统计学知识点

合集下载

统计学知识点

统计学知识点

统计学知识点统计学(Statistics)作为一门应用学科,研究如何收集、整理、解释和分析数据,从而提供有关人口、经济、环境、健康等领域的信息。

统计学广泛应用于商业、政府、医学、社会科学等各个领域。

本文将介绍一些统计学的基本概念和常用方法。

一、数据类型在统计学中,数据类型分为两类:定性数据和定量数据。

1. 定性数据:这些数据描述的是某些属性或特征,通常用文字或符号表示。

如性别、宗教信仰、职业等。

定性数据无法进行数值运算。

2. 定量数据:这些数据是数值型的,可以进行数学运算。

定量数据分为连续型数据和离散型数据。

连续型数据可以取任意值,如身高、体重等;离散型数据只能取有限的几个数值,如家庭人数、学生考试成绩等。

二、数据收集与整理1. 采样方法:在进行统计调查时,往往无法对全部人口或样本进行调查,而只能选择一部分进行调查。

采样方法包括简单随机抽样、分层抽样、系统抽样等,通过这些方法可以在保证代表性的前提下,有效地收集数据。

2. 数据整理:在收集到大量数据后,需要进行整理和清理。

这包括数据录入、去除异常值、处理缺失值等。

数据整理能够使数据更加准确和可靠。

三、描述统计学描述统计学是统计学的一个重要分支,旨在通过描述和总结数据的特征和规律。

1. 中心趋势度量:用于表示一组数据的中心位置。

常见的中心趋势度量包括均值、中位数、众数。

2. 离散程度度量:用于衡量一组数据的分散程度。

常见的离散程度度量包括方差、标准差、极差。

3. 分布形状度量:用于描述一组数据的分布形态。

常见的分布形状度量包括偏度和峰度。

四、概率与统计推断1. 概率:概率是描述随机现象发生可能性的数值。

统计学中的概率常用来描述抽样误差和推断结果的可靠性。

2. 抽样分布:通过样本数据的分析,可以获得统计量的分布。

常见的抽样分布包括正态分布、t分布和F分布。

3. 统计推断:通过抽样数据对总体进行推断。

统计学推断包括参数估计和假设检验,用于判断总体参数是否满足某种特定条件。

统计学知识点全归纳__全面准确

统计学知识点全归纳__全面准确

统计学知识点全归纳__全面准确统计学是一门研究和应用统计原理和方法的学科。

统计学的目的是通过收集、整理、分析和解释数据来描述和推断人类活动中的规律性和不确定性。

下面将全面准确地归纳统计学的基本知识点。

1.数据收集和整理-数据的收集方法:可以通过抽样或完全普查进行数据收集。

抽样是从总体中选择一部分样本进行调查或实验,以此来推断总体的特征。

2.描述统计-数据的概括性度量:包括测量中心趋势的平均数(如算术平均值、中位数和众数)、测量离散程度的方差和标准差、测量数据分散程度的四分位数等。

-数据的可视化表示:可以使用直方图、箱线图、散点图、饼图等图表来展示数据的分布和关系。

3.概率与随机变量-概率的概念:概率是描述事件发生可能性的数值,范围从0到1、事件的概率可以通过频率或基于概率模型推断得到。

-随机变量:随机变量是随机试验结果的数值表示。

可以分为离散随机变量和连续随机变量。

4.概率分布-离散分布:包括二项分布、泊松分布等。

二项分布描述了一次试验中两个可能结果的概率分布,泊松分布描述了随机事件在固定时间或空间区域内发生的次数的概率分布。

-连续分布:包括正态分布、指数分布等。

正态分布是最常见的连续概率分布,它以钟形曲线显示数据的分布情况。

-概率密度函数和累积分布函数:概率密度函数描述了随机变量落在一些区间内的概率密度,累积分布函数描述了随机变量小于或等于一些值的概率。

5.抽样分布和统计推断-抽样分布:根据中心极限定理,当样本容量足够大时,样本均值的抽样分布会近似服从正态分布。

-参数估计:通过样本统计量(如样本均值、样本方差)来推断总体参数的数值。

-假设检验:用来检验一个关于总体参数的假设是否成立。

根据样本数据和给定的显著性水平,对假设进行接受或拒绝的判断。

6.相关分析和回归分析-相关分析:用来研究两个变量之间的关系。

可以通过计算相关系数(如皮尔逊相关系数)来衡量两个变量之间的线性相关程度。

-回归分析:用来研究一个或多个自变量与因变量之间的关系。

统计学的知识点

统计学的知识点

统计学的知识点统计学是一门研究数据收集、整理、分析和解释的科学。

它在各个领域都有着广泛的应用,从社会科学到自然科学,从商业决策到医学研究,都离不开统计学的支持。

接下来,让我们一起深入了解一些重要的统计学知识点。

一、数据的类型数据可以分为定性数据和定量数据两大类。

定性数据是描述事物性质或类别的数据,例如性别(男、女)、职业(教师、医生、工程师等)。

定量数据则是可以用数字来度量的数据,又进一步分为离散数据和连续数据。

离散数据只能取有限个或可数个值,比如班级里的学生人数;连续数据可以在某个区间内取任意值,例如身高、体重等。

二、数据收集方法常见的数据收集方法包括普查和抽样调查。

普查是对研究对象的全体进行调查,能得到全面、准确的信息,但往往成本高、耗时费力。

抽样调查则是从总体中抽取一部分样本进行调查,通过对样本的分析来推断总体的特征。

抽样方法有简单随机抽样、分层抽样、系统抽样等。

简单随机抽样保证了每个个体被抽到的概率相等;分层抽样将总体按某些特征分成若干层,然后在各层中独立抽样;系统抽样则是按照一定的规律抽取样本。

三、数据的整理与展示收集到数据后,需要对其进行整理和展示,以便更直观地理解数据的分布和特征。

常用的图表有柱状图、折线图、饼图、直方图等。

柱状图用于比较不同类别之间的数据量;折线图适合展示数据随时间或其他顺序变量的变化趋势;饼图用于展示各部分在总体中所占的比例;直方图则能展示数据的分布情况。

四、集中趋势的度量描述数据集中趋势的统计量主要有平均数、中位数和众数。

平均数是所有数据的总和除以数据的个数,它容易受到极端值的影响。

中位数是将数据从小到大排序后位于中间位置的数值,如果数据个数为偶数,则中位数是中间两个数的平均值。

众数是数据中出现次数最多的数值。

五、离散程度的度量离散程度反映了数据的分散程度。

常见的度量指标有极差、方差和标准差。

极差是最大值与最小值之间的差值,它只考虑了极端值。

方差是每个数据与平均数之差的平方的平均值,标准差则是方差的平方根。

统计学知识点

统计学知识点

统计学知识点关键信息项1、统计学的定义和范围定义:____________________________范围:____________________________2、数据收集方法普查:____________________________抽样调查:____________________________观察法:____________________________实验法:____________________________3、数据整理与描述分类数据的整理与图示:____________________________顺序数据的整理与图示:____________________________数值型数据的整理与图示:____________________________ 4、集中趋势的度量均值:____________________________中位数:____________________________众数:____________________________5、离散程度的度量方差:____________________________标准差:____________________________极差:____________________________6、概率基础事件的概率:____________________________条件概率:____________________________概率的加法法则:____________________________概率的乘法法则:____________________________7、随机变量及其分布离散型随机变量:____________________________连续型随机变量:____________________________常见分布(如正态分布、二项分布等):____________________________8、抽样分布样本均值的分布:____________________________样本比例的分布:____________________________样本方差的分布:____________________________9、参数估计点估计:____________________________区间估计:____________________________10、假设检验原假设与备择假设:____________________________检验统计量:____________________________拒绝域与接受域:____________________________两类错误:____________________________11 统计学的定义和范围统计学是一门研究数据收集、整理、分析、解释和表达的科学方法。

统计学知识点

统计学知识点

第一章思考题1.1统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。

1.2描述统计:它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计:它是研究如何利用样本数据来推断总体特征的统计方法。

1.3 统计学的类型和不同类型的特点统计数据:按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

1.4 解释分类数据,顺序数据和数值型数据答案同1.31.5 对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。

1.6 变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经验变量和理论变量。

1.7 离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。

1.8 统计应用实例:人口普查,商场的名意调查等。

1.9 统计应用的领域:经济分析和政府分析还有物理,生物等等各个领域。

统计学知识点

统计学知识点

统计学第三章1.数值型数据的分组方法有哪些?简述组距分组的步骤。

(1)数据分组的方法有单变量值分组和组距分组两种。

①单变量值分组是把每一个变量值作为一组,这种分组通常只适合离散变量,且变量值较少的情况下使用②在连续变量或变量值较多的情况下,通常采用组距分组。

它是将全部变量值依次划分为若干个区间,并将这一区间的变量值作为一组。

在组距分组中,一个组的最小值称为下限;一个组的最大值称为上限。

(2)组距分组步骤①确定组数。

组数的确定应以能够显示数据的分布特征和规律为目的。

一般情况下,一组数据所分的组数不应少于5组且不多于15组,即5≤K≤15;②确定各组的组距。

组距是一个组的上限与下限的差。

组距可根据全部数据的最大值和最小值及所分的组数来确定,即组距=(最大值一最小值)÷组数;③根据分组编制频数分布表。

2.直方图与条形图有何区别?①条形图是用条形的长度表示各类别频数的多少,其宽度则是固定的;直方图是用面积表示各组频数的多少,矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义;②由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列③条形图主要用于展示分类数据,而直方图则主要用于展示数值型数据。

3.茎叶图与直方图相比有什么优点?它们的应用场合是什么?优点:(1)茎叶图类似于横置的直方图,与直方图相比,茎叶图既能给出数据的分布状况,又保留了原始数据。

而直方图虽然能很好地显示数据的分布,但不能保留原始的数值。

应用场合:(2)直方图通常适用于大批量数据,茎叶图通常适用于小批量数据。

第四章:1.一组数据的分布特征可以从哪几个方面进行测度?从三个方面进行测度和描述:(1)分布的集中趋势,反映各数据向其中心值聚集的程度(2)分布的离散程度,反映各数据远离其中心值的趋势;(3)分布的形状,反映数据分布的偏态和峰态。

2.简述众数、中位数和平均数的特点和应用场合。

统计学知识点

统计学知识点

一、总论一、概念题1.统计总体的同质性是指总体各单位具有某一共同的品质标志或数量标志;2.统计指标、可变的数量标志都是变量,变量可以是绝对数、相对数和平均数。

4.不是所有总体单位与总体之间都存在相互转换关系。

5.指标是说明总体数量特征的概念和数值,标志是说明总体单位的属性和特征的名称。

6.统计指标是由总体各单位的数量标志值和品质标志表现对应的单位数汇总而成的。

7.年份、产品质量、信用等级、宾馆星级以及是非标志等是品质标志。

8.统计中的相加性是指几个数相加后具有实际意义。

二、思考题1.统计学的研究对象是什么?统计学的研究对象的特点有哪些?答:统计学的研究对象是社会经济现象总体的数量特征和数量关系,以及通过这些数量方面反映出来的客观现象发展变化的规律性。

统计学研究对象的特点:数量性、总体性、变异性。

2.统计学的学科性质及特点是什么?统计学的研究方法有哪些?答:学科性质:统计学是一门方法论科学,特点:“定性分析—定量分析—定性分析”。

研究方法:大量观察法、统计分组法、综合指标法、统计模型法、归纳推断法。

3.什么是数量指标和质量指标?举例说明。

答:数量指标是反映社会经济现象总规模水平或工作总量的统计指标,用绝对数表示。

如人。

口总数、国民生产总值。

质量指标是反映社会经济现象相对水平或工作质量的统计指标,用相对数或平均数表示。

如平均工资、人口密度等。

4.统计指标的概念和构成要素是什么?举例说明。

答:统计指标是反映总体现象数量特征概念和数值。

构成要素有:(1)时间限定;(2)空间范围;(3)指标名称;(4)指标数值;(5)计量单位;(6)计算方法。

如2009年6月全国粗钢产量4942. 5万吨。

5.什么是简单现象总体?什么是复杂现象总体?答:将几个小总体组成一个大总体,这时小总体变成了大总体的总体单位。

如果各总体单位的数量标志值或总体单位数有相加性,则这个大总体叫做简单现象总体;如果无相加性,则叫做复杂现象总体。

统计的知识点总结

统计的知识点总结

统计的知识点总结1. 描述统计描述统计是通过数据的收集、整理和呈现,来对数据的特征进行描述和解释的方法。

描述统计包括了测度中心趋势的方法(如均值、中位数、众数)、测度离散程度的方法(如标准差、方差、极差)以及数据的呈现方法(如表格、图表、频率分布)。

2. 推论统计推论统计是通过对样本数据的分析和推断,来对总体特征进行推测和预测的方法。

推论统计包括了参数估计和假设检验两个主要方法。

在参数估计中,我们通过样本数据来估计总体的参数值;在假设检验中,我们通过样本数据来对总体的某个假设进行检验。

推论统计方法在科学研究和决策制定中具有重要的应用价值。

3. 概率统计概率统计是研究随机现象规律性的科学,它包括了概率的概念、概率分布、随机变量的概念和性质、大数定律和中心极限定理等。

概率统计的基本概念对于理解统计学的理论和方法具有重要的意义。

4. 回归分析回归分析是一种对两个或多个变量之间关系进行建模和分析的方法。

它包括了简单线性回归、多元线性回归、非线性回归等。

回归分析的方法对于预测和决策具有重要的应用价值。

5. 方差分析方差分析是一种用于比较两个或两个以上样本均值之间差异的方法。

它包括了单因素方差分析、双因素方差分析、多因素方差分析等。

方差分析的方法在生物、医学、社会科学等领域都具有重要的应用价值。

6. 生存分析生存分析是一种对时间至事件发生之间关系进行建模和分析的方法。

它包括了生存函数、风险集与危险比、生存曲线、生存比较等。

生存分析的方法在医学、流行病学、生物统计学等领域都具有重要的应用价值。

以上是统计学的一些基本知识点总结。

统计学作为一门科学,它的研究对象是数据,通过数据的收集、整理、分析和解释,来探索数据之间的关系和规律,从而推断和验证问题的解答。

统计学的方法和技术在各个领域都有着广泛的应用价值,它不仅可以帮助我们理解世界,还可以指导我们进行决策和预测。

统计学的知识点非常丰富,每一个知识点都有着自己的理论和方法,对于我们学习和应用统计学都具有着重要的意义。

统计学知识点梳理

统计学知识点梳理

统计学第一章导论1.1.1 什么是统计学统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。

数据分析所用的方法分为描述统计方法和推断统计方法。

1.2 统计数据的类型1.2.1 分类数据、顺序数据、数值型数据按照所采用的计算尺度不同,可以将统计数据分为分类数据、顺序数据、数值型数据。

分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表示。

例如:支付方式、性别、企业类型等。

顺序数据:只能归于某一有序类别的非数字型数据。

例如:员工对改革措施的态度、产品等级、受教育程度等。

数值型数据:按数字尺度测量的观测值,其结果表现为具体的数值。

例如:年龄、工资、产量等。

统计数据大体上可分为品质数据(定性数据)和数量数据(定量数据、数值型数据)。

1.2.2 观测数据和实验数据按照统计数据的收集方法,可以分为观测数据和实验数据。

观测数据:通过调查或观测而收集的数据。

例如:降雨量、GDP、家庭收入等。

实验数据:在实验中控制实验对象而收集到的数据。

例如:医药实验数据、化学实验数据等。

1.2.3 截面数据和时间序列数据按照被描述的现象与时间的关系,可分类截面数据和时间序列数据。

截面数据:在相同或近似相同的时间点上收集的数据。

例如:2012年我国各省市的GDP。

时间序列数据:同一现象在不同的时间收集的数据。

例如:2000-2012年湖北省的GDP。

1.3.1 总体和样本总体:包含所研究的全部个体(数据)的集合。

样本:从总体中抽取的一部分元素的集合。

1.3.2 参数和统计量参数:用来描述总体特征的概括性数字度量。

统计量:用类描述样本特征的概括性数字度量。

例如:某研究机构准备从某乡镇5万个家庭中抽取1000个家庭用于推断该乡镇所有农村居民家庭的年人均纯收入。

这项研究的总体是5万个家庭;样本是1000个家庭;参数是5万个家庭的人均纯收入;统计量是1000个家庭的人均纯收入。

第二章数据的搜集2.1 数据的来源2.1.1 数据的间接来源间接来源的数据:如果与研究内容有关的原信息已经存在,我们只是对这些原信息重新加工、整理,使之成为我们进行统计分析可以使用的数据。

统计学知识点

统计学知识点

统计学知识点关键信息项:1、统计学的定义与范围统计学的基本概念涵盖的主要领域2、数据收集方法普查与抽样调查观察法与实验法问卷设计要点3、数据整理与描述数据分类与分组集中趋势的度量(均值、中位数、众数)离散程度的度量(方差、标准差、极差)4、概率与概率分布随机事件与概率的定义常见概率分布(正态分布、二项分布等)概率计算方法5、抽样分布样本均值与样本比例的分布中心极限定理6、参数估计点估计与区间估计置信区间的构建与解释7、假设检验原假设与备择假设的设定检验统计量的选择与计算显著水平与决策规则8、方差分析单因素方差分析原理多重比较方法9、相关与回归分析相关系数的计算与解读简单线性回归模型回归系数的估计与检验11 统计学的定义与范围111 统计学是一门研究数据收集、整理、分析和解释的学科,它通过运用数学、概率论和数理统计等方法,从数据中提取有价值的信息,以帮助人们做出决策、解决问题和发现规律。

112 统计学涵盖了多个领域,包括社会科学、自然科学、工程技术、医学、商业等。

在社会科学中,统计学可用于研究人口趋势、经济发展、社会现象等;在自然科学中,可用于实验数据分析、模型验证等;在工程技术中,可用于质量控制、可靠性分析等;在医学中,可用于临床试验、疾病监测等;在商业中,可用于市场调研、销售预测等。

12 数据收集方法121 普查是对研究对象的全体进行调查,其优点是能够获得全面、准确的信息,但成本高、耗时长,且在实际操作中往往难以实现。

抽样调查则是从研究对象的总体中抽取一部分样本进行调查,通过对样本的分析来推断总体的特征。

抽样调查可以分为概率抽样和非概率抽样,概率抽样包括简单随机抽样、分层抽样、系统抽样和整群抽样等,非概率抽样包括方便抽样、判断抽样、配额抽样等。

122 观察法是通过观察研究对象的行为、现象等来收集数据,适用于无法直接询问或干预的情况。

实验法是通过控制实验条件来研究因果关系,其优点是能够更有效地确定变量之间的因果关系,但实验设计和实施较为复杂。

统计学总结知识点

统计学总结知识点

统计学总结知识点1. 总体和样本在统计学中,总体是指研究对象的全部个体,而样本是从总体中选取的一部分个体。

总体和样本是统计学研究的基本单位,研究者通常会通过对样本进行研究来推断总体的特征。

2. 描述统计描述统计是对数据进行整理、汇总和展示的过程,常用的描述统计方法包括平均数、中位数、众数、标准差等。

通过描述统计,研究者可以更好地理解数据的特征和分布情况。

3. 推断统计推断统计是根据样本数据对总体参数进行推断的过程,常用的推断统计方法包括假设检验、置信区间估计和方差分析等。

推断统计能够帮助研究者对总体特征进行推断,并做出相应的决策。

4. 概率分布概率分布是描述随机变量取值规律的数学函数,常见的概率分布包括正态分布、泊松分布、指数分布等。

概率分布在统计学中有着重要的应用,能够帮助研究者对随机现象进行建模和分析。

5. 方差分析方差分析是一种用于比较多个总体均值是否相等的统计方法,通过方差分析可以判断不同处理组之间的平均差异是否显著。

方差分析在实验设计和市场调研中有着重要的应用,能够帮助研究者理解不同因素对结果的影响。

6. 回归分析回归分析是一种用于研究变量之间关系的统计方法,常见的回归分析包括简单线性回归和多元线性回归。

通过回归分析可以揭示变量之间的相关性和因果关系,对预测和决策提供重要参考。

7. 抽样方法抽样是从总体中选取样本的过程,常见的抽样方法包括随机抽样、系统抽样、分层抽样和群集抽样等。

合适的抽样方法能够保证样本的代表性和可靠性,对统计推断和结论的准确性具有重要影响。

8. 数据可视化数据可视化是利用图表、图像和地图等形式将数据进行直观展示的过程,常见的数据可视化方法包括柱状图、折线图、散点图和地理信息系统等。

数据可视化能够帮助研究者更直观地理解数据特征和规律。

9. 统计软件统计软件是进行数据分析和统计推断的重要工具,常见的统计软件包括SPSS、SAS、R和Python等。

统计软件能够帮助研究者进行复杂的数据处理和分析,提高工作效率和结果质量。

统计学知识点(完整)

统计学知识点(完整)

基本统计方法第一章概论1. 总体(Population):根据研究目的确定的同质对象的全体(集合);样本(Sample):从总体中随机抽取的部分具有代表性的研究对象。

2. 参数(Parameter):反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量(Statistic):反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。

3. 统计资料分类:定量(计量)资料、定性(计数)资料、等级资料。

第二章计量资料统计描述1. 集中趋势:均数(算术、几何)、中位数、众数2. 离散趋势:极差、四分位间距(QR=P75-P25)、标准差(或方差)、变异系数(CV)3. 正态分布特征:①X轴上方关于X=μ对称的钟形曲线;②X=μ时,f(X)取得最大值;③有两个参数,位置参数μ和形态参数σ;④曲线下面积为1,区间μ±σ的面积为68.27%,区间μ±1.96σ的面积为95.00%,区间μ±2.58σ的面积为99.00%。

4. 医学参考值范围的制定方法:正态近似法:;百分位数法:P2.5-P97.5。

第三章总体均数估计和假设检验1. 抽样误差(Sampling Error):由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。

抽样误差不可避免,产生的根本原因是生物个体的变异性。

2. 均数的标准误(Standard error of Mean, SEM):样本均数的标准差,计算公式:。

反映样本均数间的离散程度,说明抽样误差的大小。

3. 降低抽样误差的途径有:①通过增加样本含量n;②通过设计减少S。

4. t分布特征:①单峰分布,以0为中心,左右对称;②形态取决于自由度ν,ν越小,t值越分散,t分布的峰部越矮而尾部翘得越高;③当ν逼近∞,逼近, t分布逼近u分布,故标准正态分布是t分布的特例。

5. 置信区间(Confidence Interval, CI):按预先给定的概率(1-α)确定的包含总体参数的一个范围,计算公式:或。

统计学基础知识点总结

统计学基础知识点总结

统计学基础知识点总结1.数据与变量数据是指收集到的一组数字或符号,而变量是指可以变化的数值。

在统计学中,常用的变量类型有两种:定量变量和定性变量。

定量变量是用数字表示的,如身高、体重等;而定性变量是用非数字表示的,如性别、血型等。

2.数据的描述在统计学中,常用的描述性统计方法有中心趋势度量和离散程度度量。

中心趋势度量包括均值、中位数和众数,用来衡量数据的集中程度;离散程度度量包括极差、方差和标准差,用来衡量数据的分散程度。

3.概率与概率分布概率是指在一定条件下某事件发生的可能性,它是统计学中的重要概念。

概率分布是用来描述随机变量可能取值的分布情况的概率分布函数,常见的概率分布有正态分布、均匀分布、二项分布和泊松分布等。

4.统计推断统计推断是指根据样本数据对总体特征进行推断的方法,它包括点估计和区间估计两种方法。

点估计是通过样本数据估计总体参数的数值,而区间估计是通过样本数据估计总体参数的范围。

5.假设检验假设检验是统计学中用来检验总体参数假设的方法,它包括参数假设检验和非参数假设检验两种。

参数假设检验是对总体参数的假设进行检验,常用的方法有t检验、F检验等;非参数假设检验是对总体分布形式的假设进行检验,常用的方法有卡方检验、秩和检验等。

6.相关性与回归分析相关性是指两个变量之间的关系程度,常用的相关性指标有Pearson相关系数和Spearman秩相关系数;回归分析是用来分析自变量与因变量之间的关系的方法,常用的回归分析方法有一元线性回归分析和多元线性回归分析。

7.贝叶斯统计学贝叶斯统计学是一种基于贝叶斯定理的统计学方法,它与频率统计学有所不同。

在贝叶斯统计学中,统计推断是基于先验概率和似然函数进行的,而不是基于频率分布进行的。

8.实验设计实验设计是指在统计实验中如何设计实验方案,以达到准确、可靠、有效地进行统计分析的目的。

常用的实验设计方法有完全随机设计、区组设计和受试者设计等。

以上就是统计学基础知识点的总结,通过学习这些知识点,可以帮助人们更好地理解和应用统计学在各种领域中的实际问题。

统计知识点

统计知识点

1.量表的比较测量水平独立分类单位同单位的大小概念绝对零点能否运算称名变量有无无否顺序变量无无无能等距变量有有无能比率变量有有有能2.平均数性质:(1)各变量值与均值的离差之和等于零(2)各变量值与均值的离差平方和最小,即【离均差】最小(3)所有的观测值都加上常数C,则平均值也增加常数C(4)所有观测值都乘以不等于0的常数C,则平均值也增大C倍;平均数优点:(1)反映灵敏(2)计算严密(3)计算简单(4)简明易解(5)适合于进一步用代数方法演算(6)较少受抽样变动的影响;缺点:(1)易受极端数据的影响(2)若出现模糊不清的数据时,无法计算平均数3.众数、中位数、平均数的关系:他们之间的特点比较:(1)众数:不受极端值影响、具有不惟一性、数据分布偏斜程度较大时应用(2)中位数:不受极端值影响:、数据分布偏斜程度较大时应用(3)平均数:易受极端值影响、计算方便,反应灵敏、数据对称分布或接近对称分布时应用。

4.(1)百分位数含义:表示某个数据在整个数据分布中所处的百分位置。

如果将一组数据从小到大排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数。

可表示为:一组n 个观测值按数值大小排列。

如,处于p%位置的值称第p 百分位数。

若P 30等于60.5,则其表明在该次数分布中有30%的个案低于60.5。

(2)百分位差:为了避免极端数据的影响,将数据的两端各截去10%,即P10和P90之间的距离作为差异量数,也有P93-P7。

5.方差和标准差性质: (1)每一个观测值都加上一个相同常数C 之后,计算得到的标准差等于原标准差;(2)每一个观测值都乘以一个相同的常数C ,则所得的标准差等于原标准差乘以这个常数;(3)每一个观测值都乘以同一个常数C (C ≠0),再加一个常数d ,所得的标准差等于原标准差乘以这个常数C 。

意义:(1)方差与标准差是表示一组数据离散程度的最好指标。

其值越大,次数分布越分散,反之,其值越小,离散越小。

统计学知识点汇总

统计学知识点汇总

统计学知识点汇总第一章:统计学是收集、处理、分析、解析数据并从数据中得出结论的科学。

分类:描述统计、推断统计。

描述统计是研究数据收集、处理和描述的统计学方法. 推断统计是研究如何利用样本数据来推断总体特征的统计学方法(内容包括参数估计和假设检验)。

变量:每次观察都会得到不同结果的某种特征. 分类变量:又称无序分类变量,观测结果表现为某种类别的变量. 顺序变量:又称有序分类变量,观测结果表现为某种有序类别的变量。

数值变量:又称定量变量,观测结果表现为数字的变量。

数据:1、分类数据2、顺序数据3、数值型数据总体:包含所研究的全部个体(数据)的集合.样本:从总体中抽取的一部分元素的集合.样本量:构成样本元素的数目。

抽样方法:1、简单随机抽样2、分层抽样3、系统抽样4、整群抽样简单随机抽样:从含有N个元素的总体中,抽取n个元素组成一个样本,使得总体中的每一个元素都有相同的机会(概率)被抽中。

分层抽样:也称分类抽样,在抽样之前先将总体的元素划分为若干层(类),然后从各个层中抽取一定数量的元素组成一个样本。

软件应用:用Excel抽取简单随机样本.第二章:一、定性数据的图示:1、条形图2、帕累托图3、饼图4、环形图条形图:是用宽度相同的条形来表示数据多少的图形,用于观察不同类别的多少或分布状况。

帕累托图:是按各类别出现的频数多少排序后绘制的条形图.通过对条形的排序,容易看出哪类频数出现的多,哪类出现的少。

饼图:主要用于表示一个样本(或总体)中各类别的频数占全部频数的比例。

用图表展示定量数据:生成定量数据的频数分布表时,需要先将原始数据按照某种标准分成不同的组别,然后统计出各组别的数据频数即可。

一组数据所分的组数K应不少于5组且不多于15组。

组距=(最大值—最小值)/组数组数=全距 /组距每组组距均相等称为等距数列,反之则为异距数列在比较等距数列与异距数列的次数分布时常用:次数密度=本组次数/本组组距2。

组中值 class midpoint组中值=(本组上限+本组下限)/2或组中值=(本组假定上限+本组假定下限)/2二、定量数据的图示:1、分组数据看分布:直方图2、未分组数据看分布:茎叶图和箱线图、垂线图和误差图最小值 25%四分位数中位数 75%四分位数最大值箱线图的示意图:Array3、两个变量间的关系:散点图是用二维坐标展示两个变量之间关系的一种图形。

统计学知识点

统计学知识点

第一章1、什么是统计学:收集、处理、分析、解释数据并从数据中得出结论的科学2、统计方法:(1)描述统计(知道总体数据)①含义:研究数据收集、整理和描述的统计学方法②内容:搜集数据、整理数据、展示数据、描述性分析③目的:描述数据特征、找出数据的基本规律(2)推断统计①含义:研究如何利用样本数据来推断总体特征的统计学方法②内容:参数估计、假设检验③目的:对总体特征作出推断3、统计应用上的两个极端:不用或几乎不用统计;简单问题复杂化4、统计的滥用:不好的样本;过小的样本;误导性图表;局部描述;故意曲解5、什么是变量:从一次观察到下一次观察会出现不同结果的某种特征6、数据:观察到的变量的结果7、数值变量:又称定量变量,观测结果表现为数字的变量8、分类变量:又称无序分类变量,观测结果表现为某种类别的变量,分类变量和顺序变量统称为定性变量9、顺序变量:又称有序分类变量,观测结果表现为某种有序类别的变量10、总体:包含所研究的全部个体(数据)的集合11、样本:从总体中抽取的一部分元素的集合12、样本量:构成样本的元素的数目13、概率抽样:根据一个已知的概率来抽取样本单位,也称随机抽样特点:按一定的概率以随机原则抽取样本;抽取样本时使每个单位都有一定的机会被抽中;每个单位被抽中的概率是已知的,或是可以计算出来的;当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率14、简单随机抽样含义:从总体N个单位(元素)中随机地抽取n个单位作为样本,使得总体中每一个元素都有相同的机会(概率)被抽中方法:抽取元素的具体方法有重复抽样和不重复抽样特点:简单、直观,在抽样框完整时,可直接从中抽取样本;用样本统计量对目标量进行估计比较方便局限性:当N很大时,不易构造抽样框;抽出的单位很分散,给实施调查增加了困难;没有利用其他辅助信息以提高估计的效率15、分层抽样含义:将总体单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点:保证样本的结构与总体的结构比较相近,从而提高估计的精度;组织实施调查方便;既可以对总体参数进行估计,也可以对各层的目标量进行估计16、系统抽样含义:将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范围内随机地抽取一个单位作为初始单位,然后按事先规定好的规则确定其他样本单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难17、整群抽样含义:将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点:抽样时只需群的抽样框,可简化工作量;调查的地点相对集中,节省调查费用,方便调查的实施;缺点是估计的精度较差第二章18、频数:落在各类别中的数据个数19、比例:某一类别数据个数占全部数据个数的比值20、百分比:将对比的基数作为100而计算的比值21、比率:不同类别数值个数的比值22、定性数据与定量数据的表示方法(表+图)定性数据:频数分布表、条形图、帕累托图、饼图、环形图定量数据:频数分布表、直方图、茎叶图、箱线图、垂线图、误差图、散点图、雷达图、轮廓图23、环形图与饼图的区别:饼图只能显示一个总体各部分所占的比例;环形图则可以同时绘制多个样本或总体的数据系列,每一个样本或总体的数据系列为一个环24、生成频数分布表的步骤:确定组数、确定组距、统计出各组的频数25、直方图是用于展示分组数据分布的一种图形,用矩形的宽度和高度来表示频数分布(本质上是用矩形的面积来表示频数分布),在直角坐标中,用横轴表示数据分组,纵轴表示频数或频率,各组与相应的频数就形成了一个矩形,即直方图;直方图下的总面积等于1 26、直方图与条形图的区别:①条形图中的每一矩形表示一个类别,其宽度没有意义,而直方图的宽度则表示各组的组距;②由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列;③条形图主要用于展示定性数据,而直方图则主要用于展示定量数据27、茎叶图与直方图的区别:①直方图可观察一组数据的分布状况,但没有给出具体的数值;②茎叶图既能给出数据的分布状况,又能给出每一个原始数值,保留了原始数据的信息;③直方图适用于大批量数据,茎叶图适用于小批量数据28、箱线图:用于显示未分组的原始数据的分布29、垂线图:用于展示多个变量或多个样本取值的分布状况30、散点图:用于展示两个变量之间的关系;用横轴代表变量x,纵轴代表变量y,每组数据(x i,y i)在坐标系中用一个点表示,n组数据在坐标系中形成的n个点称为散点,由坐标及其散点形成的图31、雷达图:也称为蜘蛛图;用于研究多个样本在多个变量上的相似程度;当多个变量的取值相差较大或量纲不同时,可进行变换(线性变换或对数变换)处理后再做图。

统计学知识点总结

统计学知识点总结

1、统计的含义(1)统计工作:即统计实践,是指很据科学的方法从事统计设计、收集、整理、分析研究和提供各种统计资料和统计咨询意见的活动的总称。

其成果是统计资料(原始调查资料和加工处理后的系统资料);(2)统计资料:即统计工作过程中所获得的各种有关数字资料以及与之相关的其他资料的总称。

通常以统计表、统计图和统计报告的形式变现,用以反映社会经济现象的规模、水平、速度、结构和比例关系等信息的数字和文字资料;(3)统计科学:即统计理论,是指统计工作实践的理论概括和科学总结。

2、统计学统计学:是一门搜集、整理、分析数据方法的科学,其目的是探索数据的内在数量规律性,以达到对客观事物的科学认识。

3、统计学的研究对象统计学研究的对象是:社会经济现象总体的数量特征和数量关系。

其根本特征:在质与量的辩证统一中,研究大量社会经济现象总体的数量方面,反映社会现象发展变化的规律性在具体时间、地点和条件下的数量表现,揭示事物的本质、相互联系、变动规律和发展趋势。

4、统计学研究特点数量性、总体性、具体性、社会性5、统计工作的过程及基本职能统计工作的过程:统计设计、统计调查、统计整理、统计分析(定性—定量—定性:循环往复)统计设计:指根据统计研究对象的特点和研究的目的、任务,对统计工作的各个方面和各个环节的通盘考虑和安排,是统计认识过程的第一个阶段,即定性认识的阶段;统计调查:指根据统计研究对象和目的要求,依据统计设计的内容、指标和指标体系的要求,有计划、有目的、有组织的收集原始资料的工作过程,即由定性到定量认识的阶段;统计整理:指根据统计研究的目的,将统计调查得到的原始资料和通过各种方法得到的次级资料进行科学的分类和汇总,使其条理化、系统化的工作过程,即为统计分析准备在一定程度上可以反映总体特征的统计资料;统计分析:指在统计整理的基础上,根据研究的目的和任务,应用各种科学的统计方法,从静态和动态两个方面对研究对象的数量方面进行计算、分析研究,认识和揭示所研究对象的本质和规律性,做出科学的结论,进而提出建议和可预测性的意见的工作过程,即从定量到定性深入认识的阶段。

统计学基础必学知识点

统计学基础必学知识点

统计学基础必学知识点1. 数据的类型:数据可以分为定量数据和定性数据。

定量数据是以数字形式表示的数据,可以进行运算和统计分析,例如身高、体重等;定性数据是以非数字形式表示的数据,通常是描述性的,例如性别、颜色等。

2. 数据的分布:数据的分布描述了数据的值在取值上的分布情况。

常见的数据分布有正态分布、均匀分布、偏态分布等。

3. 描述统计学:描述统计学是研究如何使用统计方法来描述和总结数据的学科。

常用的描述性统计方法包括测量中心趋势的平均数、中位数、众数,以及测量数据分散程度的标准差、方差等。

4. 统计推断:统计推断是研究如何利用样本数据对总体进行推断的学科。

常用的统计推断方法包括参数估计和假设检验。

参数估计是利用样本数据估计总体参数的值,例如利用样本均值估计总体均值;假设检验是对总体参数假设进行推断的方法,例如检验总体均值是否等于某个特定值。

5. 概率:概率是描述事件发生可能性的数值,介于0和1之间。

概率论是研究随机现象的数学理论。

常用的概率计算方法包括计数法、频率法、几何法等。

6. 抽样方法:抽样是从总体中选择部分个体进行观察和分析的方法。

常用的抽样方法包括随机抽样、系统抽样、整群抽样等。

7. 参数和统计量:参数是指总体的某种特征值,例如总体均值、总体方差等;统计量是根据样本数据计算得到的总体参数的估计值,例如样本均值、样本方差等。

8. 假设检验:假设检验是通过比较样本数据与给定假设之间的差异来判断假设是否成立的方法。

常用的假设检验方法有正态总体均值的检验、两个总体均值的检验、总体方差的检验等。

9. 相关分析:相关分析是研究两个或多个变量之间关系的方法。

常用的相关分析方法包括皮尔逊相关系数、斯皮尔曼相关系数等。

10. 回归分析:回归分析是研究变量之间关系的方法,可以用于预测和解释变量之间的关联关系。

常用的回归分析方法包括简单线性回归分析、多元线性回归等。

以上是统计学基础中的一些必学知识点,通过学习和掌握这些知识点,可以帮助我们理解和分析数据,从而做出科学的统计推断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章思考题1.1 统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。

1.2描述统计:它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计:它是研究如何利用样本数据来推断总体特征的统计方法。

1.3统计学的类型和不同类型的特点统计数据:按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

1.4解释分类数据,顺序数据和数值型数据答案同1.31.5对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。

1.6变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经验变量和理论变量。

1.7离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。

1.8统计应用实例:人口普查,商场的名意调查等。

1.9统计应用的领域:经济分析和政府分析还有物理,生物等等各个领域。

第二章思考题2.1由别人调查和试验而来已经存在,并会被我们利用的资料为“二手资料”。

使用时要进行评估,要考虑到资料的原始收集人,收集目的,收集途径,收集时间使用时要注明数据来源。

2.2概率抽样:抽样时按一定的概率以随机原则抽取样本。

每个单位被抽中的概率已知或可以计算,当用样本对总体目标量进行估计时,要考虑到每个单位样本被抽到的概率。

技术含量和成本都比较高。

如果调查目的在于掌握和研究对象总体的数量特征,得到总体参数的置信区间,就使用概率抽样。

非概率抽样:操作简单,时效快,成本低,而且对于抽样中的统计学专业技术要求不是很高。

它适合探索性的研究,调查结果用于发现问题,为更深入的数量分析提供准备。

它同样使用市场调查中的概念测试(不需要调查结果投影到总体的情况)。

2.3试验式和观察式等2.4自填式;优点:1、调查组织者管理容易,2、成本低,可进行大规模调查,3、对被调查者,可选择方便时间答卷,减少回答敏感问题压力缺点:1、返回率低2、不适合结构复杂的问卷,调查内容有限3、调查周期长4、在数据搜集过程中遇见问题不能及时调整。

面访式;优点:1回答率高2数据质量高3在调查过程中遇见问题可以及时调整。

缺点:1成本比较高2搜集数据的方式对调查过程的质量控制有一定难度3对于敏感问题,被访者会有压力。

电话式;优点:1速度快2对调查员比较安全3对访问过程的控制比较容易。

缺点:1实施地区有限2调查时间不能过长3使用的问卷要简单4被访者不愿回答时,不易劝服。

第三章思考题3.1数据审核(完整性和准确性;适用性和实效性),数据筛选和数据排序。

3.2分类数据:制作频数分布表,用比例,百分比,比率等进行描述性分析。

可用条形图,帕累托图和饼图进行图示分析。

顺序数据:制作频数分布表,用比例,百分比,比率。

累计频数和累计频率等进行描述性分析。

可用条形图,帕累托图和饼图,累计频数分布图和环形图进行图示分析。

3.3分组方法:单变量值分组和组距分组,组距分组又分为等距分组和异距分组。

分组步骤:1确定组数2确定各组组距3根据分组整理成频数分布表3.4直方图和条形图的区别1条形图使用图形的长度表示各类别频数的多少,其宽度固定,直方图用面积表示各组频数,矩形的高度表示每一组的频数或频率,宽度表示组距,2直方图各矩形连续排列,条形图分开排列,3条形图主要展示分类数据,直方图主要展示数值型数据。

3.5时间在横轴,观测值绘在纵轴。

一般是长宽比例10:7的长方形,纵轴下端一般从0开始,数据与0距离过大的话用折断符号折断。

3.6饼图和环形图的不同饼图只能显示一个样本或总体各部分所占比例,环形图可以同时绘制多个样本或总体的数据系列,其图形中间有个“空洞”,每个样本或总体的数据系类为一个环。

3.7茎叶图比直方图的优势茎叶图既能给出数据的分布情况,又能给出每一个原始数据,即保留了原始数据的信息。

在应用方面,直方图通常适用于大批量数据,茎叶图适用于小批量数据。

3.8鉴别图标优劣的准则 P753.9制作统计表应注意的问题1,合理安排统计表结构2表头一般包括表号,总标题和表中数据的单位等内容3表中的上下两条横线一般用粗线,中间的其他用细线4在使用统计表时,必要时可在下方加注释,注明数据来源。

公式:组中值=(上限+下限)/2第4章数据的概括性度量4.1一组数据的分布特征可以从哪几个方面进行测度?数据分布特征可以从三个方面进行测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢或集中的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布的偏态和峰态。

4.2怎样理解平均数在统计学中的地位?平均数在统计学中具有重要的地位,是集中趋势的最主要的测度,主要适用于数值型数据,而不适用于分类数据和顺序数据。

4.3简述四分位数的计算方法。

四分位数是一组数据排序后处于25%和75%位置上的值。

根据未分组数据计算四分位数时,首先对数据进行排序,然后确定四分位数所在的位置,该位置上的数值就是四分位数。

4.4对于比率数据的平均为什么采用几何平均?在实际应用中,对于比率数据的平均采用几何平均要比算数平均更合理。

从公式(中也可看出,G就是平均增长率。

4.5简述众数、中位数和平均数的特点和应用场合众数是一组数据分布的峰值,不受极端值的影响,缺点是具有不唯一性。

众数只有在数据量较多时才有意义,数据量较少时不宜使用。

主要适合作为分类数据的集中趋势测度值。

中位数是一组数据中间位置上的代表值,不受极端值的影响。

当数据的分布偏斜较大时,使用中位数也许不错。

主要适合作为顺序数据的集中趋势测度值。

平均数对数值型数据计算的,而且利用了全部数据信息,在实际应用中最广泛。

当数据呈对称分布或近似对称分布时,三个代表值相等或相近,此时应选择平均数。

但平均数易受极端值的影响,对于偏态分布的数据,平均数的代表性较差,此时应考虑中位数或众数。

4.6简述异众比率、四分位差、方差或标准差的适用场合对于分类数据,主要用异众比率来测量其离散程度;对于顺序数据,虽然也可以计算异众比率,但主要使用四分位差来测量其离散程度;对于数值型数据,虽然可以计算异众比率和四分位差,但主要使用方差或标准差来测量其离散程度。

4.7标准分数有哪些用途?标准分数给出了一组数据中各数值的相对位置。

在对多个具有不同量纲的变量进行处理时,常需要对各变量进行标准化处理。

它还可以用来判断一组数据是否有离群数据。

4.8为什么要计算离散系数?方差和标准差是反映数据分散程度的绝对值,一方面其数值大小受原变量值本身水平高低的影响,也就是与变量的平均数大小有关;另一方面,它们与原变量的计量单位相同,采用不同计量单位的变量值,其离散程度的测度值也就不同。

因此,为消除变量值水平高低和计量单位不同对离散程度测度值的影响,需要计算离散系数。

4.9测度数据分布形状的统计量有哪些?对分布形状的测度有偏态和峰态,测度偏态的统计量是偏态系数,测度峰态的统计量是峰态系数。

第五章概率与概率分布5.1频率与概率有什么关系?在相同条件下随机试验n次,某事件A出现m次,则比值m/n称为事件A发生的频率。

随着n的增大,该频率围绕某一常数p波动,且波动幅度逐渐减小,趋于稳定,这个频率的稳定值即为该事件的概率。

5.2独立性与互斥性有什么关系?互斥事件一定是相互依赖(不独立)的,但相互依赖的事件不一定是互斥的。

不互斥事件可能是独立的,也可能是不独立的,但独立事件不可能是互斥的。

5.3根据自己的经验体会举几个服从泊松分布的随机变量的实例。

如某种仪器每月出现故障的次数、一本书一页中的印刷错误、某一医院在某一天内的急诊病人数等5.4根据自己的经验体会举几个服从正态分布的随机变量的实例。

如某班某次的考试成绩、某地区成年男性的身高、某公司年销售量、同一车间产品的质量等第六章思考题6.1 统计量:设X1,X2…,Xn是从总体X中抽取的容量为n的一个样本,如果由此样本构造一个函数T(X1,X2…,Xn),不依赖于任何未知参数,则称函数T(X1,X2…,Xn)是一个统计量。

原因:为了使统计推断成为可能。

6.2 T1和T2是 6.3 P1596.4 统计量加工过程中一点信息都不损失的统计量为充分统计量 6.5 自由度:独立变量的个数6.6 2分布:设,则F分布:设若U为服从自由度为n1的 2分布,即U~ 2(n1),V为服从自由度为n2的 2分布,即V~ 2(n2),且U和V相互独立,则称F为服从自由度n1和n2的F分布,记为6.7 抽样分布:样本统计量的概率分布是一种理论概率分布随机变量是样本统计量6.8 中心极限定理:设从均值为 ,方差为 2的一个任意总体中抽取容量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ2/n的正态分布第七章思考题7.1 估计量:用于估计总体参数的随机变量估计值:估计参数时计算出来的统计量的具体值 7.2 评价估计量的标准:无偏性:估计量抽样分布的数学期望等于被估计的总体参数有效性:对同一总体参数的两个无偏点估计量,有更小标准差的估计量更有效一致性:随着样本容量的增大,估计量的值越来越接近被估计的总体参数 7.3 置信区间:由样本统计量所构造的总体参数的估计区间7.4 95%的置信区间指用某种方法构造的所有区间中有95%的区间包含总体参数的真值。

7.5 含义:Za/2是标准正态分布上侧面积为a/2的z值,公式是统计总体均值时的边际误差。

7.6 独立样本:如果两个样本是从两个总体中独立抽取的,即一个样本中的元素与另一个样本中的元素相互独立。

匹配样本:一个样本中的数据与另一个样本中的数据相对应。

7.7 (1)、两个总体都服从正态分布(2)、两个随即样本独立地分别抽自两个总体7.8 样本量越大置信水平越高,总体方差和边际误差越小第8章思考题8.1假设检验和参数估计有什么相同点和不同点?答:参数估计和假设检验是统计推断的两个组成部分,它们都是利用样本对总体进行某种推断,然而推断的角度不同。

相关文档
最新文档