高考高中数学:立体几何证明方法及例题汇总
高中数学必修二立体几何常考证明题汇总

新课标立体几何常考证明题汇总1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点的中点 (1) 求证:求证:EFGH EFGH 是平行四边形是平行四边形(2) 若BD=23,AC=2AC=2,,EG=2EG=2。
求异面直线。
求异面直线AC AC、、BD 所成的角和EG EG、、BD 所成的角。
所成的角。
证明:在ABD D 中,∵,E H 分别是,AB AD 的中点∴1//,2EH BD EH BD =同理,1//,2FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。
是平行四边形。
(2) 90(2) 90°° 30 30 °°考点:证平行(利用三角形中位线),异面直线所成的角2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。
的中点。
求证:(1)^AB 平面CDE;(2)平面CDE ^平面ABC 。
证明:(1)BC AC CE AB AE BE =üÞ^ý=þ同理,AD BD DE AB AE BE =üÞ^ý=þ又∵CE DE E Ç= ∴∴AB ^平面CDE(2)由()由(11)有AB ^平面CDE又∵AB Í平面ABC , ∴平面∴平面CDE ^平面ABC 考点:线面垂直,面面垂直的判定A H G F E D C B A E D B C 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点,的中点, 求证:求证: 1//AC 平面BDE 。
证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点的中点 ∴EO 为三角形1A AC 的中位线的中位线 ∴1//EO AC 又EO 在平面BDE 内,1AC 在平面BDE 外∴1//AC 平面BDE 。
高中数学立体几何证明题汇总

高中数学立体几何证明题汇总立体几何常考证明题1.已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点。
1)证明EFGH是平行四边形。
2)已知BD=23,AC=2,EG=2,求异面直线AC、BD所成的角和EG、BD所成的角。
2.如图,已知空间四边形ABCD中,BC=AC,AD=BD,E 是AB的中点。
1)证明AB垂直于平面CDE。
2)证明平面CDE垂直于平面ABC。
3.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点。
证明A1C平行于平面BDE。
4.已知三角形ABC中∠ACB=90,SA垂直于面ABC,AD垂直于SC。
证明AD垂直于面SBC。
5.已知正方体ABCD-A1B1C1D1,O是底面ABCD对角线的交点。
1)证明C1O平行于面AB1D1.2)证明AC1垂直于面AB1D1.6.正方体ABCD-A1B1C1D1中。
1)证明AC垂直于平面B1D1D。
2)证明BD1垂直于平面ACB1.7.正方体ABCD-A1B1C1D1中。
1)证明平面A1BD平行于平面B1DC。
2)已知E、F分别是AA1、CC1的中点,证明平面EB1D1平行于平面FBD。
8.四面体ABCD中,AC=BD,E、F分别为AD、BC的中点,且EF=AC/2,∠XXX。
证明BD垂直于平面ACD。
9.如图P是△ABC所在平面外一点,PA=PB,CB垂直于平面PAB,M是PC的中点,N是AB上的点,AN=3NB。
1)证明XXX垂直于AB。
2)当∠APB=90,AB=2BC=4时,求MN的长度。
10.如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是AB、AD、C1D1的中点。
证明平面D1EF平行于平面BDG。
11.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点。
1)证明A1C平行于平面BDE。
2)证明平面A1AC垂直于平面BDE。
12、已知矩形ABCD,PA垂直于平面ABCD,AB=2,PA=AD=4,E为BC的中点。
高考数学立体几何专题:证明

根据直线与平面平行的判定定理得到:
PA // EF , EF 平面 BEF 直线 PA // 平面 BEF 。
跟踪训练一:已知:在四棱柱 ABCD A1B1C1D1 中: E 为 C1D1 上一点, C1EB1 A1D1C1 。 求证:直线 B1E // 平面 A1 ADD1 。
跟踪训练一:已知:在三棱柱 ABC A1B1C1 中: O 为 AB 边上一点。 证明:直线 B1C1 // 平面 OBC 。
跟踪训练二:已知:在四棱柱 ABCD A1B1C1D1 中: E 为 BB1 的中点。 证明:直线 AD // 平面 A1 D1E 。
题型二:棱柱的所有侧棱都平行。
例题:已知:在三棱柱 ABC A1B1C1 中, O 为 A1C1 的中点。 证明:直线 AA1 // 平面 OBB1 。
例题一:已知:在四棱锥 P ABCD 中, E 为 AB 上一点, DEA EDC 。 证明:直线 CD // 平面 PAB 。
证明:如下图所示:
根据内错角相等,两条直线平行得到:
DEA EDC AB // CD 。
根据直线与平面平行的判定定理得到:
AB // CD , AB 平面 PAB 直线 CD // 平面 PAB 。
(4)直棱柱:所有侧面都为矩形;斜棱柱:所有侧面都是平行四边形。
举例:在直三棱柱 ABC A1B1C1 中:侧面 A1 ABB1 为矩形; 侧面 A1 ACC1 为矩形; 侧面 B1BCC1 为矩形。
举例:在斜三棱柱 ABC A1B1C1 中:侧面 A1 ABB1 为平行四边形; 侧面 A1 ACC1 为平行四边形; 侧面 B1BCC1 为平行四边形。
(2)两条有中点的线段没有公共端点,则两个中点的连线不是中位线。 得到中位线平行于底边,是否可以证明直线与平面平行?
(完整版)高中数学立体几何经典常考题型

高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明 ∵OB=OC,又∵∠ABC=,∴∠OCB=,∴∠BOC=.⊥∴CO AB.又PO⊥平面ABC,⊥OC⊂平面ABC,∴PO OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解 以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA=1,则PO=OB=OC=2,DA=1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD=(0,-1,-1),BC=(2,-2,0),BD=(0,-3,1).设平面BDC的一个法向量为n=(x,y,z),∴∴令y=1,则x=1,z=3,∴n=(1,1,3).设PD与平面BDC所成的角为θ,则sin θ===.即直线PD与平面BDC所成角的正弦值为.【类题通法】利用向量求空间角的步骤间标.第一步:建立空直角坐系第二步:确定点的坐标.线)坐标.第三步:求向量(直的方向向量、平面的法向量计夹(或函数值).第四步:算向量的角将夹转为间.第五步:向量角化所求的空角查关键错题规.第六步:反思回顾.看点、易点和答范【变式训练】 如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C.(2)求二面角EA1DB1的余弦值.(1)证明 由正方形的性质可知A1B1AB DC∥∥,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C A∥1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解 因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB,AD,AA1为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E=,A1D=(0,1,-1),由n1⊥A1E,n1⊥A1D得r1,s1,t1应满足的方程组(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1=(1,0,0),A1D=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角EA1DB1的余弦值为==.题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,所以AB⊥平面PAD,所以AB⊥PD.又PA⊥PD,AB∩PA=A,所以PD⊥平面PAB.(2)解 取AD的中点O,连接PO,CO.因为PA=PD,所以PO⊥AD.因为PO⊂平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO⊂平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD的一个法向量为n=(x,y,z),则即令z=2,则x=1,y=-2.所以n=(1,-2,2).又PB=(1,1,-1),所以cos〈n,PB〉==-.所以直线PB与平面PCD所成角的正弦值为.(3)解 设M是棱P A上一点,则存在λ∈0,1],使得AM=λAP.因此点M(0,1-λ,λ),BM=(-1,-λ,λ).因为BM⊄平面PCD,所以要使BM∥平面PCD,则BM·n=0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=.所以在棱P A上存在点M,使得BM∥平面PCD,此时=.应设,把要成立的作件结论当条,据此列方对断问题,先假存在【类题通法】(1)于存在判型的求解规围内”等.标,是否有定范的解程或方程组,把“是否存在”化问题转为“点的坐是否有解对问题,通常借助向量,引进参数,合已知和列出等式综结论,解出参数.(2)于位置探究型【变式训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠P AD=45°,E为P A的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.(1)证明 取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN===6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∥且EM=CD,四边形CDEM为平行四边形,∴EM CD∥∵⊂平面PBC,DE⊄平面PBC,∴DE CM.CM∴DE∥平面BPC.(2)解 由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8).假设AB上存在一点F使CF⊥BD,设点F坐标为(8,t,0),则CF=(8,t-6,0),DB=(8,12,0),由CF·DB=0得t=.又平面DPC的一个法向量为m=(1,0,0),设平面FPC的法向量为n=(x,y,z).又PC=(0,6,-8),FC=.由得即不妨令y=12,有n=(8,12,9).则cos〈n,m〉===.又由图可知,该二面角为锐二面角,故二面角F-PC-D的余弦值为.题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD 上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=.(1)证明:D′H⊥平面ABCD;(2)求二面角B-D′A-C的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD .又由AE =CF 得=,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO ==4.由EF ∥AC 得==.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH .又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF 的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB =(3,-4,0),AC =(6,0,0),AD′=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量,则即所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量,则即所以可取n =(0,-3,1).于是cos 〈m ,n 〉===-.sin 〈m ,n 〉=.因此二面角B -D ′A -C 的正弦值是.【类题通法】立体几何中的折叠问题,是翻折前后形中面位置系和度量系的化关键搞清图线关关变情况,一般地翻折后在同一平面上的性不生化还个质发变,不在同一平面上的性生化个质发变.【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A1OC;(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.(1)证明 在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC.又CD∥BE,所以CD⊥平面A1OC.(2)解 由已知,平面A1BE⊥平面BCDE,又由(1)知,BE⊥OA1,BE⊥OC,所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=.如图,以O为原点,OB,OC,OA1分别为x轴、y轴、z轴正方向建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,所以B,E,A1,C,得BC=,A1C=,CD=BE=(-,0,0).设平面A1BC的一个法向量n1=(x1,y1,z1),平面A1CD的一个法向量n2=(x2,y2,z2),平面A1BC与平面A1CD的夹角为θ,则得取n1=(1,1,1);得取n2=(0,1,1),从而cos θ=|cos〈n1,n2〉|==,即平面A1BC与平面A1CD夹角的余弦值为.。
高中数学-必修二-立体几何常考证明题汇总

新课标立体几何常考证实题汇总1、四边形 ABCD 是空间四边形,E,F,G,H 分别是边AB, BC,CD, DA 的中点 (1) 求证:EFGK 平行四边形(2)假设BD=2掷,AC=2 EG=2求异面直线 AC BD 所成的角和EG BD 所成的角.1证实:在 ABD 中,: E, H 分别是 AB, AD 的中点,EH //BD ,EH - BD21同理,FG//BD,FG — BD EH //FG,EH FG .♦・四边形 EFGH 是平行四边形. 2(2) 90 °30°考点:证平行(利用三角形中位线),异面直线所成的角2、如图,空间四边形 ABCD 中,BC AC,AD BD , E 是AB 的中点. (2)由(1)有AB 平面CDE考点:线面垂直,面面垂直的判定求证:(1) AB 平面CDE;(2)平面CDE 平面ABC .证实:(1) B C AC CE AB AE BE同理,AD BD AE BEDE AB又「 CE DE E••• AB 平面 CDE又••• AB平面ABC,・•・平面CDE 平面ABCA3、如图,在正方体ABCD A1B1C1D1中,E是AA1的中点,求证:AC//平面BDE.证实:连接AC交BD于O ,连接EO ,••• E为AA i的中点,.为AC的中点•• EO为三角形AAC的中位线EO//AC又EO在平面BDE内,AC在平面BDE外•• AC //平面BDE.考点:线面平行的判定4、ABC 中ACB 90o,SA 面ABC, AD SC,求证:AD 面SBC. 证实:: ACB90BC AC又SA 面ABC SA BCBC 面SACBC ADX SC AD,SC BC C AD 面SBC考点:线面垂直的判定5、正方体ABCD AB1C1D1, O是底ABCD对角线的交点求证:(1 ) C i O // 面AB1D1 ; (2) AC 面AB1D1 .证实:(1)连结AC1 ,设A1C1B1D1 01, 连结AO1••• ABCD AB1c l D1是正方体AACC1是平行四边形,AiCi//AC 且A1c l AC又O1,O 分别是AC〔,AC 的中点,,O i C i//AO 且01c l AO AOC i O i是平行四边形CiO// AO1, AO1面AB1D1 , C1O 面AB[D〔 . . C iO//面ABR(2) QCC1面A^CR CC1 B1D!又'A1.1 BiDi, B1D1面AC1C 即AC B i D1同理可证AC AD、又DC AD i D iAC 面ABR考点:线面平行的判定〔利用平行四边形〕,线面垂直的判定6、正方体ABCD A'B'C'D'中,求证:⑴ AC 平面B'D'DB;〔2〕BD1平面ACB’考点:线面垂直的判定7、正方体ABCD—A i B i C i D i 中.〔1〕求证:平面A i BD//平面B i D i C;〔2〕假设E、F分别是AA i, CC i的中点,求证:平面EB i D i//平面FBD .证实:〔i〕由B i B// DD i,得四边形BB i D i D是平行四边形,, B i D i // BD ,又BD 平面B i D i C, B i D i 平面B i D i C,BD //平面B i D i C.同理A i D //平面B i D i C.而A i DABD=D,平面A i BD//平面B i CD.(2)由BD// B i D i,得BD//平面EB i D i.取BB i 中点G, AE//B i G.从而得B i E // AG,同理GF//AD. ,AG// DF. ,B i E// DF. DF //平面EB i D i, 平面EB i D i//平面FBD.考点:线面平行的判定〔利用平行四边形〕8、四面体ABCD中,AC BD,E, F分别为AD,BC的中点,.且EF ——AC, 2BDC 900,求证:BD 平面ACD i 证实:取CD的中点G ,连结EG,FG,; E,F分别为AD, BC的中点,,EG //-AC 2i i_ _ _2_21_22FG 〃一BD,又.AC BD,,FG —AC,...在EFG 中,EG FG -AC EF2 2 2EG FG, •. BD AC,又BDC 900,即BD CD , AC CD CBD 平面ACD考点:线面垂直的判定,三角形中位线,构造直角三角形9、如图P是ABC所在平面外一点, PA PB,CB 平面PAB, M.是PC的中点,N是AB上的点,AN 3NB(i)求证:MN AB; (2)当APB 90°, AB 2BC 4时,求MN 的长.证实:(i)取PA的中点Q ,连结MQ,NQ , •「M是PB的中点,M MQ // BC , ••• CB 平面PAB ,, MQ 平面PAB・♦.QN是MN在平面PAB内的射影,取AB的中点D,连结PD , . PA PB,..PD AB ,又AN 3NB, .. BN NDB NQN //PD,.二QN AB ,由三垂线定理得MN ABo 1(2) ••• APB 90°, PA PB, PD -AB 2 , QN 1 , 「MQ2MQ -BC 1, MN .2 2考点:三垂线定理考点:线面平行的判定(利用三角形中位线) ,面面垂直的判定12、ABCD 是矩形,PA 平面ABCD, AB 2, PA AD 为BC的中点.(1)求证:DE 平面PAE; (2)求直线DP与平面PAE所成的角.证实:在ADE 中,AD2 AE2 DE2, AE DEPA 平面ABCD, DE 平面ABCD, PA DE又PA AE A, DE 平面PAE(2) DPE为DP与平面PAE所成的角在Rt PAD, PD 4垃,在Rt DCE 中,DE 2%/2在Rt DEP 中,PD 2DE , DPE 30°考点:线面垂直的判定,构造直角三角形平面PAB./. MQ10、如图,在正方体ABCD AB i C i D i中,E、F G分别是AB、AD、C1D1的中点.求证:平面DEF //平面BDG .证实:••• E、F分别是AB、AD的中点, EF // BD又EF 平面BDG , BD 平面BDG EF //平面BDGD1G旦EB 四边形D1GBE为平行四边形, D1E // GB又D1E 平面BDG , GB 平面BDG D1E //平面BDGEF DE E 平面D1EF //平面BDG考点:线面平行的判定(利用三角形中位线)11、如图,在正方体ABCD AB1c〔D^(中,E是AA的中点.(1)求证:AC 〃平面BDE ;(2)求证:平面A AC 平面BDE .证实:(1)设AC BD O,••• E、O分别是AA、AC的中点, AC // EO又AC 平面BDE , EO 平面BDE , A1C //平面BDE(2) ••• AA1 平面ABCD , BD 平面ABCD , AA1 BD又BD AC , ACAA1A BD平面AAC , BD 平面BDE , 平面BDE 平面AAC13、如图,在四^B 隹P ABCD 中,底面ABCD 是 DAB 且平面PAD 垂直于底面 ABCD.(1)假设G 为AD 的中点,求证:BG 平面PAD ; (2)求证:AD PB;(3)求二面角A BC P 的大小.证实:(1) ABD 为等边三角形且 G 为AD 的中点, BG AD又平面PAD 平面ABCD , BG 平面PAD(2) PAD 是等边三角形且 G 为AD 的中点,AD PG且 AD BG, PGBG G , AD 平面 PBG ,PB 平面 PBG , AD PB(3)由 AD PB , AD // BC, BC PB又 BG AD , AD // BC , BG BCPBG 为二面角A BC P 的平面角在 Rt PBG 中,PG BG, PBG 450,构造直角三角形,面面垂直的性质定理,二面角的求法(定义法)14、如图1,在正方体 ABCD AB 1c l D 1中,M 为CC 1的中点,AC 交BD 于点O,求证:A 1O 平面MBD .证实:连结 MO , AM ,DB± A 1A , DB ±AC,A 1AAC A••• DB ,平面 A ACC 1 ,而 A 1O 平面 A 1ACC 1DB ± A 1O .................................................... c3 cc 3 c设正方体梭长为 a ,那么A 1O—a , MO —a .2 4 29 2222在 RtA A 1C 1M AM -a • . AO MO A 〔M , . . AO OM4•. OMnDB=O,A1OL 平面 MBD.考点:线面垂直的判定,运用勾股定理寻求线线垂直 15、如图 2,在三棱锥 A —BCD 3, BC= AG AD= BD作BE! CD E 为垂足,作 AHL BE 于H .求证:AHL 平面BCD 证实:取 AB的中点F,连结 CF DF.. AC BC , CF AB .. AD BD , DF AB .又 CF I DF F , AB 平面 CDF. CD 平面 CDF CD AB .又 CD BE , BE AB B,CD 平面 ABE CD AH . .AH CD , AH BE , CD BE E ,••• AH 平面 BCD考点:线面垂直的判定16、证实:在正方体 ABCD — A 1B 1C 1D 1中,A I C,平面 BC I D考点:线面垂直的判定600且边长为a 的菱形,侧面PAD 是等边三角形,证实:连结AC 「 BDXACAC 为A i C 在平面AC 上的射影考点:线面垂直的判定,三垂线定理17、如图,过 S 引三条长度相等但不共面的线段SA 、SB 、SC,且/ ASB=/ASC=60°平面ABC ,平面BSC.证实••• SB=SA=SC , / ASB= / ASC=60 ° . . AB=SA=AC 取 BC 的中点 O,连 AO 、SO, 那么 AO ± BC , SO ± BC,工丁./AOS 为二面角的平面角, 设 SA=SB=SC=a ,又/ BSC=90° ,BC= V2 a, SO = 2 a,1 1AO 2=AC 2 —OC 2=a 2— 2a 2= 2 a 2, .•.SA 2=AO 2+OS 2, .•./ AOS=90 ° ,从而平面 ABC ± 平面BSC.考点:面面垂直的判定〔证二面角是直二面角〕BD AC同理可证A 1c BC 1AC 平面BC 1DDi Ci,/ BSC=90 ° ,求证:。
高中立体几何证明方法及例题

(一)平行与垂直关系的论证.口.高由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系; 级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。
1.线线、线面、面面平行关系的转化:面面平行性质:■ //[—■ a // b: =a,H ba //ba 二:∙, b - (I)=a // :•aa// :,b//∣.∙a 二:;,b :■a Ib = A公理4-——(a∕∕b,b ∕∕c■ a / /c)线线//线面平行判定线面//面面平行判定1面面//<---------------- < ----------------面面平行性质:■//T1=L // Γ∙a// :■a^β 汪:■- =b∖—■ a//b2.线线、a:_ :■=■ a// :线面、面面垂直关系的转化:三垂线定理、逆定理PAI r, AO为PO则a_OA= a_Poa_P0 = a IAO'↑/> a I Cf 1 r丿盘λ∕7a U BJ Ji=■1_:-l_a, l_ba, b 二:a b =O线面垂直判定1线面垂直定义I ic(Ija - I=l _a------ 面面垂直判定线面丄<面面垂直性质,推论2CcLB α∩β =b p=⅛a Am. a ~ ∣∙,,a I bCd7An 片a l?::=a面面垂直定义:■ =I,且二面角G -I -β]”成直二面角3. 平行与垂直关系的转化:ra S〕∖=⅛a /∕b b IffJ4. 应用以上“转化”的基本思路一一“由求证想判定,由已知想性质。
5. 唯一性结论:①过直线外一点*有且只有一条直线与已知直线平行'②过空间一点,有且只有一条直线与已知平面垂直③过空间一点,有且只有一个平面与已知直线垂直1. 三类角的定义:(1) 异面直线所成的角θ : 0°v θ≤ 90°(2) 直线与平面所成的角:0°≤θ ≤90°(3) 二面角:二面角的平面角θ , 0°v θ线线//占⅛—二~I八,a_-I ab zL面面平行判定2线面垂直性质2面面平行性质3韵面面/a//P] R浄丄Pa±3t J,应用中常用于”反>证法*同一法∙υ(定义法)线面垂直判定2a / ∕b''=⅛ b_Lfxa_Lu( J.面角的平面角aQ(三垂线定理Si)≤180 °22二 62. 三类角的求法:转化为平面角“一找、二作、三算” 即: (1)找出或作出有关的角;(2)证明其符合定义;(3)指出所求作的角;(4)计算大小。
高中数学立体几何知识点总结及例题

例 已3知、四棱锥P—ABCD,底面ABCD是菱形,
DAB 60, PD 平面ABCD,PD=AD, 点E为AB中点,点F为PD中点. (1)证明平面PED⊥平面PAB;
精品PPT
例4、
在四面体中ABCD,CB CD, AD BD ,且 E、F分别是AB、BD的中点,
AB=根号2,AF=1,M是线段EF的中点. (Ⅰ)求证AM∥平面BDE; (II)求证AM⊥平面BDF;
精品PPT
7、06(17)如图,在四棱锥 P ABCD 中, 底面为A直D角// B梯C形,,BAD 90
,
底 面ABCD,且
PA ,M、N分别为PC,PPBA的 中AD点.AB 2BC
(Ⅰ) 求证
;
PB DM
精品PPT
8、07(20) 在如图所示的几何体中,EA
精品PPT
例1、
7、正方体ABCD—A1B1C1D1中.(1)求证: 平面A1BD∥平面B1D1C;
(2)若E、F分别是AA1,CC1的中点,求证: 平面EB1D1∥平面FBD.
D1 A1
C1
B1 F
E D
G C
A
B
精品PPT
例2、
10、如图,在正方体 ABCD—A1B1C1D1 中,E、F、G分别是AB、AD、C1D1的中 点.
精品PPT
高考题练习
1.(本小题满分12分) 如图:已知直三棱柱ABC—A1B1C1,
AB=AC,F为棱BB1上一点,BF∶FB1= 2∶1,BF=BC=2a。 (I)若D为BC的中点,E为AD上不同 于A、D的任意一点,证明EF⊥FC1;
精品PPT
2.在棱长为4的正方体ABCD-A1B1C1D1中, O是正方形A1B1C1D1的中心,点P在棱 CC1上,且CC1=4CP.
立体几何证明方法汇总情况

⽴体⼏何证明⽅法汇总情况①中位线定理例题:已知如图:平⾏四边形ABCD 中,6BC =,正⽅形ADEF 所在平⾯与平⾯ABCD 垂直,G ,H 分别是DF ,BE的中点.(1)求证:GH ∥平⾯CDE ;(2)若2,CD DB ==,求四棱锥F-ABCD 的体积.练习:1、如下图所⽰:在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点。
求证:AC 1∥平⾯CDB 1;2. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底⾯边长为2,E 是棱BC 的中点。
(1)求证://1BD 平⾯DE C 1;(2)求三棱锥BC D D 1-的体积.3、如图,在四棱锥P ABCD -中,底⾯ABCD 是正⽅形,侧棱PD ⊥底⾯ABCD ,4,3PD DC ==,E 是PC 的中点。
(1)证明://PA BDE 平⾯;(2)求PAD ?以PA 为轴旋转所围成的⼏何体体积。
1C _GPABCDFEA B C D EF例2、如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平⾯ABCD .求证: AQ ∥平⾯CEP ;(利⽤平⾏四边形)练习:①如图,PA 垂直于矩形ABCD 所在的平⾯,E 、F 分别是AB 、PD 的中点。
求证:AF ∥平⾯PCE ;②如图,已知P 是矩形ABCD 所在平⾯外⼀点,ABCD 平⾯PD ⊥,M ,N 分别是AB ,PC 中点。
求证://PAD MN 平⾯PABMN③如图,已知AB ⊥平⾯ACD ,DE//AB ,△ACD 是正三⾓形,AD = DE = 2AB ,且F 是CD 的中点.⑴求证:AF//平⾯BCE ;④、已知正⽅体ABCD-1111D C B A ,O 是底ABCD 对⾓线的交点.求证://1O C ⾯11AB D .A BCDEF③⽐例关系PB 、BC 上的点,且NCBN PM BM =,求例题3、P 是平⾏四边形ABCD 平⾯外⼀点,M 、N 分别是证:MN//平⾯PCD(利⽤⽐例关系)练习:如图,四边形ABCD 为正⽅形,⊥EA 平⾯ABCD ,//EF AB ,=4,=2,=1AB AE EF .(Ⅱ)若点M 在线段AC 上,且满⾜14CM CA =, 求证://EM 平⾯FBC ;④⾯⾯平⾏-线⾯平⾏例题4、如图,矩形ABCD 和梯形BEFC 所在平⾯互相垂直,BE//CF ,∠BCF=∠CEF=?90,AD=3,EF=2。
高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。
1. 线线、线面、面面平行关系的转化:αβαγβγ//,//I I ==⇒⎫⎬⎭a b a b面面平行性质⎫⎬⎪⎭⎪2. 线线、线面、面面垂直关系的转化:a a OA a PO a PO a AO⊂⊥⇒⊥⊥⇒⊥αα在内射影则面面垂直判定 线面垂直定义l a l a⊥⊂⇒⊥⎫⎬⎭αα面面垂直性质,推论2αβαββα⊥=⊂⊥⇒⊥⎫⎬⎪⎭⎪I b a a b a , αγβγαβγ⊥⊥=⇒⊥⎫⎬⎪⎭⎪I a a面面垂直定义αβαβαβI =--⇒⊥⎫⎬⎭l l ,且二面角成直二面角线线∥线面⊥面面∥线面垂直判定2面面平行判定2线面垂直性质2面面平行性质3a bab//⊥⇒⊥⎫⎬⎭ααaba b⊥⊥⇒⎫⎬⎭αα//aa⊥⊥⇒⎫⎬⎭αβαβ//αβαβ//aa⊥⊥⎫⎬⎭a4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。
”5. 唯一性结论:1. 三类角的定义:(1)异面直线所成的角θ:0°<θ≤90°(2)直线与平面所成的角:0°≤θ≤90°(3)二面角:二面角的平面角θ,0°<θ≤180°2. 三类角的求法:转化为平面角“一找、二作、三算”即:(1)找出或作出有关的角;(2)证明其符合定义;(3)指出所求作的角;(4)计算大小。
【典型例题】(一)与角有关的问题例1. (1)如图,E 、F 分别为三棱锥P —ABC 的棱AP 、BC 的中点,PC =10,AB =6,EF =7,则异面直线AB 与PC 所成的角为( )A. 60°B. 45°C. 30°D. 120°解:取AC 中点G ,连结EG 、FG ,则EG PC FG AB∥∥,==1212∴∠EGF 为AB 与PC 所成的角在△EGF 中,由余弦定理,cos ∠··EGF EG FG EF EG FG =+-=+-⨯⨯=-222222253725312∴AB 与PC 所成的角为180°-120°=60°∴选A(2)已知正四棱锥以棱长为1的正方体的某个面为底面,且与该正方体有相同的全面积,则这一正四棱锥的侧棱与底面所成的角的余弦值为( )A B C D ....131336332626解:设正四棱锥的高为,斜高为h h h '=+⎛⎝ ⎫⎭⎪2212由题意:1241121612222⨯⨯+⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪⎪+=⨯h∴h 26=∴侧棱长PB h OB=+=+⎛⎝⎫⎭⎪=222622262∴∠cos PBOOBPB===222621313∴选A()如图,在正方体中,为上的一个定点,为3111111ABCD A B C D P A D Q-A B E F CD EF11上的任意一点,、为上任意两点,且的长为定值,有下列命题:①点P到平面QEF的距离为定值;②直线PQ与平面PEF所成的角为定值;③二面角P—EF—Q的大小为定值;④三棱锥P—QEF的体积为定值其中正确命题的序号是___________。
高中立体几何证明方法和例题

1. 空间角与空间距离在高考的立体几何试题中.求角与距离是必考查的问题.其中最主要的是求线线角、线面角、面面角、点到面的距离.求角或距离的步骤是“一作、二证、三算”.即在添置必要的辅助线或辅助面后.通过推理论证某个角或线段就是所求空间角或空间距离的相关量.最后再计算。
2. 立体几体的探索性问题立体几何的探索性问题在近年高考命题中经常出现.这种题型有利于考查学生归纳、判断等方面的能力.也有利于创新意识的培养。
近几年立体几何探索题考查的类型主要有:(1)探索条件.即探索能使结论成立的条件是什么?(2)探索结论.即在给定的条件下命题的结论是什么。
对命题条件的探索常采用以下三种方法:(1)先观察.尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件.再证明充分性;(3)把几何问题转化为代数问题.探索出命题成立的条件。
对命题结论的探索.常从条件出发.再根据所学知识.探索出要求的结论是什么.另外还有探索结论是否存在.常假设结论存在.再寻找与条件相容还是矛盾。
(一)平行与垂直关系的论证由判定定理和性质定理构成一套完整的定理体系.在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系.前者是判定定理.后者是性质定理。
1. 线线、线面、面面平行关系的转化:⇒a c//)αβαγβγ//,// ==⇒⎫⎬⎭a b a b面面平行性质线面平行性质a ab a b////αβαβ⊂=⇒⎫⎬⎪⎭⎪ 面面平行性质1αβαβ////a a ⊂⇒⎫⎬⎭面面平行性质αγβγαβ//////⎫⎬⎭⇒2. 线线、线面、面面垂直关系的转化:a a OA a PO a PO a AO⊂⊥⇒⊥⊥⇒⊥αα在内射影则面面垂直判定线面垂直定义l a l a⊥⊂⇒⊥⎫⎬⎭αα面面垂直性质,推论2αβαββα⊥=⊂⊥⇒⊥⎫⎬⎪⎭⎪ b a a b a , αγβγαβγ⊥⊥=⇒⊥⎫⎬⎪⎭⎪ a a面面垂直定义αβαβαβ =--⇒⊥⎫⎬⎭l l ,且二面角成直二面角3. 平行与垂直关系的转化:面面∥线面垂直判定2 面面平行判定2 线面垂直性质2面面平行性质3a b a b //⊥⇒⊥⎫⎬⎭ααa b a b ⊥⊥⇒⎫⎬⎭αα//a a ⊥⊥⇒⎫⎬⎭αβαβ//αβαβ//a a ⊥⊥⎫⎬⎭a4. 应用以上“转化”的基本思路——“由求证想判定.由已知想性质。
高考数学-立体几何证明方法总结及经典3例

高考数学-立体几何证明方法总结及经典3例例1:平行类证明【平行类证明方法总结】线线平行的证明方法:三线间平行的传递性,三角形中位线,平行四边形对边平行且相等,梯形的上下底平行,棱柱圆柱的侧棱平行且相等,两平行面被第三面所截交线平行,成比例(相似)证平行等等。
线面平行的证明方法:面外线与面内线平行,两面平行则面内一线与另面平行等等面面平行的证明方法:面内相交线与另面平行则面面平行,三面间平行的传递性等等。
【例】正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥面BCE.证法一:如图(1),作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN,因为面ABCD∩面ABEF=AB,则AE=DB. 又∵AP=DQ, ∴PE=QB.又∵PM ∥AB ∥QN, ∴AE PE AB PM =,BD BQDC QN =. ∴DCQNAB PM =. ∴PM ∥QN.四边形PMNQ 为平行四边形. ∴PQ ∥MN.又∵MN ⊂面BCE ,PQ ⊄面BCE , ∴PQ ∥面BCE. 证法二:如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC, ∴QKAQQB DQ =.又∵正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ , ∴PEAPQK AQ =.则PQ ∥EK.∴EK ⊂面BCE ,PQ ⊄面BCE. ∴PQ ∥面BCE. 例2:垂直类证明 【垂直类证明方法总结】证垂直的几种方法:勾股定理、等腰(边)三角形三线合一、菱形对角线、矩形(含正方形)、90o 、相似三角形(与直角三角形)、圆直径对的圆周角、平行线、射影定理(三垂线定理)、线面垂直、面面垂直等【例】如图所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交SB SC SD ,,于E F G ,,. 求证:AE SB ⊥,AG SD ⊥.证明:∵SA ⊥平面ABCD ,∴SA BC ⊥. ∵AB BC ⊥, ∴BC ⊥平面SAB . 又∵AE ⊂平面SAB , ∴BC AE ⊥. ∵SC ⊥平面AEFG , ∴SC AE ⊥. ∴AE ⊥平面SBC . ∴AE SB ⊥.同理证AG SD ⊥. 例3:向量法解立体几何类 【量法解立体几何类公式总结】 基本公式若),,(),,,(222111z y x b z y x a ==,则①212121z z y y x x b a ++=⋅ ;②222222212121||,||z y x b z y x a ++=++=;③212121z z y y x x b a ++=⋅④222222212121212121,cos z y x z y x z z y y x x b a ++⋅++++>=<夹角公式:||||cos 2121n n n n ⋅=θ距离公式:||||n n AB CD d == 【例】已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4. (1)证明:PQ ⊥平面ABCD ; (2)求异面直线AQ 与PB 所成的角; (3)求点P 到面QAD 的距离.简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(0222)AQ PB =--=-,,,,,,1cos 3AQ PB AQ PB AQ PB<>==,. 所求异面直线所成的角是1arccos 3.(3)由(2)知,点(022(22220)(004)D AD PQ -=--=-,,,,,,,,设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩,,n n 得200x z x y +=+=⎪⎩,,取x =1,得(112)-,n =.点P 到平面QAD 的距离22PQ d ==n n.立体几何证明经典习题平行题目1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥面BDQ.2、如图(1),在直角梯形P1DCB中,P1D//BC,CD⊥P1D,且P1D=8,BC=4,DC=46,A是P1D的中点,沿AB把平面P1AB折起到平面PAB的位置(如图(2)),使二面角P—CD—B成45°,设E、F分别是线段AB、PD的中点.求证:AF//平面PEC;垂直题目3、如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求证:BC⊥平面PAC.4、如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD向量法解立体几何题目5、在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,EA⊥EB1.已知2AB=,BB1=2,BC=1,∠BCC1=3π.求二面角A-EB1-A1的平面角的正切值.立体几何证明经典习题答案1、证明:如图,连结AC交BD于点O.∵ABCD是平行四边形,∴A O=O C.连结O Q,则O Q在平面BDQ内,且O Q是△APC的中位线,∴PC∥O Q.∵PC在平面BDQ外,∴PC∥平面BDQ.2、证明:如图,设PC中点为G,连结FG,1CD=AE,则FG//CD//AE,且FG=2∴四边形AEGF是平行四边形∴AF//EG,又∵AF⊄平面PEC,EG⊂平面PEC,∴AF//平面PEC3、证明:在平面PAC内作AD⊥PC交PC于D.∵平面PAC⊥平面PBC,且两平面交于PC,AD⊂平面PAC,且AD⊥PC,∴AD⊥平面PBC.又∵BC⊂平面PBC,∴AD⊥BC.∵PA⊥平面ABC,BC⊂平面ABC,∴PA ⊥BC . ∵AD ∩PA =A , ∴BC ⊥平面PAC .4、证明:取AB 的中点F,连结CF ,DF . ∵AC BC =,∴CF AB ⊥.∵AD BD =,(等腰三角形三线合一) ∴DF AB ⊥. 又CFDF F =,∴AB ⊥平面CDF . ∵CD ⊂平面CDF ,∴CD AB ⊥. 又CD BE ⊥,BEAB B =,∴CD ⊥平面ABE ,CD AH ⊥. ∵AH CD ⊥,AH BE ⊥, CD BE E =,∴ AH ⊥平面BCD .5、以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系.由于BC =1,BB 1=2,AB BCC 1=3π,∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、AB 1(0,2,0)、102c ⎫-⎪⎪⎝⎭,、1302C ⎫⎪⎪⎝⎭,,.设0E a ⎫⎪⎪⎝⎭,且1322a -<<, 由EA ⊥EB 1,得10EA EB =,即3202a a ⎛⎛⎫--- ⎪ ⎪⎝⎝⎭,, 233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭, 即12a =或32a =(舍去).故1022E ⎛⎫ ⎪ ⎪⎝⎭,,. 由已知有1EA EB ⊥,111B A EB ⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA 的夹角.因11(00B A BA ==,122EA ⎛=-- ⎝ 故11112cos 3EA B A EA B A θ==,即tan θ=。
高中数学立体几何常考证明题汇总

立体几何选择题:一、三视图考点透视:33①能想象空间几何体的三视图,并判断(选择题).②经过三视图计算空间几何体的体积或表面积.③解答题中也可能以三视图为载体考察证明题和计算题 .xx1. 一空间几何体的三视图如图2 所示,44该几何体的体积为 12,正视图侧视图8 53则正视图中 x 的值为( )A. 5B. 4C. 3D. 2俯视图2. 在一个几何体的三视图中,正视图和俯视图如下图,则相应的侧视图能够为图 2D )(3.如图 4,已知一个锥体的正视图(也称主视图)别为 3, 4, 6,则该锥体的体积是 4 .,左视图(也称侧视图)和俯视图均为直角三角形,且面积分正视图左视图俯视图 图 44.某四棱锥的三视图如图 1-1 所示,该四棱锥的表面积是 ( B)A .32B . 16+ 16 2C . 48D . 16+ 322二、直观图掌握直观图的斜二测画法:①平行于两坐标轴的平行关系保持不变;②平行于 y 轴的长度为本来的一半, x 轴不变;③新坐标轴夹角为45°或 135°。
1、利用斜二侧画法画水平搁置的平面图形的直观图,获得以下结论,此中正确的选项是()A .正三角形的直观图仍旧是正三角形.B . 平行四边形的直观图必定是平行四边形.C .正方形的直观图是正方形. D.圆的直观图是圆 2、如图,梯形A 1B 1C 1D 1 是一平面图形ABCD 的直观图( 斜二测) ,若 A 1D 1∥ O 1y 1,A 1B 1∥C 1D 1, A 1B 1= 2, C 1D 1= 3,A 1D 1= 1,则梯形ABCD 的面积是()A .10B . 5C . 52D .10 2三、表面积和体积不要求记忆,但要会使用公式。
审题时分清“表面积”和“侧面积” 。
( 1)圆柱、圆锥、圆台的侧面积,球的表面积公式。
( 2)柱、锥、台体,球体的体积公式。
( 3)正方体的内切球和外接球:内切球半径? 外接球直径?( 4)扇形的面积公式 S1lr1 r2 弧长公式 lr221、一个直角三角形的两条直角边分别是3 和 4,以它的斜边为轴旋转所得的旋转体的表面积为()A . 84B . 144 C. 36 D . 245152、若圆锥的高是底面半径和母线的等比中项,则称此圆锥为“黄金圆锥”。