统计学知识点全归纳全面准确

合集下载

统计学知识点

统计学知识点

统计学知识点(总14页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除一、总论一、概念题1.统计总体的同质性是指总体各单位具有某一共同的品质标志或数量标志;2.统计指标、可变的数量标志都是变量,变量可以是绝对数、相对数和平均数。

4.不是所有总体单位与总体之间都存在相互转换关系。

5.指标是说明总体数量特征的概念和数值,标志是说明总体单位的属性和特征的名称。

6.统计指标是由总体各单位的数量标志值和品质标志表现对应的单位数汇总而成的。

7.年份、产品质量、信用等级、宾馆星级以及是非标志等是品质标志。

8.统计中的相加性是指几个数相加后具有实际意义。

二、思考题1.统计学的研究对象是什么统计学的研究对象的特点有哪些答:统计学的研究对象是社会经济现象总体的数量特征和数量关系,以及通过这些数量方面反映出来的客观现象发展变化的规律性。

统计学研究对象的特点:数量性、总体性、变异性。

2.统计学的学科性质及特点是什么统计学的研究方法有哪些答:学科性质:统计学是一门方法论科学,特点:“定性分析—定量分析—定性分析”。

研究方法:大量观察法、统计分组法、综合指标法、统计模型法、归纳推断法。

3.什么是数量指标和质量指标?举例说明。

答:数量指标是反映社会经济现象总规模水平或工作总量的统计指标,用绝对数表示。

如人。

口总数、国民生产总值。

质量指标是反映社会经济现象相对水平或工作质量的统计指标,用相对数或平均数表示。

如平均工资、人口密度等。

4.统计指标的概念和构成要素是什么?举例说明。

答:统计指标是反映总体现象数量特征概念和数值。

构成要素有:(1)时间限定;(2)空间范围;(3)指标名称;(4)指标数值;(5)计量单位;(6)计算方法。

如2009年6月全国粗钢产量4942. 5万吨。

5.什么是简单现象总体什么是复杂现象总体答:将几个小总体组成一个大总体,这时小总体变成了大总体的总体单位。

统计学导论知识点归纳总计期末

统计学导论知识点归纳总计期末

第一章1、统计学的定义:统计学是一门关于数据的科学,是一门关于数据的收集、整理、分析、解释和推断的科学。

2、统计的三种含义:a.统计工作(又称统计实践)是搜集、整理、分析和提供关于社会经济现象的数字资料工作的总称。

b.统计数据是统计实践活动的成果如:经济增长速度、价格指数等。

对统计数据要求:客观性、准确性和及时性。

c.统计学是研究如何测定、收集、整理、归纳和分析反映客观现象总体数量的数据,以便给出正确认识的方法论科学3.理论统计学与应用统计学的区别于联系现代统计学分为两大类:理论统计学以抽象的数量为研究对象,研究一般的收集数据、整理数据和分析数据方法。

应用统计学以各个不同领域的具体数量为研究对象。

区别:理论统计学把研究对象一般化、抽象化,以数学中的概率论为基础,从纯理论的角度,对统计方法加以推导论证,其中心内容是以归纳方法研究随机变量的一般规律。

理论统计学的特点是计量不计质,它具有通用方法论的理学性质。

应用统计学是有具体对象的方法论。

所谓应用既包括一般统计方法的应用,更包括各自领域实质性科学理论的应用。

应用统计学从所研究的领域或专门问题出发,视研究对象的性质采用适当的指标体系和统计方法,解决所需研究的问题。

应用统计学不仅要进行定量分析,还需要进行定性分析。

所以应用统计学通常具有边缘交叉和复合型学科的性质。

联系:总是互相促进,共同提高的。

理论统计的研究为应用统计提供方法论基础,应用统计学在对统计方法的实际应用中,又常常会对理论统计学提出新的问题,开拓理论统计学的研究领域。

4.统计总体:是根据一定目的确定的所要研究的事物的全体。

它是由客观存在的、具有某种共同性质的许多个别事物构成的整体。

例如:要研究全国城镇居民的收支情况,就以全国城镇居民作为一个总体。

a.统计总体的性质:同质性(标准)大量性b.总体的分类:有限总体由有限量的单位构成的总体。

无限总体当总体单位数难以确定,其数量可能是无限时,便构成无限总体C.总体单位:(简称单位)是组成总体的各个个体。

统计学知识点全归纳__全面准确

统计学知识点全归纳__全面准确

统计学知识点全归纳__全面准确统计学是一门研究和应用统计原理和方法的学科。

统计学的目的是通过收集、整理、分析和解释数据来描述和推断人类活动中的规律性和不确定性。

下面将全面准确地归纳统计学的基本知识点。

1.数据收集和整理-数据的收集方法:可以通过抽样或完全普查进行数据收集。

抽样是从总体中选择一部分样本进行调查或实验,以此来推断总体的特征。

2.描述统计-数据的概括性度量:包括测量中心趋势的平均数(如算术平均值、中位数和众数)、测量离散程度的方差和标准差、测量数据分散程度的四分位数等。

-数据的可视化表示:可以使用直方图、箱线图、散点图、饼图等图表来展示数据的分布和关系。

3.概率与随机变量-概率的概念:概率是描述事件发生可能性的数值,范围从0到1、事件的概率可以通过频率或基于概率模型推断得到。

-随机变量:随机变量是随机试验结果的数值表示。

可以分为离散随机变量和连续随机变量。

4.概率分布-离散分布:包括二项分布、泊松分布等。

二项分布描述了一次试验中两个可能结果的概率分布,泊松分布描述了随机事件在固定时间或空间区域内发生的次数的概率分布。

-连续分布:包括正态分布、指数分布等。

正态分布是最常见的连续概率分布,它以钟形曲线显示数据的分布情况。

-概率密度函数和累积分布函数:概率密度函数描述了随机变量落在一些区间内的概率密度,累积分布函数描述了随机变量小于或等于一些值的概率。

5.抽样分布和统计推断-抽样分布:根据中心极限定理,当样本容量足够大时,样本均值的抽样分布会近似服从正态分布。

-参数估计:通过样本统计量(如样本均值、样本方差)来推断总体参数的数值。

-假设检验:用来检验一个关于总体参数的假设是否成立。

根据样本数据和给定的显著性水平,对假设进行接受或拒绝的判断。

6.相关分析和回归分析-相关分析:用来研究两个变量之间的关系。

可以通过计算相关系数(如皮尔逊相关系数)来衡量两个变量之间的线性相关程度。

-回归分析:用来研究一个或多个自变量与因变量之间的关系。

研究生统计学知识点归纳总结

研究生统计学知识点归纳总结

研究生统计学知识点归纳总结统计学是一门关于收集、分析、解释和展示数据的学科。

在当代社会,统计学在各个领域都发挥着重要的作用,包括经济学、医学、社会学等等。

作为研究生统计学的学习者,掌握统计学的基本知识和技能至关重要。

本文将对研究生统计学的一些知识点进行归纳总结。

一、基础概念1. 总体与样本:总体是指研究对象的全体,而样本则是从总体中选取的一部分。

通过对样本进行统计分析,我们可以推断出总体的特征。

2. 变量与观测:变量是指研究对象的属性或特征,可以分为定性变量和定量变量。

观测是对变量的测量或观察结果。

3. 数据类型:数据可以分为定量数据和定性数据。

定量数据是可量化的数据,可以进行数值运算。

定性数据则是描述性的,不能进行数值运算。

在统计学中,还有一种特殊的数据类型,即序数数据,它具有顺序特征。

二、描述统计描述统计是对收集到的数据进行汇总、组织、描述和展示的方法,常用的方法包括中心趋势和离散程度的度量。

1. 中心趋势度量:常用的中心趋势度量包括平均数、中位数和众数。

平均数是所有观测值的总和除以观测值的个数,中位数是将所有观测值按大小排列后找到中间的值,众数是出现次数最多的值。

2. 离散程度度量:常用的离散程度度量包括极差、方差和标准差。

极差是最大观测值与最小观测值之差,方差是观测值与平均数之差的平方的平均数,标准差则是方差的平方根。

三、概率与统计推断概率和统计推断是统计学的核心内容,它们主要用于从样本中进行推断,以便理解总体的特征。

1. 概率基本理论:概率是描述事件发生可能性的数值,可以按照频率概率和主观概率进行解释。

概率的计算可以通过数学公式和概率模型进行。

2. 随机变量与概率分布:随机变量是指具有随机性的变量,它可以是离散型或连续型的。

概率分布则是随机变量的所有取值与对应概率的集合。

3. 统计推断方法:统计推断方法主要包括参数估计和假设检验。

参数估计是通过样本推断总体参数的值,常用的估计方法有点估计和区间估计;假设检验则是对总体参数提出假设,并根据样本信息来判断这些假设是否成立。

统计应知应会知识

统计应知应会知识

统计应知应会知识
统计应知应会的知识包括以下部分:
1. 统计学的基本概念:统计学是一门研究数据的科学,其核心是利用数学方法对数据进行收集、整理、分析和解释。

在统计学中,总体是指研究对象的全体,单位是组成总体的各个个体,样本是总体的部分单位组成的集合。

此外,标志和指标也是统计学中重要的概念。

标志是表明单位属性方面的特征,可以用非数值或数值来描述,而指标则是反映现象总规模、总水平的统计指标。

2. 统计量的计算:统计量是样本的特征,它是样本观测量的一个已知函数。

常见的统计量有平均数、方差、标准差、中位数、众数等。

这些统计量可以用来描述数据的集中趋势、离散程度等特征。

3. 假设检验:假设检验是统计学中常用的方法,通过提出假设并检验假设是否成立来判断样本数据是否具有统计意义。

在假设检验中,需要选择合适的显著性水平α,并利用P值来进行判断。

P值是指观察到的概率值,如果P值小于显著性水平α,则拒绝原假设,否则接受原假设。

4. 方差分析:方差分析是用来比较不同组数据的均值是否存在显著差异的统计方法。

通过方差分析,可以判断不同组数据之间的差异是否具有统计意义。

5. 回归分析:回归分析是用来研究变量之间关系的一种统计方法。

通过回归分析,可以确定自变量和因变量之间的关系类型以及预测因变
量的值。

6. 统计图表:统计图表是用来展示数据的常用工具。

通过绘制合适的统计图表,可以直观地展示数据的分布特征、变化趋势等。

初中数学统计学知识点归纳

初中数学统计学知识点归纳

初中数学统计学知识点归纳统计学是数学中一门重要的分支,它研究的是收集、整理、分析和解释数据的方法和技术。

在初中数学中,我们会学习到一些基本的统计学知识,这些知识对我们理解和应用数学有着重要的意义。

本文将对初中数学中的统计学知识点进行归纳和总结。

一、数据的收集和整理数据的收集和整理是统计学的基础,它是进行统计分析的前提。

在初中数学中,常见的数据收集方式有问卷调查、实地观察和实验等。

收集到的数据可以是文字形式的信息,也可以是数值形式的数据。

在整理数据时,我们通常会使用表格、图表和统计图等工具,以便更好地展示和分析数据。

二、频数和频率频数是指数据中某个数值或数值范围出现的次数,通常用f表示。

频率是指某个数值或数值范围的频数占总数据量的比例,通常用f/n表示(n为总数据量)。

频数和频率可以帮助我们了解数据的分布情况,进而进行进一步的统计分析。

三、平均数平均数是统计学中常用的一种中心趋势度量,用来描述一组数据的集中程度。

常见的平均数有算术平均数、加权平均数和几何平均数等。

算术平均数是指将所有数据值相加后再除以总数据量,它常用来衡量数据的集中程度。

例如,某班学生的身高平均数是150cm,说明大部分学生的身高集中在这个数值附近。

四、中位数中位数是一组数据中位置居中的数值,它通常用来衡量数据的中间位置。

对于有奇数个数据的集合,中位数是排序后的中间值;对于有偶数个数据的集合,中位数是排序后中间两个数的平均值。

中位数可以帮助我们了解数据的分散程度,尤其是在数据存在极端值时。

五、众数和极差众数是指一组数据中出现次数最多的数值,它反映了数据的集中趋势。

极差是指一组数据的最大值与最小值之间的差值,它用来衡量数据的变化幅度。

众数和极差可以帮助我们了解数据的特点和分布情况。

六、四分位数和箱线图四分位数是将一组数据按大小顺序排列后,分成四个等份的数值。

第一四分位数是中位数左边的中位数,第三四分位数是中位数右边的中位数,而第二四分位数就是中位数。

统计学知识点

统计学知识点

一、总论一、概念题1.统计总体的同质性是指总体各单位具有某一共同的品质标志或数量标志;2.统计指标、可变的数量标志都是变量,变量可以是绝对数、相对数和平均数。

4.不是所有总体单位与总体之间都存在相互转换关系。

5.指标是说明总体数量特征的概念和数值,标志是说明总体单位的属性和特征的名称。

6.统计指标是由总体各单位的数量标志值和品质标志表现对应的单位数汇总而成的。

7.年份、产品质量、信用等级、宾馆星级以及是非标志等是品质标志。

8.统计中的相加性是指几个数相加后具有实际意义。

二、思考题1.统计学的研究对象是什么?统计学的研究对象的特点有哪些?答:统计学的研究对象是社会经济现象总体的数量特征和数量关系,以及通过这些数量方面反映出来的客观现象发展变化的规律性。

统计学研究对象的特点:数量性、总体性、变异性。

2.统计学的学科性质及特点是什么?统计学的研究方法有哪些?答:学科性质:统计学是一门方法论科学,特点:“定性分析—定量分析—定性分析”。

研究方法:大量观察法、统计分组法、综合指标法、统计模型法、归纳推断法。

3.什么是数量指标和质量指标?举例说明。

答:数量指标是反映社会经济现象总规模水平或工作总量的统计指标,用绝对数表示。

如人。

口总数、国民生产总值。

质量指标是反映社会经济现象相对水平或工作质量的统计指标,用相对数或平均数表示。

如平均工资、人口密度等。

4.统计指标的概念和构成要素是什么?举例说明。

答:统计指标是反映总体现象数量特征概念和数值。

构成要素有:(1)时间限定;(2)空间范围;(3)指标名称;(4)指标数值;(5)计量单位;(6)计算方法。

如2009年6月全国粗钢产量4942. 5万吨。

5.什么是简单现象总体?什么是复杂现象总体?答:将几个小总体组成一个大总体,这时小总体变成了大总体的总体单位。

如果各总体单位的数量标志值或总体单位数有相加性,则这个大总体叫做简单现象总体;如果无相加性,则叫做复杂现象总体。

初二统计知识点归纳总结

初二统计知识点归纳总结

初二统计知识点归纳总结统计是一门应用广泛且实用的学科,通过收集、整理和分析数据,可以帮助我们了解事物的规律和趋势,从而做出明智的决策。

在初二阶段,我们已经接触到了统计学的一些基本知识和方法。

本文将对初二统计知识点进行归纳总结,帮助大家系统地复习和掌握这些知识。

一、数据的收集在统计学中,数据是我们进行统计分析的基础。

数据的收集可以通过以下几种方式进行:1. 调查问卷:通过编制调查问卷,收集人们的意见、看法或行为数据。

在编制问卷时,需要注意问题的合理性和清晰性,以及样本的代表性。

2. 实地观察:直接观察和记录事件或现象的数据。

例如,通过观察天气情况记录每天的气温变化等。

3. 实验数据:通过设计实验并记录实验过程和结果来收集数据。

实验设计需要考虑控制变量和随机分组等因素,以确保实验结果的可靠性。

二、数据的整理与描述收集到的数据需要进行整理和描述,以便我们更好地理解和分析数据。

常用的数据整理和描述方法包括:1. 表格和图表:可以使用表格、柱状图、折线图等形式对数据进行展示和比较,直观地反映数据的分布和趋势。

2. 中心位置的度量:通过计算平均数、中位数和众数等,可以了解数据的中心位置。

3. 离散程度的度量:通过计算极差、方差和标准差等,可以了解数据的离散程度和分布的变异程度。

4. 数据的分组与频数分布:将数据按照一定的范围划分为组,并计算各组的频数,可以更直观地了解数据的分布情况。

三、概率与统计概率与统计是统计学中的两个重要分支,涉及到随机事件的概率计算和对样本数据进行推断的统计方法。

1. 概率:概率是用来描述事物发生的可能性大小的数值,常用的概率计算方法包括古典概型、频率法和几何概型等。

2. 统计推断:统计推断是通过从样本中得到的统计量,对总体的参数进行推断和估计。

常用的统计推断方法包括参数估计和假设检验等。

四、图表的使用图表可以直观地展示数据的分布和变化趋势,有助于我们更好地理解和分析数据。

常用的图表类型包括:1. 折线图:用于表示随着时间或其他因素的变化,数据的连续性和趋势变化。

统计学初步知识点归纳总结

统计学初步知识点归纳总结

统计学初步知识点归纳总结统计学是一门研究数据收集、分析、解释和演绎的学科,它在实践中被广泛应用于各个领域。

在统计学的学习过程中,我们掌握了一系列基础知识和概念,本文将对统计学初步知识点进行归纳总结。

下面将从数据集的描述、概率与统计分布、参数估计与假设检验以及回归分析四个方面介绍统计学的基础知识。

一、数据集的描述在统计学中,我们首先需要对数据进行描绘和描述。

数据可以分为定量数据和定性数据两种类型。

对于定量数据,我们通常可以计算其均值、中位数、标准差和方差等统计量。

而定性数据则可以通过频数表、条形图和饼图等方式进行描述和展示。

此外,我们还可以使用直方图和箱线图来展示数据的分布情况和异常值。

二、概率与统计分布概率是统计学的重要概念之一,它用于描述随机事件的可能性。

在概率的基础上,我们可以引入随机变量和概率分布两个概念。

常见的离散概率分布包括二项分布、泊松分布和几何分布,而连续概率分布则包括正态分布和指数分布等。

对于这些概率分布,我们可以计算其期望值和方差,从而更好地理解和分析数据。

三、参数估计与假设检验参数估计和假设检验是统计学中的两个重要问题。

在参数估计中,我们通过样本数据来估计总体参数的值,常用的方法包括点估计和区间估计。

点估计可以通过计算样本均值或比例来估计总体参数的值,而区间估计则可以提供一个范围来估计总体参数的值。

假设检验则用于对某个总体参数提出假设,并根据样本数据来检验这个假设是否成立。

常见的假设检验包括单样本均值检验、两样本均值检验和卡方检验等。

四、回归分析回归分析是统计学中的一种重要分析方法,它用于研究自变量和因变量之间的关系。

简单线性回归分析通过一个自变量来预测一个因变量,并可以计算出回归方程的系数和拟合优度。

多元线性回归分析则可以同时考虑多个自变量对一个因变量的影响。

此外,我们还可以进行回归诊断来检验模型是否符合统计假设,常见的诊断方法包括残差分析和离群值检验等。

综上所述,统计学初步知识点归纳总结包括数据集的描述、概率与统计分布、参数估计与假设检验以及回归分析等方面。

自考00974统计学原理复习重点

自考00974统计学原理复习重点

00974统计学原理章节基础知识第一章:总论1、统计的三基本方法:大量观察法,综合分析法,归纳推断法((可扩展未简答)2、凯特乐将统计学的三个主要源泉:英国的政治学派,德国的国势学,法国的概率统计3、“统计”一词的含义:统计包括三个含义:统计工作、统计资料和统计科学。

统计工作、统计资料、统计科学三者之间的关系是:统计工作的成果是统计资料,统计资料和统计科学的基础是统计工作,统计科学既是统计工作经验的理论概括,又是指导统计工作的原理、原则和方法。

(简答)4、统计信息的两大特征:数量性和总体性(多选、简答)5、统计的三大职能:信息,咨询,监督(多选)6、四大计量尺度:定类尺度,定序尺度,定距尺度,定比尺度(重点前两个)7、按度量层次低到高:定类尺度>定序尺度>定距尺度>定比尺度8、区别总体和总体单位(选择,判断)9、统计指标的的三大特性:总体性,数量性,综合性(多选)10、区分变异和变量,变量又可以分为:连续变量和离散变量(多选)第二章:统计资料的收集和整理1.统计资料的三大特性:数量性,总体性,客观性(选择,填空)2.总体性的定义是指统计是从整体上反映和分析事物数量特征,而不是着眼于个别事物,因为事物的本质和发展规律只有从整体上观察,才能作出正确的判断。

(判断)3.原始资料的搜集方法访问方法观察方法实验方法(多选)4.统计调查的方式:1)普查:专门组织进行一次性的全面调查(填空、多选)2)抽样调查:最常用的方法3)统计报表4)重点调查:了解定义(选择)(多年都有考到)5)典型调查6.结论:统计方式是以普查为基础,抽样调查为主体(选择、判断)7.统计调查方案的内容:(1) 调查目的:调查目的要符合客观实际,是任何一套方案首先要明确的问题,是行动的指南。

(2) 调查对象和调查单位:调查对象即总体,调查单位即总体中的个体。

(3) 调查项目:即指对调查单位所要登记的内容。

(4) 调查表:就是将调查项目按一定的顺序所排列的一种表格形式。

统计学重点知识归纳总结

统计学重点知识归纳总结

统计学重点知识归纳总结统计学是一门研究数据收集、分析、解释和呈现的学科。

它在各个领域都有广泛的应用,包括经济学、医学、社会科学等。

本文将对统计学的重点知识进行归纳总结,帮助读者更好地理解和应用统计学。

一、概率论基础概率论是统计学的基础,它研究的是随机现象发生的概率。

在概率论中,我们常用到以下几个重要的概念和定理:1. 事件与概率:事件是指试验的某种结果,概率是该事件发生的可能性大小。

概率的基本性质包括非负性、规范性和可列可加性。

2. 条件概率与独立性:条件概率是指事件A在另一事件B已经发生的条件下发生的概率。

两个事件A和B是独立的,当且仅当它们的联合概率等于各自的概率的乘积。

3. 随机变量与概率分布:随机变量是指随机试验结果的数值表示。

离散随机变量的概率分布通过概率质量函数来描述,连续随机变量的概率分布则通过概率密度函数来描述。

4. 期望和方差:随机变量的期望是其取值与其概率的乘积的总和。

方差衡量了随机变量离其期望值的偏离程度。

二、抽样与估计抽样是指从总体中选择一部分个体进行观察和测量的过程。

统计学中,我们常使用的抽样方法包括简单随机抽样、系统抽样和分层抽样等。

1. 抽样分布和抽样误差:当样本容量足够大时,样本的统计量(如均值和比例)的分布接近正态分布。

抽样误差是样本统计量与总体参数之间的差异。

2. 置信区间:置信区间是对总体参数的一个范围估计。

一般情况下,置信区间使用样本统计量和抽样分布来计算。

3. 抽样分布的中心极限定理:中心极限定理指出,当样本容量足够大时,样本均值的分布接近正态分布,且均值的期望等于总体均值。

4. 参数估计:利用样本数据来估计总体参数的值。

常用的参数估计方法包括最大似然估计和最小二乘估计。

三、假设检验与推断假设检验是统计学中的一种方法,用于判断总体参数是否符合某个特定的假设。

推断统计学是基于样本数据对总体特征进行推断的过程。

1. 假设检验的步骤:假设检验的步骤包括建立原假设和备择假设、选择显著性水平、计算检验统计量和进行决策。

完整版)统计学知识点总结

完整版)统计学知识点总结

完整版)统计学知识点总结统计学知识点总结统计学是研究数据收集、分析和解释的学科。

以下是一些统计学的知识点总结:1.数据类型:统计学中有两种数据类型,即定量数据和定性数据。

定量数据可以用数字表示,如年龄、身高等;定性数据则描述了某些特征,如性别、颜色等。

2.数据收集:统计学使用多种方法收集数据,包括调查问卷、实验设计和观察等。

在数据收集过程中,要注意样本的代表性和随机性,以获得可靠的结果。

3.描述统计学:描述统计学用于总结和描述数据。

常用的描述统计学方法包括平均数、中位数、众数和标准差等。

这些统计量可以帮助我们理解数据的分布和变异程度。

4.推论统计学:推论统计学用于从样本数据推断总体特征。

常用的推论统计学方法包括假设检验和置信区间。

通过这些方法,我们可以根据样本数据对总体进行推断。

5.概率:概率是统计学的基础概念,用于描述事件发生的可能性。

统计学中的概率可以分为经典概率和统计概率两种类型。

6.线性回归:线性回归是一种常见的统计学方法,用于建立自变量与因变量之间的关系模型。

通过最小二乘法,可以找到最佳拟合线,从而预测因变量的取值。

7.假设检验:假设检验用于对统计推断进行验证。

通过比较观察到的样本数据与假设的总体参数,可以判断假设是否成立。

8.方差分析:方差分析用于比较多个样本之间的差异。

通过分析组间方差和组内方差之间的关系,可以得出是否存在显著差异。

9.抽样方法:抽样方法用于从总体中选择样本。

常用的抽样方法有简单随机抽样、分层抽样和系统抽样等。

总结以上可以看出,统计学是一门重要的学科,对数据分析和决策具有重要意义。

掌握统计学的基本知识和方法可以帮助我们更好地理解数据,并做出可靠的推断和预测。

参考资料:1] ___。

陳黎明。

& 陳應洪。

(2015)。

統計學。

___.2] Moore。

D。

S。

& McCabe。

G。

P。

(2005)。

___。

统计学基础知识归纳

统计学基础知识归纳
➢ 控制图的两种解释 第一种解释:
(1)若过程正常,即分布不变,则出现超出上限UCL的点概 率只有1%。左右;
(2)若过程异常,分布的中心会发生变化,其发生概率位 1%。的几十乃至几百倍。
第二种解释: (1)偶然因素引起质量的偶然波动,异常因素引起质量的
异常波动,偶然波动是不可避免的,对质量影响小,异常波动 对质量影响大,通过采取措施可以加以消除。
CL C B
LCL A
41
准则6:连续5点中有4点落在中心线同一侧的C区外 与准则5类似,这第5点可在任何处。本准则对于过程平均值的偏移也是较 灵敏的。出现本准则的现象也是由于过程参数u发生了变化。
UCL A B C
CL C B A
LCL
42
准则7:连续15点在C区中心线上下
出现本准则的现象是由于参数σ(过程标准差)变小。造成这种现
较常用,计算简单,操作 工人易于理解。
样本数量相等。
计算量大,控制线凹凸不 平(在特定条件下,控制 样本数量可以不等。 线可为直线)。
较常用,计算简单,操作 工人易于理解。
样本数量相等。
计算量大,控制线凹凸不 平(在特定条件下,控制 样本数量可以不等。 线工人易于理解。
用于控制一般的 ~ 过程。
用于控制关键的过程。
2、正态分布及其统计量 2-5 统计过程控制基本信息(SPC)
➢ 控制图的涵义
➢ 控制图示图
2、正态分布及其统计量 ➢ 控制图的定义
➢ 控制图的组成 中心线 上控制限 下控制限
2、正态分布及其统计量 ➢ 控制图的来源
将通常的正态分布图转个方向,使自变量的方向垂直向上, 将,
2、正态分布及其统计量
计算公式
xi= 1n

统计学原理知识点

统计学原理知识点

统计学原理知识点统计学是一门研究数据收集、分析、解释和呈现的学科,它在各个领域都有着重要的应用。

无论是社会科学、自然科学还是工程技术领域,统计学都扮演着至关重要的角色。

在统计学的学习过程中,我们需要掌握一些基本的知识点,这些知识点对于理解统计学的基本原理和方法至关重要。

首先,我们需要了解统计学的基本概念。

统计学是一门研究如何收集、整理、分析和解释数据的学科。

它包括描述统计和推断统计两个方面。

描述统计是对已有数据进行整理和总结,包括数据的集中趋势和离散程度的度量;推断统计则是根据样本数据对总体进行推断,包括参数估计和假设检验等内容。

其次,我们需要了解统计学中的数据类型。

在统计学中,数据可以分为定量数据和定性数据两种类型。

定量数据是可以用数字表示的数据,包括连续型数据和离散型数据;定性数据则是用文字描述的数据,通常表示某种特征或属性。

另外,我们还需要了解统计学中的概率理论。

概率是统计学的重要基础,它用来描述随机现象发生的可能性。

概率理论包括基本概率、条件概率、贝叶斯定理等内容,它们在统计推断和决策分析中有着重要的应用。

此外,统计学中的抽样技术也是我们需要掌握的重要知识点。

抽样技术是指从总体中抽取样本的方法,它包括简单随机抽样、分层抽样、整群抽样等多种抽样方法,对于保证样本的代表性和可靠性至关重要。

最后,我们还需要了解统计学中的统计推断方法。

统计推断是根据样本数据对总体进行推断的方法,包括参数估计和假设检验两种方法。

参数估计是利用样本数据对总体参数进行估计,包括点估计和区间估计两种方法;假设检验则是根据样本数据对总体参数进行假设检验,判断总体参数是否符合某种假设。

总的来说,统计学原理知识点涉及到了统计学的基本概念、数据类型、概率理论、抽样技术和统计推断方法等内容。

掌握这些知识点对于理解统计学的基本原理和方法至关重要,它们不仅对于学习统计学课程有着重要的意义,也对于日常生活和各个领域的应用有着重要的指导作用。

九年级数学统计知识点

九年级数学统计知识点

九年级数学统计知识点数学统计是数学的一个重要分支,主要研究数据的整理、分析和推断。

在九年级数学学习中,统计知识点是必不可少的。

本文将围绕九年级数学统计知识点展开论述,分别介绍数据收集、数据整理、数据分析以及概率等方面的内容。

一、数据收集数据收集是统计的基础步骤,主要包括调查、观察和实验三种方式。

调查是指通过问卷调查或面对面的访谈方式,收集样本数据;观察是指通过对现象或行为进行观察,收集数据;实验是指安排实验条件进行探究,收集数据。

在数据收集过程中,需要注意采样方法的选择、调查问题的设计以及数据的真实性和可靠性。

二、数据整理数据整理是对收集到的原始数据进行整理和归类的过程,主要包括数据的分类、数据的表格形式展示以及数据的图表形式展示等方面。

数据的分类是将数据按照某种特征或属性进行分类;数据的表格形式展示是将数据整理到表格中,便于对数据进行分析;数据的图表形式展示是通过直方图、折线图、饼图等方式将数据在平面上形象地展示出来。

三、数据分析数据分析是统计的核心内容,通过对数据进行整理、描述和推理,得出结论并进行预测。

数据分析方法主要有统计量的计算、数据的描述、相关性的分析和预测等。

统计量的计算包括众数、中位数、平均数等统计指标的计算;数据的描述是通过频数分布表、频数分布图等方式对数据进行描述;相关性的分析是研究两个或多个变量之间的关联程度;预测是通过对已有数据进行分析,运用数学模型对未来数据进行预测。

四、概率概率是统计学中的重要概念,用来描述随机事件发生的可能性。

在概率的学习中,主要包括样本空间、事件、概率计算以及概率的运算规则等方面。

样本空间是所有可能结果的集合;事件是样本空间的子集,表示某种特定的结果;概率计算是通过等可能性原则或频率计算来确定事件发生的可能性;概率的运算规则包括加法规则、乘法规则以及互斥事件的概率计算等。

综上所述,九年级数学统计知识点涉及到数据的收集、整理、分析以及概率的计算等方面。

统计学知识点汇总

统计学知识点汇总

统计学知识点汇总一、统计学统计学是一门关于数据资料的收集、整理、分析和推断的科学。

三、统计的特点(1)数量性:社会经济统计的认识对象是社会经济现象的数量方面,包括现象的数量表现、现象之间的数量关系和质量互变的数量界限。

(2)总体性:社会经济统计的认识对象是社会经济现象的总体的数量方面。

例如,国民经济总体的数量方面、社会总体的数量方面、地区国民经济和社会总体的数量方面、各企事业单位总体数量方面等等。

(3)具体性:社会经济统计的认识对象是具体事物的数量方面,而不是抽象的量。

这是统计与数学的区别。

(4)社会性:社会经济现象是人类有意识的社会活动,是人类社会活动的条件、过程和结果,社会经济统计以社会经济现象作为研究对象,自然具有明显的社会性。

四、统计工作过程(1)统计设计根据所要研究问题的性质,在有关学科理论的指导下,制定统计指标、指标体系和统计分类,给出统一的定义、标准。

同时提出收集、整理和分析数据的方案和工作进度等。

(2)收集数据统计数据的收集有两种基本方法,实验法和调查法。

(3)整理与分析描述统计是指对采集的数据进行登记、审核、整理、归类,在此基础上进一步计算出各种能反映总体数量特征的综合指标,并用图表的形式表示经过归纳分析而得到的各种有用的统计信息。

推断统计是在对样本数据进行描述的基础上,利用一定的方法根据样本数据去估计或检验总体的数量特征。

(4)统计资料的积累、开发与应用对于已经公布的统计资料需要加以积累,同时还可以进行进一步的加工,结合相关的实质性学科的理论知识去进行分析和利用。

五、统计总体的特点(1)大量性大量性是指构成总体的总体单位数要足够的多,总体应由大量的总体单位所构成,大量性是对统计总体的基本要求;(2)同质性同质性是指总体中各单位至少有一个或一个以上不变标志,即至少有一个具有某一共同标志表现的标志,使它们可以结合起来构成总体,同质性是构成统计总体的前提条件;(3)变异性变异性就是指总体中各单位至少有一个或一个以上变异标志,即至少有一个不同标志表现的标志,作为所要研究问题的对象。

初中统计知识点总结(全面)

初中统计知识点总结(全面)

初中统计知识点总结(全面)1. 什么是统计学?统计学是一门研究数据收集、分析和解释的学科,它涉及收集、整理、汇总和解释大量的数据。

2. 数据类型2.1 定性数据定性数据是指描述性质、品种、类别等特征的数据,无法进行数值度量,例如性别、颜色、职业等。

2.2 定量数据定量数据是以数值形式表示的数据,可以进行数值度量和计算,例如年龄、身高、成绩等。

3. 数据的收集和整理3.1 抽样调查抽样调查是从整体中选取一部分样本,以代表整体的方法,常用的抽样方法有随机抽样、分层抽样等。

3.2 数据整理数据整理是指将采集到的数据进行分类、归纳、整理,以便更好地展示和分析。

4. 数据的表示4.1 图表图表是用来直观地展示数据的一种方式,常见的图表包括折线图、柱状图、饼图等。

4.2 统计量统计量是对一组数据进行总结和描述的指标,常用的统计量有均值、中位数、众数、标准差等。

5. 数据的分析和解释5.1 中心趋势测度中心趋势测度是用来描述数据集中的趋势,常用的中心趋势测度有均值、中位数、众数等。

5.2 变异程度测度变异程度测度是用来描述数据的分散程度,常用的变异程度测度有极差、方差、标准差等。

5.3 相关性分析相关性分析是用来研究两个或多个变量之间的关系的方法,常用的相关性分析方法有相关系数、回归分析等。

6. 数据的应用6.1 判断和推断统计学可以帮助我们通过样本来判断和推断整体的情况,例如通过抽样调查得出全国某一项数据的估计值。

6.2 预测统计学可以通过对历史数据的分析预测未来的趋势和可能的结果。

7. 注意事项在进行统计学研究时,需要注意数据的采集方法、样本的选择以及分析方法的正确性,避免误导和错误的结论。

同时,也要注意保护数据的隐私和保密性。

以上是初中统计知识的总结,希望对你的学习有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学知识点汇总一、统计学统计学是一门关于数据资料的收集、整理、分析和推断的科学。

二、统计学的产生与发展(1)政治算术学派最早的统计学源于17世纪英国。

其代表人物是威廉·配第,代表作《政治算术》。

政治算术学派主张用大量观察和数量分析等方法对社会经济现象进行研究的主张,为统计学的发展开辟了广阔的前景。

其被称为“无统计学之名,有统计学之实”。

(2)记述学派亦称国势学派,创始人和代表人物是德国康令和阿亨瓦尔,主要使用文字记述方法对国情国力进行研究,其学科内容与现代统计学有较大差别。

因此被称为“有统计学之名,无统计学之实”。

(3)社会统计学派创始人和代表人物,德国恩格尔和梅尔。

该学派主张统计是实质性的研究社会现象的社会科学,认为统计学的研究对象是社会现象,目的在于明确社会现象内部的联系联系和相互关系。

(4)数理统计学派创始人是比利时统计学家凯特勒,他所着的代表作《社会物理学》等将概率论和统计方法引入社会经济方面的研究,其认为统计学是一门通用的方法论科学。

从19世纪中叶到20世纪中叶,数理统计学得到迅速发展。

到20世纪中期,数理统计学的基本框架已经形成,数理统计学派成为英美等国统计学界的主流。

三、统计的特点(1)数量性:社会经济统计的认识对象是社会经济现象的数量方面,包括现象的数量表现、现象之间的数量关系和质量互变的数量界限。

(2)总体性:社会经济统计的认识对象是社会经济现象的总体的数量方面。

例如,国民经济总体的数量方面、社会总体的数量方面、地区国民经济和社会总体的数量方面、各企事业单位总体数量方面等等。

(3)具体性:社会经济统计的认识对象是具体事物的数量方面,而不是抽象的量。

这是统计与数学的区别。

(4)社会性:社会经济现象是人类有意识的社会活动,是人类社会活动的条件、过程和结果,社会经济统计以社会经济现象作为研究对象,自然具有明显的社会性。

四、统计工作过程(1)统计设计根据所要研究问题的性质,在有关学科理论的指导下,制定统计指标、指标体系和统计分类,给出统一的定义、标准。

同时提出收集、整理和分析数据的方案和工作进度等。

(2)收集数据统计数据的收集有两种基本方法,实验法和调查法。

(3)整理与分析描述统计是指对采集的数据进行登记、审核、整理、归类,在此基础上进一步计算出各种能反映总体数量特征的综合指标,并用图表的形式表示经过归纳分析而得到的各种有用的统计信息。

推断统计是在对样本数据进行描述的基础上,利用一定的方法根据样本数据去估计或检验总体的数量特征。

(4)统计资料的积累、开发与应用对于已经公布的统计资料需要加以积累,同时还可以进行进一步的加工,结合相关的实质性学科的理论知识去进行分析和利用。

五、统计总体的特点(1)大量性大量性是指构成总体的总体单位数要足够的多,总体应由大量的总体单位所构成,大量性是对统计总体的基本要求;(2)同质性同质性是指总体中各单位至少有一个或一个以上不变标志,即至少有一个具有某一共同标志表现的标志,使它们可以结合起来构成总体,同质性是构成统计总体的前提条件;(3)变异性变异性就是指总体中各单位至少有一个或一个以上变异标志,即至少有一个不同标志表现的标志,作为所要研究问题的对象。

变异性是统计研究的重点。

六、标志与指标的区别与联系■区别:标志是说明总体单位特征的;指标是说明总体特征的。

标志中的品质标志不能用数量表示;而所有的指标都能用数量表示。

标志(指数量标志)不一定经过汇总,可直接取得;而指标(指数量指标)一定要经过汇总才能取得。

标志一般不具备时间、地点等条件;但完整的统计指标一定要讲明时间、地点、范围。

■联系:有些数量标志值汇总可以得到指标的数值。

既可指总体各单位标志量的总和,也可指总体单位数的总和。

数量标志与指标之间存在变换关系。

随着统计目的的改变,如果原来的总体单位变成了统计总体,则与之相对应的数量标志就成了统计指标。

七、统计指标体系统计指标体系是各种互相联系的指标群构成的整体,用以说明所研究的社会经济现象各方面互相依从和互相制约的关系。

八、相对指标相对指标又称统计相对数。

它是两个有联系的现象数值的比率,用以反映现象的发展程度、结构、强度、普遍程度或比例关系。

(1)结构相对指标结构相对指标是在对总体分组的基础上,以总体总量作为比较标准,求出各组总量占总体总量的比重,来反映总体内部组成情况的综合指标。

(2)比例相对指标比例相对指标是总体中不同部分数量对比的相对指标,用以分析总体范围内各个局部、各个分组之间的比例关系和协调平衡状况。

(3)比较相对指标比较相对指标是不同单位的同类现象数量对比而确定的相对指标,用以说明某一同类现象在同一时间内各单位发展的不平衡程度,以表明同类实物在不同条件下的数量对比关系。

(4)强度相对指标强度相对指标是两个性质不同但有一定联系的总量指标之间的对比,用来表明某一现象在另一现象中发展的强度、密度和普遍程度。

(5)计划完成程度相对指标计划完成程度相对指标是用来检查、监督计划执行情况的相对指标。

它以现象在某一段时间内的实际完成数与计划数对比,来观察计划完成程度。

九、权数指变量数列中各组标志值出现的次数,是变量值的承担者,反映了各组的标志值对平均数的影响程度十、中位数将总体各单位标志值按大小顺序排列后,指处于数列中间位置的标志值,用 表示十一、众数指总体中出现次数最多的变量值,用 表示,它不受极端数值的影响,用来说明总体中大多数单位所达到的一般水平。

十二、标志变异指标统计上用来反映总体各单位标志值之间差异程度大小的综合指标,也称做标志变动度。

十三、标准差——标准差是各个数据与其算术平均数的离差平方的算术平均数的开平方根,用 来表示;标准差的平方又叫作方差,用 来表示。

【例A 】某售货小组5个人,某天的销售额分别为440元、480元、520元、600元、750元,求该售货小组销售额的标准差。

解:eM 0M σ2σ()元558527905750600520480440==++++=X ()()()()元62.10956008055587505584402221==-++-=-=∑=ΛN XXNi iσ即该售货小组销售额的标准差为元。

十四、变异系数——各种变指标与其算术平均数之比。

一般用V 表示。

【例】某年级一、二两班某门课的平均成绩分别为82分和76分,其成绩的标准差分别为分和分,比较两班平均成绩代表性的大小。

解:一班成绩的标准差系数为:二班成绩的标准差系数为:因为,所以一班平均成绩的代表性比二班大。

十五、时间数列——把反映现象发展水平的统计指标数值,按照时间先后顺序排列起来所形成的统计数列,又称动态数列。

※时间数列的研究意义(1)能够描述社会经济现象的发展状况和结果(2)能够研究社会经济现象的发展速度、发展趋势和平均水平,探索社会经济现象发展变化的规律,并据以对未来进行统计预测;(3)能够利用不同的但互相联系的时间数列进行对比分析或相关分析。

十六、统计指数——统计指数是研究社会经济现象数量关系的变动状况和对比关系的一种特有的分析方法。

※指数的作用❑ 综合反映复杂现象总体变动的方向和程度; ❑ 分析复杂现象总体变动中因素变动的影响。

❑ 研究事物的长期变动趋势;❑研究平均指标变动及其受水平因素和结构因素变动的影响程度※统计指数的性质❑ 综合性;反映的不是个体事物的变化,而是综合反映不同性质的各种事物的总体变化。

❑ 平均性;统计指数所表示的综合变动是多种事物的平均变动,其数值是各个个体事物数量变化的代表值。

❑ 相对性;统计指数是同类现象不同时间、不同空间的数值之比,一般用相对数或比率﹪﹪﹪02.19100826.15100111=⨯=⨯=X V σσ﹪﹪﹪47.19100768.14100222=⨯=⨯=X V σσ21σσV V ≤形式表示。

代表性。

统计指数的编制一般以若干重要项目为代表,反映总体变化程度和变动趋势。

十七、总指数按其采用的指标形式不同分为:综合指数:复杂总体的两个相应的指标对比,采用综合公式计算。

平均指数:复杂总体中个体指数的平均数,一般采用算术平均数和加权平均数的方法计算。

⑴ 加权算术平均指数⑵ 加权调和平均指数【例2】计算甲、乙两种商品的销售量总指数∑∑∑∑==0000100010P Q P Q Q Q P Q P Q K Q1101110111/1P Q P P PQ P Q P Q K P ∑==∑∑∑()元﹪解:216082401040012.12682401040067.140025.11000010400111111111=-=-==+==∑∑∑∑P Q k P Q P Q k P Q K p p P基期报告期 甲 乙 件 千克 20 30 25 45 10 20 合计—5070——如何根据上述资料计算两种商品的价格总指数?解:十八、平均指数与综合指数的区别十九、可变构成指数(平均指标指数)——将两个不同时期或不同单位的同一经济内容的平均指标对比,所计算的动态对比关系的相对数,称为平均指标指数,亦称为可变构成指数。

)(850580%1163020302.1201.100001000010001万元=-=-∑=+⨯+⨯=∑==∑∑∑∑P Q P Q Q Q P Q P Q Q QP Q P Q K Q )(125870%1212.1301.12045250001110001110111万元=-=∑-=⨯+⨯+=∑==∑∑∑∑P Q Q Q P Q P Q Q Q PQ PQ P Q K P1111f f x x ∑∑=0000ff x x ∑∑=0011100011101f f xf f xf f x f fx x x ∑∑∑∑=∑∑∑∑= 可变构成指数(平均指标指数) =【例】已知某公司下属三个商场的职工人数和工资资料如下,分析该公司总平均工资水平的变动情况,并分析各商场工资水平及人数结构因素对其影响的程度和绝对数额。

商场平均工资(元)职工人数(人)工资总额(万元) ? ? ??? ? ? 甲 乙 丙 310 440 470 350 480 530 150 120 200 180 150 180 合计470510解:三个商场职工的平均工资:报告期平均工资:基期平均工资:职工平均工资变动额为:计算表明,三个商场职工的平均工资指数为%,即平均工资上升了%,平均工资上升额为元。

二十、指数体系——指经济上具有一定联系,并且具有一定的数量对等关系的三个或三个以上的指数所构成的整体。

※简单现象总体总量指标变动的两因素分析1X 0X 0f 1f 00f X 11f X 10fX ()元28.4114701000033.19000=⨯==∑∑ff X X ()元71.4045101000064.201101=⨯==∑∑ff X X ﹪:则总平均工资的变动为可变84.10928.41176.45101===X X K ()元48.4028.41176.45101=-=-X X※复杂现象总体总量指标变动的两因素分析※复杂现象总体总量指标变动的多因素分析二十一、函数关系——指变量之间存在着确定性依存关系。

相关文档
最新文档