字通信原理3-PCM

折叠码(FBC) b1 b2 b3 b4
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
格雷码(RBC) b1 b2 b3 b4
12
1 Fs (w ) Ts
n
F (w nw
s
)
13
2.3.2 低通型信号抽样
14
2.3.2 低通型信号抽样
低通信号的抽样定理 一个频带限制在 f M 以下的连续信号 m(t ) ,可以唯
1 一的用间隔 T 2 fM
秒的抽样序列来确定。
( T =1/2fM是抽样的最大间隔,被称为奈奎斯特间隔。)
0
t
图2.3 连续信号抽样示意图
8
2.3 抽样的概念及分类
2、抽样的分类
低通型信号抽样
带通型信号抽样
F(w) F(w)
P19
0
w
w
0
w0
w
w
9
2.3.2 低通型信号抽样
f (t ) F (w )
sT (t )
sT (w )
sT t
n
t nT
T 2T 3T
f s (t )
45
PCM 编码~二进制码型的选定
样值脉 冲极性
电平序号
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
自然码(NBC) b1 b2 b3 b4
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 设计原理1.1 PCM系统基本原理PCM即脉冲编码调制,在通信系统中完成将语音信号数字化功能。
PCM调制的实现主要包括三个步骤完成:抽样、量化、编码。
分别完成时间上离散、幅度上离散、及量化信号的二进制表示。
为改善小信号量化性能,采用压扩非均匀量化,有两种方式,分别为A律和μ律方式,此处采用了A律方式,由于A律压缩实现复杂,常使用13 折线法编码,采用非均匀量化。
PCM通信系统示意图图1.1 时分复用PCM通信系统框图1.2 抽样、量化、编码下面介绍PCM编码中抽样、量化及编码的原理:(1)抽样所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。
该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。
它的抽样速率的下限是由抽样定理确定的。
(2)量化从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。
模拟信号的量化分为均匀量化和非均匀量化。
由于均匀量化存在的主要缺点m t 是:无论抽样值大小如何,量化噪声的均方根值都固定不变。
因此,当信号()较小时,则信号量化噪声功率比也就很小,这样,对于弱信号时的量化信噪比就难以达到给定的要求。
通常,把满足信噪比要求的输入信号取值范围定义为动态范围,可见,均匀量化时的信号动态范围将受到较大的限制。
为了克服这个缺点,实际中,往往采用非均匀量化。
非均匀量化是根据信号的不同区间来确定量化间隔的。
对于信号取值小的区∆也小;反之,量化间隔就大。
它与均匀量化相比,有两个突间,其量化间隔v出的优点。
首先,当输入量化器的信号具有非均匀分布的概率密度(实际中常常是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。
因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。
非均匀量化的实际方法通常是将抽样值通过压缩再进行均匀量化。
通常使用的压缩器中,大多采用对数式压缩。
广泛采用的两种对数压缩律是μ压缩律和A 压缩律。
美国采用μ压缩律,我国和欧洲各国均采用A压缩律,因此,PCM编码方式采用的也是A压缩律。
所谓A压缩律也就是压缩器具有如下特性的压缩律:A X A Ax y 10,ln 1≤<+=11,ln 1ln 1<≤++=X A A Ax yA 律压扩特性是连续曲线,A 值不同压扩特性亦不同,在电路上实现这样的函数规律是相当复杂的。
实际中,往往都采用近似于A 律函数规律的13折线(A=87.6)的压扩特性。
这样,它基本上保持了连续压扩特性曲线的优点,又便于用数字电路实现,本设计中所用到的PCM 编码正是采用这种压扩特性来进行编码的。
图1.2示出了这种压扩特性。
图1.2 13折线特性(3)编码所谓编码就是把量化后的信号变换成代码,其相反的过程称为译码。
当然,这里的编码和译码与差错控制编码和译码是完全不同的,前者是属于信源编码的范畴。
在现有的编码方法中,若按编码的速度来分,大致可分为两大类:低速编码和高速编码。
通信中一般都采用第二类。
编码器的种类大体上可以归结为三类:逐次比较型、折叠级联型、混合型。
在逐次比较型编码方式中,无论采用几位码,一般均按极性码、段落码、段内码的顺序排列。
下面结合13折线的量化来加以说明。
表1.3 编码表在13折线法中,无论输入信号是正是负,均按8段折线(8个段落)进行编码。
若用8位折叠二进制码来表示输入信号的抽样量化值,其中用第一位表示量化值的极性,其余七位(第二位至第八位)则表示抽样量化值的绝对大小。
具体的做法是:用第二至第四位表示段落码,它的8种可能状态来分别代表8个段落的起点电平。
其它四位表示段内码,它的16种可能状态来分别代表每一段落的16个均匀划分的量化级。
这样处理的结果,8个段落被划分成27=128个量化级。
段落码和8个段落之间的关系如表所示;段内码与16个量化级之间的关系如表所示。
段落序号段落码量化级 段内码 8 111 15 1111 14 1110 7 110 13 1101 12 1100 6 101 11 1011 10 1010 5 100 91001 8 1000 4 011 7 0111 6 0110 3 010 5 0101 4 0100 2 001 3 0011 2 0010 10001 0001 000002 PCM系统设计2.1 总电路设计图图2.1 总电路图2.2 单元电路设计(1)编译码单元电路脉冲编码调制(PCM)技术在数字通信系统中应用广泛,本设计中信道视为理想信道,故采用PCM。
脉冲编码调制通常包括从模拟信号抽样,量化,变换为二进制符号等过程。
在量化之前,通常用保持电路对抽样值做短暂保存,以便电路有时间对其进行量化。
当然,为了电路的简化和便于实验室调试,本设计采用目前数字通信系统专用大规模集成电路中应用广泛的一种集成芯片——PCM编解码器。
并采用Intel公司生产的2911A和2912芯片连接成编解码电路。
2911A和2912芯片连接成编码器时的电路如图2.2所示。
2911A和2912连接成解码器时的电路如图2.3所示。
图2.2 2911A和2912芯片连接成编码器时的PCM编码电路图2.3 2911A和2912连接成解码器时的PCM解码电路晶振、分频器1、分频器2及抽样信号(时隙同步信号)产生器构成一个定时器,为两个PCM编译码器提供2.048MHz的时钟信号和8KHz的时隙同步信号。
在实际通信系统中,译码器的时钟信号(即位同步信号)及时隙同步信号(即帧同步信号)应从接收到的数据流中提取,此处将同步器产生的时钟信号及时隙同步信号直接送给译码器。
由于时钟频率为2.048MHz,抽样信号频率为8KHz,故PCM-A及PCM-B的码速率都是2.048MB,一帧中有32个时隙,其中1个时隙为PCM编码数据,另外31个时隙都是空时隙。
PCM信号码速率也是2.048MB,一帧中的32个时隙中有29个是空时隙,第0时隙为帧同步码(×1110010)时隙,第2时隙为信号A的时隙,第1(或第5、或第7———由开关K8控制)时隙为信号B的时隙。
由于两个PCM编译码器用同一个时钟信号,因而可以对它们进行同步复接(即不需要进行码速调整)。
又由于两个编码器输出数据处于不同时隙,故可对PCM-A和PCM-B进行线或。
本模块中用或门74LS32对PCM-A、PCM-B及帧同步信号进行复接。
在译码之前,不需要对PCM进行分接处理,译码器的时隙同步信号实际上起到了对信号分路的作用。
(2)帧同步电路在数字通信时,一般总是以一定数目的码元组成一个个的“字”或“句”,即组成一个个的“群”进行传输的。
因此,群同步信号的频率很容易由位同步信号经分频而得出。
但是,每个群的开头和末尾时刻却无法由分频器的输出决定。
群同步的任务就是在位同步信息的基础上,识别出数字信息群(“字”或“句”)的起止时刻,或者说给出每个群的“开头”和“末尾”时刻。
群同步有时也称为帧同步。
为了实现群同步,可以在数字信息流中插入一些特殊码字作为每个群的头尾标记,这些特殊的码字应该在信息码元序列中不会出现,或者是偶然可能出现,但不会重复出现,此时只要将这个特殊码字连发几次,收端就能识别出来,接收端根据这些特殊码字的位置就可以实现群同步。
帧同步码产生电路由一个74LS151八选一数据选择器和一个与门组成。
图2.4 帧同步电路(3)抽样信号产生电路抽样是把模拟信号以其信号带宽2倍以上的频率提取样值,变为在时间轴上离散的抽样信号的过程。
语音信号带宽被限制在0.3—3.4KHZ内,用8kHZ的抽样频率,就可获得能取代原来连续话音信号的抽样信号。
抽样信号产生电路由两个74LS123双可重触发单稳态触发器、一个74LS164八位移位寄存器组成,如图2.5所示:图2.5 抽样信号产生电路(4)定时器单元电路晶振、分频器1、分频器2、分频器3以及抽样信号产生器共同构成了一个定时器,如图2.6所示,为两个PCM编译码器提供2.048MHZ的时钟信号和8KHZ的时隙同步信号。
图2.6 定时器电路(5)复接与分接数字复接实质上就是对多路数字信号进行时分复用,让不同的支路信号占用不同的时隙时间,在接收端再根据时间上的不同将信号分开,这一步骤叫分接,它是复接的逆过程。
本模块复接我是采用的74LS32芯片来实现的。
3 系统仿真3.1 SystemView 仿真软件SystemView是美国ELANIX公司推出的,基于Windows环境下运行的用于系统仿真分析的可视化软件工具,它使用功能模块(Token)去描述程序,无需与复杂的程序语言打交道,不用写一句代码即可完成各种系统的设计与仿真,快速地建立和修改系统、访问与调整参数,方便地加入注释。
SystemView 仿真软件可以实现多层次的通信系统仿真。
脉冲编码调制(PCM)是现代语音通信中数字化的重要编码方式。
利用SystemView 实现脉冲编码调制(PCM)仿真,可以为硬件电路实现提供理论依据。
通过仿真展示了PCM编码实现的设计思路及具体过程,并加以进行分析。
利用System View,可以构造各种复杂的模拟、数字、数模混合系统,各种多速率系统,因此,它可用于各种线性或非线性控制系统的设计和仿真。
用户在进行系统设计时,只需从System View配置的图标库中调出有关图标并进行参数设置,完成图标间的连线,然后运行仿真操作,最终以时域波形、眼图、功率谱等形式给出系统的仿真分析结果。
SystemView具有良好的交互界面,通过分析窗口和示波器模拟等方法,提供了一个可视的仿真过程,不仅在工程上得到应用,在教学领域也得到认可,尤其在信号分析、通信系统等领域。
其可以实现复杂的模拟、数字及数模混合电路及各种速率系统,并提供了内容丰富的基本库和专业库。
本利用SystemView实现脉冲编码调制(PCM)。
系统的实现通过模块分层实现,模块主要由PCM编码模块、PCM译码模块、及逻辑时钟控制信号构成。
通过仿真设计电路,分析电路仿真结果,为最终硬件实现提供理论依据。
3.2 系统调试与仿真(1)PCM编码器模块主要由信源输入端子、低通滤波器、瞬时压缩器、A/D转换器、并/串转换器、输出端子组成。
实际模型见图3.1所示:图3.1 编码器模块模型PCM编码器组件功能实现:低通滤波器:为实现信号在300Hz-3400Hz的语音频带内,在这里采用了一个阶数为3阶的切比雪夫滤波器。
瞬时压缩器:使用了我国现采用A律压缩,注意在译码时扩张器也应采用A 律解压。
A/D转换器:完成经过瞬时压缩后信号时间及幅度的离散,通常认为语音的频带在300Hz-3400Hz,根据低通采样定理,采样频率应大于信号最高频率两倍以上,在这里A/D的采样频率为8KHz可满足,均匀量化电平数为256级量化,编码用8bit表示,第一位为极性表示,这样产生了64kbit/s的语音压缩编码。