例用Excel回归工具进行多元线性回归专题培训课件
基于Excel的地理数据分析多元线性回归分析

基于Excel 的地理数据分析多元线性回归分析多元线性回归分析是一元线性回归分析的推广,或者说一元线性回归分析是多元线性回归分析的特例。
掌握了一元线性回归分析,就不能学习多元线性回归分析方法了。
利用Excel进行多元线性回归与一元线性回归的过程大体相似,操作上有些细节方面的微妙差别。
不过,对于多元线性回归,统计检验的内容相对复杂。
下面以一个简单的实例予以说明。
【例】某省工业产值、农业产值、固定资产投资对运输业产值的影响分析。
通过产值的回归模型,探索影响交通运输业的主要因素。
我们想要搞清楚的是,在工业、农业和固定资产投资等方面,究竟是哪些因素直接影响运输业的发展。
数据来源于李一智主编的《经济预测技术》。
原始数据来源不详。
§2.1 多元回归过程2.1.1 常规分析在Excel 中,多元线性回归大体上可以分为如下几个步骤实现。
第一步,录入数据。
结果如下图所示(图2-1-1)。
第二步,计算过程。
比较简单,分为如下若干个步骤。
(1)打开回归对话框。
沿着主菜单的“工具(T)”→“数据分析(D)…”路径打开(2)“数据分析”对话框,选择“回归”,然后“确定”,弹出“回归”分析选项框,选项框的各(3)选项与一元线性回归基本相同(图2-1-2)。
具体说明如下。
(4)(2)输入选项。
首先,将光标置于“Y值输入区域(Y)”中。
从图2-1-1所示的F1单元(5)格起,至F19止,选中用作因变量全部数据连同标志,这时“Y值输入区域(Y)”的数据区域(6)中立即出现“$F$1:$F$19”。
然后,将光标置于“X值输入区域(X)”中。
从图2-1-1所示的C1单元格起,至E19止,选中用作自变量全部数据连同标志,这时“X值输入区域(X)”中立即出现“$C$1:$E$19”——当然,也可以直接在“X值输入区域(X)”中手动输入地址为“$C$1:$E$19”的单元格范围。
注意,与一元线性回归的设置一样,这里数据范围包括数据标志“工业产值x1”、“农业产值x2”、“固定资产投资x3”和“运输业产值y”。
EXCEL在多元线性回归分析中的应用

EXCEL 在多元线性回归分析中的应用高 平/文在一元线性回归分析中,重点放在了用模型中的一个自变量X 来估计因变量Y 。
实际上,由于客观事物的联系错综复杂,一个因变量的变化往往受到两个或多个自变量的影响。
为了全面揭示这种复杂的依存关系,准确地测定它们的数量变动,提高预测和控制的精确度,就要考虑更多的自变量,建立多元回归模型。
多元回归分析的原理和方法同一元线性回归分析基本相同,但有两个不同点:1.不能用散点图来表示变量之间的关系。
2.多元回归的计算难度要远大于简单线性回归,且变量越多,计算越复杂。
但应用EXCEL 来完成计算将变得简单和轻松。
以下图中的数据为例: 多元线性回归的EXCEL 数据分析操作方法首先单击工具栏,在弹出的菜单中选择数据分析 ,在数据分析工具的选项框中选中 回归 ,然后在输入、输出选项以及有关的选项框中进行适当的选择,必须注意在进行自变量X 的输入时要按照已经确定的各个自变量的顺序把所有自变量的单元格引用范围一起放在X 值的输入区域内。
见下图:!27!点击 确定按钮,即可得到线性回归分析的结果。
见下图:!!28根据上图中的显示结果,可直接写出二元线性回归方程:Y i=b0+b1X1i+b2X2i=-51.3127+1. 4053x1i+6.3823x2ib1表示在促销费用固定时,商店的规模大小每增加1平方米,年销售额平均增加1.4053万元;b2表示在商店的规模大小固定时,促销费用每增加1万元,年销售额平均增加6.3823万元。
这里b1即商店的规模大小的回归系数比一元线性回归方程中的回归系数b= 1.6246小,是因为一元线性回归方程只考虑了商店的规模大小对年销售额的影响,忽略了促销费用这一很重要的因素,在商店的规模大小的影响中渗入了促销费用的影响。
这里的截距b0=-51.3127万元,与一元线性回归方程中的截距+99.01万元有很大的不同,因为X1=0和X2 =0都不在X1、X2的样本取值范围之内,因而对截距项的解释要非常谨慎。
使用Excel进行多元线性回归分析PPT文档共29页

使用Excel进行多元线性回 归分析
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
excel多元回归模型

excel多元回归模型
Excel可以使用数据分析工具包中的回归分析功能进行多元回归分析。
使用该功能需要满足以下条件:
1. 数据符合多元线性回归的基本假设,即各自变量之间相互独立,且对应因变量的关系为线性关系。
2. 数据已输入Excel表格中,并按照自变量和因变量分列排列。
3. 安装并启用数据分析工具包。
下面是使用Excel进行多元回归的步骤:
步骤1:打开Excel表格,并打开“数据分析工具包”。
步骤2:选择“回归”功能,并点击“确定”。
步骤3:在“回归”对话框中填写以下信息:
i. 输入数据范围:选择自变量和因变量所在的单元格区域。
ii. 选择输出选项:选择需要计算的统计量,例如ANOVA表、系数、标准误差、t值等。
iii. 选择自变量:选择包含自变量的单元格区域。
iv. 选项:选择是否需要新增截距项,以及是否需要输出残差。
步骤4:点击“确定”按钮,Excel会自动对输入数据进行多元回归分析,并在新的工作表中显示回归结果的各项统计量。
需要注意的是,在进行多元回归分析之前,需要进行基本的数据清洗和预处理,例如删除缺失数据、处理异常值等。
此外,在解释回归结果时,还需注意各系数的显著性和实际意义。
利用Excel进行线性回归分析

利用Excel进行线性回归分析————————————————————————————————作者: ————————————————————————————————日期:ﻩ文档内容1.利用Excel进行一元线性回归分析2. 利用Excel进行多元线性回归分析1.利用Excel进行一元线性回归分析第一步,录入数据以连续10年最大积雪深度和灌溉面积关系数据为例予以说明。
录入结果见下图(图1)。
图1第二步,作散点图如图2所示,选中数据(包括自变量和因变量),点击“图表向导”图标;或者在“插入”菜单中打开“图表(H)”。
图表向导的图标为。
选中数据后,数据变为蓝色(图2)。
图2点击“图表向导”以后,弹出如下对话框(图3):图3在左边一栏中选中“XY散点图”,点击“完成”按钮,立即出现散点图的原始形式(图4):灌溉面积y(千亩)01020304050600102030灌溉面积y(千亩)图4第三步,回归观察散点图,判断点列分布是否具有线性趋势。
只有当数据具有线性分布特征时,才能采用线性回归分析方法。
从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。
回归的步骤如下:1. 首先,打开“工具”下拉菜单,可见数据分析选项(见图5):图5用鼠标双击“数据分析”选项,弹出“数据分析”对话框(图6):图62.然后,选择“回归”,确定,弹出如下选项表(图7):图7进行如下选择:X 、Y 值的输入区域(B1:B11,C1:C11),标志,置信度(95%),新工作表组,残差,线性拟合图(图8-1)。
或者:X 、Y 值的输入区域(B2:B11,C2:C11),置信度(95%),新工作表组,残差,线性拟合图(图8-2)。
注意:选中数据“标志”和不选“标志”,X 、Y 值的输入区域是不一样的:前者包括数据标志:最大积雪深度x (米) 灌溉面积y (千亩)后者不包括。
这一点务请注意(图8)。
图8-1包括数据“标志”图8-2不包括数据“标志”3.再后,确定,取得回归结果(图9)。
用EXCEL进行生产函数的多元线性回归分析

用EXCEL进行生产函数的多元线性回归分析一、相关函数EXCEL电子制表系统中函数的语法分为函数名和参数两部分,参数用圆括号括起来,之间以逗号隔开。
参数可以为单元格区域、数组、函数、常数(逻辑型、数值型等)。
进行回归分析时,主要采用线性回归函数LINEST,辅以使用索引取值INDEX与四舍五入ROUND函数。
1、线性回归函数LINEST。
使用最小二乘法对已知数据进行最佳直线拟合,并返回描述此直线的数组。
因为此函数返回数值数组,所以必须以数组公式的形式输入。
该函数的功能为:运算结果返回一线性回归方程的参数,即当已知一组混合成本为Y 因变量序列值、N组Xi有关自变量因素的数量序列值时,函数返回回归方程的系数bi(i=1,2…n单位变动成本)和常数a(固定成本或费用)。
多元回归方程模型则为:y=b1x1+b2X2……+bnXn+a语法LINEST(known_y's,known_x's,const,stats)Known_y's 是关系表达式 y = mx + b 中已知的 y 值集合。
∙如果数组 known_y's 在单独一列中,则 known_x's 的每一列被视为一个独立的变量。
∙如果数组 known-y's 在单独一行中,则 known-x's 的每一行被视为一个独立的变量。
Known_x's 是关系表达式 y = mx + b 中已知的可选 x 值集合。
∙数组 known_x's 可以包含一组或多组变量。
如果只用到一个变量,只要 known_y's 和 known_x's 维数相同,它们可以是任何形状的区域。
如果用到多个变量,则known_y's 必须为向量(即必须为一行或一列)。
∙如果省略 known_x's,则假设该数组为 {1,2,3,...},其大小与 known_y's 相同。
EXCEL在多元回归市场分析中的应用

4 y 与 x2 0.001
表-5 说明解释变量的重要程度依次为 x4、x1、x3、x2。以
可决系数最大的回归方程
为基
表-6
回归模型
础,采用逐步回归法,在 Excel 的数据分析工具中依次将 解释变量 x1、x3、x2 引入该模型,结果如表-6 所示。
x1 -2.53
t
x3
x2
0.27 1.14
R2
理论与方法
EXCEL
在 多 元 回 归笪
谢
市家 发
场 分 析 中 的 应 用
在众多市场分析方法中回归分析法是其中很重要而且常用的一种方 法。回归分析法是对现象之间进行依存关系分析的专门方法。因为市场活 动中的经济现象都有其产生的原因,都要受到一定因素的制约,都是一定 原因的必然结果。所以在市场分析中利用回归分析法就是要找出影响和 决定预测对象变化的有关市场因素,把有关的市场因素作为原因,把预测 对象作为结果,从而发现它们之间因果变化的一般规律,为诸如企业、政 府部门、投资者等各类用户提供决策支持。
(整理)excel一元及多元线性回归实例.

野外实习资料的数理统计分析一元线性回归分析一元回归处理的是两个变量之间的关系,即两个变量X和Y之间如果存在一定的关系,则通过观测所得数据,找出两者之间的关系式。
如果两个变量的关系大致是线性的,那就是一元线性回归问题。
对两个现象X和Y进行观察或实验,得到两组数值:X1,X2,…,Xn和Y1,Y2,…,Yn,假如要找出一个函数Y=f(X),使它在X=X1,X2, …,Xn时的数值f(X1),f(X2), …,f(Xn)与观察值Y1,Y2,…,Yn趋于接近。
在一个平面直角坐标XOY中找出(X1,Y1),(X2,Y2),…,(Xn,Yn)各点,将其各点分布状况进行察看,即可以清楚地看出其各点分布状况接近一条直线。
对于这种线性关系,可以用数学公式表示:Y = a + bX这条直线所表示的关系,叫做变量Y对X的回归直线,也叫Y对X 的回归方程。
其中a为常数,b为Y对于X的回归系数。
对于任何具有线性关系的两组变量Y与X,只要求解出a与b的值,即可以写出回归方程。
计算a与b值的公式为:式中:为变量X的均值,Xi为第i个自变量的样本值,为因变量的均值,Yi为第i个因变量Y的样本值。
n为样本数。
当前一般计算机的Microsoft Excel中都有现成的回归程序,只要将所获得的数据录入就可自动得到回归方程。
得到的回归方程是否有意义,其相关的程度有多大,可以根据相关系数的大小来决定。
通常用r来表示两个变量X和Y之间的直线相关程度,r为X和Y的相关系数。
r值的绝对值越大,两个变量之间的相关程度就越高。
当r为正值时,叫做正相关,r为负值时叫做负相关。
r 的计算公式如下:式中各符号的意义同上。
在求得了回归方程与两个变量之间的相关系数后,可以利用F检验法、t检验法或r检验法来检验两个变量是否显著相关。
具体的检验方法在后面介绍。
2.多元线性回归分析一元回归研究的是一个自变量和一个因变量的各种关系。
但是客观事物的变化往往受到多种因素的影响,即使其中有一个因素起着主导作用,但其它因素的作用也是不可忽视的。
多元线性回归分析PPT模板

=1−
SSE
SST
σ e2i
= 1 − σ(y −y)2
i
(6-42)
10
由判定系数的定义可知,R2的大小取决于残差平
2
方和σ e2i 在总离差平方和σ(yi − y) 中所占的比
重。在样本容量一定的条件下,总离差平方和与
自变量的个数无关,而残差平方和则会随着模型
中自变量个数的增加而不断减少,至少不会增加。
回归系数对应的自变量对因变量的影响是否显著,以
便对自变量的取舍做出正确的判断。一般来说,当发
现某个自变量的影响不显著时,应将其从模型中删除,
这样才能做到以尽可能少的自变量达到尽可能高的拟
合优度。
17
多元模型中回归系数的检验同样采用t检验,其原理和基本
步骤与一元回归模型中的t检验基本相同,此处不再赘述。
因此,R2是自变量个数的非递减函数。
11
在一元线性回归模型中,所有模型包含的变量个
数都相同,如果所使用的样本容量也一样,判定
系数便可以直接作为评价拟合优度的尺度。然而
在多元线性回归模型中,各回归模型所含的变量
的个数未必相同,以R2的大小作为衡量拟合优度
的尺度是不合适的。
12
因此,在多元回归分析中,人们更常用的评价指标是所谓
( ′ )是一个(k + 1) × (k + 1)的对称矩阵,根据标准假定1,
rank() = k + 1,k + 1个变量之间不存在高度的线性相关,
因此其逆矩阵存在。式(6-40)两边同时除以( ′ ),可以
得到回归系数最小二乘估计的一般形式:
= ( ′ )−1 ′
(6-41)
回归分析(excel)PPT课件

数据降维
通过回归分析找出影响 因变量的关键因素,实
现数据降维。
控制和优化
通过回归分析建立控制 和优化模型,实现生产
过程的控制和优化。
02
Excel回归分析工具介绍
线性回归工具的使用
使用步骤
选择数据,点击“数据”选项卡中的“数据分析”按钮,选择“回归”工具, 在弹出的对话框中设置因变量和自变量,点击“确定”即可得到线性回归分析 结果。
注意事项
多项式回归分析适用于非线性关系,但需要注意阶数的选择,过高或过低的阶数 都可能导致模型拟合不良。
逻辑回归工具的使用
使用步骤
选择数据,点击“数据”选项卡中的“数据分析”按钮,选 择“回归”工具,在弹出的对话框中设置因变量和自变量, 同时选择“Logistic回归”复选框,点击“确定”即可得到逻 辑回归分析结果。
避免过拟合和欠拟合
过拟合
过拟合是指模型在训练数据上表现良好 ,但在测试数据上表现较差的情况。为 了防止过拟合,可以使用正则化、增加 数据量、简化模型等方法。
VS
欠拟合
欠拟合是指模型在训练数据上表现较差, 无法捕捉到数据的内在规律和特征。为了 解决欠拟合问题,可以尝试增加模型复杂 度、调整模型参数等方法。
回归分析(excel)ppt课件
• 回归分析简介 • Excel回归分析工具介绍 • 回归分析的步骤 • 回归分析的案例 • 回归分析的注意事项
01
回归分析简介
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变量关系, 找出影响因变量的重要因素,并 计算出它们之间的最佳拟合直线 或曲线。
Excel进行多元线性回归与相关分析的方法和步骤

Excel如何进行多元线性回归与相关分析在农业、生物等领域的许多实际问题中,常常要研究多个变量之间的关系。
例如,研究病虫害发生量与温度、湿度、降水量等的关系,小麦产量、亩穗数、穗粒数、秘粒重、千粒重之间的关系等。
研究一个依变量与多个自变量的回归关系称为多元回归分析(multiple regression analysis),研究多个变量之间的相关关系称为多元相关分析(analysis of multiple correlation)。
在多元回归关系中,最简单的就是多元线性回归(multiple liner regression),或称为复回归(multiple regression)。
多元线性回归分析是研究一个依变量与多个自变量线性回归关系的,它包括:依据实际观察值建立回归方程、各自变量显著性测验、建立最优线性回归方程、确立各自变量相对重要性等。
一、多元线性回归方程设y与m个变量x1,z,…,xa存在线性关系,则y对x1,xz,…,xm的m元线性回归方程为Y=b0+b1x1+b2x2+…+b m x m式中,b0为回归常数项,当x,x1,…,xm皆取0时的y值,如果b0有实际意义,则b0表示y的起始值,但在多元回归中,b0一般很难确定其专业意义,它仅是调节回归响应面的一个参数;b:(i=1,2,…,m)称为自变量x,对依变量y的偏回归系数(partial regression coefficient), 表示除自变量x,以外的其余m-1个自变量都固定不变时,自变量X1.每改变一个单位数,依变量y平均变化的数值,当b,>0时,自变量x,每增加一个单位数,依变量y平均增加b.个单位数;当b.<0时,自变量x,每增加一个单位数,依变量y平均减少b个单位数。
例1某地连续12年测定一代三化螟高峰期(y,以5月1日为第一天)与1月份雨量(x1,mm)2月份雨量(x2,mm)3月份上旬平均温度(x3)和3月份中旬旬平均温度(x4)的关系,得结果如下表。
例用Excel回归工具进行多元线性回归PPT学习教案

第9页/共27页
用Excel回归工具 进行多元线性回归
例子 5.7 的多元线性回归方程: 年用电量 =760315.3-11232.1总人口
+0.02046GDP+0.08232全社会投资+0.1865消费品零售 总额 尽管判断系数R2=0.9836非常接近1,与样本数据拟合 很好,但这个回归方程还是有点问题。例如,假设检 验表明四个变量中只有一个变量全社会投资通过t-检验, 而且总人口的回归系数还是负数的,说明人口每增加1 万人,用电量反而会减少11232.1万度,有悖于常理。 造成上述问题的根本原因是四个变量中 有两个变量两 两相关的。。
用excelexcel回归工具进行多元线回归工具进行多元线性回归性回归excel例子选取用电量为因变量总人口gdp全社会投资消费品零售总额四个变量为自变量用19902006年17个样本数据进行多元线性回归
例用Excel回归工具进行多元线性回归
会计学
1
用Excel回归工具 进行多元线性回归
例子 选取用电量为因变量,总人口、GDP、 全社会投资、消费品零售总额四个变量为 自变量,用1990-2006年17个样本数据进行 多元线性回归。
第15页/共27页
第16页/共27页
第17页/共27页
第18页/共27页
用Excel回归工具 进行多元线性回归
在回归方程来看…总人口的系数仍 旧是负数,而且总人口的P值 依然 远大于显著性水平0.05.
重新相关系数分析 ,依然发现
第19页/共27页
第20页/共27页
第21页/共27页
第1页/共27页
用Excel回归工具 进行多元线性回归
例子 首先打开“例子5.1 散点图添加趋势线 进行简单线性回归”文件。单击菜单“工 具”|
EXCEL多元回归分析PPT(共46张PPT)

用Excel计算描述统计量 用Excel进行相关分析 用Excel进行回归分析
用Excel计算描述统计量
用函数计算描述统计量 描述统计菜单项的使用
一、用函数计算描述统计量
常用的描述统计量有众数、中位数 、算术平均数、调和平均数、几何 平均数、极差、四分位差、标准差 、方差、标准差系数等。下面介绍 如何用函数来计算描述统计量。
单击任一空白单元格, 回车后得几何平均数为14.
产量与需水量之间的关系:抛物线 用Excel进行回归分析 ②R Square(复测定系数R2):用来说明自变量解释因变量变差的程度,以测定因变量y的拟合效果。 (1)手工输入函数名称及参数
输入“=STDEV(B2:B11)/AVERAGE( 6313,表示二者之间的关系是正相关。
用Excel进行回归分析
第二步:单击“确定”按钮,弹出“回归”对话框,在“Y值输入区域”输入 $B$1:$B$11;在“X值输入区域”输入$C$1:$C$11,在“输出选项”选 择“$E$1”,如下图所示。
多元回归分析
用Excel进行回归分析
第三步:单击确定按钮,得回归分析结果如下图所示。
回车后得偏度系数为-0. 回车后得调和平均数为1. 第二步:在array1中输入B3:B10,在array2中输入C3:C10,即可在对话框下方显示出计算结果为0. 用Excel进行回归分析 Excel回归分析工具的输出结果包括3个部分: (1)手工输入函数名称及参数 (1)手工输入函数名称及参数 输入“=HARMEAN(B2:B11)”, 方差分析表的主要作用是通过F检验来判断回归模型的回归效果。 用Excel进行回归分析 用Excel进行回归分析 ②R Square(复测定系数R2):用来说明自变量解释因变量变差的程度,以测定因变量y的拟合效果。 Excel进行回归分析同样分函数和回归分析宏两种形式,其提供了9个函数用于建立回归模型和预测,这9个函数分别是: 项,在“数据分析”项中选择“相关系数”,弹出 第一步:单击“工具”菜单,选择“数据分析” 如果按2/10,即从30个数据中去掉最大的一个值和最小的一个值,再求平均数。 函数的一般导入过程为:点菜单“插入”; 6.TREND计算线性回归线的趋势值 用Excel计算描述统计量 回车后得峰度系数为0.
Excel数据分析工具进行多元回归分析

E x c e l数据分析工具进行多元回归分析(总11页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除使用Excel数据分析工具进行多元回归分析使用Excel数据分析工具进行多元回归分析与简单的回归估算分析方法基本相同。
但是由于有些电脑在安装办公软件时并未加载数据分析工具,所以从加载开始说起(以Excel2010版为例,其余版本都可以在相应界面找到)。
点击“文件”,如下图:在弹出的菜单中选择“选项”,如下图所示:在弹出的“选项”菜单中选择“加载项”,在“加载项”多行文本框中使用滚动条找到并选中“分析工具库”,然后点击最下方的“转到”,如下图所示:在弹出的“加载宏”菜单中选择“分析工具库”,然后点击“确定”,如下图所示:加载完毕,在“数据”工具栏中就出现“数据分析”工具库,如下图所示:给出原始数据,自变量的值在A2:I21单元格区间中,因变量的值在J2:J21中,如下图所示:假设回归估算表达式为:试使用Excel数据分析工具库中的回归分析工具对其回归系数进行估算并进行回归分析:点击“数据”工具栏中中的“数据分析”工具库,如下图所示:在弹出的“数据分析”-“分析工具”多行文本框中选择“回归”,然后点击“确定”,如下图所示:弹出“回归”对话框并作如下图的选择:上述选择的具体方法是:在“Y值输入区域”,点击右侧折叠按钮,选取函数Y数据所在单元格区域J2:J21,选完后再单击折叠按钮返回;这过程也可以直接在“Y值输入区域”文本框中输入J2:J21;在“X值输入区域”,点击右侧折叠按钮,选取自变量数据所在单元格区域A2:I21,选完后再单击折叠按钮返回;这过程也可以直接在“X值输入区域”文本框中输入A2:I21;置信度可选默认的95%。
在“输出区域”如选“新工作表”,就将统计分析结果输出到在新表内。
为了比较对照,我选本表内的空白区域,左上角起始单元格为K10.点击确定后,输出结果如下:第一张表是“回归统计表”(K12:L17):其中:Multiple R:(复相关系数R)R2的平方根,又称相关系数,用来衡量自变量x 与y之间的相关程度的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回归
用Excel回归工具 进行多元线性回归
• 例子 选取用电量为因变量,总人口、GDP、 全社会投资、消费品零售总额四个变量为 自变量,用1990-2006年17个样本数据进行 多元线性回归。
用Excel回归工具 进行多元线性回归
• 例子 首先打开“例子5.1 散点图添加趋势 线进行简单线性回归”文件。单击菜单 “工具”|
共线性。
用Excel回归工具 进行多元线性回归
• 可以看出,消费品零售额和GDP之间相关系数达 到0.9881,存在很强的相关性。消费品零售总额 与总人口之间的相关系数0.9558 也比较高。。。
• 删除消费品零售总额这个因素,重新回归
用Excel回归工具 进行多元线性回归
• 在回归方程来看…总人口的系数仍旧是负数,而 且总人口的P值 依然远大于显著性水平0.05.
• 重新相关系数分析 ,依然发现
用Excel回归工具 进行多元线性回归
• 可以看出,总人口和GDP之间相关系数达到 0.928113,存具 进行多元线性回归
• 回归的效果 非常良好 。。。 • 上述自变量之间的两两相关性的现象,称为多重
用Excel回归工具 进行多元线性回归
• 例子 5.7 的多元线性回归方程: • 年用电量 =760315.3-11232.1总人口
+0.02046GDP+0.08232全社会投资+0.1865消费品零 售总额 • 尽管判断系数R2=0.9836非常接近1,与样本数据拟合 很好,但这个回归方程还是有点问题。例如,假设检验 表明四个变量中只有一个变量全社会投资通过t-检验, 而且总人口的回归系数还是负数的,说明人口每增加1 万人,用电量反而会减少11232.1万度,有悖于常理。 • 造成上述问题的根本原因是四个变量中 有两个变量两 两相关的。。
• “数据分析“,如下图所示。
用Excel回归工具 进行多元线性回归
• 弹出数据分析工具选择窗口,如下图所示。
用Excel回归工具 进行多元线性回归
• 选定“回归”,出现参数选择窗口,如下图所示。
用Excel回归工具 进行多元线性回归
• 选择“Y值输入区域”,“X值输入区域”,是 否包括标志(标题)以及置信度(置信水平)。 选择“输出区域”定位单元格。单击“确定”, 出现下图所示的回归分析结果。