2016贵州高考数学(理科)试题及参考答案
2016年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
2016年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.23.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.974.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.811.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.【专题】11:计算题;4O:定义法;5J:集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【考点】A8:复数的模.【专题】34:方程思想;4O:定义法;5N:数系的扩充和复数.【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.3.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.97【考点】83:等差数列的性质.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【考点】CF:几何概型.【专题】5I:概率与统计.【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【考点】KB:双曲线的标准方程.【专题】11:计算题;35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【考点】R3:不等式的基本性质.【专题】33:函数思想;35:转化思想;4R:转化法;51:函数的性质及应用;5T:不等式.【分析】根据已知中a>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.8【考点】K8:抛物线的性质;KJ:圆与圆锥曲线的综合.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5【考点】H6:正弦函数的奇偶性和对称性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;29:规律型;35:转化思想;5A:平面向量及应用.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5分)(2x+)5的展开式中,x3的系数是10.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;34:方程思想;49:综合法;5P:二项式定理.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3,求出r,即可求出展开式中x3的系数.==25﹣【解答】解:(2x+)5的展开式中,通项公式为:T r+1r,令5﹣=3,解得r=4∴x3的系数2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为64.【考点】87:等比数列的性质;8I:数列与函数的综合.【专题】11:计算题;29:规律型;35:转化思想;54:等差数列与等比数列.【分析】求出数列的等比与首项,化简a1a2…a n,然后求解最值.【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【考点】HU:解三角形.【专题】15:综合题;35:转化思想;49:综合法;58:解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;34:方程思想;49:综合法;5H:空间向量及应用;5Q:立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的余弦值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P (X≤n)≥0.5中n的最小值.(Ⅲ)法一:由X的分布列得P(X≤19)=.求出买19个所需费用期望EX1和买20个所需费用期望EX2,由此能求出买19个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19时,费用的期望和当n=20时,费用的期望,从而得到买19个更合适.【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:X16171819202122P(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【考点】J2:圆的一般方程;KL:直线与椭圆的综合.【专题】34:方程思想;48:分析法;5B:直线与圆;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A到PQ的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】32:分类讨论;35:转化思想;4C:分类法;4R:转化法;51:函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a (x﹣1)=(x﹣1)(e x+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
2016全国统一高考数学试卷
2016年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2016•新课标Ⅰ)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5分)(2016•新课标Ⅰ)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.23.(5分)(2016•新课标Ⅰ)已知等差数列{an}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.974.(5分)(2016•新课标Ⅰ)某公司的班车在7:00,8:00,8:30发车,xx在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.5.(5分)(2016•新课标Ⅰ)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3) B.(﹣1,)C.(0,3) D.(0,)6.(5分)(2016•新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17π B.18πC.20πD.28π7.(5分)(2016•新课标Ⅰ)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5分)(2016•新课标Ⅰ)若a>b>1,0<c<1,则()A.ac<bcB.abc<bacC.alogbc<blogac D.logac<logbc9.(5分)(2016•新课标Ⅰ)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5分)(2016•新课标Ⅰ)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.811.(5分)(2016•新课标Ⅰ)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(2016•新课标Ⅰ)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5分)(2016•新课标Ⅰ)(2x+)5的xx中,x3的系数是.(用数字填写答案)15.(5分)(2016•新课标Ⅰ)设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为.16.(5分)(2016•新课标Ⅰ)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)(2016•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)(2016•新课标Ⅰ)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的xx值.19.(12分)(2016•新课标Ⅰ)某公司计划购买2xx机器,该种机器使用三年后即被淘汰.机器有一xx零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个xx零件,为此搜集并整理了100xx这种机器在三年使用期内更换的xx零件数,得如图柱状图:以这100xx机器更换的xx零件数的频率代替1xx机器更换的xx零件数发生的概率,记X表示2xx机器三年内共需更换的xx零件数,n表示购买2xx机器的同时购买的xx零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买xx零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)(2016•新课标Ⅰ)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)(2016•新课标Ⅰ)已知函数f(x)=(x﹣2)ex+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)(2016•新课标Ⅰ)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙Oxx,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.(2016•新课标Ⅰ)在直角坐标系xOyxx,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系xx,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3xx,求a.[选修4-5:不等式选讲]24.(2016•新课标Ⅰ)已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2016•新课标Ⅰ)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.xx优网版权所有【专题】11 :计算题;4O:定义法;5J :集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)(2016•新课标Ⅰ)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.2【考点】A8:复数的模.xx优网版权所有【专题】34 :方程思想;4O:定义法;5N :数系的扩充和复数.【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.3.(5分)(2016•新课标Ⅰ)已知等差数列{an}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97【考点】83:等差数列的性质.xx优网版权所有【专题】11 :计算题;4O:定义法;54 :等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{an}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5分)(2016•新课标Ⅰ)某公司的班车在7:00,8:00,8:30发车,xx在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【考点】CF:几何概型.xx优网版权所有【专题】5I :概率与统计.【分析】求出xx等车时间不超过10分钟的时间xx,代入几何概型概率计算公式,可得答案.【解答】解:设xx到达时间为y,当y在7:50至8:00,或8:20至8:30时,xx等车时间不超过10分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5分)(2016•新课标Ⅰ)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3) B.(﹣1,)C.(0,3) D.(0,)【考点】KB:双曲线的标准方程.xx优网版权所有【专题】11 :计算题;35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5分)(2016•新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17π B.18πC.20πD.28π【考点】L!:由三视图求面积、体积.xx优网版权所有【专题】11 :计算题;29 :规律型;31 :数形结合;35 :转化思想;5F :空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5分)(2016•新课标Ⅰ)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.xx优网版权所有【专题】27 :图表型;48 :分析法;51 :函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣ex,∴f′(x)=4x﹣ex=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5分)(2016•新课标Ⅰ)若a>b>1,0<c<1,则()A.ac<bc B.abc<bacC.alogbc<blogac D.logac<logbc【考点】72:不等式比较大小;4M:对数值大小的比较.xx优网版权所有【专题】33 :函数思想;35 :转化思想;4R:转化法;51 :函数的性质及应用;5T :不等式.【分析】根据已知xxa>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=xc在(0,+∞)上为增函数,故ac>bc,故A错误;函数f(x)=xc﹣1在(0,+∞)上为减函数,故ac﹣1<bc﹣1,故bac<abc,即abc>bac;故B错误;logac<0,且logbc<0,logab<1,即=<1,即logac>logbc.故D错误;0<﹣logac<﹣logbc,故﹣blogac<﹣alogbc,即blogac>alogbc,即alogbc <blogac,故C正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)(2016•新课标Ⅰ)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.xx优网版权所有【专题】11 :计算题;28 :操作型;5K :算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)(2016•新课标Ⅰ)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8【考点】KJ:圆与圆锥曲线的综合;K8:抛物线的简单性质.xx优网版权所有【专题】11 :计算题;29 :规律型;31 :数形结合;35 :转化思想;5D :圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,xA==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5分)(2016•新课标Ⅰ)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.xx优网版权所有【专题】11 :计算题;29 :规律型;31 :数形结合;35 :转化思想;5G :空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【考点】H6:正弦函数的奇偶性和对称性.xx优网版权所有【专题】35 :转化思想;4R:转化法;57 :三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(2016•新课标Ⅰ)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m= ﹣2 .【考点】9O:平面向量数量积的性质及其运算.xx优网版权所有【专题】11 :计算题;29 :规律型;35 :转化思想;5A :平面向量及应用.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5分)(2016•新课标Ⅰ)(2x+)5的xx中,x3的系数是10 .(用数字填写答案)【考点】DA:二项式定理.xx优网版权所有【专题】11 :计算题;34 :方程思想;49 :综合法;5P :二项式定理.【分析】利用二项xx的通项公式求出第r+1项,令x的指数为3,求出r,即可求出xxxxx3的系数.【解答】解:(2x+)5的xx中,通项公式为:Tr+1==25﹣r,令5﹣=3,解得r=4∴x3的系数2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5分)(2016•新课标Ⅰ)设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为64 .【考点】8I:数列与函数的综合;87:等比数列的性质.xx优网版权所有【专题】11 :计算题;29 :规律型;35 :转化思想;54 :等差数列与等比数列.【分析】求出数列的等比与首项,化简a1a2…an,然后求解最值.【解答】解:等比数列{an}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…an=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5分)(2016•新课标Ⅰ)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000 元.【考点】7C:简单线性规划.xx优网版权所有【专题】11 :计算题;29 :规律型;31 :数形结合;33 :函数思想;35 :转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)(2016•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【考点】HU:解三角形.xx优网版权所有【专题】15 :综合题;35 :转化思想;49 :综合法;58 :解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.【解答】解:(Ⅰ)∵在△ABCxx,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12分)(2016•新课标Ⅰ)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的xx值.【考点】MJ:与二面角有关的立体几何综合题.xx优网版权所有【专题】11 :计算题;34 :方程思想;49 :综合法;5H :空间向量及应用;5Q :立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的xx值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的xx值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12分)(2016•新课标Ⅰ)某公司计划购买2xx机器,该种机器使用三年后即被淘汰.机器有一xx零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个xx零件,为此搜集并整理了100xx这种机器在三年使用期内更换的xx零件数,得如图柱状图:以这100xx机器更换的xx零件数的频率代替1xx机器更换的xx零件数发生的概率,记X表示2xx机器三年内共需更换的xx零件数,n表示购买2xx机器的同时购买的xx零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买xx零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.xx优网版权所有【专题】11 :计算题;35 :转化思想;49 :综合法;5I :概率与统计.【分析】(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P(X≤n)≥0.5xxn的最小值.(Ⅲ)法一:由X的分布列得P(X≤19)=.求出买19个所需费用期望EX1和买20个所需费用期望EX2,由此能求出买19个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19时,费用的期望和当n=20时,费用的期望,从而得到买19个更合适.【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5xx,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.4=4080,∴买19个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12分)(2016•新课标Ⅰ)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【考点】KL:直线与椭圆的位置关系;J2:圆的一般方程.xx优网版权所有【专题】34 :方程思想;48 :分析法;5B :直线与圆;5D :圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用xx定理xx长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A到PQ的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆xx的定义,考查直线和椭圆方程联立,运用xx定理xx长公式,以及直线xx相交的弦长公式,考查不等式的性质,属于中档题.21.(12分)(2016•新课标Ⅰ)已知函数f(x)=(x﹣2)ex+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【考点】6D:利用导数研究函数的极值;51:函数的零点.xx优网版权所有【专题】32 :分类讨论;35 :转化思想;4C :分类法;4R:转化法;51 :函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)ex+a(x﹣1)2可得:f′(x)=(x ﹣1)ex+2a(x﹣1)=(x﹣1)(ex+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g (x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0xx成立,即g(1+m)>g(1﹣m)xx成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)ex+a(x﹣1)2,∴f′(x)=(x﹣1)ex+2a(x﹣1)=(x﹣1)(ex+2a),①若a=0,那么f(x)=0⇔(x﹣2)ex=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么ex+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,ex<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)ex+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x ﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,ex+2a<eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,ex+2a>eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,ex+2a>eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在Rxx至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,ex+2a<eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,ex+2a>eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,故函数f(x)在Rxx单调递增,函数f(x)在Rxx至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,ex+2a<eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,ex+2a<eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,ex+2a>eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在Rxx至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)xx成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)(2016•新课标Ⅰ)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙Oxx,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.xx优网版权所有【专题】14 :证明题;35 :转化思想;49 :综合法;5M :推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.(2016•新课标Ⅰ)在直角坐标系xOyxx,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系xx,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3xx,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.xx优网版权所有【专题】11 :计算题;35 :转化思想;4A :数学模型法;5S :坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3xx,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.(2016•新课标Ⅰ)已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.xx优网版权所有【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,。
2016年高考数学新课标Ⅱ(理科)试题及答案 【解析版】
2016年全国统一高考数学试卷(新课标Ⅱ)(理科)(使用地区 :海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.【2016新课标Ⅱ(理)】已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是A.()31-,B.()13-,C.()1,∞+D.()3∞--,【答案】A【解析】∴30m +>,10m -<,∴31m -<<,故选A .【2016新课标Ⅱ(理)】已知集合{1,23}A =,,{|(1)(2)0}B x x x x =+-<∈Z ,,则A B = A.{}1B.{12},C.{}0123,,,D.{10123}-,,,, 【答案】C【解析】()(){}120Z B x x x x =+-<∈,{}12Z x x x =-<<∈,, ∴{}01B =,,∴{}0123A B = ,,,, 故选C .【2016新课标Ⅱ(理)】已知向量(1,)(3,2)a m b =- ,=,且()a b b +⊥,则m = A.8- B.6- C.6 D.8【答案】D【解析】 ()42a b m +=-,, ∵()a b b +⊥ ,∴()122(2)0a b b m +⋅=--=解得8m =, 故选D .【2016新课标Ⅱ(理)】圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=A.43-B.34- D.2【答案】A【解析】圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=,故圆心为()14,,1d =,解得43a =-,故选A .【2016新课标Ⅱ(理)】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24B.18C.12D.9 【答案】B【解析】E F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法故选B .【2016新课标Ⅱ(理)】右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A.20πB.24πC.28πD.32π 【答案】C【解析】几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得2r =,2π4πc r ==,由勾股定理得:4l =,21π2S r ch cl =++表4π16π8π=++28π=,故选C .【2016新课标Ⅱ(理)】若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 A.()ππ26k x k =-∈Z B.()ππ26k x k =+∈Z C.()ππ212Z k x k =-∈ D.()ππ212Z k x k =+∈ 【答案】B【解析】平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .【2016新课标Ⅱ(理)】中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s =A.7B.12C.17D.34 【答案】C【解析】第一次运算:0222s =⨯+=,第二次运算:2226s =⨯+=, 第三次运算:62517s =⨯+=,故选C .【2016新课标Ⅱ(理)】若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=A.725B.15C.15-D.725-【答案】D【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .【2016新课标Ⅱ(理)】从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为A.4n m B.2n m C.4m n D.2mn【答案】C【解析】由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在 如图所示的阴影中由几何概型概率计算公式知π41m n=,∴4πmn=,故选C .【2016新课标Ⅱ(理)】已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为B.32D.2 【答案】A【解析】离心率1221F F e MF MF =-,由正弦定理得122112sin 31sin sin 13F F Me MF MF F F ====--- 故选A .【2016新课标Ⅱ(理)】已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )A.0B.mC.2mD.4m【答案】B【解析】由()()2f x f x =-得()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +, ∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.【2016新课标Ⅱ(理)】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4c o s 5A =,5cos 13C =,1a =,则b = . 【解析】2113∵4cos 5A =,5cos 13C =,3sin 5A =,12sin 13C =, ()63sin sin sin cos cos sin 65B AC A C A C =+=+=,由正弦定理得:sin sin b a B A =解得2113b =.【2016新课标Ⅱ(理)】α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 【解析】②③④【2016新课标Ⅱ(理)】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 【解析】 (1,3)由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足, 若丙(1,3),则乙(2,3),甲(1,2)不满足, 故甲(1,3),【2016新课标Ⅱ(理)】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,b = . 【解析】 1ln2-ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ) ()ln 1y x =+的切线为:()22221ln 111x y x x x x =++-++ ∴()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩解得112x =212x =-∴1ln 11ln 2b x =+=-.三、解答题:解答应写出文字说明、证明过程或演算步骤.【2016新课标Ⅱ(理)】n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和.【解析】⑴设{}n a 的公差为d ,74728S a ==,∴44a =,∴4113a a d -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101101lg lg 2b a ===. ⑵记{}n b 的前n 项和为n T ,则1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,;当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,; 当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=.【2016新课标Ⅱ(理)】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值. 【解析】 ⑴设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=.⑵设续保人保费比基本保费高出60%为事件B , ()0.100.053()()0.5511P AB P B A P A +===. ⑶解:设本年度所交保费为随机变量X .平均保费0.850.300.15 1.250.20 1.50.20 1.750.1020.05EX a a a a a =⨯++⨯+⨯+⨯+⨯ 0.2550.150.250.30.1750.a a a a a a a =+++++=,∴平均保费与基本保费比值为1.23.【2016新课标Ⅱ(理)】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF '的位置OD '(I )证明:DH'⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.【解析】⑴证明:∵54AE CF ==,∴AE CFAD CD=, ∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥, ∴EF BD ⊥, ∴EF D H ⊥,∴EF DH'⊥. ∵6AC =, ∴3AO =;又5AB =,AO OB ⊥, ∴4OB =, ∴1AEOH OD AO=⋅=, ∴3DH D H '==, ∴222'OD OH D H '=+, ∴'D H OH ⊥. 又∵OH EF H =I , ∴'D H ⊥面ABCD . ⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =u u u r ,,,()'133AD =-u u u r ,,,()060AC =u u u r ,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩ 得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩, ∴()1345n =-u r,,.同理可得面'AD C 的法向量()2301n =u u r,,,∴1212cos n n n n θ⋅===u r u u ru r u u r∴sin θ=【2016新课标Ⅱ(理)】已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围.【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,, 则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-= 解得2x =-或228634k x k -=-+,则222861223434k AM k k -=+=++ 因为AM AN ⊥,所以21212413341AN k kk =⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >,212124343k k k=++,整理得()()21440k k k --+=, 2440k k -+=无实根,所以1k =.所以AMN △的面积为221112144223449AM ⎫==⎪+⎭. ⑵直线AM的方程为(y k x =,联立(2213x y t y k x ⎧+=⎪⎨⎪=+⎩并整理得,()222223230tk x x t k t +++-=解得x =x =所以AM =所以3AN k k+因为2AM AN =所以23k k=+,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <<.【2016新课标Ⅱ(理)】(I)讨论函数2(x)e 2xx f x -=+的单调性,并证明当0x >时,(2)e 20;xx x -++>(II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域. 【解析】⑴证明:()2e 2xx f x x -=+ ()()()22224e e 222x xx x f x x x x ⎛⎫-'⎪=+= ⎪+++⎝⎭∵当x ∈()()22,-∞--+∞ ,时,()0f x '> ∴()f x 在()()22,-∞--+∞,和上单调递增 ∴0x >时,()2e 0=12xx f x ->-+∴()2e 20x x x -++>⑵ ()()()24e 2e xx a x x ax a g x x ----'=()4e 2e 2x x x x ax a x-++=()322e 2x x x a x x-⎛⎫+⋅+⎪+⎝⎭=[)01a ∈,由(1)知,当0x >时,()2e 2xx f x x -=⋅+的值域为()1-+∞,,只有一解. 使得2e 2tt a t -⋅=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增()()()222e 1ee 1e 22t ttt t t a t t h a t t t -++⋅-++===+记()e 2tk t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增 ∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号【2016新课标Ⅱ(理)】如图,在正方形ABCD ,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F . (I) 证明:B ,C ,G ,F 四点共圆;(II)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.【解析】(Ⅰ)证明:∵DF CE ⊥∴Rt Rt DEF CED △∽△∴GDF DEF BCF ∠=∠=∠ DF CFDG BC= ∵DE DG =,CD BC = ∴DF CFDG BC= ∴GDF BCF △∽△ ∴CFB DFG ∠=∠∴90GFB GFC CFB GFC DFG DFC ∠=∠+∠=∠+∠=∠=︒ ∴180GFB GCB ∠+∠=︒. ∴B ,C ,G ,F 四点共圆. (Ⅱ)∵E 为AD 中点,1AB =, ∴12DG CG DE ===, ∴在Rt GFC △中,GF GC =, 连接GB ,Rt Rt BCG BFG △≌△,∴1112=21=222BCG BCGF S S =⨯⨯⨯△四边形.【2016新课标Ⅱ(理)】选修4—4:坐标系与参数方程在直线坐标系xOy 中,圆C 的方程为()22625x y ++=.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II )直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B两点,AB l的斜率.【解析】解:⑴整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.⑵记直线的斜率为k ,则直线的方程为0kx y -=,=即22369014k k =+,整理得253k =,则k =【2016新课标Ⅱ(理)】选修4—5:不等式选讲已知函数()1122f x x x =-++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab +<+.【解析】解:⑴当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.⑵当()11a b ∈-,,时,有()()22110a b -->, 即22221a b a b +>+,则2222212a b ab a ab b +++>++, 则()()221ab a b +>+, 即1a b ab +<+, 证毕.2016年全国统一高考数学试卷(新课标Ⅱ)(理科)(使用地区 :海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏) 一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【2016新课标Ⅱ(理)】已知z=(m+3)+(m ﹣1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(﹣3,1) B .(﹣1,3) C .(1,+∞) D .(﹣∞,﹣3)2.【2016新课标Ⅱ(理)】已知集合A={1,2,3},B={x|(x+1)(x﹣2)<0,x∈Z},则A∪B=()A.{1} B.{1,2} C.{0,1,2,3} D.{﹣1,0,1,2,3}3.【2016新课标Ⅱ(理)】已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=()A.﹣8 B.﹣6 C.6 D.84.【2016新课标Ⅱ(理)】圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣B.﹣C.D.25.【2016新课标Ⅱ(理)】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.96.【2016新课标Ⅱ(理)】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π7.【2016新课标Ⅱ(理)】若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)8.【2016新课标Ⅱ(理)】中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7 B.12 C.17 D.349.【2016新课标Ⅱ(理)】若cos(﹣α)=,则sin2α=()A.B.C.﹣D.﹣10.【2016新课标Ⅱ(理)】从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n构成n个数对(x1,y1),(x2,y2)…(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.B.C.D.11.【2016新课标Ⅱ(理)】已知F1,F2是双曲线E:﹣=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为()A.B.C.D.212.【2016新课标Ⅱ(理)】已知函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则(x i+y i)=()A.0 B.m C.2m D.4m二、填空题:本题共4小题,每小题5分.13.【2016新课标Ⅱ(理)】△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.14.【2016新课标Ⅱ(理)】α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题是(填序号)15.【2016新课标Ⅱ(理)】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.16.【2016新课标Ⅱ(理)】若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.【2016新课标Ⅱ(理)】S n为等差数列{a n}的前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000项和.18.【2016新课标Ⅱ(理)】某保险的基本保费为a(单位:元),继续购买该保险的投保人成为(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.19.【2016新课标Ⅱ(理)】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点M,将△DEF沿EF折到△D′EF的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B﹣D′A﹣C的正弦值.20.【2016新课标Ⅱ(理)】已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求k的取值范围.21.(12分)(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x﹣2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.请考生在第22~24题中任选一个题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.【2016新课标Ⅱ(理)】如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.[选修4-4:坐标系与参数方程]23.【2016新课标Ⅱ(理)】在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l 的斜率.[选修4-5:不等式选讲]24.【2016新课标Ⅱ(理)】已知函数f(x)=|x﹣|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.。
2016年高考全国Ⅰ卷理科数学试题(含答案解析)
绝密★启用前2016年普通高等学校招生全国统一考试理科数学适用地区:福建、广东、安徽、湖北、湖南、江西、山西、河南、河北 注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}2430A x x x =-+<,{}230x x ->,则AB =(A )33,2⎛⎫-- ⎪⎝⎭(B )33,2⎛⎫- ⎪⎝⎭(C )31,2⎛⎫⎪⎝⎭(D )3,32⎛⎫ ⎪⎝⎭2.设 (1 + i)x = 1 + y i ,其中y x ,是实数,则|x + y i| = (A )1(B )2(C )3(D )23.已知等差数列{a n }前9项的和为27,a 10 = 8,则a 100 = (A )100(B )99(C )98(D )974.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车, 且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A )13 (B )12 (C )23 (D )345.已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值 范围是(A )()1,3-(B )(-(C )()0,3(D )(6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条 相互垂直的半径.若该几何体的体积是283π,则它的表面积是 (A )17π(B )18π (C )20π(D )28π7.函数22xy x e =-在[]2,2-的图像大致为8.若101a b c >><<,,则 (A )c c a b <(B )c c ab ba < (C )a log b c < b log a c(D )log log a b c c <9.执行右面的程序框图,如果输入的011x y n ===,,,则输出x , y 的值满足 (A )2y x = (B )3y x = (C )4y x =(D )5y x =是 否ny y n x x =-+=,213622≥+y x输入n y x ,,输出y x ,开始 结束1+=n n10.以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |=DE|=则C 的焦点到准线的距离为(A )2 (B )4 (C )6 (D )811.平面α过正方体ABCD −A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1, α ∩平面ABCD = m , α ∩平面AB B 1A 1 = n ,则m 、n 所成角的正弦值为(A )2(B )2(C )3(D )1312. 已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π= 为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5第Ⅱ卷本卷包括必考题和选考题两部分。
2016年高考理科数学全国1卷,附答案
2016 年高考数学全国 1 卷(理科)一、选择题:本大题共12 小题,每小题 5 分,每小题只有一项是符合题目要求的.9.执行如图的程序框图,如果输入的x=0, y=1,n=1,则输出x ,y 的值满足()2﹣4x+3<0} ,B={x|2x ﹣3>0} ,则 A ∩B=()1.设集合 A={x| x A .(﹣3,﹣)B .(﹣3, ) C.(1, )D .( ,3)2.设( 1+i )x=1+yi ,其中 x ,y 是实数,则 |x+yi|= ( ) A .1B.C.D. 23.已知等差数列 {a n } 前 9 项的和为 27,a 10=8,则 a100=( )A .100B.99C.98D. 97 4.某公司的班车在 7:00,8:00,8:30 发车,小明在 7:50 至 8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过 10 分钟的概率是( )A .y=2xB .y=3xC . y=4xD.y=5x A .B.C .D .10.以抛物线 C 的顶点为圆心的圆交 C 于 A 、B 两点,交 C 的准线于 D 、 E 两点.已知 |AB|=4,|DE|=2 ,则 C 的焦 点到准线的距离为( ) 5.已知方程﹣=1 表示双曲线,且该双曲线两焦点间的距离为 4,则 n 的取值范围是( )A .2B.4C.6D.8A .(﹣1, 3) B .(﹣1, )C .( 0,3)D.( 0,)11.平面 α过正方体 ABCD ﹣A 1B 1C 1D 1 的顶点 A ,α ∥平面 CB 1D 1,α ∩平面 ABCD=,m α ∩平面 ABB 1A 1=n ,则 m 、n所成角的 6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是 ,正弦值为( ) 则它的表面积是()A .B.C.D .12.已知函数 f (x )=sin ( ωx+φ)(ω>0,| φ| ≤ ), x=﹣为 f ( x )的零点, x= 为 y=f (x )图象的对称轴, 且 f ( x )在(, )上单调,则 ω 的最大值为() A .17πB . 18πC .20πD .28πA .11B.9C.7D. 57.函数y=2x2﹣e |x|在[﹣2,2] 的图象大致为()二、填空题:本大题共4 小题,每小题5 分,共 20 分 .13.设向量=(m , 1), =(1,2),且 |+ | 2=| | 2+| | 2,则m= .14.(2x+)5 的展开式中, x 3 的系数是.(用数字填写答案)15.设等比数列 {a n } 满足a 1+a 3=10,a 2+a 4=5,则 a 1a 2⋯ a n 的最大值为.A .B .C .D .16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料 1.5kg ,乙材料 1kg ,用 5 8.若 a >b >1,0<c <1,则()个工时;生产一件产品B 需要甲材料 0.5kg ,乙材料 0.3kg ,用 3 个工时,生产一件产品A 的利润为 2100 元,生产一件 A .ac <b c B .ab c <ba c C .alogc <b c B .ab c <ba c C .alogb c <blog a c D .log a c <log b c产品B 的利润为 900 元.该企业现有甲材料 150kg ,乙材料 90kg ,则在不超过 600 个工时的条件下,生产产品A 、产品B 的利润之和的最大值为元.第 1页共 9 页深圳星火教育龙华数学组余凤老师整理三、解答题:本大题共 5 小题,满分60 分,解答须写出文字说明、证明过程或步骤.19.(12 分)某公司计划购买 2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器演算外时,可以额17.(12 分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时了100 台这种机器在三年使用期内更换的易损零件数,整理集并(Ⅰ)求C;应同时购买几个易损零件,为此搜状图:得如图柱以这100 台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示 2 台机器三年内共需更为,求△ABC的周长.(Ⅱ)若c= ,△ABC的面积换的易损零件数,n 表示购买 2 台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5 ,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19 与n=20 之中选其一,应选用哪个?18.(12 分)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角 DE与二面角C﹣B E﹣F都是60°.A F﹣﹣(Ⅰ)证明平面ABEF⊥平面EFDC;A的余弦值.B C﹣(Ⅱ)求二面角E﹣第2页共9 页理整深圳星火教育龙华数学组余凤老师20.(12 分)设圆x2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆 A 于C,D两点,过 B 作2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆A 于C,D两点,过 B 作21.(12 分)已知函数 f (x)=(x﹣2)ex+a(x﹣1)x+a(x﹣1)2 有两个零点.AC的平行线交AD于点E.(Ⅰ)求 a 的取值范围;(Ⅰ)证明|EA|+|EB| 为定值,并写出点 E 的轨迹方程;(Ⅱ)设x1,x2 是f (x)的两个零点,证明:x1+x2<2.(Ⅱ)设点E的轨迹为曲线C1,直线l 交C1 于M,N两点,过 B 且与l 垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.第 3 页共9 页深圳星火教育龙华数学组余凤老师整理请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分. [ 选修4-5 :不等式选讲]24.已知函数 f (x)=|x+1| ﹣|2x ﹣3| .[ 选修4-1 :几何证明选讲] (Ⅰ)在图中画出y=f (x)的图象;(Ⅱ)求不等式|f (x)| >1 的解集.22.(10 分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[ 选修4-4 :坐标系与参数方程]23.在直角坐标系xOy中,曲线C1 的参数方程为(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.(Ⅰ)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(Ⅱ)直线C3 的极坐标方程为θ=α0,其中α0 满足tan α0=2,若曲线C1 与C2 的公共点都在C3 上,求a.第 4 页共9 页深圳星火教育龙华数学组余凤老师整理2016 年高考数学全国 1 卷(理科)参考答案与试题解析7.【解答】 解:∵ f (x )=y=2x 2﹣e |x| ,∴ f (﹣x )=2(﹣x )2﹣e |x| ,∴ f (﹣x )=2(﹣x )2﹣e |﹣x | =2x 2﹣e |x| ,故函数为偶函数, 一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.2 2 x当 x=±2 时, y=8﹣e ∈( 0,1),故排除 A ,B ; 当 x ∈[0 , 2] 时, f (x ) =y=2x ﹣e ,1.【解答】 解:∵集合A={x|x2﹣4x+3<0}= (1,3),B={x|2x ﹣3>0}= ( ,+∞),∴ f ′( x )=4x ﹣e x =0 有解,故函数 y=2x 2﹣e |x| 在[0 ,2] 不是单调的,故排除 C ,x =0 有解,故函数 y=2x 2﹣e |x| 在[0 ,2] 不是单调的,故排除 C ,故选: D∴A ∩B=( ,3),故选: D8.【解答】 解:∵ a >b >1,0< c <1,2.【解答】 解:∵( 1+i ) x=1+yi ,∴ x+xi=1+yi ,即,解得,即 |x+yi|=|1+i|=,∴函数 f (x) =x c 在( 0,+∞)上为增函数,故 a c >b c ,故 A 错误;c 在( 0,+∞)上为增函数,故 a c >b c ,故 A 错误; 故选: B .函数 f (x )=x c ﹣1 在( 0,+∞)上为减函数,故 a c ﹣1<b c ﹣1,故 ba c <ab c,即 ab c >ba c ;故 B 错误; c ﹣1 在( 0,+∞)上为减函数,故 a c ﹣1<b c ﹣1,故 ba c <ab c ,即 ab c >ba c ;故 B 错误;log a c <0,且 log b c <0,log a b < 1,即= <1,即 log a c >log b c .故 D 错误;3.【解答】 解:∵等差数列 {a n }前 9 项的和为 27,S 9===9a 5 .0<﹣l og a c <﹣l og b c ,故﹣b log a c <﹣a log b c ,即 blog a c >alog b c ,即 alog b c <blog a c ,故 C 正确;∴9a 5=27,a 5 =3,又∵ a 10=8,∴ d=1,∴ a 100=a 5+95d=98,故选: C故选: C4. 【解答】 解:设小明到达时间为y ,当 y 在 7: 50 至 8:00,或 8:20 至 8:30 时,9.【解答】 解:输入x =0,y=1,n=1,则x =0,y=1,不满足x2+y 2≥ 36,故 n=2,2+y 2≥ 36,故 n=2,小明等车时间不超过10 分钟,故 P= = ,故选: B则x= ,y=2,不满足x 2+y 2≥ 36,故 n=3,则x = ,y=6,满足x 2+y 2≥ 36,故 y=4x ,2+y 2≥ 36,故 n=3,则x = ,y=6,满足x 2+y 2≥ 36,故 y=4x , 故选: C5.【解答】 解:∵双曲线两焦点间的距离为4,∴ c=2,当焦点在 x 轴上时,可得: 4=(m2+n )+(3m 2﹣n ),解得: m2=1, 22∵方程﹣=1 表示双曲线,∴( m +n )(3m ﹣n )> 0,可得:(n+1)(3﹣n )> 0,210.【解答】 解:设抛物线为 y =2px ,如图: |AB|=4,|AM|=2 ,|DE|=2 ,|DN|= ,|ON|= ,解得:﹣1<n <3,即 n 的取值范围是: (﹣1,3).当焦点在 y 轴上时,可得:﹣4=(m 2+n )+(3m 2﹣n ),解得: m 2=﹣1, 2+n )+(3m 2﹣n ),解得: m 2=﹣1, x A = = , |OD|=|OA| ,=+5,解得: p=4.C 的焦点到准线的距离为:4.无解.故选: A .故选: B .6.【解答】 解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图: 可得:=,R=2.它的表面积是:×4π?2 2+=17π.故选:A.共9 页第5页理整深圳星火教育龙华数学组余凤老师11.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=,mα∩平面ABA1B1=n,15.【解答】解:等比数列{a n} 满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q= .a1+q1=10,解得a1=8.2a2a可知:n∥CD1,m∥B1D1,∵△CB1D1 是正三角形.m、n 所成角就是∠CD1B1=60°.则m、n 所成角的正弦值为:.故选:A.则a1a2⋯a n=a1n?q1+2+3+⋯+(n﹣1)=8n? = = ,当n=3 或4时,表达式取得最大值:=26=64.n?q1+2+3+⋯+(n﹣1)=8n? = = ,当n=3 或4 时,表达式取得最大值:=26=64.故答案为:64.16.【解答】解:(1)设A、B两种产品分别是x 件和y 件,获利为z 元.由题意,得,z=2100x+900y .不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y .经过 A 时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.12.【解答】解:∵x=﹣为f (x)的零点,x= 为y=f (x)图象的对称轴,故答案为:216000.∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f (x)在(,)上单调,则﹣= ≤,即T= ≥,解得:ω≤12,当ω=11 时,﹣+φ=kπ,k∈Z,∵| φ| ≤,∴φ=﹣,此时 f (x)在(,)不单调,不满足题意;当ω=9 时,﹣+φ=kπ,k∈Z,∵| φ| ≤,∴φ= ,此时 f (x)在(,)单调,满足题意;故ω的最大值为9,故选: B二、填空题:本大题共 4 小题,每小题 5 分,共25 分.13.【解答】解:| + | 2=||2+||2,可得? =0.向量=(m,1),=(1,2),三、解答题:本大题共 5 小题,满分60 分,解答须写出文字说明、证明过程或演算步骤.可得m+2=0,解得m=﹣2.故答案为:﹣2.17.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC ≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA )=sinC ,整理得:2cosCsin (A+B)=sinC ,14.【解答】解:(2x+ )r+1= =25 的展开式中,通项公式为:T5﹣r ,5 的展开式中,通项公式为:T5﹣r ,即2cosCsin (π﹣(A+B))=sinC2cosCsinC=sinC ∴cosC= ,∴C= ;令5﹣=3,解得r=4 ∴x 3 的系数 2 =10.故答案为:10.3 的系数 2 =10.故答案为:10.(Ⅱ)由余弦定理得7=a2+b2﹣2ab? ,∴(a+b)2+b2﹣2ab? ,∴(a+b)2﹣3ab=7,∵S= absinC= ab= ,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+ .第6页共9 页深圳星火教育龙华数学组余凤老师整理18.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,19.【解答】解:(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF? 平面ABEF,∴平面ABEF⊥平面EFDC;P(X=16)=()2= ,(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣A F﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,P(X=17)= ,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣B E﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB?平面EFDC,EF? 平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=C,D AB? 平面ABCD,P(X=18)=()2+2()2= ,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,P(X=19)= = ,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),P(X=20)= = = ,∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)P(X=21)= = ,P(X=22)= ,设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).∴X的分布列为:X 16 17 18 19 20 21 22设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).P(Ⅱ)由(Ⅰ)知:设二面角E﹣B C﹣A的大小为θ,则cosθ= = =﹣,P(X≤18)=P(X=16)+P(X=17)+P(X=18)= = .则二面角E﹣B C﹣A的余弦值为﹣.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)= + = .∴P(X≤n)≥0.5 中,n 的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)= + = .买19 个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20 个所需费用期望:EX2= +(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19 个更合适.第7页共9 页理整深圳星火教育龙华数学组余凤老师解法二:购买零件所用费用含两部分,一部分为购买零件的费用,21.【解答】解:(Ⅰ)∵函数 f (x)=(x﹣2)ex+a(x﹣1)2,∴f ′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),x+a(x﹣1)2,∴f ′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),另一部分为备件不足时额外购买的费用,x①若a=0,那么 f (x)=0? (x﹣2)e =0? x=2,函数 f (x)只有唯一的零点2,不合题意;当n=19 时,费用的期望为:19×200+500×0.2+1000 ×0.08+1500 ×0.04=4040 ,②若a>0,那么e x+2a>0 恒成立,当x<1 时,f ′(x)<0,此时函数为减函数;x+2a>0 恒成立,当x<1 时,f ′(x)<0,此时函数为减函数;当n=20 时,费用的期望为:20×200+500×0.08+1000 ×0.4=4080 ,∴买19 个更合适.当x>1 时,f ′(x)>0,此时函数为增函数;此时当x=1 时,函数 f (x)取极小值﹣e,x由f (2)=a>0,可得:函数 f (x)在x>1 存在一个零点;当x<1 时,e <e,x﹣2<﹣1<0,20.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0 即为(x+1)2+y2+2x﹣15=0 即为(x+1)2+y2 =16,可得圆心A(﹣1,0),半径r=4,∴f (x)=(x﹣2)e >(x﹣2)e+a(x﹣1)x+a(x﹣1) 2x+a(x﹣1) 22=a(x﹣1)2 +e(x﹣1)﹣e,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,令a(x﹣1)2+e(x﹣1)﹣e=0 的两根为t2+e(x﹣1)﹣e=0 的两根为t 1,t 2,且t 1 <t 2,则|EA|+|EB|=|EA|+|ED|=|AD|=4 ,故 E 的轨迹为以A,B为焦点的椭圆,则当x<t 1,或x>t 2 时,f (x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数 f (x)在x<1 存在一个零点;即函数 f (x)在R是存在两个零点,满足题意;且有2a=4,即a=2,c=1,b= = ,则点 E 的轨迹方程为+ =1(y≠0);③若﹣<a<0,则ln (﹣2a)<lne=1 ,当x<ln (﹣2a)时,x﹣1<ln (﹣2a)﹣1<lne ﹣1=0,(Ⅱ)椭圆C1:+ =1,设直线l :x=my+1,由PQ⊥l ,设PQ:y=﹣m(x﹣1),e x+2a<e ln (﹣2a)+2a=0,即 f ′(x)=(x﹣1)(e x+2a)>0 恒成立,故 f (x)单调递增,x+2a<e ln (﹣2a)+2a=0,即 f ′(x)=(x﹣1)(e x+2a)>0 恒成立,故 f (x)单调递增,当ln (﹣2a)<x<1 时,x﹣1<0,ex +2a>e ln (﹣2a)+2a=0,由可得(3m 1,y1),N(x2,y2 ),可得y1+y2=﹣,y1y2=﹣,2+4)y2+6my﹣9=0,设M(x2+4)y2+6my﹣9=0,设M(x 即f ′(x)=(x﹣1)(e x+2a)<0 恒成立,故 f (x)单调递减,当x>1 时,x﹣1>0,e x+2a>e ln (﹣2a)+2a=0,x+2a)<0 恒成立,故 f (x)单调递减,当x>1 时,x﹣1>0,e x+2a>e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,故当x=ln (﹣2a)时,函数取极大值,则|MN|= ?|y 1﹣y2|= ? = ? =12? ,由f (ln (﹣2a))=[ln (﹣2a)﹣2] (﹣2a)+a[ln (﹣2a)﹣1] 2=a{[ln (﹣2a)﹣2] 2+1} <0 得:函数 f (x)在R上至多存在一个零点,不合题意;A到PQ的距离为d= = ,|PQ|=2 =2 = ,④若a=﹣,则ln (﹣2a)=1,当x<1=ln (﹣2a)时,x﹣1<0,ex+2a<e ln (﹣2a)+2a=0,x+2a<e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,当x>1 时,x﹣1>0,e x+2a>e ln (﹣2a)+2a=0,则四边形MPNQ面积为S= |PQ| ?|MN|= ? ?12 ?即f ′(x)=(x﹣1)(e x+2a)>0 恒成立,故 f (x)单调递增,故函数 f (x)在R上单调递增,x+2a)>0 恒成立,故 f (x)单调递增,故函数 f (x)在R上单调递增,函数 f (x)在R上至多存在一个零点,不合题意;=24? =24 ,当m=0时,S取得最小值12,又>0,可得S<24? =8 ,⑤若a<﹣,则ln (﹣2a)>lne=1 ,当x<1 时,x﹣1<0,ex+2a<e ln (﹣2a)+2a=0,x+2a<e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,即有四边形MPNQ面积的取值范围是[12 ,8 ).当1<x<ln (﹣2a)时,x﹣1>0,ex+2a<e ln (﹣2a)+2a=0,x+2a<e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)<0 恒成立,故 f (x)单调递减,当x>ln (﹣2a)时,x﹣1>0,ex+2a>e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,故当x=1 时,函数取极大值,由f (1)=﹣e<0 得:函数 f (x)在R上至多存在一个零点,不合题意;综上所述, a 的取值范围为(0,+∞)第8 页共9 页深圳星火教育龙华数学组余凤老师整理证明:(Ⅱ)∵x1,x2 是f (x)的两个零点,∴y=2x 为圆C1 与C2 的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a3 ,2=0,即为 C2=0,即为 C∴f (x1)=f (x2)=0,且x1≠1,且x2≠1, 2∴1﹣a =0,∴a=1(a>0).∴﹣a= = ,令g(x)= ,则g(x1)=g(x2)=﹣a,[ 选修4-5 :不等式选讲]24.∵g′(x)= ,∴当x<1 时,g′(x)<0,g(x)单调递减;【解答】解:(Ⅰ)f (x)= ,当x>1 时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)= ﹣= ,由分段函数的图象画法,可得 f (x)的图象,如右:设h(m)= ,m>0,(Ⅱ)由|f (x)| >1,可得当x≤﹣1 时,|x ﹣4| >1,解得x>5 或x<3,即有x≤﹣1;则h′(m)= >0 恒成立,即h(m)在(0,+∞)上为增函数,当﹣1<x<时,|3x ﹣2| >1,解得x>1 或x<,即有﹣1<x<或1<x<;h(m)>h(0)=0 恒成立,即g(1+m)>g(1﹣m)恒成立,当x≥时,|4 ﹣x| >1,解得x>5 或x<3,即有x>5 或≤x<3.令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)? g(2﹣x1)>g(x1)=g(x2)? 2﹣x1>x2,综上可得,x<或1<x<3 或x>5.则|f (x)| >1 的解集为(﹣∞,)∪(1,3)∪(5,+∞).即x1+x2<2.请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分.[ 选修4-1 :几何证明选讲]【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=O,B∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°= OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=O,B TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.[ 选修4-4 :坐标系与参数方程]【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2+(y﹣1)2=a2.∴C1 为以(0,1)为圆心,以 a 为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2+y2=ρ2,y=ρsin θ,得ρ2﹣2ρsin θ+1﹣a2=0;(Ⅱ)C2:ρ=4cos θ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0 满足t an α0=2,得y=2x,∵曲线C1 与C2 的公共点都在C3 上,第9页共9 页深圳星火教育龙华数学组余凤老师整理。
2016年高考理科数学全国1卷Word版(含详细答案)
(A) (B) (C) (D)
(2)设 ,其中 是实数,则
(A) (B) (C) (D)
(3)已知等差数列 前 项的和为 , ,则
(A) (B) (C) (D)
(4)某公司的班车在 , , 发车,小明在 至 之间到达发车站乘
坐班车,且到达发车站的时候是随机的,则他等车时间不超过10分钟的概率是
(21)(本小题满分12分)
已知函数 有两个零点.
(Ⅰ)求 的取值范围;
(Ⅱ)设 是 的两个零点,证明: .
请考生在第(22)、(23)、(24)题中任选一题作答,如果多做,则按所做的第一题计分.
(22)(本小题满分10分)选修4-1:几何证明选讲
如图, 是等腰三角形, .以 为圆心,
为半径作圆.
(Ⅰ)证明:直线 与⊙ 相切;
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。晖军頷损铖榄煬种撵摈賠宽櫬皱鳏趨飩黌埡蕭弳龉鶘鈉縝飆徠賻繭蓟閏贐錳寿袄帐鲍農亏厩壙届线鱿舊赞龅诨銨续呓恽习餓圇权匭姍鋇顓员贺頻轨稅個燜够镍鏽鐘闔鹌兹約侣蜆况脹鍔飯裝饱匮繼谗贱馍党漸啭锴泺媯黄繞橫钫。
(11)平面 过正方体 的顶点 , 平面 , 平面
, 平面 ,则 所成角的正弦值为
(A) (B) (C) (D)
(12)已知函数 , 为 的零点, 为
图像的对称轴,且 在 单调,则 的最大值为
(A)11(B)9(C)7(D)5
第II卷
本卷包括必考题和选考题两部分。第(13)题~第(21)题为必考题,每个试题考生都必须作答。第(22)题~第(24)题为选考题,考生根据要求作答。懾圇贄疗锈鎳沒蚀棧屨惭綻釗滄脓玑鲚窑濘盡湊鏇鷥錠閾胆竞繪锖缨肾糁勱萤哝鹩灤詎資纪緱赢诽麩讥鹰鋪鏑竖囂饨斷壇钶钟睾嬷韫薈殮禄阏铈鉻質铪稱悫惨茔俦牵鈣頃赢痙悫鹤担隱遞訟兴踬讽栈涣瀏锣辫闡綢務盜儉謁骄隊。
2016年高考全国Ⅰ理科数学试题及答案(word解析版)
2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅰ,理1,5分】设集合{}2|430A x x x =-+<,{}|230B x x =->,则AB =( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D【解析】{|13}A x x =<<,3{|}2B x x =>,3{|3}2A B x x ∴=<<,故选D .【点评】考察集合运算和简单不等式解法,属于必考题型,难易程度:易. (2)【2016年全国Ⅰ,理2】设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B )2 (C )3 (D )2 【答案】B【解析】由题意知:1x y ==,i =1i 2x y ∴++=,故选B .【点评】察复数相等条件和复数的模,属于必考题型,难易程度:易. (3)【2016年全国Ⅰ,理3,5分】已知等差数列{}n a 前9项的和为27,108a =,则100a =( )(A )100 (B )99 (C )98 (D )97 【答案】C【解析】解法一:199599272a a S a +===,53a ∴= 1051105a a d -∴==-()100101001089098a a d ∴=+-=+=,选C . 解法二:91989272S a d ⨯=+=,即143a d +=,又10198a a d =+=,解得11,1a d =-=,()1001100119998a a d ∴=+-=-+=,故选C . 【点评】考察等差数列的基本性质、前n 项和公式和通项公式,属于必考题型,难易程度:易. (4)【2016年全国Ⅰ,理4,5分】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13(B )12 (C )23 (D )34【答案】B【解析】小明可以到达车站时长为40分钟,可以等到车的时长为20分钟,则他等车时间不超过10分钟的概率是201402P ==,故选B .【点评】考察几何概型的概率计算,第一次考察,难易程度:易.(5)【2016年全国Ⅰ,理5,5分】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A【解析】由题意知:2234m n m n ++-=,解得21m =,1030n n +>⎧∴⎨->⎩,解得13n -<<,故选A .【点评】考察双曲线的简单几何性质,属于了解层次,必考题,难易程度:易. (6)【2016年全国Ⅰ,理6,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π 【答案】A【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=解得2r =,2271431784S r r πππ∴=⋅+⋅=,故选A .【点评】考察三视图还原,球的体积表面积计算,经常考察,难易程度:中等. (7)【2016年全国Ⅰ,理7,5分】函数22xy x e =-在[2,2]-的图像大致为( )(A )(B )(C ) (D )【答案】D【解析】解法1(排除法):2()2xf x x e =-为偶函数,且2(2)887.40.6f e =-≈-=,故选D .解法2:2()2xf x x e =-为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如图),故存在实数0(0,1)x ∈,使得'0()0f x =且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时, '0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】本题结合导数利用函数奇偶性,综合考察函数解析式与函数图像之间的关系,常规题型,属于必考题,难易程度:中等.这类题型的最佳解法应为结合函数的性质,选取特殊点进行排除.(8)【2016年全国Ⅰ,理8,5分】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C【解析】解法1(特殊值法):令14,22a b c ===,,易知C 正确.解法2:当0α>时,幂函数()f x x α=在(0,)+∞上递增,故A 选项错误;当1a >时,a 越大对数函数()log a f x x =的图像越靠近x 轴,当01c <<时,log log a b c c >,故D 选项错误;c c ab ba <可化为()c a ab b<,由指数函数知,当1a >时,()x f x a =在(0,)+∞上递增,故B 选项错误;log log b a a c b c <可化为11log log abb ac c <,1111abbb b a <<<,故选C .【点评】本题综合考察幂函数、指数函数、对数函数的性质和不等式的性质,属于常考题型,难易程度:中等. 结合函数性质证明不等式是比较麻烦的,最好采用特殊值法验证排除.(9)【2016年全国Ⅰ,理9,5分】执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x = 【答案】C【解析】011x y n ===,,时,框图运行如下: 1、012x y n ===,,;2、1232x y n ===,,;3、3632x y n ===,,,故选C .【点评】考察算法中的循环结构,必考题型,难易程度:易. (10)【2016年全国Ⅰ,理10,5分】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C的标准线于D 、E 两点.已知42AB =,25DE =,则C 的焦点到准线的距离为( ) (A )2 (B )4 (C )6 (D )8【答案】B【解析】解法1排除法:当4p =时,不妨令抛物线方程为28y x =,当y =1x =,即A 点坐标为(,所以圆的半径为3r =,此时D 点坐标为(-,符合题意,故B 选项正确.解法2:不妨令抛物线方程为22y px =,D 点坐标为2P ⎛- ⎝,则圆的半径为r =,22834p r -=-,即A 点坐标为⎭,所以22=,解得4p =,故选B . 【点评】考察抛物线和圆的简单性质,必考题型,难易程度:中等. (11)【2016年全国Ⅰ,理11,5分】平面a 过正方体1111ABCD A B C D -的顶点A ,//a 平面11CB D ,a 平面ABCD m =,a 平面11ABA B n =,则m 、n 所成角的正弦值为( )(A (B )2 (C (D )13【答案】A【解析】令平面a 与平面11CB D 重合,则11m B D =,1n CD =,故直线m 、n 所成角为60o ,,故选A . 【点评】考察正方体中线面位置关系和两条直线夹角的计算,必考题型,难易程度:中等.(12)【2016年全国Ⅰ,理12,5分】已知函数()()sin 02f x x +πωϕωϕ⎛⎫=>≤ ⎪⎝⎭,,4x π=-为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B【解析】解法1(特殊值验证法)令9ω=,则周期29T π=,区间[]44ππ-,刚为94T ,且在53636ππ⎡⎤⎢⎥⎣⎦,上递减,恰好符合题意,故选B .解法2:由题意知152()24369T πππ≥-=,所以29Tπω=≤,故选B .【点评】综合考察三角函数图像的单调性、对称性、零点、周期等性质,属于必考题型,难易程度:偏难.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,理13,5分】设向量(),1m =a ,()1,2=b ,且222+=+a b a b ,则m = . 【答案】2-【解析】解法一(几何法)由向量加法的几何意义知a b ⊥,故20a b m ⋅=+=,所以2m =-;解法二(代数法)22(1)9114m m ++=+++,解得2m =-.【点评】考察向量运算,必考题型,难易程度:易.(14)【2016年全国Ⅰ,理14,5分】(52x +的展开式中,3x 的系数是 .(用数字填写答案) 【答案】10【解析】()555215522r rrrr rr T Cx C x---+==,令532r-=,解得4r =,454525210C -∴=⨯=. 【点评】考察二项式定理展开式中指定项问题,必考题型,难易程度:中等.(15)【2016年全国Ⅰ,理15,5分】设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 . 【答案】64【解析】由1310a a +=,245a a +=解得118,2a q ==,14118()()22n n n a --∴==,27321(4)21211()()22n nn n a a a ----+⋅⋅⋅+-∴⋅⋅⋅==,所以当3n =或4时,12n a a a ⋅⋅⋅有最大值64.【点评】考察等比数列的通项公式、等差数列求和及二次函数最值问题,必考题型,难易程度:中等. (16)【2016年全国Ⅰ,理16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
2016年高考理科数学全国卷3(含答案解析)
绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学使用地区:广西、云南、贵州注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共6页.2. 答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚.再贴好条形码,请认真核准条形码上的准考证号、姓名和科目.3. 答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在本试卷上无效.4. 答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答.答在本试卷上无效.5. 第22、23、24小题为选考题,请按题目要求任选其中一题作答.要用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.6. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{|(2)(3)0}S x x x =--≥,{}0Tx x =>,则S T = ( )A. []2,3B. (,2][3,)-∞+∞C. [3,)+∞D. (0,2][3,)+∞2.若12i z =+,则4i1zz =- ( )A. 1B. 1-C. iD. i -3.已知向量1331()()2222BA BC ==,,,,则ABC ∠=( )A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )----平均最低气温——平均最高气温A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. 若3tan 4α=,则2cos 2sin 2αα+=( )A. 6425B.4825 C. 1D. 16256. 已知432a =,254b =,1325c =,则( )A. b a c <<B. a b c <<C. b c a <<D. c a b <<7. 执行如图的程序框图,如果输入的4a =,6b =,那么输出的n =( )A. 3B. 4C. 5D. 68. 在ABC △中,4B π=,BC 边上的高等于13BC ,则cos A = ( )A. 10310B.1010C. 1010-D. 31010-9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18365+B. 54185+C. 90D. 8110. 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )A. 4πB.92π C. 6πD. 323π11. 已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左、右顶点,P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A. 13 B.12 C. 23D. 3412. 定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,123,,......k a a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( )A. 18个B. 16个--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无----------------效----------------姓名________________ 准考证号_____________C. 14个D. 12个第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13. 若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为______.14. 函数sin y x x =的图象可由函数sin y x x =的图象至少向右平移______个单位长度得到.15. 已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程式是______. 16. 已知直线30l mx y m ++=:与圆2212x y +=交于,A B 两点,过,A B 分别作l的垂线与x 轴交于,C D两点,若||AB =,则||CD =______. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 前n 项和1n n S a λ=+,其中0λ≠. (Ⅰ)证明{}n a 是等比数列,并求其通项公式; (Ⅱ)若53132S =,求λ.18.(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008—2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化 处理量.附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑0.552.646≈.参考公式:相关系数1()()nii i tt y y r =--=∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为b =121()()()nii i nii tt y y tt ==---∑∑,a y bt =-.19.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (Ⅰ)证明:MN ∥平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.20.(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥; (Ⅱ)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.21.(本小题满分12分)设函数()cos2(1)(cos 1)f x x x αα=+-+,其中0α>,记|()|f x 的最大值为A . (Ⅰ)求()f x ';(Ⅱ)求A ; (Ⅲ)证明:()2f x A '≤.请考生在第22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O 中AB 的中点为P ,弦PC PD ,分别交AB 于E F ,两点. (Ⅰ)若2PFB PCD ∠=∠,求PCD ∠的大小;(Ⅱ)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明:OG CD ⊥.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为,sin ,x y αα⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+= (Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4—5:不等式选讲 已知函数()|2|f x x a a =-+. (Ⅰ)当2a=时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a 的取值范围.2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】易得(][),23,S =-∞+∞,(][)0,23,S T ∴=+∞.【考点】解一元二次不等式,交集 2.【答案】C【解析】易知12i z =-,故14zz -=,4ii 1zz ∴=-. 【考点】共轭复数,复数运算 3.【答案】A【解析一】32cos 11BA BC ABC BA BC ∠===⨯,30ABC ∴∠=.【解析二】可以B 点为坐标原点建立如图所示直角坐标系,易知60ABx ∠=,30CBx ∠=,30ABC ∴∠=.【考点】向量夹角的坐标运算4.【答案】D【解析】从图像中可以看出平均最高气温高于20C 的月份有七月、八月,六月为20C 左右,故最多3个. 【考点】统计图的识别 5.【答案】A【解析】22222cos 4sin cos 14tan 64cos 2sin 2cos sin 1tan 25ααααααααα+++===++. 【考点】二倍角公式,弦切互化,同角三角函数公式6.【答案】A【解析】423324a ==,233b =,1233255c ==,故c a b >>. 【考点】指数运算,幂函数性质 7.【答案】B【考点】程序框图 8.【答案】C【解析】如图所示,可设1BD AD ==,则AB =2DC =,AC ∴=知,cos A =.【考点】解三角形9.【答案】B【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为2332362354⨯⨯+⨯⨯+⨯+. 【考点】三视图,多面体的表面积 10.【答案】B【解析】由题意知,当球为直三棱柱的内接球时,体积最大,选取过球心且平行于直三棱柱底面的截面,如图所示,则由切线长定理可知,内接圆的半径为2,又1322AA =<⨯,所以内接球的半径为32,即V 的最大值为349ππ32R =. 【考点】内接球半径的求法11.【答案】A【解析】易得ON OB aMF BF a c==+,2MF MF AF a c OE ON AO a -===,12a a c a c a c a a c --∴==++,13c e a ∴==.【考点】椭圆的性质,相似12.【答案】C【解析】011110111010111101001110011110110011101010111001111011001110101⎧⎧→⎧⎪⎪⎪→⎧⎪⎪⎪⎨⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪→⎪⎪⎩⎩⎩⎪⎪⎧→⎪⎨⎧⎪⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪→⎨⎩⎪⎩⎪⎨⎪→⎪⎧⎪⎪→⎨⎪⎪⎪→⎩⎩⎩⎪⎪⎧→⎧⎪⎪⎪→⎪⎧⎨⎪⎨⎪⎪⎪→→⎨⎩⎩⎪⎪⎪→⎧⎪⎪→⎨⎪→⎪⎩⎩⎩【考点】数列,树状图第Ⅱ卷二、填空题 13.【答案】32【解析】三条直线的交点分别为(2,1)--,11,2⎛⎫⎪⎝⎭,(0,1),代入目标函数可得3-,32,1,故最大值为32. 【考点】线性规划14.【答案】2π3【解析】sin 2sin 3y x x x π⎛⎫==- ⎪⎝⎭,sin 2sin 3y x x x π⎛⎫=+=+ ⎪⎝⎭,故可前者的图像可由后者向右平移2π3个单位长度得到.【考点】三角恒等变换,图像平移15.【答案】210x y ++=【解析一】11()33f x x x-'=+=+-,(1)2f '∴-=,(1)2f '∴=-,故切线方程为210x y ++=.【解析二】当0x >时,()()ln 3f x f x x x =-=-,1()3f x x'∴=-,(1)2f '∴=-,故切线方程为210x y ++=.【考点】奇偶性,导数,切线方程 16.【答案】3【解析】如图所示,作AE BD ⊥于E ,作OF AB ⊥于F,AB =OA =,3OF ∴=,即3=,m ∴=,∴直线l 的倾斜角为30,3CD AE ∴===.【考点】直线和圆,弦长公式 三、解答题17.【答案】(Ⅰ)1n n S a λ=+,0λ≠,0n a ∴≠,当2n ≥时,11111n n n n n n n a S S a a a a λλλλ---=-=+--=-,即1(1)n n a a λλ--=,0λ≠,0n a ≠,10λ∴-≠,即1λ≠,即11n n a a λλ-=-,(2)n ≥,{}n a ∴是等比数列,公比1q λλ=-,当1n =时,1111S a a λ=+=,即111a λ=-,1111n n a λλλ-⎛⎫∴= ⎪--⎝⎭;(Ⅱ)若53132S =,则555111131113211S λλλλλλλ⎡⎤⎛⎫-⎢⎥ ⎪--⎝⎭⎢⎥⎛⎫⎣⎦==-= ⎪-⎝⎭--,1λ∴=-. 【考点】等比数列的证明,由n S 求通项,等比数列的性质18.【答案】(Ⅰ)由题意得123456747t ++++++==,71 1.3317i i y y ==≈∑,7()()0.99nii i itt y y t ynt yr ---===≈∑∑,因为y与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归方程来拟合y 与t 的关系; (Ⅱ)121()()2.890.10328()nii i ni i tt y y b t t ==--==≈-∑∑, 1.330.10340.92a y bt =-=-⨯≈,所以y 关于t 的线性回归方程为0.920.10y a bt t =+=+,将9t =代入回归方程可得, 1.82y =,预测2016年我国生活垃圾无害化处理量将约为1.82亿吨.【考点】相关性分析,线性回归 19.【答案】(Ⅰ)由已知得223AM AD ==,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN BC ∥,122TN BC ==,又AD BC ∥,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是MN AT ∥,因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB ;(Ⅱ)取BC 中点E ,连接AE ,则易知AE AD ⊥,又PA ⊥面ABCD ,故可以A 为坐标原点,以AE 为x 轴,以AD 为y 轴,以AP 为z 轴建立空间直角坐标系,则(0,0,0)A 、(0,0,4)P 、C 、N ⎫⎪⎪⎝⎭()0,2,0M,52AN ⎛⎫∴= ⎪ ⎪⎝⎭,(0,2,4)PM =-,22PN N ⎛⎫=-⎪ ⎪⎝⎭,故平面PMN 的法向量(0,2,1)n =,4cos ,52AN n ∴<>==,∴直线AN 与平面PMN 所成角的正弦值为25.【考点】线面平行证明,线面角的计算20.【答案】(Ⅰ)由题设1,02F ⎛⎫⎪⎝⎭,设1:l y a =,2:l y b =,则0ab ≠,且2,2a A a ⎛⎫ ⎪⎝⎭,2,2b B b ⎛⎫ ⎪⎝⎭,1,2P a ⎛⎫- ⎪⎝⎭,1,2Q b ⎛⎫- ⎪⎝⎭,1,22a b R +⎛⎫- ⎪⎝⎭,记过A ,B 两点的直线为l ,则l 的方程为2()0x a b y ab -++=,由于F 在线段AB 上,故10ab +=,记AR 的斜率为1k ,FQ 的斜率为2k ,则122211a b a b abk b k a a ab a a---=====-=+-,所以AR FQ ∥; (Ⅱ)设l 与x 轴的交点为1(,0)D x ,则1111222ABF S b a FD b a x ∆=-=--,2PQF a bS ∆-=,由题设可得111222a b b a x ---=,所以10x =(舍去),11x =,设满足条件的AB 的中点为(,)E x y ,当AB 与x 轴不垂直时,由AB DE k k =可得2(1)1y x a b x =≠+-,而2a by +=,所以21(1)y x x =-≠,当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为21y x =-. 【考点】抛物线,轨迹方程21.【答案】(Ⅰ)()2sin 2(1)sin f x a x a x '=---;(Ⅱ)当1a ≥时,|()||cos2(1)(cos 1)|2(1)32(0)f x a x a x a a a f =+-+≤+-=-=,因此,32A a =-,当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--,令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值,(1)g a -=,(1)32g a =-,且当14a t a -=时,()g t 取得极小值,极小值为221(1)611488a a a a g a a a --++⎛⎫=--=- ⎪⎝⎭,令1114a a --<<,解得13a <-(舍去),15a >. ①当105a <≤时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-; ②当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4ag g g a-->>; 又1(1)(17)|(1)|048a a a g g a a --+⎛⎫--=> ⎪⎝⎭,所以216148a a a A g a a -++⎛⎫==⎪⎝⎭, 综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩(Ⅲ)由(Ⅰ)得|()||2sin 2(1)sin |2|1|f x a x a x a a '=---≤+-,当105a <≤时,|()|1242(23)2f x a a a A '≤+≤-<-=,当115a <<时,131884a A a =++≥, 所以|()|12f x a A '≤+<,当1a ≥时,|()|31642f x a a A '≤-≤-=,所以|()|2f x A '≤. 【考点】导函数讨论单调性,不等式证明22.【答案】(Ⅰ)连结PB ,BC ,则BFD PBA BPD ∠=∠+∠,PCD PCB BCD ∠=∠+∠,因为AP BP =,所以PBA PCB ∠=∠,又BPD BCD ∠=∠,所以BFD PCD ∠=∠,又180PFD BFD ∠+∠=,2PFB PCD ∠=∠,所以3180PCD ∠=,因此60PCD ∠=;(Ⅱ)因为PCD BFD ∠=∠,所以180PCD EFD ∠+∠=,由此知C ,D ,F ,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C ,D ,F ,E 四点的圆的圆心,所以G 在CD 的垂直平分线上,因此OG CD ⊥. 【考点】几何证明23.【答案】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(Ⅱ)由题意,可设点P 的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值,即为P 到2C 的距离()d α的最小值,()sin()2|3d παα==+-,当且仅当π2π()6k k Z α=+∈时,()d α,此时P 的直角坐标为31,22⎛⎫⎪⎝⎭.【考点】坐标系与参数方程24.【答案】(Ⅰ)当2a =时,()|22|2f x x =-+,解不等式|22|26x -+≤,得13x -≤≤,因此,()6f x ≤的解集为{|13}x x -≤≤;(Ⅱ)当x R ∈时,()()|2||12||212||1|f x g x x a a x x a x a a a +=-++-≥-+-+=-+,当12x =时等号成立,所以当x R ∈时,()()3f x g x +≥等价于|1|3a a -+≥①. 当1a ≤时,①等价于13a a -+≥,无解;当1a >时,①等价于13a a -+≥,解得2a ≥; 所以a 的取值范围是[2,)+∞. 【考点】不等式。
(完整版)2016年高考新课标卷理科数学试题(2卷)
2016年全国统一高考数学试卷(新课标Ⅱ)(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1。
已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A。
(—3,1)B。
(-1,3)C。
(1,+∞)D。
(-∞,—3)2.已知集合A={1,2,3},B={x|(x+1)(x—2)<0,x∈Z},则A∪B=()A。
{1} B.{1,2}C。
{0,1,2,3} D。
{—1,0,1,2,3}3.已知向量=(1,m),=(3,-2),且(+)⊥,则m=()A.-8 B。
-6 C.6 D.84。
圆x2+y2—2x—8y+13=0的圆心到直线ax+y—1=0的距离为1,则a=()A.-B。
—C。
D.25。
如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12 D。
96.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC。
28π D.32π7。
若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A。
x=—(k∈Z) B.x=+(k∈Z) C.x=—(k∈Z) D.x=+(k∈Z)8。
中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A。
7 B。
12 C。
17 D。
349。
若cos(—α)=,则sin2α=()A.B。
C.- D.—10.从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n构成n个数对(x1,y1),(x2,y2)…(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A. B.C。
【真题】2016年高考数学(理科)课标卷Ⅰ(Word版含答案解析)
2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)理数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=( )A. B. C. D.2.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=( )A.1B.C.D.23.已知等差数列{a n}前9项的和为27,a10=8,则a100=( )A.100B.99C.98D.974.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A. B. C. D.5.已知方程-=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )A.(-1,3)B.(-1,)C.(0,3)D.(0,)6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是( )A.17πB.18πC.20πD.28π7.函数y=2x2-e|x|在[-2,2]的图象大致为( )8.若a>b>1,0<c<1,则( )A.a c<b cB.ab c<ba cC.alog b c<blog a cD.log a c<log b c9.执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足( )A.y=2xB.y=3xC.y=4xD.y=5x10.以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为( )A.2B.4C.6D.811.平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )A. B. C. D.12.已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在单调,则ω的最大值为( )A.11B.9C.7D.5第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13.设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m= .14.(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(本小题满分12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(Ⅰ)证明:平面ABEF⊥平面EFDC;(Ⅱ)求二面角E-BC-A的余弦值.19.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数. (Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(本小题满分12分)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q 两点,求四边形MPNQ面积的取值范围.21.(本小题满分12分)已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与☉O相切;(Ⅱ)点C,D在☉O上,且A,B,C,D四点共圆,证明:AB∥CD.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.(Ⅰ)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+1|-|2x-3|.(Ⅰ)画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.D 易知A=(1,3),B=,∴A∩B=.故选D.方法总结集合的运算问题通常是先化简后运算,也可借助数轴或韦恩图解决.2.B ∵x,y∈R,(1+i)x=1+yi,∴x+xi=1+yi,∴∴|x+yi|=|1+i|==.故选B.3.C 设{a n}的公差为d,由等差数列前n项和公式及通项公式,得解得a n=a1+(n-1)d=n-2,∴a100=100-2=98.故选C.方法总结已知条件中有具体的a n、S n的值时,通常用基本元素法处理,即在a1、d、n、a n、S n这5个量中知三求二.4.B 解法一:7:30的班车小明显然是坐不到了.当小明在8:00前到达,或者8:20之后到达,他等车的时间将不超过10分钟,故所求概率为=.故选B.解法二:当小明到达车站的时刻超过8:00,但又不到8:20时,等车时间将超过10分钟,其他时刻到达车站时,等车时间将不超过10分钟,故等车时间不超过10分钟的概率为1-=.5.A ∵原方程表示双曲线,且焦距为4,∴①或②由①得m2=1,n∈(-1,3).②无解.故选A.解后反思对于方程mx2+ny2=1,若表示椭圆,则m、n均为正数且m≠n;若表示双曲线,则m·n<0.6.A 由三视图可知,该几何体是一个球被截去后剩下的部分,设球的半径为R,则该几何体的体积为×πR3,即π=×πR3,解得R=2.故其表面积为×4π×22+3××π×22=17π.选A.7.D 当x∈(0,2]时,y=f(x)=2x2-e x, f '(x)=4x-e x. f '(x)在(0,2)上只有一个零点x0,且当0<x<x0时, f '(x)<0;当x0<x≤2时, f '(x)>0.故f(x)在(0,2]上先减后增,又f(2)-1=7-e2<0,所以f(2)<1.故选D.8.C 解法一:由a>b>1,0<c<1,知a c>b c,A错;∵0<c<1,∴-1<c-1<0,∴y=x c-1在x∈(0,+∞)上是减函数,∴b c-1>a c-1,又ab>0,∴ab·b c-1>ab·a c-1,即ab c>ba c,B错;易知y=log c x是减函数,∴0>log c b>log c a,∴log b c<log a c,D错;由log b c<log a c<0,得-log b c>-log a c>0,又a>b>1>0,∴-alog b c>-blog a c>0,∴alog b c<blog a c,故C正确.解法二:依题意,不妨取a=10,b=2,c=.易验证A、B、D均是错误的,只有C正确.9.C x=0,y=1,n=1,x=0,y=1,n=2;x=,y=2,n=3;x=,y=6,此时x2+y2>36,输出x=,y=6,满足y=4x.故选C.10.B 不妨设C:y2=2px(p>0),A(x1,2),则x1==,由题意可知|OA|=|OD|,得+8=+5,解得p=4.故选B.11.A 如图,延长B1A1至A2,使A2A1=B1A1,延长D1A1至A3,使A3A1=D1A1,连结AA2,AA3,A2A3,A1B,A1D.易证AA2∥A1B∥D1C,AA3∥A1D∥B1C.∴平面AA2A3∥平面CB1D1,即平面AA2A3为平面α.于是m∥A2A3,直线AA2即为直线n.显然有AA2=AA3=A2A3,于是m、n所成的角为60°,其正弦值为.选A.疑难突破本题的难点是明确直线m、n的具体位置或它们相对正方体中的棱、对角线的相对位置关系.为此适当扩形是常用策略.向右、向前扩展(补形)两个全等的正方体,则m、n 或其平行线就展现出来了.12.B 依题意,有(m、n∈Z),∴又|φ|≤,∴m+n=0或m+n=-1.当m+n=0时,ω=4n+1,φ=,由f(x)在上单调,得≥-,∴ω≤12,取n=2,得ω=9, f(x)=sin符合题意.当m+n=-1时,φ=-,ω=4n+3,取n=2,得ω=11, f(x)=sin,此时,当x∈时,11x-∈, f(x)不单调,不合题意.故选B.解后反思本题要求ω的最大值,正面入手运算量偏大,不妨对ω取特殊值进行检验.二、填空题13.答案-2解析由|a+b|2=|a|2+|b|2,知a⊥b,∴a·b=m+2=0,∴m=-2.14.答案10解析T r+1=(2x)5-r·()r=25-r·,令5-=3,得r=4,∴T5=10x3,∴x3的系数为10.15.答案64解析设{a n}的公比为q,于是a1(1+q2)=10,①a1(q+q3)=5,②联立①②得a1=8,q=,∴a n=24-n,∴a1a2…a n=23+2+1+…+(4-n)==≤26=64.∴a1a2…a n的最大值为64.16.答案216 000解析设生产产品A x件,产品B y件,依题意,得设生产产品A,产品B的利润之和为E元,则E=2 100x+900y.画出可行域(图略),易知最优解为此时E max=216 000.三、解答题17.解析(Ⅰ)由已知及正弦定理得,2cos C(sin Acos B+sin Bcos A)=sin C,(2分)2cos Csin(A+B)=sin C.故2sin Ccos C=sin C.(4分)可得cos C=,所以C=.(6分)(Ⅱ)由已知,得absin C=.又C=,所以ab=6.(8分)由已知及余弦定理得,a2+b2-2abcos C=7.故a2+b2=13,从而(a+b)2=25.(10分)所以△ABC的周长为5+.(12分)解后反思本题属解三角形问题中的常见题型,要先利用正弦、余弦定理,将已知中的“边”或“角”的关系式,转化为只有“边”或只有“角”的方程形式,进而通过三角函数或代数知识求解方程.解题中要注意三角形的一些性质应用,例如:sin(A+B)=sin C,S△ABC=absin C.18.解析(Ⅰ)由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.(2分)又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(3分)(Ⅱ)过D作DG⊥EF,垂足为G,由(Ⅰ)知DG⊥平面ABEF.以G为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系G-xyz.(6分)由(Ⅰ)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则|DF|=2,|DG|=,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,).由已知得,AB∥EF,所以AB∥平面EFDC.(8分)又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE-F的平面角,∠CEF=60°.从而可得C(-2,0,).所以=(1,0,),=(0,4,0),=(-3,-4,),=(-4,0,0).(10分)设n=(x,y,z)是平面BCE的法向量,则即所以可取n=(3,0,-).设m是平面ABCD的法向量,则同理可取m=(0,,4).则cos <n,m>==-.故二面角E-BC-A的余弦值为-.(12分)方法总结对于立体几何问题的求解,首先要熟练掌握平行与垂直的判定与性质,尤其是面面垂直的证明,寻找平面的垂线往往是几何证明的关键.19.解析(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.(4分)所以X的分布列为X 16 17 18 19 20 21 22P 0.04 0.16 0.24 0.24 0.2 0.08 0.04 (6分)(Ⅱ)由(Ⅰ)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(8分)(Ⅲ)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,EY=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.(10分)当n=20时,EY=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.(12分)解后反思本题重点考查相互独立事件的概率、简单随机变量的分布列及期望.求解本题的关键在于认真分析题干中的事件,确定事件间的相互关系,根据分析内容,找到解题的突破口.20.解析(Ⅰ)因为|AD|=|AC|,EB∥AC,故∠EBD=∠ACD=∠ADC.所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4.(2分)由题设得A(-1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为+=1(y≠0).(4分) (Ⅱ)当l与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),M(x1,y1),N(x2,y2).由得(4k2+3)x2-8k2x+4k2-12=0.则x1+x2=,x1x2=.所以|MN|=|x1-x2|=.(6分)过点B(1,0)且与l垂直的直线m:y=-(x-1),A到m的距离为,所以|PQ|=2=4.故四边形MPNQ的面积S=|MN||PQ|=12.(10分)可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8).当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ的面积为12.综上,四边形MPNQ面积的取值范围为[12,8).(12分)解后反思本题重点考查圆锥曲线的几何性质,以及直线与椭圆、圆的位置关系,尤其是对“弦长”问题的考查,更是本题考查的重点.解决此类问题,除了要熟知圆锥曲线的几何性质之外,对计算能力的要求也非常高.21.解析(Ⅰ)f '(x)=(x-1)e+2a(x-1)=(x-1)(e+2a).(2分)(i)设a=0,则f(x)=(x-2)e x, f(x)只有一个零点.(3分)(ii)设a>0,则当x∈(-∞,1)时, f '(x)<0;当x∈(1,+∞)时, f '(x)>0.所以f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.又f(1)=-e, f(2)=a,取b满足b<0且b<ln ,则f(b)>(b-2)+a(b-1)2=a>0,故f(x)存在两个零点.(4分)(iii)设a<0,由f '(x)=0得x=1或x=ln(-2a).若a≥-,则ln(-2a)≤1,故当x∈(1,+∞)时, f '(x)>0,因此f(x)在(1,+∞)单调递增.又当x≤1时f(x)<0,所以f(x)不存在两个零点.(6分)若a<-,则ln(-2a)>1,故当x∈(1,ln(-2a))时, f '(x)<0;当x∈(ln(-2a),+∞)时, f '(x)>0.因此f(x)在(1,ln(-2a))单调递减,在(ln(-2a),+∞)单调递增.又当x≤1时f(x)<0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(8分)(Ⅱ)不妨设x1<x2.由(Ⅰ)知,x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),f(x)在(-∞,1)单调递减,所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x 2)=-x2+a(x2-1)2,而f(x2)=(x2-2)+a(x2-1)2=0,所以f(2-x 2)=-x2-(x2-2).(10分)设g(x)=-xe2-x-(x-2)e x,则g '(x)=(x-1)(e2-x-e x).所以当x>1时, g '(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.(12分)22.证明(Ⅰ)设E是AB的中点,连结OE.因为OA=OB,∠AOB=120°,所以OE⊥AB,∠AOE=60°.(2分)在Rt△AOE中,OE=AO,即O到直线AB的距离等于☉O的半径,所以直线AB与☉O相切.(5分)(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设O'是A,B,C,D四点所在圆的圆心,作直线OO'.由已知得O在线段AB的垂直平分线上,又O'在线段AB的垂直平分线上,所以OO'⊥AB.(9分) 同理可证,OO'⊥CD,所以AB∥CD.(10分)23.解析(Ⅰ)消去参数t得到C 1的普通方程x2+(y-1)2=a2.C1是以(0,1)为圆心,a为半径的圆.(3分)将x=ρcos θ,y=ρsin θ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsin θ+1-a2=0.(5分)(Ⅱ)曲线C1,C2的公共点的极坐标满足方程组(6分)若ρ≠0,由方程组得16cos2θ-8sin θcos θ+1-a2=0,由tan θ=2,可得16cos2θ-8sin θcos θ=0,从而1-a2=0,解得a=-1(舍去),或a=1.(8分)a=1时,极点也为C1,C2的公共点,在C3上.(9分)所以a=1.(10分)24.解析(Ⅰ)f(x)=(3分)y=f(x)的图象如图所示.(5分)(Ⅱ)由f(x)的表达式及图象,当f(x)=1时,可得x=1或x=3;(6分)当f(x)=-1时,可得x=或x=5,(7分)故f(x)>1的解集为{x|1<x<3};f(x)<-1的解集为.(9分)所以|f(x)|>1的解集为.(10分)。
2016年高考理科数学全国卷3(含详细答案)
绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学使用地区:广西、云南、贵州注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共6页.2. 答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚.再贴好条形码,请认真核准条形码上的准考证号、姓名和科目.3. 答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在本试卷上无效.4. 答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答.答在本试卷上无效.5. 第22、23、24小题为选考题,请按题目要求任选其中一题作答.要用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.6. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{|(2)(3)0}S x x x =--≥,{}0Tx x =>,则S T = ( )A. []2,3B. (,2][3,)-∞+∞C. [3,)+∞D. (0,2][3,)+∞2.若12i z =+,则4i1zz =- ( )A. 1B. 1-C. iD. i -3.已知向量1331()()2222BA BC ==,,,,则ABC ∠=( )A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )----平均最低气温——平均最高气温A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. 若3tan 4α=,则2cos 2sin 2αα+=( )A. 6425B.4825 C. 1D. 16256. 已知432a =,254b =,1325c =,则( )A. b a c <<B. a b c <<C. b c a <<D. c a b <<7. 执行如图的程序框图,如果输入的4a =,6b =,那么输出的n =( )A. 3B. 4C. 5D. 68. 在ABC △中,4B π=,BC 边上的高等于13BC ,则cos A = ( )A. 10310B. 1010C. 1010-D. 31010-9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18365+B. 54185+C. 90D. 8110. 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )A. 4πB.92π C. 6πD. 323π11. 已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左、右顶点,P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A. 13 B.12 C. 23D. 3412. 定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,123,,......k a a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( )A. 18个B. 16个--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无----------------效----------------姓名________________ 准考证号_____________C. 14个D. 12个第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13. 若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为______.14. 函数sin y x x =-的图象可由函数sin y x x =+的图象至少向右平移______个单位长度得到.15. 已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程式是______. 16. 已知直线30l mx y m ++:与圆2212x y +=交于,A B 两点,过,A B 分别作l的垂线与x 轴交于,C D两点,若||AB =||CD =______. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 前n 项和1n n S a λ=+,其中0λ≠. (Ⅰ)证明{}n a 是等比数列,并求其通项公式; (Ⅱ)若53132S =,求λ.18.(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008—2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化 处理量.附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑0.55=2.646≈.参考公式:相关系数()()nii tt y y r --=∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为b =121()()()nii i nii tt y y tt ==---∑∑,a y bt =-.19.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (Ⅰ)证明:MN ∥平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.20.(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(Ⅱ)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.21.(本小题满分12分)设函数()cos2(1)(cos 1)f x x x αα=+-+,其中0α>,记|()|f x 的最大值为A . (Ⅰ)求()f x ';(Ⅱ)求A ; (Ⅲ)证明:()2f x A '≤.请考生在第22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O 中AB 的中点为P ,弦PC PD ,分别交AB 于E F ,两点. (Ⅰ)若2PFB PCD ∠=∠,求PCD ∠的大小;(Ⅱ)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明:OG CD ⊥.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为,sin ,x y αα⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4—5:不等式选讲 已知函数()|2|f x x a a =-+.(Ⅰ)当2a =时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a的取值范围.][)3,+∞,(][)0,23,S T=+∞.【考点】解一元二次不等式,交集,故1zz-=4ii1zz∴=-.3211BA BC BA BC =⨯30.点为坐标原点建立如图所示直角坐标系,易知60ABx∠,30CBx∠,30.【考点】向量夹角的坐标运算从图像中可以看出平均最高气温高于20C的月份有七月、20C左右,数学试卷第10页(共27页)数学试卷第11页(共27页)a c a c a a --=+【解析】sin y x =者向右平移2π3个单位长度得到.【考点】三角恒等变换,图像平移【答案】2x y ++【解析一】()f x '=,2AB =数学试卷第16页(共27页)数学试卷第17页(共27页) 30,CD ∴Ⅰ)1n S λ=+1n a -,0λ≠,a ,当1n =时,1S 11n λλλ-⎛⎫⎪-⎝⎭,则11S -=1-.(Ⅱ)11((ii ni tb ==-=∑∑ 1.33bt -=-0.92y a bt =+=+代入回归方程可得,y 处理量将约为1.82亿吨.【考点】相关性分析,线性回归(Ⅰ)由已知得平面PAB ;,又PA ⊥面52AN ⎛∴= ⎝,(0,2,PM =,PN N ⎛= ⎝的法向量(0,2,1)n =,4,552AN n <>=⨯AN 与平面PMN 所成角的正弦值为25【考点】线面平行证明,线面角的计算21.【答案】(Ⅰ)()2sin 2(1)sin f x a x a x '=---;(Ⅱ)当1a ≥时,|()||cos2(1)(cos 1)|2(1)32(0)f x a x a x a a a f =+-+≤+-=-=,因此,32A a =-,当数学试卷第22页(共27页)数学试卷第23页(共27页)180,2PFB PCD ∠=∠,所以3180PCD ∠=,因此60PCD ∠=;(Ⅱ)因为PCD BFD ∠=∠,所以180PCD EFD ∠+∠=,由此知C ,D ,F ,E 四点共圆,其圆心既在G 就是过。
2016年高考理科数学全国1卷,附答案
2016 年高考数学全国 1 卷(理科)一、选择题:本大题共12 小题,每小题 5 分,每小题只有一项是符合题目要求的.9.执行如图的程序框图,如果输入的x=0, y=1,n=1,则输出x ,y 的值满足()2﹣4x+3<0} ,B={x|2x ﹣3>0} ,则 A ∩B=()1.设集合 A={x| x A .(﹣3,﹣)B .(﹣3, ) C.(1, )D .( ,3)2.设( 1+i )x=1+yi ,其中 x ,y 是实数,则 |x+yi|= ( ) A .1B.C.D. 23.已知等差数列 {a n } 前 9 项的和为 27,a 10=8,则 a100=( )A .100B.99C.98D. 974.某公司的班车在 7:00,8:00,8:30 发车,小明在 7:50 至 8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过 10 分钟的概率是( )A .y=2xB .y=3xC . y=4xD.y=5x A .B.C .D .10.以抛物线 C 的顶点为圆心的圆交 C 于 A 、B 两点,交 C 的准线于 D 、 E 两点.已知 |AB|=4,|DE|=2 ,则 C 的焦 点到准线的距离为( ) 5.已知方程﹣=1 表示双曲线,且该双曲线两焦点间的距离为 4,则 n 的取值范围是( )A .2B.4C.6D.8A .(﹣1, 3) B .(﹣1, )C .( 0,3)D.( 0,)11.平面 α过正方体 ABCD ﹣A 1B 1C 1D 1 的顶点 A ,α ∥平面 CB 1D 1,α ∩平面 ABCD=,m α ∩平面 ABB 1A 1=n ,则 m 、n 所成角的 6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是 ,正弦值为( ) 则它的表面积是()A .B.C.D .12.已知函数 f (x )=sin ( ωx+φ)(ω>0,| φ| ≤), x=﹣为 f ( x )的零点, x=为 y=f (x )图象的对称轴, 且 f ( x )在(, )上单调,则 ω 的最大值为()A .17πB . 18πC .20πD .28πA .11B.9C.7D. 57.函数y=2x2﹣e |x| 在[﹣2,2] 的图象大致为()二、填空题:本大题共4 小题,每小题5 分,共 20 分 .13.设向量=(m , 1), =(1,2),且 |+ |2=| | 2+| | 2,则 m= .14.(2x+)5的展开式中, x 3 的系数是.(用数字填写答案)15.设等比数列 {a n } 满足a 1+a 3=10,a 2+a 4=5,则 a 1a 2⋯ a n 的最大值为.A .B .C .D .16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料 1.5kg ,乙材料 1kg ,用 5 8.若 a >b >1,0<c <1,则()个工时;生产一件产品B 需要甲材料 0.5kg ,乙材料 0.3kg ,用 3 个工时,生产一件产品A 的利润为 2100 元,生产一件 A .ac<b cB .ab c<ba cC .alog c <b c B .ab c <ba cC .alogb c <blog a cD .log a c <log b c产品B 的利润为 900 元.该企业现有甲材料 150kg ,乙材料 90kg ,则在不超过 600 个工时的条件下,生产产品A 、产品B的利润之和的最大值为元.第 1页共 9 页深圳星火教育龙华数学组余凤老师整理三、解答题:本大题共 5 小题,满分60 分,解答须写出文字说明、证明过程或步骤.19.(12 分)某公司计划购买 2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器演算外时,可以额17.(12 分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时了100 台这种机器在三年使用期内更换的易损零件数,整理集并(Ⅰ)求C;应同时购买几个易损零件,为此搜状图:得如图柱以这100 台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示 2 台机器三年内共需更为,求△ABC的周长.(Ⅱ)若c= ,△ABC的面积换的易损零件数,n 表示购买 2 台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5 ,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19 与n=20 之中选其一,应选用哪个?18.(12 分)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角 DE与二面角C﹣B E﹣F都是60°.A F﹣﹣(Ⅰ)证明平面ABEF⊥平面EFDC;A的余弦值.B C﹣(Ⅱ)求二面角E﹣第2页共9 页理整深圳星火教育龙华数学组余凤老师20.(12 分)设圆x2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆 A 于C,D两点,过 B 作2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆A 于C,D两点,过 B 作21.(12 分)已知函数 f (x)=(x﹣2)ex+a(x﹣1)x+a(x﹣1)2 有两个零点.AC的平行线交AD于点E.(Ⅰ)求 a 的取值范围;(Ⅰ)证明|EA|+|EB| 为定值,并写出点 E 的轨迹方程;(Ⅱ)设x1,x2 是f (x)的两个零点,证明:x1+x2<2.(Ⅱ)设点E的轨迹为曲线C1,直线l 交C1 于M,N两点,过 B 且与l 垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.第 3 页共9 页深圳星火教育龙华数学组余凤老师整理请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分. [ 选修4-5 :不等式选讲]24.已知函数 f (x)=|x+1| ﹣|2x ﹣3| .[ 选修4-1 :几何证明选讲] (Ⅰ)在图中画出y=f (x)的图象;(Ⅱ)求不等式|f (x)| >1 的解集.22.(10 分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[ 选修4-4 :坐标系与参数方程]23.在直角坐标系xOy中,曲线C1 的参数方程为(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.(Ⅰ)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(Ⅱ)直线C3 的极坐标方程为θ=α0,其中α0 满足tan α0=2,若曲线C1 与C2 的公共点都在C3 上,求a.第 4 页共9 页深圳星火教育龙华数学组余凤老师整理2016 年高考数学全国 1 卷(理科)参考答案与试题解析7.【解答】 解:∵ f (x )=y=2x 2﹣e |x| ,∴ f (﹣x )=2(﹣x )2﹣e |x| ,∴ f (﹣x )=2(﹣x )2﹣e |﹣x | =2x 2﹣e |x| ,故函数为偶函数, 一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.2 2 x当 x=±2 时, y=8﹣e ∈( 0,1),故排除 A ,B ; 当 x ∈[0 , 2] 时, f (x ) =y=2x ﹣e ,1.【解答】 解:∵集合A={x|x2﹣4x+3<0}= (1,3),B={x|2x ﹣3>0}= ( ,+∞),∴ f ′( x )=4x ﹣e x =0 有解,故函数 y=2x 2﹣e |x| 在[0 ,2] 不是单调的,故排除 C ,x =0 有解,故函数 y=2x 2﹣e |x| 在[0 ,2] 不是单调的,故排除 C ,故选: D∴A ∩B=( ,3),故选: D8.【解答】 解:∵ a >b >1,0< c <1,2.【解答】 解:∵( 1+i ) x=1+yi ,∴ x+xi=1+yi ,即,解得,即 |x+yi|=|1+i|=,∴函数 f (x) =x c 在( 0,+∞)上为增函数,故 a c >b c ,故 A 错误;c 在( 0,+∞)上为增函数,故 a c >b c ,故 A 错误; 故选: B .函数 f (x )=x c ﹣1 在( 0,+∞)上为减函数,故 a c ﹣1<b c ﹣1,故 ba c <ab c,即 ab c >ba c ;故 B 错误; c ﹣1 在( 0,+∞)上为减函数,故 a c ﹣1<b c ﹣1,故 ba c <ab c ,即 ab c >ba c ;故 B 错误;log a c <0,且 log b c <0,log a b < 1,即= <1,即 log a c >log b c .故 D 错误;3.【解答】 解:∵等差数列 {a n }前 9 项的和为 27,S 9===9a 5 .0<﹣l og a c <﹣l og b c ,故﹣b log a c <﹣a log b c ,即 blog a c >alog b c ,即 alog b c <blog a c ,故 C 正确;∴9a 5=27,a 5 =3,又∵ a 10=8,∴ d=1,∴ a 100=a 5+95d=98,故选: C故选: C4. 【解答】 解:设小明到达时间为y ,当 y 在 7: 50 至 8:00,或 8:20 至 8:30 时,9.【解答】 解:输入x =0,y=1,n=1,则x =0,y=1,不满足x2+y 2≥ 36,故 n=2,2+y 2≥ 36,故 n=2,小明等车时间不超过10 分钟,故 P= = ,故选: B则x= ,y=2,不满足x 2+y 2≥ 36,故 n=3,则x = ,y=6,满足x 2+y 2≥ 36,故 y=4x ,2+y 2≥ 36,故 n=3,则x = ,y=6,满足x 2+y 2≥ 36,故 y=4x , 故选: C5.【解答】 解:∵双曲线两焦点间的距离为4,∴ c=2,当焦点在 x 轴上时,可得: 4=(m2+n )+(3m 2﹣n ),解得: m2=1, 22∵方程﹣=1 表示双曲线,∴( m +n )(3m ﹣n )> 0,可得:(n+1)(3﹣n )> 0,210.【解答】 解:设抛物线为 y =2px ,如图: |AB|=4,|AM|=2 ,|DE|=2 ,|DN|= ,|ON|= ,解得:﹣1<n <3,即 n 的取值范围是: (﹣1,3).当焦点在 y 轴上时,可得:﹣4=(m 2+n )+(3m 2﹣n ),解得: m 2=﹣1, 2+n )+(3m 2﹣n ),解得: m 2=﹣1, x A = = , |OD|=|OA| ,=+5,解得: p=4.C 的焦点到准线的距离为:4.无解.故选: A .故选: B .6.【解答】 解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:***可得:= ,R=2.它的表面积是:×4π?22+ =17π.故选:A.共9 页第5页理整老师深圳星火教育龙华数学组余凤***11.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=,mα∩平面ABA1B1=n,15.【解答】解:等比数列{a n} 满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q= .a1+q1=10,解得a1=8.2a2a可知:n∥CD1,m∥B1D1,∵△CB1D1 是正三角形.m、n 所成角就是∠CD1B1=60°.则m、n 所成角的正弦值为:.故选:A.则a1a2⋯a n=a1n?q1+2+3+⋯+(n﹣1)=8n? = = ,当n=3 或4时,表达式取得最大值:=26=64.n?q1+2+3+⋯+(n﹣1)=8n? = = ,当n=3 或4 时,表达式取得最大值:=26=64.故答案为:64.16.【解答】解:(1)设A、B两种产品分别是x 件和y 件,获利为z 元.由题意,得,z=2100x+900y .不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y .经过 A 时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.12.【解答】解:∵x=﹣为f (x)的零点,x= 为y=f (x)图象的对称轴,故答案为:216000.∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f (x)在(,)上单调,则﹣= ≤,即T= ≥,解得:ω≤12,当ω=11 时,﹣+φ=kπ,k∈Z,∵| φ| ≤,∴φ=﹣,此时 f (x)在(,)不单调,不满足题意;当ω=9 时,﹣+φ=kπ,k∈Z,∵| φ| ≤,∴φ= ,此时 f (x)在(,)单调,满足题意;故ω的最大值为9,故选: B二、填空题:本大题共 4 小题,每小题 5 分,共25 分.13.【解答】解:| + | 2=||2+||2,可得? =0.向量=(m,1),=(1,2),三、解答题:本大题共 5 小题,满分60 分,解答须写出文字说明、证明过程或演算步骤.可得m+2=0,解得m=﹣2.故答案为:﹣2.17.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC ≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA )=sinC ,整理得:2cosCsin (A+B)=sinC ,14.【解答】解:(2x+ )r+1= =25 的展开式中,通项公式为:T5﹣r ,5 的展开式中,通项公式为:T5﹣r ,即2cosCsin (π﹣(A+B))=sinC2cosCsinC=sinC ∴cosC= ,∴C= ;令5﹣=3,解得r=4 ∴x 3 的系数 2 =10.故答案为:10.3 的系数 2 =10.故答案为:10.(Ⅱ)由余弦定理得7=a2+b2﹣2ab? ,∴(a+b)2+b2﹣2ab? ,∴(a+b)2﹣3ab=7,∵S= absinC= ab= ,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+ .第6页共9 页深圳星火教育龙华数学组余凤老师整理18.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,19.【解答】解:(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF? 平面ABEF,∴平面ABEF⊥平面EFDC;P(X=16)=()2= ,(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣A F﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,P(X=17)= ,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣B E﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB?平面EFDC,EF? 平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=C,D AB? 平面ABCD,P(X=18)=()2+2()2= ,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,P(X=19)= = ,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),P(X=20)= = = ,∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)P(X=21)= = ,P(X=22)= ,设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).∴X的分布列为:X 16 17 18 19 20 21 22设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).P(Ⅱ)由(Ⅰ)知:设二面角E﹣B C﹣A的大小为θ,则cosθ= = =﹣,P(X≤18)=P(X=16)+P(X=17)+P(X=18)= = .则二面角E﹣B C﹣A的余弦值为﹣.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)= + = .∴P(X≤n)≥0.5 中,n 的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)= + = .买19 个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20 个所需费用期望:EX2= +(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19 个更合适.第 7页共 9 页深圳星火教育龙华数学组余凤老师整理***解法二:购买零件所用费用含两部分,一部分为购买零件的费用,21.【解答】解:(Ⅰ)∵函数 f (x)=(x﹣2)ex+a(x﹣1)2,∴f ′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),x+a(x﹣1)2,∴f ′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),另一部分为备件不足时额外购买的费用,x①若a=0,那么 f (x)=0? (x﹣2)e =0? x=2,函数 f (x)只有唯一的零点2,不合题意;当n=19 时,费用的期望为:19×200+500×0.2+1000 ×0.08+1500 ×0.04=4040 ,②若a>0,那么e x+2a>0 恒成立,当x<1 时,f ′(x)<0,此时函数为减函数;x+2a>0 恒成立,当x<1 时,f ′(x)<0,此时函数为减函数;当n=20 时,费用的期望为:20×200+500×0.08+1000 ×0.4=4080 ,∴买19 个更合适.当x>1 时,f ′(x)>0,此时函数为增函数;此时当x=1 时,函数 f (x)取极小值﹣e,x由f (2)=a>0,可得:函数 f (x)在x>1 存在一个零点;当x<1 时,e <e,x﹣2<﹣1<0,20.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0 即为(x+1)2+y2+2x﹣15=0 即为(x+1)2+y2 =16,可得圆心A(﹣1,0),半径r=4,∴f (x)=(x﹣2)e >(x﹣2)e+a(x﹣1)x+a(x﹣1) 2x+a(x﹣1) 22=a(x﹣1)2 +e(x﹣1)﹣e,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,令a(x﹣1)2+e(x﹣1)﹣e=0 的两根为t2+e(x﹣1)﹣e=0 的两根为t 1,t 2,且t 1 <t 2,则|EA|+|EB|=|EA|+|ED|=|AD|=4 ,故 E 的轨迹为以A,B为焦点的椭圆,则当x<t 1,或x>t 2 时,f (x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数 f (x)在x<1 存在一个零点;即函数 f (x)在R是存在两个零点,满足题意;且有2a=4,即a=2,c=1,b= = ,则点 E 的轨迹方程为+ =1(y≠0);③若﹣<a<0,则ln (﹣2a)<lne=1 ,当x<ln (﹣2a)时,x﹣1<ln (﹣2a)﹣1<lne ﹣1=0,(Ⅱ)椭圆C1:+ =1,设直线l :x=my+1,由PQ⊥l ,设PQ:y=﹣m(x﹣1),e x+2a<e ln (﹣2a)+2a=0,即 f ′(x)=(x﹣1)(e x+2a)>0 恒成立,故 f (x)单调递增,x+2a<e ln (﹣2a)+2a=0,即 f ′(x)=(x﹣1)(e x+2a)>0 恒成立,故 f (x)单调递增,当ln (﹣2a)<x<1 时,x﹣1<0,ex +2a>e ln (﹣2a)+2a=0,由可得(3m 1,y1),N(x2,y2 ),可得y1+y2=﹣,y1y2=﹣,2+4)y2+6my﹣9=0,设M(x2+4)y2+6my﹣9=0,设M(x 即f ′(x)=(x﹣1)(e x+2a)<0 恒成立,故 f (x)单调递减,当x>1 时,x﹣1>0,e x+2a>e ln (﹣2a)+2a=0,x+2a)<0 恒成立,故 f (x)单调递减,当x>1 时,x﹣1>0,e x+2a>e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,故当x=ln (﹣2a)时,函数取极大值,则|MN|= ?|y 1﹣y2|= ? = ? =12? ,由f (ln (﹣2a))=[ln (﹣2a)﹣2] (﹣2a)+a[ln (﹣2a)﹣1] 2=a{[ln (﹣2a)﹣2] 2+1} <0 得:函数 f (x)在R上至多存在一个零点,不合题意;A到PQ的距离为d= = ,|PQ|=2 =2 = ,④若a=﹣,则ln (﹣2a)=1,当x<1=ln (﹣2a)时,x﹣1<0,ex+2a<e ln (﹣2a)+2a=0,x+2a<e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,当x>1 时,x﹣1>0,e x+2a>e ln (﹣2a)+2a=0,则四边形MPNQ面积为S= |PQ| ?|MN|= ? ?12 ?即f ′(x)=(x﹣1)(e x+2a)>0 恒成立,故 f (x)单调递增,故函数 f (x)在R上单调递增,x+2a)>0 恒成立,故 f (x)单调递增,故函数 f (x)在R上单调递增,函数 f (x)在R上至多存在一个零点,不合题意;=24? =24 ,当m=0时,S取得最小值12,又>0,可得S<24? =8 ,⑤若a<﹣,则ln (﹣2a)>lne=1 ,当x<1 时,x﹣1<0,ex+2a<e ln (﹣2a)+2a=0,x+2a<e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,即有四边形MPNQ面积的取值范围是[12 ,8 ).当1<x<ln (﹣2a)时,x﹣1>0,ex+2a<e ln (﹣2a)+2a=0,x+2a<e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)<0 恒成立,故 f (x)单调递减,当x>ln (﹣2a)时,x﹣1>0,ex+2a>e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,故当x=1 时,函数取极大值,由f (1)=﹣e<0 得:函数 f (x)在R上至多存在一个零点,不合题意;综上所述, a 的取值范围为(0,+∞)第8 页共9 页深圳星火教育龙华数学组余凤老师整理证明:(Ⅱ)∵x1,x2 是f (x)的两个零点,∴y=2x 为圆C1 与C2 的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a3 ,2=0,即为 C2=0,即为 C∴f (x1)=f (x2)=0,且x1≠1,且x2≠1, 2∴1﹣a =0,∴a=1(a>0).∴﹣a= = ,令g(x)= ,则g(x1)=g(x2)=﹣a,[ 选修4-5 :不等式选讲]24.∵g′(x)= ,∴当x<1 时,g′(x)<0,g(x)单调递减;【解答】解:(Ⅰ)f (x)= ,当x>1 时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)= ﹣= ,由分段函数的图象画法,可得 f (x)的图象,如右:设h(m)= ,m>0,(Ⅱ)由|f (x)| >1,可得当x≤﹣1 时,|x ﹣4| >1,解得x>5 或x<3,即有x≤﹣1;则h′(m)= >0 恒成立,即h(m)在(0,+∞)上为增函数,当﹣1<x<时,|3x ﹣2| >1,解得x>1 或x<,即有﹣1<x<或1<x<;h(m)>h(0)=0 恒成立,即g(1+m)>g(1﹣m)恒成立,当x≥时,|4 ﹣x| >1,解得x>5 或x<3,即有x>5 或≤x<3.令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)? g(2﹣x1)>g(x1)=g(x2)? 2﹣x1>x2,综上可得,x<或1<x<3 或x>5.则|f (x)| >1 的解集为(﹣∞,)∪(1,3)∪(5,+∞).即x1+x2<2.请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分.[ 选修4-1 :几何证明选讲]【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=O,B∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°= OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=O,B TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.[ 选修4-4 :坐标系与参数方程]【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2+(y﹣1)2=a2.∴C1 为以(0,1)为圆心,以 a 为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2+y2=ρ2,y=ρsin θ,得ρ2﹣2ρsin θ+1﹣a2=0;(Ⅱ)C2:ρ=4cos θ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0 满足t an α0=2,得y=2x,∵曲线C1 与C2 的公共点都在C3 上,第9页共9 页深圳星火教育龙华数学组余凤老师整理。
2016年高考全国卷一理科数学试题及答案
2016年普通高等学校招生全统一考试全国卷一理科数学一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2430A x x x =-+<,{}032>-=x x B ,则=B A(A )(3-,23-) (B)(3-,23) (C )(1,23) (D )(23-,3)2.设yi x i +=+1)1(,其中x ,y 是实数,则=+yi x(A )1 (B)2 (C )3 (D )23.已知等差数列{}n a 前9项的和为27,810=a ,则=100a(A)100 (B )99 (C )98 (D )974.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A)31(B )21 (C)32 (D )435.已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则m 的取值范围是 (A )(1-,3) (B )(1-,3) (C )(0,3) (D)(0,3)6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是328π,则它的表面积是 (A )17π (B)18π (C)20π (D )28π7.函数xe x y -=22在[]22,-的图象大致为(A) (B ) (C ) (D)8.若1>>b a ,10<<c ,则(A)c c b a < (B )c c ba ab < (C )c b c a a b log log < (D )c c b a log log <9.执行右图的程序框图,如果输入的0=x ,1=y ,1=n ,则输出y x ,的值满足(A )x y 2= (B )x y 3= (C)x y 4= (D)x y 5=10.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知24=AB ,52=DE ,则C 的焦点到准线的距离为(A)2 (B )4 (C )6 (D )811.平面α过正方体1111D C B A ABCD -的顶点A ,α∥平面11D CB ,α∩平面m ABCD =,α∩平面n A ABB =11,则n m ,所成角的正弦值为(A )23 (B )22 (C )33 (D )3112.已知函数)sin()(ϕω+=x x f )2,0(πϕω≤>,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图象的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为 (A )11 (B )9 (C )7 (D)5二、填空题:本题共4小题,每小题5分. 13.设向量)1,(m a =,)2,1(=b ,且222b a ba +=+,则=m .14.5)2(x x +的展开式中,3x 的系数是 .(用数字填写答案)15.设等比数列{}n a 满足1031=+a a ,542=+a a ,则n a a a ⋯21的最大值为 .16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
2016年全国高考数学(理科)试题及答案-全国1卷(解析版)
绝密 ★ 启用前2016年普通高等学校招生全国统一考试(全国1卷)数学(理科)注意事项: 1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2。
答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3。
全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}2430A x x x =-+< ,{}230x x ->,则A B =(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D)3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题。
解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算。
(2)设(1i)1i x y +=+,其中x ,y 实数,则i =x y + (A )1 (B 2 (3 (D )2 【答案】B 【解析】试题分析:因为(1)=1+,x i yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=故选B 。
考点:复数运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题。
高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性。
(3)已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D)97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C 。
2016年高考数学理科真题试卷及答案(word版)
2016年普通高等学校招生考试真题试卷数 学(理科)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A+B )=PA .+PB . S=4лR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=PA .+PB . 球的体积公式1+2+…+n 2)1(+n n V=334R π 12+22+…+n 2=6)12)(1(++n n n 其中R 表示球的半径 13+23++n 3=4)1(22+n n 第Ⅰ卷(选择题 共55分)一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列函数中,反函数是其自身的函数为A .[)+∞∈=,0,)(3x x x f B .[)+∞∞-∈=,,)(3x x x f C .),(,)(+∞-∞∈=x e x f x D .),0(,1)(+∞∈=x xx f 2.设l ,m ,n 均为直线,其中m ,n 在平面α内,“l ⊥α”是l ⊥m 且“l ⊥n ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是A .a <-1B .a ≤1C . a <1D .a ≥14.若a 为实数,iai212++=-2i ,则a 等于 A .2 B .—2 C .22 D .—225.若}{8222<≤Z ∈=-x x A ,{}1log R 2>∈=x x B ,则)(C R B A ⋂的元素个数为A .0B .1C .2D .3 6.函数)3π2sin(3)(-=x x f 的图象为C , ①图象C 关于直线π1211=x 对称; ②函灶)(x f 在区间)12π5,12π(-内是增函数; ③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C .以上三个论断中,正确论断的个数是A .0B .1C .2D .37.如果点P 在平面区域⎪⎩⎪⎨⎧≤-+≤+-≥+-02012022y x y x y x 上,点Q 在曲线1)2(22=++y x 上,那么Q P 的最小值为A .15-B .154- C .122- D .12-8.半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为A .)33arccos(-B .)36arccos(-C .)31arccos(- D .)41arccos(- 9.如图,1F 和2F 分别是双曲线)0,0(12222>>=-b a br a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为A .3B .5C .25D .31+10.以)(x φ表示标准正态总体在区间(x ,∞-)内取值的概率,若随机变量ξ服从正态分布),(2σμN ,则概率)(σμξ<-P 等于 A .)(σμφ+-)(σμφ-B .)1()1(--φφC .)1(σμφ-D .)(2σμφ+ 11.定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为A .0B .1C .3D .5二、填空题:本大题共4小题,每小题4分,共16分。
2016全国一卷理科数学高考真题及答案
.
设 ,则 .
所以当 时, ,而 ,故当 时, .
从而 ,故 .
22.⑴设圆的半径为 ,作 于
∵
∴
∴ 与 相切
⑵方法一:
假设 与 不平行
与 交于
∵ 四点共圆
∴
∵
∴ 由①②可知矛盾
∴
方法二:
因为 ,因为 所以 为 的中垂线上,同理 所以 的中垂线,所以 .
23. ( 均为参数)
∴ ①
15.设等比数列 满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为.
16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.
又 , ,取 满足 且 ,则
,
故 存在两个零点.
(iii)设 ,由 得 或 .
若 ,则 ,故当 时, ,因此 在 上单调递增.又当 时, ,所以 不存在两个零点.
若 ,则 ,故当 时, ;当 时, .因此 在 单调递减,在 单调递增.又当 时, ,所以 不存在两个零点.
综上, 的取值范围为 .
不妨设 ,由(Ⅰ)知 , , , 在 上单调递减,所以 等价于 ,即 .
(A)100(B)99(C)98(D)97
4.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年普通高等学校招生全国统一考试(新课标Ⅱ)理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )()31-, (B )()13-, (C )()1,∞+ (D )()3∞--,2.已知集合{1,23}A =,,{|(1)(2)0}B x x x x =+-<∈Z ,,则A B =(A ){}1(B ){12},(C ){}0123,,, (D ){10123}-,,,, 3.已知向量(1,)(3,2)a m b =-,=,且()a b b +⊥,则m = (A )8- (B )6- (C )6 (D )84.圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43- (B )34- (C )3 (D )25. 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9 6.右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π (B )24π (C )28π (D )32π7. 若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈ 8. 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 ( D )349.若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin2α=(A )725 (B )15(C )15-(D )725-10. 从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为 (A )4n m (B )2n m (C )4m n (D )2m n11. 已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为 (A )2 (B )32(C )3 (D )2 12. 已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点 为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答。
第22~24题为选考题。
考生根据要求作答。
二、选择题:本题共4小题,每小题5分。
13. ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b = .14. α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)15. 有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 16. 若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,b = . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分12分)n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=. (Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和. 18. (本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值. 19. (本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF '的位置10OD '=.(I )证明:D H '⊥平面ABCD ; (II )求二面角B D A C '--的正弦值. 20. (本小题满分12分)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围. 21. (本小题满分12分)(I)讨论函数2(x)e 2xx f x -=+的单调性,并证明当0x >时,(2)e 20;x x x -++> (II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 22. (本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD ,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F .(I) 证明:B ,C ,G ,F 四点共圆;(II)若1AB =,E 为DA 的中点,求四边形BCGF 的面积. 23. (本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xOy 中,圆C 的方程为()22625x y ++=.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II )直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B 两点,10AB =,求l 的斜率.24. (本小题满分10分),选修4—5:不等式选讲 已知函数()1122f x x x =-++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab+<+.2016年普通高等学校招生全国统一考试理科数学答案及解析1.【解析】A∴30m +>,10m -<,∴31m -<<,故选A . 2.【解析】C()(){}120Z B x x x x =+-<∈,{}12Z x x x =-<<∈,, ∴{}01B =,,∴{}0123A B =,,,,故选C . 3.【解析】D()42a b m +=-,,∵()a b b +⊥,∴()122(2)0a b b m +⋅=--= 解得8m =, 故选D . 4.【解析】A圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=,故圆心为()14,,1d ==,解得43a =-,故选A . 5.【解析】BE F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法故选B . 6.【解析】C几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得2r =,2π4πc r ==,由勾股定理得:4l ==,21π2S r ch cl =++表4π16π8π=++28π=,故选C . 7.【解析】B平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .8. 【解析】C第一次运算:0222s =⨯+=, 第二次运算:2226s =⨯+=, 第三次运算:62517s =⨯+=, 故选C . 9.【解析】D∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D . 10. 【解析】C由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在 如图所示的阴影中由几何概型概率计算公式知π41m n=,∴4πmn=,故选C .11. 【解析】A离心率1221F F e MF MF =-,由正弦定理得122112sin 31sin sin 13F F Me MF MF F F ====---故选A . 12. 【解析】B由()()2f x f x =-得()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +, ∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .13. 【解析】2113∵4cos 5A =,5cos 13C =,3sin 5A =,12sin 13C =, ()63sin sin sin cos cos sin 65B AC A C A C =+=+=, 由正弦定理得:sin sin b a B A =解得2113b =. 14. 【解析】②③④ 15. 【解析】 (1,3) 由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足, 若丙(1,3),则乙(2,3),甲(1,2)不满足, 故甲(1,3), 16. 【解析】 1ln2- ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ) ()ln 1y x =+的切线为:()22221ln 111x y x x x x =++-++∴()122122111ln 1ln 11xx x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩解得112x =212x =- ∴1ln 11ln 2b x =+=-.17. 【解析】⑴设{}n a 的公差为d ,74728S a ==,∴44a =,∴4113a a d -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101101lg lg 2b a ===. ⑵记{}n b 的前n 项和为n T ,则1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,; 当1lg 2n a <≤时,101199n =⋅⋅⋅,,,;当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,;当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=.18. 【解析】 ⑴设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=.⑵设续保人保费比基本保费高出60%为事件B , ()0.100.053()()0.5511P AB P B A P A +===. ⑶解:设本年度所交保费为随机变量X .平均保费0.850.300.15 1.250.20 1.50.20 1.750.1020.05EX a a a a a =⨯++⨯+⨯+⨯+⨯0.2550.150.250.30.1750.1 1.23a a a a a a a =+++++=, ∴平均保费与基本保费比值为1.23. 19. 【解析】⑴证明:∵54AE CF ==, ∴AE CFAD CD=, ∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥, ∴EF BD ⊥, ∴EF DH ⊥,∴EF DH'⊥. ∵6AC =, ∴3AO =;又5AB =,AO OB ⊥, ∴4OB =,∴1AEOH OD AO=⋅=, ∴3DH D H '==, ∴222'OD OH D H '=+, ∴'D H OH ⊥. 又∵OHEF H =,∴'D H ⊥面ABCD . ⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,, ()430AB =,,,()'133AD =-,,,()060AC =,,,设面'ABD 法向量()1n x y z =,,,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩, ∴()1345n =-,,.同理可得面'AD C 的法向量()2301n =,,,∴12129cos 52n n n n θ⋅==, ∴sin θ. 20. 【解析】 ⑴当4t =时,椭圆E 的方程为22143xy +=,A 点坐标为()20-,,则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-= 解得2x =-或228634k x k -=-+,则222861223434k AM k k -=+++ 因为AM AN ⊥,所以21212413341AN k kk =⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >,212124343k k k=++,整理得()()21440k k k --+=, 2440k k -+=无实根,所以1k =. 所以AMN △的面积为221112144223449AM⎫==⎪+⎭. ⑵直线AM的方程为(y k x =+,联立(2213x y t y k x ⎧+=⎪⎨⎪=⎩并整理得,()222223230tk x x t k t +++-=解得x =x =所以AM ==所以3AN k k=+因为2AM AN =所以23k k=+,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <<.21. 【解析】⑴证明:()2e 2xx f x x -=+ ()()()22224e e 222xxx x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭∵当x ∈()()22,-∞--+∞,时,()0f x '>∴()f x 在()()22,-∞--+∞,和上单调递增∴0x >时,()2e 0=12x x f x ->-+ ∴()2e 20x x x -++>⑵ ()()()24e 2e x x a x x ax a g x x ----'=()4e 2e 2x x x x ax a x -++=()322e 2x x x a x x-⎛⎫+⋅+⎪+⎝⎭= [)01a ∈,由(1)知,当0x >时,()2e 2x x f x x -=⋅+的值域为()1-+∞,,只有一解. 使得2e 2t t a t -⋅=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增()()()222e 1e e 1e 22t t tt t t a t t h a t t t -++⋅-++===+ 记()e 2tk t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增 ∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.22. 【解析】(Ⅰ)证明:∵DF CE ⊥∴Rt Rt DEF CED △∽△∴GDF DEF BCF ∠=∠=∠DF CF DG BC= ∵DE DG =,CD BC = ∴DF CF DG BC= ∴GDF BCF △∽△∴CFB DFG ∠=∠∴90GFB GFC CFB GFC DFG DFC ∠=∠+∠=∠+∠=∠=︒∴180GFB GCB ∠+∠=︒.∴B ,C ,G ,F 四点共圆.(Ⅱ)∵E 为AD 中点,1AB =, ∴12DG CG DE ===, ∴在Rt GFC △中,GF GC =,连接GB ,Rt Rt BCG BFG △≌△, ∴1112=21=222BCG BCGF S S =⨯⨯⨯△四边形.23. 【解析】解:⑴整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.⑵记直线的斜率为k ,则直线的方程为0kx y -=,即22369014k k =+,整理得253k =,则k =. 24. 【解析】解:⑴当12x <-时,()11222f x x x x =---=-,若112x -<<-; 当1122x -≤≤时,()111222f x x x =-++=<恒成立; 当12x >时,()2f x x =,若()2f x <,112x <<. 综上可得,{}|11M x x =-<<.⑵当()11a b ∈-,,时,有()()22110a b -->, 即22221a b a b +>+,则2222212a b ab a ab b +++>++,则()()221ab a b +>+, 即1a b ab +<+,证毕.。