excel多元线性回归操作步骤

合集下载

Excel关于求解一元及多元线性回归方程 图解详细

Excel关于求解一元及多元线性回归方程  图解详细

Excel求解一元线性回归方程步骤(图解详细)1.开始-程序-Microsoft Excel,启动Excel程序。

2.Excel程序启动后,屏幕显示一个空白工作簿。

3.选定单元格,在单元格内输入计算数据。

4.选中输入数据,点击“图表向导”按钮。

5.弹出图表向导对话窗,点击XY散点图,选择平滑线散点图,点击下一步。

6.选择系列产生在:列,点击下一步。

7.在图表标题中输入“硝基苯标准曲线”,数值(X)轴输入“硝基苯浓度”,数值(Y)轴输入“HPLC峰面积”。

此外还可以点击“坐标轴”,“网格线”,“图例”,“数据标志”下拉菜单,对其中选项进行选择。

8.点击完成后,即可得到硝基苯的标准曲线图。

9.将鼠标移至图表工作曲线上,单击鼠标右键,选择“添加趋势线”。

10.在“类型”选项中选择“线性”,“选项”中选择“显示公式”,“显示R平方值”,单击确定。

11.单击确定后即可得到附有回归方程的一元线性回归曲线。

12.至此,利用“图表向导”制作回归方程的操作步骤完毕。

利用Excel中“图表向导”制作标准曲线,使用者仅需按照向导说明填入相关信息即可完成图表的制作。

方法简单,适合对Excel了解不多的人员,如果你对Excel函数有一定的了解,那么你可以利Excel函数编制程序完成回归方程的计算。

4.4.2.2通过编制Excel程序计算一元线性回归方程1.打开一个新工作簿,以“一元线性回归方程”为文件名存盘。

2.单击插入,选择名称-定义。

3.在弹出的“定义名称”对话窗中“名称”栏输入“a”,“引用位置”栏输入“=$E$4”,然后按“添加”按钮;再在“名称”栏输入“b”,“引用位置”栏输入“=$E$3”,按“添加”按钮,依次输入下列内容,最后单击确定。

“名称”栏输入内容“引用位置”栏输入内容a =$E$4b =$E$3f =$G$4n =$G$3rf =$G$6rxy =$E$5x =$A$3:$A$888y =$B$3:$B$888aa=$G$2yi1 =$E$12yi2 =$E$134.完成命名后,在相关单元格内输入下列程序内容。

如何用EXCEL做数据线性拟合和回归分析

如何用EXCEL做数据线性拟合和回归分析

如何用EXCEL做数据线性拟合和回归分析使用Excel进行数据线性拟合和回归分析的过程如下:一、数据准备:1. 打开Excel,并将数据输入到一个工作簿中的其中一列或行中。

2.确保数据已经按照自变量(X)和因变量(Y)的顺序排列。

二、线性拟合:1. 在Excel中选择一个空白单元格,键入“=LINEST(Y数据范围,X数据范围,TRUE,TRUE)”。

-Y数据范围是因变量的数据范围。

-X数据范围是自变量的数据范围。

-最后两个参数设置为TRUE表示计算截距和斜率。

2. 按下“Ctrl +Shift + Enter”键以在该单元格中输入数组公式。

3. Excel将返回一列值,其中包括线性回归方程的系数和其他有关回归模型的统计信息。

-第一个值为截距项。

-第二个值为斜率项。

三、回归分析:1. 在Excel中选择一个空白单元格,键入“=LINEST(Y数据范围,X数据范围,TRUE,TRUE)”。

2. 按下“Ctrl + Shift + Enter”键以在该单元格中输入数组公式。

3. Excel将返回一列值,其中包括线性回归方程的系数和其他有关回归模型的统计信息。

-第一个值为截距项。

-第二个值为斜率项。

-第三个值为相关系数(R^2)。

-第四个值为标准误差。

四、数据可视化:1.选中自变量(X)和因变量(Y)的数据范围。

2.点击“插入”选项卡中的“散点图”图表类型。

3.选择一个散点图类型并插入到工作表中。

4.可以添加趋势线和方程式以可视化线性拟合结果。

-右键单击散点图上的一个数据点,选择“添加趋势线”。

-在弹出的对话框中选择线性趋势线类型。

-勾选“显示方程式”和“显示R^2值”选项以显示线性回归方程和相关系数。

五、解读结果:1.截距项表示在自变量为0时,因变量的预测值。

2.斜率项表示因变量随着自变量变化而变化的速率。

3.相关系数(R^2)表示自变量对因变量的解释力,范围从0到1,越接近1表示拟合的越好。

4.标准误差表示拟合线与实际数据之间的平均误差。

用EXCEL做线性回归分析

用EXCEL做线性回归分析

用EXCEL做线性回归分析线性回归分析是一种常用的统计方法,用于研究两个变量之间的线性关系。

它可以帮助我们理解和预测两个变量之间的关系,并且可通过趋势线进行展示。

在Excel中,线性回归分析可以通过使用内置的回归工具函数来实现。

本文将介绍如何使用Excel进行线性回归分析。

首先,我们需要准备好要进行分析的数据。

在Excel中,我们可以将这些数据输入到一个工作表中的列中,每个变量占一列。

例如,我们有一组x变量和一组y变量的数据,可以将x变量输入到A列,y变量输入到B列。

确保每个数据点都位于一个单独的行。

接下来,我们将使用Excel的数据分析工具进行线性回归分析。

要启用数据分析工具,我们需要先打开Excel的选项菜单。

在选项菜单中,选择工具选项卡,然后点击加载项。

在加载项窗口中勾选"分析工具箱",点击确定以启用该功能。

现在,我们可以使用数据分析工具进行线性回归分析了。

在Excel的数据选项卡上,点击数据分析按钮。

在弹出的对话框中,选择回归,然后点击确定。

Excel将生成回归分析的结果,并将其输出到一个新的工作表中。

在该工作表中,我们可以看到回归方程的系数、截距和相关系数等信息。

此外,Excel还会生成一个散点图,并绘制出回归线。

通过解读回归分析结果,我们可以得到一些关键的信息。

首先,回归方程的系数表示变量之间的关系。

系数越大,表明变量之间的关系越强。

此外,截距表示当自变量为0时,因变量的取值。

相关系数表示两个变量之间的相关性,相关系数值越接近于1或-1,相关性越强。

除了回归分析结果,我们还可以通过散点图来可视化数据。

在这个散点图中,我们可以看到每个数据点的位置以及回归线的趋势。

通过观察散点图,我们可以更好地理解变量之间的关系。

在实际应用中,线性回归分析可以帮助我们预测未来值,控制其他因素的影响,并评估因素对因变量的影响程度。

例如,我们可以利用线性回归分析来研究广告投入与销售业绩之间的关系,以了解广告对销售额的影响。

Excel数据分析工具进行多元回归分析

Excel数据分析工具进行多元回归分析

使用Excel数据分析工具进行多元回归分析使用Excel数据分析工具进行多元回归分析与简单的回归估算分析方法基本相同。

但是由于有些电脑在安装办公软件时并未加载数据分析工具,所以从加载开始说起(以Excel2010版为例,其余版本都可以在相应界面找到)。

点击“文件”,如下图:在弹出的菜单中选择“选项”,如下图所示:在弹出的“选项”菜单中选择“加载项”,在“加载项”多行文本框中使用滚动条找到并选中“分析工具库”,然后点击最下方的“转到”,如下图所示:在弹出的“加载宏”菜单中选择“分析工具库”,然后点击“确定”,如下图所示:加载完毕,在“数据”工具栏中就出现“数据分析”工具库,如下图所示:给出原始数据,自变量的值在A2:I21单元格区间中,因变量的值在J2:J21中,如下图所示:假设回归估算表达式为:试使用Excel数据分析工具库中的回归分析工具对其回归系数进行估算并进行回归分析:点击“数据”工具栏中中的“数据分析”工具库,如下图所示:在弹出的“数据分析”-“分析工具”多行文本框中选择“回归”,然后点击“确定”,如下图所示:弹出“回归”对话框并作如下图的选择:上述选择的具体方法是:在“Y值输入区域”,点击右侧折叠按钮,选取函数Y数据所在单元格区域J2:J21,选完后再单击折叠按钮返回;这过程也可以直接在“Y值输入区域”文本框中输入J2:J21;在“X值输入区域”,点击右侧折叠按钮,选取自变量数据所在单元格区域A2:I21,选完后再单击折叠按钮返回;这过程也可以直接在“X值输入区域”文本框中输入A2:I21;置信度可选默认的95%。

在“输出区域”如选“新工作表”,就将统计分析结果输出到在新表内。

为了比较对照,我选本表内的空白区域,左上角起始单元格为K10.点击确定后,输出结果如下:第一张表是“回归统计表”(K12:L17):其中:Multiple R:(复相关系数R)R2的平方根,又称相关系数,用来衡量自变量x与y之间的相关程度的大小。

如何使用Excel进行多元统计分析和回归模型

如何使用Excel进行多元统计分析和回归模型

如何使用Excel进行多元统计分析和回归模型随着数据分析和统计学在各个领域的应用越发广泛,Excel作为一种常用的办公软件,也能提供一些强大的数据分析功能。

在本文中,我们将介绍如何使用Excel进行多元统计分析和回归模型。

一、多元统计分析多元统计分析是研究多个自变量对因变量的影响以及它们之间的关系的一种方法。

Excel提供了一些内置函数和工具,可以帮助我们进行多元统计分析。

1. 描述性统计分析描述性统计分析是将数据呈现为有意义的统计数字,包括平均值、中位数、方差等。

在Excel中,可以使用SUM、AVERAGE、MEDIAN等函数来计算这些统计数字。

2. 相关性分析相关性分析用于衡量两个或多个变量之间的关系强度。

Excel提供了CORREL函数,可以计算两个变量之间的相关系数。

相关系数的取值范围为-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无相关。

3. 回归分析回归分析用于建立自变量与因变量之间的数学关系模型。

在Excel 中,可以使用内置的回归工具进行回归分析。

首先,选择需要分析的自变量和因变量的数据,然后打开“数据”选项卡,选择“数据分析”并选择“回归”。

填写相应的参数,并点击“确定”即可生成回归结果报告。

二、回归模型回归模型用于预测因变量在给定自变量的情况下的数值。

Excel提供了多种回归模型,包括线性回归、多项式回归、指数回归等。

1. 线性回归模型线性回归是最常用的回归模型,适用于自变量与因变量呈线性关系的情况。

在Excel中,可以使用内置的线性回归工具进行线性回归分析。

选择自变量和因变量的数据,打开“数据”选项卡,选择“数据分析”并选择“回归”。

在参数设置中选择线性回归,并点击“确定”生成回归结果报告。

2. 多项式回归模型多项式回归适用于自变量与因变量呈多项式关系的情况。

在Excel 中,可以使用数据分析工具中的“回归”选项进行多项式回归分析。

选择自变量和因变量的数据,打开“数据”选项卡,选择“数据分析”并选择“回归”。

利用Excel进行线性回归分析

利用Excel进行线性回归分析

利用Excel进行线性回归分析————————————————————————————————作者: ————————————————————————————————日期:ﻩ文档内容1.利用Excel进行一元线性回归分析2. 利用Excel进行多元线性回归分析1.利用Excel进行一元线性回归分析第一步,录入数据以连续10年最大积雪深度和灌溉面积关系数据为例予以说明。

录入结果见下图(图1)。

图1第二步,作散点图如图2所示,选中数据(包括自变量和因变量),点击“图表向导”图标;或者在“插入”菜单中打开“图表(H)”。

图表向导的图标为。

选中数据后,数据变为蓝色(图2)。

图2点击“图表向导”以后,弹出如下对话框(图3):图3在左边一栏中选中“XY散点图”,点击“完成”按钮,立即出现散点图的原始形式(图4):灌溉面积y(千亩)01020304050600102030灌溉面积y(千亩)图4第三步,回归观察散点图,判断点列分布是否具有线性趋势。

只有当数据具有线性分布特征时,才能采用线性回归分析方法。

从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。

回归的步骤如下:1. 首先,打开“工具”下拉菜单,可见数据分析选项(见图5):图5用鼠标双击“数据分析”选项,弹出“数据分析”对话框(图6):图62.然后,选择“回归”,确定,弹出如下选项表(图7):图7进行如下选择:X 、Y 值的输入区域(B1:B11,C1:C11),标志,置信度(95%),新工作表组,残差,线性拟合图(图8-1)。

或者:X 、Y 值的输入区域(B2:B11,C2:C11),置信度(95%),新工作表组,残差,线性拟合图(图8-2)。

注意:选中数据“标志”和不选“标志”,X 、Y 值的输入区域是不一样的:前者包括数据标志:最大积雪深度x (米) 灌溉面积y (千亩)后者不包括。

这一点务请注意(图8)。

图8-1包括数据“标志”图8-2不包括数据“标志”3.再后,确定,取得回归结果(图9)。

用EXCEL进行生产函数的多元线性回归分析

用EXCEL进行生产函数的多元线性回归分析

用EXCEL进行生产函数的多元线性回归分析一、相关函数EXCEL电子制表系统中函数的语法分为函数名和参数两部分,参数用圆括号括起来,之间以逗号隔开。

参数可以为单元格区域、数组、函数、常数(逻辑型、数值型等)。

进行回归分析时,主要采用线性回归函数LINEST,辅以使用索引取值INDEX与四舍五入ROUND函数。

1、线性回归函数LINEST。

使用最小二乘法对已知数据进行最佳直线拟合,并返回描述此直线的数组。

因为此函数返回数值数组,所以必须以数组公式的形式输入。

该函数的功能为:运算结果返回一线性回归方程的参数,即当已知一组混合成本为Y 因变量序列值、N组Xi有关自变量因素的数量序列值时,函数返回回归方程的系数bi(i=1,2…n单位变动成本)和常数a(固定成本或费用)。

多元回归方程模型则为:y=b1x1+b2X2……+bnXn+a语法LINEST(known_y's,known_x's,const,stats)Known_y's 是关系表达式 y = mx + b 中已知的 y 值集合。

∙如果数组 known_y's 在单独一列中,则 known_x's 的每一列被视为一个独立的变量。

∙如果数组 known-y's 在单独一行中,则 known-x's 的每一行被视为一个独立的变量。

Known_x's 是关系表达式 y = mx + b 中已知的可选 x 值集合。

∙数组 known_x's 可以包含一组或多组变量。

如果只用到一个变量,只要 known_y's 和 known_x's 维数相同,它们可以是任何形状的区域。

如果用到多个变量,则known_y's 必须为向量(即必须为一行或一列)。

∙如果省略 known_x's,则假设该数组为 {1,2,3,...},其大小与 known_y's 相同。

利用Excel进行线性回归分析讲解

利用Excel进行线性回归分析讲解

文档内容1. 利用Excel进行一元线性回归分析2. 利用Excel进行多元线性回归分析1. 利用Excel进行一元线性回归分析第一步,录入数据以连续10年最大积雪深度和灌溉面积关系数据为例予以说明。

录入结果见下图(图1)。

图1第二步,作散点图如图2所示,选中数据(包括自变量和因变量),点击“图表向导”图标;或者在“插入”菜单中打开“图表(H)”。

图表向导的图标为。

选中数据后,数据变为蓝色(图2)。

图2点击“图表向导”以后,弹出如下对话框(图3):图3在左边一栏中选中“XY散点图”,点击“完成”按钮,立即出现散点图的原始形式(图4):图4第三步,回归观察散点图,判断点列分布是否具有线性趋势。

只有当数据具有线性分布特征时,才能采用线性回归分析方法。

从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。

回归的步骤如下:1.首先,打开“工具”下拉菜单,可见数据分析选项(见图5):图5用鼠标双击“数据分析”选项,弹出“数据分析”对话框(图6):图62.然后,选择“回归”,确定,弹出如下选项表(图7):图7进行如下选择:X、Y值的输入区域(B1:B11,C1:C11),标志,置信度(95%),新工作表组,残差,线性拟合图(图8-1)。

或者:X、Y值的输入区域(B2:B11,C2:C11),置信度(95%),新工作表组,残差,线性拟合图(图8-2)。

注意:选中数据“标志”和不选“标志”,X、Y值的输入区域是不一样的:前者包括数据标志:最大积雪深度x(米) 灌溉面积y(千亩)后者不包括。

这一点务请注意(图8)。

图8-1包括数据“标志”图8-2不包括数据“标志”3.再后,确定,取得回归结果(图9)。

图9线性回归结果4. 最后,读取回归结果如下:截距:356.2=a ;斜率:813.1=b ;相关系数:989.0=R ;测定系数:979.02=R ;F 值:945.371=F ;t 值:286.19=t ;标准离差(标准误差):419.1=s ;回归平方和:854.748SSr =;剩余平方和:107.16SSe =;y 的误差平方和即总平方和:961.764SSt =。

用Excel做线性回归分析

用Excel做线性回归分析

用Excel做线性回归分析第一步:收集数据首先需要准备一组数据,其中有一个自变量和一个因变量,通常将自变量列在左侧列,因变量列在右侧列。

例如:X(自变量)Y(因变量)2 4.24 7.46 8.98 11.610 15.3第二步:绘制散点图接下来需要绘制散点图,将自变量和因变量之间的关系可视化。

在Excel中,选择插入->散点图,可以选择带有线条或仅带有散点的散点图。

根据上面的数据,得到的散点图应该如下:(插入散点图)第三步:添加趋势线为了更直观地展示自变量和因变量之间的关系,需要添加趋势线。

在Excel中,右键单击散点图上的任意一个数据点,选择“添加趋势线”。

在“添加趋势线”对话框中,选择“线性”类型,勾选“显示方程式”选项,点击“确定”。

得到以下图表:第四步:计算线性回归方程Excel自带一个计算线性回归方程的函数:LINST。

在Excel中,可以直接在某个单元格中输入以下公式:=LINST(因变量的单元格范围, 自变量的单元格范围, TRUE, TRUE)例如:结果如下:(插入计算结果图表)其中,- 第一个TRUE表示需要截距项;- 第二个TRUE表示需要进行常规数组计算。

根据上面的结果,得到的线性回归方程为:y = 1.375x + 1.550第五步:预测结果在得到线性回归方程之后,可以使用该方程进行预测。

例如,如果自变量为12,则根据上述方程预测因变量的值应为:因此,当自变量为12时,因变量的预测值为18.7。

通过以上五个步骤,可以使用Excel进行简单的线性回归分析。

当然,Excel还提供了更多高级的统计分析功能,如多元线性回归、逻辑回归、二项式分布等。

【免费下载】excel多元函数线性回归步骤

【免费下载】excel多元函数线性回归步骤

tiCj tiBj
-2 -3 -3 -2 -5 -1 -4 -5 -4
3.数据分析 第一步:点击 excel2007 中工具栏的“数据”,然后点击“数据分析”,弹出数 据分析的对话框,如图所示。
第二步:选中“回归”,点击确定,弹出对话框,如图所示。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

excel多元拟合

excel多元拟合

excel多元拟合
Excel可以进行多元拟合,它可用于将多个自变量和一个因变量进行建模和拟合。

该功能可通过Excel的“数据分析”插件实现。

首先,打开Excel的工作表,然后在“数据”选项卡中点击“数据分析”。

在出现的对话框中,选择“回归”并点击“确定”。

接下来,在“回归”对话框中,选择“多元线性回归”选项。

在“输入”区域中,输入因变量和自变量的数据范围。

请注意,在输入数据范围时,必须包括所有因变量和自变量。

然后,在“输出”区域中,选择输出选项,如系数、R 平方和标准误等。

单击“确定”按钮,在新的工作表中查看多元拟合结果。

此外,在Excel中,您还可以使用数据分析工具箱中的其他功能进行回归分析,如多项式回归、Logistic回归等。

这些功能可帮助您更好地分析数据,了解数据之间的关系及其对因变量的影响。

利用Excel进行线性回归分析报告汇总情况

利用Excel进行线性回归分析报告汇总情况

适用标准文档内容1.利用 Excel 进行一元线性回归剖析2.利用 Excel 进行多元线性回归剖析1.利用 Excel 进行一元线性回归剖析第一步,录入数据以连续10年最大积雪深度和浇灌面积关系数据为例予以说明。

录入结果见下列图(图1)。

图 1第二步,作散点图如图 2 所示,选中数据(包含自变量和因变量),点击“图表导游”图标;或许在“插入”菜单中翻开“图表(H )”。

图表导游的图标为。

选中数据后,数据变为蓝色(图 2 )。

图 2点击“图表导游”此后,弹出以下对话框(图3):图 3在左侧一栏中选中“XY 散点图”,点击“达成”按钮,立刻出现散点图的原始形式(图 4):浇灌面积 y( 千亩)60504030浇灌面积 y( 千亩)20100102030图 4第三步,回归察看散点图,判断点列散布能否拥有线性趋向。

只有当数据拥有线性散布特点时,才能采纳线性回归剖析方法。

从图中能够看出,本例数据拥有线性散布趋向,能够进行线性回归。

回归的步骤以下:1. 第一,翻开“工具”下拉菜单,可见数据剖析选项(见图5):图 5用鼠标双击“数据剖析”选项,弹出“数据剖析”对话框(图6):图 62. 而后,选择“回归”,确立,弹出以下选项表(图7):图 7进行以下选择: X、 Y 值的输入地区( B1:B11 , C1:C11 ),标记,置信度( 95% ),新工作表组,残差,线性拟合图(图 8-1 )。

或许: X、 Y 值的输入地区( B2:B11 ,C2:C11 ),置信度( 95% ),新工作表组,残差,线性拟合图(图 8-2 )。

注意:选中数据“标记”和不选“标记”,X、 Y 值的输入地区是不同样的:前者包含数据标记:最大积雪深度 x(米 ) 浇灌面积 y(千亩 )后者不包含。

这一点务请注意(图 8)。

图 8-1包含数据“标记”图 8-2 不包含数据“标记”3. 再后,确立,获得回归纳果(图9)。

图 9 线性回归纳果4.最后,读取回归纳果以下:截距: a 2.356 ;斜率: b 1.813;有关系数: R 0.989;测定系数:R2 0.979 ;F 值:F 371.945 ; t 值: t 19.286 ;标准离差(标准偏差):s 1.419;回归平方和:SSr 748.854 ;节余平方和:SSe 16.107 ;y的偏差平方和即总平方和: SSt764.961。

利用Excel进行线性回归分析报告

利用Excel进行线性回归分析报告

文档内容1. 利用Excel进行一元线性回归分析2. 利用Excel进行多元线性回归分析1. 利用Excel进行一元线性回归分析第一步,录入数据以连续10年最大积雪深度和灌溉面积关系数据为例予以说明。

录入结果见下图(图1)。

图1第二步,作散点图如图2所示,选中数据(包括自变量和因变量),点击“图表向导”图标;或者在“插入”菜单中打开“图表(H)”。

图表向导的图标为。

选中数据后,数据变为蓝色(图2)。

图2点击“图表向导”以后,弹出如下对话框(图3):图3在左边一栏中选中“XY散点图”,点击“完成”按钮,立即出现散点图的原始形式(图4):图4第三步,回归观察散点图,判断点列分布是否具有线性趋势。

只有当数据具有线性分布特征时,才能采用线性回归分析方法。

从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。

回归的步骤如下:1.首先,打开“工具”下拉菜单,可见数据分析选项(见图5):图5用鼠标双击“数据分析”选项,弹出“数据分析”对话框(图6):图62. 然后,选择“回归”,确定,弹出如下选项表(图7):图7进行如下选择:X 、Y 值的输入区域(B1:B11,C1:C11),标志,置信度(95%),新工作表组,残差,线性拟合图(图8-1)。

或者:X 、Y 值的输入区域(B2:B11,C2:C11),置信度(95%),新工作表组,残差,线性拟合图(图8-2)。

注意:选中数据“标志”和不选“标志”,X 、Y 值的输入区域是不一样的:前者包括数据标志:最大积雪深度x(米) 灌溉面积y(千亩)后者不包括。

这一点务请注意(图8)。

图8-1包括数据“标志”图8-2不包括数据“标志”3.再后,确定,取得回归结果(图9)。

图9线性回归结果4. 最后,读取回归结果如下:截距:356.2=a ;斜率:813.1=b ;相关系数:989.0=R ;测定系数:979.02=R ;F 值:945.371=F ;t 值:286.19=t ;标准离差(标准误差):419.1=s ;回归平方和:854.748SSr =;剩余平方和:107.16SSe =;y 的误差平方和即总平方和:961.764SSt =。

excel多元函数线性回归步骤

excel多元函数线性回归步骤

多元函数线性回归步骤
1.加载数据分析
第一步:打开2007excel,点击左上角的按钮,如图所示。

第二步:点击右下角的,如图所示。

第三步:点击左侧的加载项,如图所示。

第四步:点击最下面的“转到”,如图所示,然后选中“分析数据库”,点击“确定”。

2.数据的整理
已知 和 , 和 , 和
,将其整理为
ln
C
ij B ij
P P ,C B
ij ij t t -和
C B
ij ij c c
-,见下表。

整理后的数据为:
3.数据分析
第一步:点击excel2007中工具栏的“数据”,然后点击“数据分析”,弹出数据分析的对话框,如图所示。

第二步:选中“回归”,点击确定,弹出对话框,如图所示。

第三步:“Y值输入区域”选择第一列,“X值输入区域”选择后两列,选择“置信度”,“新工作表组”,“残差”和“标准残差”。

如图所示,点击确定。

4.结果分析
结果如图所示。

只需找到如下表所示的内容,
Coefficients(系数)Intercept(截距)0.38980452(对应γ)X Variable 1 -0.079587874(对应α)
X Variable 2 -0.003868252(对应β)。

多元线性回归excel操作方法

多元线性回归excel操作方法

多元线性回归excel操作方法
多元线性回归是指一种包含多个自变量的线性回归模型,Excel中可以通过“数据分析”工具进行多元线性回归分析。

以下是具体的操作步骤:
1.打开Excel,在Excel菜单栏中找到“数据”选项卡。

2.在“数据”选项卡中找到“数据分析”选项,如果没有,就需要先启用它。

方法是:点击“文件”->“选项”->“插入”->勾选“数据分析”,点击“确定”。

3.打开“数据分析”对话框,在“分析工具”列表中找到“回归”,然后点击“确定”。

4.在“回归”对话框中,设置输入数据范围。

在“输入X范围”中输入自变量的数据范围,在“输入Y范围”中输入因变量的数据范围。

5.在“回归”对话框中,勾选“标签”选项,然后在“输出选项”中选择“新工作表中”并指定输出位置。

6.在“回归”对话框中,勾选“加入常数项”选项,然后点击“确定”。

7.Excel会自动在输出位置生成一个新的工作表,其中包含了多元线性回归的结果,包括自变量系数、因变量截距、调整R方等。

以上就是Excel进行多元线性回归的具体操作方法。

excel多元线性回归操作步骤

excel多元线性回归操作步骤

x1x2x310.4521586465.7802620.4231636068.3649433.119377153.297840.6341576167.0845654.724595459.3367961.7651237761.7007379.444468164.36499810.1311179377.73445911.6291739389.45171012.6581125179.70631110.9371117677.826161223.1461149699.384621323.150********.32891421.644739390.30691523.156********.3834161.9361435467.033121726.859202168119.1841829.95112499112.73040.159536刘国祥,等《概率论与数理统计》甘肃教育出版社,兰州2002 p375 例10.3.1多元线性回归预测土壤中含磷量样本编号土壤内植物可供给态磷y 第一步:在表中任意一个单元格内输入计算公式"=LINEST(E4:E21,B4:D21,TRUE,TRUE)",如图,并将此公式复制,此时若按回车键将只出现一个值;公式中E4:E21表示因变量,B4:D21表示三个自变量。

第二步:在工作表中选择一个5×4的区域(列数比自变量个数大1),按F2,将刚刚复制的公式输入(Ctrl+C),然后按Ctrl+Shift+Enter 以数组的形式输出,结果如图,即可得到多元方程组的一些系数,各系数的含义如图中所示。

方程组的一些系数,各系数的含义如图中所示。

第三步:输如预测结果,注意,此处xi的系数需要使用绝对引用,如图,否则会出错。

通过比较可以发现,这个回归方程的预测效果不好,相差比较大。

LINEST函数返回值0.159536322-0.061620689 1.77331439543.068470630.111876880.4202862050.54136276917.990929920.54874990919.98358817#N/A#N/A5.6749748214#N/A#N/A6798.7979645590.813147#N/A#N/ALINEST函数返回值的含义x3系数x2系数x1系数截距x3的标准误差值x2的标准误差值x1的标准误差值常量b的标准误差值决定系数Y估计值的标准误差F统计或F观察值自由度回归平方和残差平方和。

Excel进行多元线性回归与相关分析的方法和步骤

Excel进行多元线性回归与相关分析的方法和步骤

Excel如何进行多元线性回归与相关分析在农业、生物等领域的许多实际问题中,常常要研究多个变量之间的关系。

例如,研究病虫害发生量与温度、湿度、降水量等的关系,小麦产量、亩穗数、穗粒数、秘粒重、千粒重之间的关系等。

研究一个依变量与多个自变量的回归关系称为多元回归分析(multiple regression analysis),研究多个变量之间的相关关系称为多元相关分析(analysis of multiple correlation)。

在多元回归关系中,最简单的就是多元线性回归(multiple liner regression),或称为复回归(multiple regression)。

多元线性回归分析是研究一个依变量与多个自变量线性回归关系的,它包括:依据实际观察值建立回归方程、各自变量显著性测验、建立最优线性回归方程、确立各自变量相对重要性等。

一、多元线性回归方程设y与m个变量x1,z,…,xa存在线性关系,则y对x1,xz,…,xm的m元线性回归方程为Y=b0+b1x1+b2x2+…+b m x m式中,b0为回归常数项,当x,x1,…,xm皆取0时的y值,如果b0有实际意义,则b0表示y的起始值,但在多元回归中,b0一般很难确定其专业意义,它仅是调节回归响应面的一个参数;b:(i=1,2,…,m)称为自变量x,对依变量y的偏回归系数(partial regression coefficient), 表示除自变量x,以外的其余m-1个自变量都固定不变时,自变量X1.每改变一个单位数,依变量y平均变化的数值,当b,>0时,自变量x,每增加一个单位数,依变量y平均增加b.个单位数;当b.<0时,自变量x,每增加一个单位数,依变量y平均减少b个单位数。

例1某地连续12年测定一代三化螟高峰期(y,以5月1日为第一天)与1月份雨量(x1,mm)2月份雨量(x2,mm)3月份上旬平均温度(x3)和3月份中旬旬平均温度(x4)的关系,得结果如下表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x1x2x31
0.4521586465.780262
0.4231636068.364943
3.119377153.29784
0.6341576167.084565
4.724595459.336796
1.7651237761.700737
9.444468164.364998
10.1311179377.734459
11.6291739389.451710
12.6581125179.706311
10.9371117677.8261612
23.1461149699.3846213
23.150********.328914
21.644739390.306915
23.156********.383416
1.9361435467.0331217
26.859202168119.18418
29.95112499112.73040.159536刘国祥,等《概率论与数理统计》甘肃教育出版社,兰州2002 p375 例10.3.1
多元线性回归预测土壤中含磷量样本编号
土壤内植物可供给态磷y 第一步:在表中任意一个单元格内输入计算公式
"=LINEST(E4:E21,B4:D21,TRUE,TRUE)",如图,并将此公式复
制,此时若按回车键将只出现一个值;公式中E4:E21表示
因变量,B4:D21表示三个自变量。

第二步:在工作表中选择一个5×4的区域(列数比自变量个数
大1),按F2,将刚刚复制的公式输入(Ctrl+C),然后按
Ctrl+Shift+Enter 以数组的形式输出,结果如图,即可得到多元
方程组的一些系数,各系数的含义如图中所示。

方程组的一些系数,各系数的含义如图中所示。

第三步:输如预测结果,注意,此处xi的系数需要使用绝对引用,如图,否则会出错。

通过比较可以发现,这个回归方程的预测效果不好,相差比较大。

LINEST函数返回值
0.159536322-0.061620689 1.77331439543.06847063
0.111876880.4202862050.54136276917.99092992
0.54874990919.98358817#N/A#N/A
5.6749748214#N/A#N/A
6798.7979645590.813147#N/A#N/A
LINEST函数返回值的含义
x3系数x2系数x1系数截距
x3的标准误差值x2的标准误差值x1的标准误差值常量b的标准误差值决定系数Y估计值的标准误差
F统计或F观察值自由度
回归平方和残差平方和。

相关文档
最新文档