电脑主板线路图信号解释
台式机主板线路颜色含意
其它的小窍门:
上面我们简单的介绍了连接主板机箱连线的方法,这里还有几个小窍门和大家介绍:
1、由于机箱表面的发光二极管是有极性的,插反是不亮的,所以如果您连接之后指示灯并不亮,您不必担心接反会损坏设备,只要您将计算机关闭,将相应指示灯的线反转连接就可以了。
这个才是接错了要烧东西,
在进行电脑组装的过程中,主板、显卡、声卡、光驱、硬盘这类设备的安装都不是很麻烦,只要由懂行的朋友指导一下就可以完成了,但是连接机箱面板上的连线就不是那么容易的事情了,由于这捆连线数量多,涉及到的知识又稍微多一些,加上全都是英文简写,所以好多朋友就感觉到有些为难,这样看起来是一件轻松平常的事情却是让人十分头痛的,那么今天我们就来看看如何连接主板上的机箱面板信号连线。
对于目前的ATX机箱来说,我们所需要安装的连接线种类并不太多,我们一样一样的和您介绍一下:
电源开关:PWR SW:
电源开关是激发ATX电源箱向主板及其它各设备供电的信号,电源开关在主板上的插针提示一般是PWR SW或PWR BT,在连接这条线的时候您只要先从机箱面板连线上找到标有PWR SW或PWR BT的插头,然后插在主板上的这个插针上就可以,电源开关需要两根插针,不需要注意插接的正反。
主板上的标记 线的颜色 作用
1 H.D.DLED 桔红+白 硬盘LED灯
2 RESET SW 蓝+白 重启按钮RESET开关
3 POWER SW 紫+白 电源开关
4 POWER LED 红+白 电源LED灯
5 SPEAKER 绿+白 PC喇叭
pwrbtn信号分析
电脑主板工作信号名词解释之PWRBTN#及IO_PWRBTN#
PWRBTN 主板上电时的一个信号,即电脑开关就是这个信号,在电脑接通电源的时候,
3VSB或5VSB通过一个4.7K或8.2K等的电阻给该信号提供上拉,所以在接通电源时该信号的电压是3.3V或5V的高电平,
而按下开关的时候该信号变为0V低电平(开关的另一端是接地的,按下开关时就是把PWRBTN信号接到地上了),
然后松开开关PWRBTN又回到3.3V或5V的高电平。
这一高低高的变化信号会送给IO或南桥或其它专门的开机复位芯片(有些中间会有一些电阻或门芯片中转一下)
IO或南桥或其它专门的开机复位芯片收到这一个方波信号后(在其它工作条件正常的情况下)就会发出下一步的工作信号(IO_PWRBTN)
IO_PWRBTN 就是IO收到开关信号后发出的一个同PWRBTN#一样的高低高变化的方波信号,这个信号送给南桥通知南桥开机
PWRBTN#及IO_PWRBTN#这个名称并不是唯一的在不同的电图图上标示的可能不一样,仅供参考!
PWRBTN#信号波形
PWRBTN#与IO_PWRBTN#波形关系。
新手如何看懂主板电路图
新手如何看懂主板电路图1#我心地飞翔四、维修中主板电路图常用到的VDD,VTT,CS等含义VCC--为直流电压。
在主板上为主供电电压或一般供电电压。
例如一般电路VCC3--+3V供电。
VCC3: 3.3V VCC25: 2.5V VCC333: 3.3V VCC5: 5V VCC12: 12VVCORE: CPU核心电压(视CPU OR 电压治具而定)VDD--只是一个通称。
普通的IC电源,可能+3V, +1.5V之类,例如数字电路正电压、门电路的供电等。
VDDQ--需要经过滤波的电源,稳定度要求比VDD更高,VSS--指供电的负极,一般是0伏电压或电压参考点GND--地供电电压一般都标为Vdd,VccVCORE--CPU核心电压。
VID--是CPU电压识别信号。
以前的老主板有VID跳线,现在的一般没有,CUP工作电压就是由VID来定义。
通过控制电源IC输出额定电压给CPU。
VTT--是参考电压(有VTT1.5V、VTT2.5V),针对不同型号的CPU有1.8V,1.5V,1.125.测量点在cpu插座旁边,有很多56 的排阻,就是它了。
VTT--是AGTL总线终端电压。
CS--片选CAS--行选通RAS--列选通sclk--串行时钟主A或SA--地址线SYNC--串行同步SDATA--串行数据VDIMM--内存槽的电源。
5VSB--5V待机电源,待机电源是指电脑未开机,但插着外部电源,主板上有一部分供着电,可以做唤醒等作用的电。
3VSB--3V待机电源主板有+5VSB,+3VSB, +3V,+5V,+12V,+5V_DUAL(USB)。
SB=stand by--待机。
RESET--复位CLK--时钟POWER_OK OR POWER_GOOD: 3.3V或5VVCC---模拟电路中的电源电压正端GND---模拟电路中的电源电压的接地端VDD---数字电路中的电源电压正端VSS---数字电路中的电源电压接地端VCC:当然是主要的供电正端了VDD:........同上........VCC,C=circuit ,线路的意思,指连接到一个完整电路的电源输入正端,VDD,D=device,应该说是连接到元件的意思,如:指某IC的工作电压,不排除部分IC同时接VCC、VDDVSS:地、负电源端、公共点,S=seriesVEE:...同上...都有GND的意思(ground)也有这样理解的,VDD,接MOS管的D极,即漏极;VSS,接MOS管的S极,即源极,主板上IC里面太多CMOS器件了。
(完整版)主板供电电路图解说明
主板供电电路图解说明主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。
简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。
但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。
主板上的供电电路原理图1图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。
+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。
再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。
单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。
图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。
图2但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。
笔记本主板信号解释
RSMRST# 恢复常态的复位信号:这个信号用于重置供电恢复逻辑, 所有电源都有效至少 10ms这个信号才会起作用,当解除有效后,这个信号是挂起的汇流排稳定的一个 标志 。 LAN_RST# LAN 复位:当这个信号有效的时候,在LAN内部控制器进行复位,在LAN 的VccLAN3_3 和 VccLAN1_05及VccCL3_3电源正常状态下该信号才会有效。 当解除有效后,这个信号是LAN汇流排稳定的一个标志。 注释: 1. 在RSMRST# 解除有效之前LAN_RST# 必须是有效的。 2. 在PWROK有效之后,LAN_RST# 必须有效。 3. 在VccLAN3_3 和 VccLAN1_05及VccCL3_3电源都正常的情况下 LAN_RST#必须有效1ms。 4. 如果集成网卡不用LAN_RST#可以把它连接到Vss。
• 笔记本主板各种信号说明
笔记本主板各种信号说明 很多的人在看笔记本图纸时,对里面的各种代号,弄不清楚,其实这些都是英文 缩写. 首先说ALW,它的英文全称是Alway,意思是总是,如+5VALW,它用在当电源插上后, 这个电压就应该都有的,所以我们在插上电源后,不管是3VALW,还是5VALW,只要 是ALW,都应该有它相应的电压,它是给开机电路用的,如EC等。 SUS,它的英文全称是Suspend,意思是延缓,挂起的意思,如+3VSUS (SLP_S5# CTRLD POWER这些将在上电时序中讲解)它的电压产生实在ALW的电 压后面,当接收到 SUS_on控制电压后就会产生此一系列的电压,此电压不是主要供 给电压,只是为下一步的电压产生提供铺垫,但不代表这电压不重要,没有SUS电压, 后面的电压就不会产生。 RUN电压,RUN电压没有缩写,它的意思就是跑、运行的意思,这个才是南北 桥工作的主要电压,当然南北桥也需要SUS电压。系统真正运行的话就需要RUN电 压正常,如果RUN电压不稳定会造成主板的按照GMCH芯片的延迟要求进行定期延迟信号,另外此信号也 为CPU重新尝试操作提供了时间保障 DIVN[0:3]# Dynamic Bus Inversion:动态总线反向信号,和HD[0:63]信号一起被驱动, 信号被取反后发送 DPSLP# Deep sleep:深度待机,此信号由ICH芯片驱动,为CPU提供C3或C4状态的 控制 DRDY# Data Ready:数据准备完成,当数据在传输之前,准备完成后,产生这个信 Ready 号,数据等待传输 HA[31:3]# Host Address Bus:主机地址总线,HA[31:0]信号与CPU的地址总线相连, 注意CPU的地址总线是被取反的 HADSTB[1:0]# Host Address Strobe:主地址锁存信号,HA[31:3]#信号与CPU总线相连, 在CPU周期内,HA[31:3]# 和 HREQ[4:0]#有2倍的转换比率 HD[63:0]# HOST DATA:主机数据总线,这个信号与CPU的数据总线相连,HD[63:0] 在数据总线上以4倍速速率进行传输。注意:数据信号在处理器上传输时被置反
计算机主板各供电电路图解
计算机主板各供电电路图解主板上的供电电路常见有CPU供电电路,内存供电电路,AGP、PCI、ISA供电电路以及I/O供电电路等,这些电源电路一种是开关电源,由双场效应管(MOSFT管)和电感线圈、电解电容组成;另一种是低压差线性调压芯片组成的调压电路。
这两种电路都能够为主板上不同的芯片和组件提供精密的电源电压。
1、CPU供电电路为了降低CPU制造成本,CPU核心电压变得越来越低,于是把ATX电源供给主板的12V、5V和3.3V直流电通过CPU的供电电路来进行高直流电压到低直流电压转换。
(1)CPU供电电路组成由于CPU工作在高频、大电流状态,它的功耗非常大。
因此,CPU供电电路要求具有非常快速的大电流响应能力,同时干扰少。
CPU供电电路使用开关电源,该电源由控制(电源管理)芯片、场效应管、电感线圈和电解电容等元件组成,其中控制芯片主要负责识别CPU供电幅值,振荡产生相应的矩形波,推动后级电路进行功率输出(控制芯片的型号常见有:HIP630l、CS5301、TL494、FAN5056等),场效应管起开关控制作用,电感线圈和电解电容起滤波作用。
主板的CPU供电电路框图如图1所示。
主板的CPU供电电路框:图1 CPU供电电路框图开机后,当控制芯片获得ATX电源输出的+5V或+12V供电后,为CPU提供电压,接着CPU电压自动识别引脚发出电压识别信号VID 给控制芯片,控制芯片通过控制两个场效应管导通的顺序和频率,使其输出的电压与电流达到CPU核心供电要求,为CPU提供工作需要的供电。
CPU的供电方式又分为许多种,有单相供电电路、两相供电电路、多相供供电电路。
(2)CPU供电电路原理图2是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源。
+12V是来自ATX电源的输入,通过一个由电感线圈L1和电容C1组成的滤波电路,然后进入两个开关管(场效应管)组成的电路,此电路受到PMW控制芯片控制(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的输出所要求的电压和电流,再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线,这就是“多相”供电中的“一相”,即单相。
(完整版)主板供电电路图解说明
主板供电电路图解说明主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。
简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。
但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。
主板上的供电电路原理图1图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。
+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。
再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。
单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。
图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。
图2但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。
电脑主板工作信号名词解释集合
电脑主板工作信号名词解释之RSMRST# (1)电脑主板工作信号名词解释之PWRBTN#及IO_PWRBTN# (2)电脑主板工作信号名词解释之SLP_S3# SLP_S5#及SUSB# SUSC# (3)电脑主板工作信号名词解释之PSON# (4)电脑主板工作信号名词解释之VCORE_EN VTT_PWRGD (4)电脑主板工作信号名词解释之PWROK SB_PWROK NB_PWROK (5)电脑主板工作信号名词解释之RSMRST#RSMRST# IO芯片的准备好信号,就是IO的供电3VSB,BATT正常后IO就会送出该信号RSMRST#正常后IO芯片才会正常工作,所以在修不触发的板子时,这是一个关键测试点该信号在电脑接通电源后就应该一直保持在3V左右的高电平该信号一般是3VSB经过一个K级以上电阻提供上拉,常见的4.7K,8.2K等如果该信号没有或偏低,需检查其上拉电阻,有时主板该信号会连着网卡芯片,所以此信号不正常时需拆掉网卡芯片看是否是网卡芯片把它拉低了,然后就是更换IO芯片,然后就是南桥了,有部分主板(SIS芯片组的最常见)RSMRST#信号同时也会送给北桥,如华硕的P5SD2-A P5SD2-VM等电脑主板工作信号名词解释之RTCRST# BATOK# SYSRST#RTCRST# BATOK# SYSRST# 这几个信号其实就是同一个信号,只是在不同的芯片组中表示的不一样RTCRST#一般在INTEL芯片组及NVIDIA芯片组的电路图中标识(有些地方标识的RTC_RST#)BATOK#一般在SIS芯片组的电路图中标识SYSRST#一般在AMD芯片组的电路图中标识这些信号一般可以理解为CMOS跳线电压准备好,如BATOK#就很好理解,BAT代表CMOS电池电压,OK那就是准备好了的意思,连起来就是CMOS电池电压准备好这些信号大部分是从CMOS跳线的中间一针直接连着南桥给南桥提供最基本的供电,使南桥的32.768晶振起振,不过也有少数主板会经过一些电阻再接到南桥我们都知道32.768晶振不起振电脑就不能开机(部分主板可以开机),所以这个RTCRST# BATOK# S YSRST# 不正常时就会影响到开机,造成不能触发另外像图中那个双二极管会经常损坏,造成CMOS不能保存的问题RTCRST#简易图示电脑主板工作信号名词解释之PWRBTN#及IO_PWRBTN#PWRBTN 主板上电时的一个信号,即电脑开关就是这个信号,在电脑接通电源的时候,3VSB或5VSB通过一个4.7K或8.2K等的电阻给该信号提供上拉,所以在接通电源时该信号的电压是3. 3V或5V的高电平,而按下开关的时候该信号变为0V低电平(开关的另一端是接地的,按下开关时就是把PWRBTN信号接到地上了),然后松开开关PWRBTN又回到3.3V或5V的高电平。
电子 电脑主板接线图详解
详细教你安装机箱与主板连线其实组装电脑的过程并不复杂,我们只需要按照顺序将CPU、内存、主板、显卡以及硬盘等装入机箱中即可,在组装电脑的过程中,最难的是机箱电源接线与跳线的设置其实组装电脑的过程并不复杂,我们只需要按照顺序将CPU、内存、主板、显卡以及硬盘等装入机箱中即可,在组装电脑的过程中,最难的是机箱电源接线与跳线的设置方法,这也是很多入门级用户非常头疼的问题。
如果各种接线连接不正确,电脑则无法点亮;特别需要注意的是,一旦接错机箱前置的USB 接口,事故是相当严重的,极有可能烧毁主板。
由于各种主板与机箱的接线方法大同小异,这里笔者借一块Intel平台的主板和普通的机箱,将机箱电源的连接方法通过图片形式进行详细的介绍,以供参考。
由于目前大部分主板都不需要进行跳线的设置,因此这部分不做介绍。
一、机箱上我们需要完成的控制按钮开关键、重启键是机箱前面板上不可缺少的按钮,电源工作指示灯、硬盘工作指示灯、前置蜂鸣器需要我们正确的连接。
另外,前置的USB接口、音频接口以及一些高端机箱上带有的IEEE1394接口,也需要我们按照正确的方法与主板进行连接。
机箱前面板上的开关与重启按钮和各种扩展接口首先,我们来介绍一下开关键、重启键、电源工作指示灯、硬盘工作指示灯与前置蜂鸣器的连接方法,请看下图。
机箱前面板上的开关、重启按钮与指示灯的连线方法上图为主板说明书中自带的前置控制按钮的连接方法,图中我们可以非常清楚的看到不同插针的连接方法。
其中PLED即机箱前置电源工作指示灯插针,有“+”“-”两个针脚,对应机箱上的PLED接口;IDE_LED即硬盘工作指示灯,同样有“+”“-”两个针脚,对应机箱上的IDE_LED接口;PWRSW为机箱面板上的开关按钮,同样有两个针脚,由于开关键是通过两针短路实现的,因此没有“+”“-”之分,只要将机箱上对应的PWRSW接入正确的插针即可。
RESET是重启按钮,同样没有“+”“-”之分,以短路方式实现。
图解:主板电线接法(电源开关、重启等)
钥匙开机其实并不神秘还记不记得你第一次见到装电脑的时候,JS将CPU、内存、显卡等插在主板上,然后从兜里掏出自己的钥匙(或者是随便找颗螺丝)在主板边上轻轻一碰,电脑就运转起来了的情景吗?是不是感到很惊讶(笔者第一次见到的时候反正很惊讶)!面对一个全新的主板,JS总是不用看任何说明书,就能在1、2分钟之内将主板上密密麻麻的跳线连接好,是不是觉得他是高手?呵呵,看完今天的文章,你将会觉得这并不值得一提,并且只要你稍微记一下,就能完全记住,达到不看说明书搞定主板所有跳线的秘密。
这个叫做真正的跳线首先我们来更正一个概念性的问题,实际上主板上那一排排需要连线的插针并不叫做“跳线",因为它们根本达不”到跳线的功能。
真正的跳线是两根/三根插针,上面有一个小小的“跳线冒”那种才应该叫做“跳线”,它能起到硬件改变设置、频率等的作用;而与机箱连线的那些插针根本起不到这个作用,所以真正意义上它们应该叫做面板连接插针,不过由于和“跳线"从外观上区别不大,所以我们也就经常管它们叫做“跳线”.看完本文,连接这一大把的线都会变得非常轻松至于到底是谁第一次管面板连接插针叫做“跳线”的人,相信谁也确定不了。
不过既然都这么叫了,大家也都习惯了,我们也就不追究这些,所以在本文里,我们姑且管面板连接插针叫做跳线吧。
轻松识别各连接线的定义为了更加方便理解,我们先从机箱里的连接线说起。
一般来说,机箱里的连接线上都采用了文字来对每组连接线的定义进行了标注,但是怎么识别这些标注,这是我们要解决的第一个问题。
实际上,这些线上的标注都是相关英文的缩写,并不难记。
下面我们来一个一个的认识(每张图片下方是相关介绍)!电源开关:POWER SW英文全称:Power Swicth可能用名:POWER、POWER SWITCH、ON/OFF、POWER SETUP、PWR等功能定义:机箱前面的开机按钮复位/重启开关:RESET SW英文全称:Reset Swicth可能用名:RESET、Reset Swicth、Reset Setup、RST等功能定义:机箱前面的复位按钮电源指示灯:+/-可能用名:POWER LED、PLED、PWR LED、SYS LED等硬盘状态指示灯:HDD LED英文全称:Hard disk drive light emitting diode 可能用名:HD LED报警器:SPEAKER可能用名:SPK功能定义:主板工作异常报警器这个不用说,连接前置USB接口的,一般都是一个整体音频连接线:AUDIO可能用名:FP AUDIO功能定义:机箱前置音频看完以上简单的图文介绍以后,大家一定已经认识机箱上的这些连线的定义了,其实真的很简单,就是几个非常非常简单英文的缩写。
主板开机电路详解
主板开机电路详解主板开机电路工作原理由于主板厂商的设计不同,主板开机电路会有所不同,但基本电路原理相同,即经过主板开机键触发主板开机电路工作,开机电路将触发信号进行处理,最终向电源第14脚发出低电平信号,将电源的第14脚的高电平拉低,触发电源工作,使电源各引脚输出相应的电压,为各个设备供电(即电源开始工作的条件是电源接口的第14脚变为低电平)。
主板开机电路的工作条件是:为开机电路提供供电、时钟信号和复位信号,具备这三个条件,开机电路就开始工作。
其中供电由ATX电源的第9脚提供,时钟信号由南桥的实时时钟电路提供,复位信号由电源开关、南桥内部的触发电路提供。
下面根据开机电路的结构分别讲解开机电路的详细工作原理。
1.经过门电路的开机电路经过门电路的开机电路的电路原理图如图7-7所示。
图中,1117为稳压三级管,作用是将电源的SB5V电压变成+3.3V电压,Q21为三极管,它的作用是控制电源第14脚的电压,当它导通时,电源第14脚的电压变为低电平。
74门电路是一个双上升沿D触发器,此触发器在时钟信号输入端(第3脚CP端)得到上升沿信号时触发,触发后它的输出端的状态就会翻转,即由高电平变为低电平或由低电平变为高电平。
74触发器的时钟信号输入端(CP 端)和电源开关相连,接收电源开关送来的触发信号,输出端直接连接到南桥的触发电路中,向南桥发送触发信号。
它的作用是代替南桥内部的触发器发出触发信号,使南桥向电源输出高电平或低电平。
当电脑的主机通电后,ATX电源的第14脚输出+5V电压,ATX电源的第14脚通过一个末级控制三极管和一个二极管连接到南桥的触发电路中,由于74触发器没有被触发,南桥没有向三极管Q21输出高电平,因此三极管Q21的b极为低电平,三极管Q21处于截至,电源的各个针脚没有输出电压。
同时ATX电源的第9脚输出+5V待命电压。
+5V待命电压通过稳压三极管(1117)或电阻后,产生+3.3V电压,此电压分开成两条路,一条直接通向南桥内部,为南桥提供主供电,而另一条通过二极管或三极管,再通过COMS的跳线针(必须插上跳线帽将他们连接起来)进入南桥,为CMOS电路提供供电,这时南桥外的32.768KHz晶振向南桥提供32.768KHz频率的时钟信号。
主板线路图简介
2 微型计算机的基本结构
微型计算机主要由微处理器、存储器、 I/O接口和I/O设备组成。各组成部分之 间通过系统总线联系在一起
※ ※本文件著作權及使用權屬EMD維修培訓專班,未經許可請勿使用﹑復制﹑散布等※ ※
(2)系统总线(System Bus) 总线(Bus)就是将多个装置或部件连接起 来并传送信息的公共通道。总线实际上是 一组传输信号的线路。系统总线一般分为 三种类型,即地址总线、数据总线和控制 总线,有时也称为三大总线。
A=Address(地址線); D=Data(數據線)
※ ※本文件著作權及使用權屬EMD維修培訓專班,未經許可請勿使用﹑復制﹑散布等※ ※
PCI <<==>>南橋地址&數據總線
共﹕32位 A=Address(地址線); D=Data(數據線)
※ ※本文件著作權及使用權屬EMD維修培訓專班,未經許可請勿使用﹑復制﹑散布等※ ※
※ ※本文件著作權及使用權屬EMD維修培訓專班,未經許可請勿使用﹑復制﹑散布等※ ※
※ ※本文件著作權及使用權屬EMD維修培訓專班,未經許可請勿使用﹑復制﹑散布等※ ※
1)地址总线(Address Bus简称AB) 地址总线主要用来传输CPU发出的地址信 息,选择需要访问的存贮单元和I/O接 口电路。地址总线是单向的,只能由CPU 向外传送地址信息。地址总线的位数决 定了可以直接访问的存贮器的单元数目 。
主板線路圖簡介
※ ※本文件著作權及使用權屬EMD維修培訓專班,未經許可請勿使用﹑復制﹑散布等※ ※
前
言
大家要非常清楚維修的概論:理論加實踐﹐經驗固然重要﹐但具備 扎實的理論基礎是非常重要和必要的﹐所謂”知己知彼﹐方可百戰百勝 ”﹐所以對于維修﹐你一定要先熟悉你面前產品的工藝和結構﹐它的工 作原理以及每一個模塊的控制原理和架構﹗ 所以這節課讓大家先了解和熟悉如何去看某個產品的線路架構﹗便 于以后的實戰中如何運用﹗ 只有通過深入的了解和學習才能擁有扎實的基礎和技朮﹐才能走上 事業的頂峰﹗
【看懂主板电路图的基本方法】看懂主板电路图的技巧,看懂主板电路图的基本步骤
【看懂主板电路图的基本方法】看懂主板电路图的技巧,看懂主
板电路图的基本步骤
在主板维修培训方法的授课中,看懂主板电路图的基本方法是学习主板维修的入门知识。
会看电路图是维修
主板的基础,也是维修主板的关键,因此维修主板首先要学会看电路图。
下面讲述电路图的看法。
(1)看电路的首要目的,就是根据该电路图的功能,判断出该电路图中的信号采用哪种处理方式,一般电路图
的画法采用的都是从左到右的方向。
(2)以主板的主要元器件为核心,将整个电路图划分成若干单元电路。
按照信号的处理方向,依次分析各单元
电路的功能和作用,以及各单元电路之间的联系,然后贯穿全图。
二、看懂主板电路图的基本方法-看电路图的步骤
看电路图就是弄清楚电路由哪几部分组成,以及各组成电路之间的联系和总的性能。
分析电路的主要目的就
是对信号进行处理,因此看电路图时以所处理的信号流向为主线,顺着主要通路将整个电路图划分成若干单
元电路逐个进行分析。
看电路图具体步骤如下。
(1)了解用途:了解各单元电路在电路中起什么作用,以及各单元电路对整个电路的影响。
(2)找出通路:找出各电路中信号的通路,一般电路信号流向都是从左到右的,信号传输的枢纽是有源器件,
按它们之间的连接关系进行查找。
(3)分析功能:将整个电路图划分成若干单元电路后,根据已经掌握的知识分析各个单元电路的工作原理和功能。
(4)通观整体:先将各个单元电路以方框的形式画出来,然后根据它们之间的关系进行连接,画出整体框图。
从
整体框图可以看出各单元电路的联系及各单元电路之间是如何协调工作的。
(整理)图解:主板电源针脚接线方法 主板与机箱电源开关、重启按钮接法 主板跳线及英文字母代表的意义.
精品文档作为一名新手,要真正从头组装好自己的电脑并不容易,也许你知道CPU应该插哪儿,内存应该插哪儿,但遇到一排排复杂跳线的时候,很多新手都不知道如何下手。
钥匙开机其实并不神秘还记不记得你第一次见到装电脑的时候,JS将CPU、内存、显卡等插在主板上,然后从兜里掏出自己的钥匙(或者是随便找颗螺丝)在主板边上轻轻一碰,电脑就运转起来了的情景吗?是不是感到很惊讶(笔者第一次见到的时候反正很惊讶)!面对一个全新的主板,JS总是不用看任何说明书,就能在1、2分钟之内将主板上密密麻麻的跳线连接好,是不是觉得他是高手?呵呵,看完今天的文章,你将会觉得这并不值得一提,并且只要你稍微记一下,就能完全记住,达到不看说明书搞定主板所有跳线的秘密。
精品文档这个叫做真正的跳线首先我们来更正一个概念性的问题,实际上主板上那一排排需要连线的插针并不叫做“跳线”,因为它们根本达不”到跳线的功能。
真正的跳线是两根/三根插针,上面有一个小小的“跳线冒”那种才应该叫做“跳线”,它能起到硬件改变设置、频率等的作用;而与机箱连线的那些插针根本起不到这个作用,所以真正意义上它们应该叫做面板连接插针,不过由于和“跳线”从外观上区别不大,所以我们也就经常管它们叫做“跳线”。
精品文档看完本文,连接这一大把的线都会变得非常轻松精品文档电源开关:POWER SW 英文全称:Power Swicth 可能用名:POWER、POWER SWITCH、ON/OFF、POWER SETUP、PWR等功能定义:机箱前面的开机按钮精品文档复位/重启开关:RESET SW 英文全称:Reset Swicth 可能用名:RESET、Reset Swicth、Reset Setup、RST等功能定义:机箱前面的复位按钮精品文档电源指示灯:+/- 可能用名:POWER LED、PLED、PWR LED、SYS LED等精品文档硬盘状态指示灯:HDD LED 英文全称:Hard disk drive light emitting diode 可能用名:HD LED精品文档报警器:SPEAKER 可能用名:SPK 功能定义:主板工作异常报警器精品文档这个不用说,连接前置USB接口的,一般都是一个整体精品文档音频连接线:AUDIO 可能用名:FP AUDIO 功能定义:机箱前置音频看完以上简单的图文介绍以后,大家一定已经认识机箱上的这些连线的定义了,其实真的很简单,就是几个非常非常简单英文的缩写。
电脑主板常见信号功能解释
VCCRTC 实时时钟供电,(VBAT),电池+跑线,经过1k(有点板不是)电阻,到达二极管+,从-出来RTCRST# 实时时钟复位这两步满足后产生晶振32.768KHZ 晶振这三步没上ATX,都有V5REF-SUS 5V待机电压,主用于USB和键盘VCCSUS3-3 SB的3.3V待机电压(经1117,1084等转换而来)PCI 14脚.RSMRST# 待机电压好信号,正常工作为高电平,(低电平引起不开机)PWRBTN# 1 电源开关,送到南桥SLP-S5# 2 南桥发出 3 PS_ON# 这三个为开机信号SLP-S4# 2 南桥发出SLP-S3# 2 南桥发出三个S#有一个是开启内存供电的VDIMM 内存供电VCOREVCC CPU的核心电压,VRMPWRGD CPU供电好信号,当CPU供电电压值正常后,供电电源芯片发出高电平送到SB,用于SB内部产生CPUPWRGD和PLTRST#的重要条件.CLKCEN 时钟开启信号,用于开启时钟芯片工作,SB收到VRMPWRGD后发出高电平开启时钟PWROK 电源好信号,ATX电源供电正常后发出灰色线PG5V,经门电路,IO,后发送到SB,通知SB各路供电已正常CPUPWRGD cpu电源好信号,由SB发送到CPU,是CPU工作PLTRST# 平台复位/总复位,SB供电,时钟正常并收到两个PG信号后将PLTRST#置高发送到NB,IO(两个PG指PWROK,VRMPWRGD) PCIRST# PCI设备复位信号,PLTRST#在SB内部延时后发出到各个PCI设备,正常3.3V,在A15脚测量CPURST# 1.2V左右,由北桥收到PLTRST#产生,(NB没复位。
CPU就没有复位)INTEL的上电流程(五大待机条件和三大信号)VCCRTC--RTCRST#--32.768KHZ--3VSB(插电源5VSB-3VSB)--RSMRST#--PWRBTN#--SLP_S3#--PS_ON#--ATX输出5V,3V.12V.....待机时 VCCRTC 3V 高电平 RTCRST# 3V 高电平 32.768KHZ--3VSB(插电源5VSB-3VSB)--RSMRST# 3V 高电平 !开机触发 PWRBTN# 高--低--高 SLP_S3# 低--高 PS_ON# 高--低 ATX输出5V,3V.12V.....。
主板信号走向(全)
(1)DS#:CPU地址选通信号,低电平有效。地址选通信号,就是好像我们出行一样,有几条路可供选择,具体选择走哪一条,在CPU与北桥之间的地址线是单向传输的。
(2)BSY#:FSB总线忙信号,高电平表示总线不忙,低电平表示总线忙。总线忙表示地址线上正在传输信号。
(2)北桥与南桥
北桥使PCI帧周期信号FRAME#为低电平,启动PCI总线工作,建立起北桥和南桥的连接,然后主设备准备好信号IRDY#转换为低电平,通过IRDY#信号线告诉南桥,我要发数据给你,准备接收吧!
如果南桥准备好了,南桥会把从设备准备好信号TRDY#变为低电平送到北桥,告诉北桥我己准备好接收数据,请发送数据吧!北桥接到低电平的TRDY#信号后(这时FRAME#、IRDY#和TRDY#全部为低电平,低电平有效),北桥把收到的地址信号通过北桥的PCI总线接口译码,将A31一A0这32根地址线发送到南桥,这些地址信号经南桥的HC总线接口译码后送给南桥。
(3)南桥与BIOS
南桥将A17一A0地址信号线送到BIOS(1SA列BIOS的地址线为A17一A0,共18根),这个地址信号到BIOS内部的地址译码器译码,知道了CPU需要的是哪一部分指令。然后会选择这部分数据的相应存储体(存储体将不同的指令存放在不同的存储器上),这时南桥的ISA总线给BIOS的WE持高电平(只读),还通过南桥内部X总线X—BUS向BIOS发出一个低电平的片选信号,这时允许BIOS把数据调入数据缓冲器,这时X-BUS会把OE#变为低电平,允许数据输出,这些数据通过D7一D0传输给南桥内部的ISA总线。
(3)FRAME#:PCI帧周期信号,低电平表示PCI总线启动工作,高电平表示PCI总线没有工作。
(4)IRDY#:主设备淮备好信号,低电平有效。主设备就绪信号和从设备就绪信号,从北桥到南桥传输数据的时候,以北桥为主,南桥为从;如果南桥到北桥传输数据的时候,南桥为主,北桥为从。
电脑主板CPU供电电路原理图解
电脑主板CPU供电电路原理图解一.多相供电模块的优点1.可以提供更大的电流,单相供电最大能提供25A的电流,相对现在主流的处理器来说,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计,比如K7、K8多采用三相供电系统,而LGA755的Pentium系列多采用四相供电系统.2.可以降低供电电路的温度.因为多了一路分流,每个器件的发热量就减少了。
3.利用多相供电获得的核心电压信号也比两相的来得稳定。
一般多相供电的控制芯片(PWM芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证了日后升级新处理器的时候的优势。
二.完整的单相供电模块的相关知识该模块是由输入、输出和控制三部分组成。
输入部分由一个电感线圈和一个电容组成;输出部分同样也由一个电感线圈和一个组成;控制部分则由一个PWM控制芯片和两个场效应管(MOS—FET)组成(如图1)。
图1单相供电电路图主板除了给大功率的CPU供电外,还要给其它设备的供电,如果做成单相电路,需要采用大功率的管,发热量很大,成本也比较高.所以各大主板厂商都采用多相供电回路.多相供电是将多个单相电路并联而成的,它可以提供N倍的电流。
小知识场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,其应用比较广泛,可以放大、恒流,也可以用作可变电阻.PWM芯片:PWM即Pulse Width Modulation(脉冲宽度调制),该芯片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。
实际电感线圈、电容和场效应管位于CPU插槽的周围(如图2)。
图2 主板上的电感线圈和场效应管了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。
三.判断方法1.一个电感线圈、两个场效应管和一个电容构成一相电路.这是最标准的供电系统,很多人认为:判定供电回路的相数与电容的个数无关.这是因为在主板供电电路中电容很富裕,所以,一个电感加上两个场效应管就是一相;两相供电回路则是两个电感加上四个场效应管;三相供电回路则是三个电感加上六个场效应管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I 热断路信号: 当THRMTRIP#信号为低电平型号时,从处理器发出热断路型号,ICH9马上转换为S5状态。ICH9将不等待来自处理器的准予停止的信号返回便进入S5状态。 SLP_S3# O S3 休眠控制信号: SLP_S3# 是电源层控制。
注释: 1. 在正常的三个RTC时钟周期里南桥使电源完全复位并生成完整的PLTRST#信号输出,PWROK必须是最小值处于无效状态。
PWROK必须无假信号,即使RSMRST#是低电平。
控制LINK电源正常信号:当CLPWROK有效时,表示从电源到控制LINK子系统(北桥、南桥等)是稳定的以及通知南桥使CL_RST#无效直到北桥收到这个信号在PWROK有效之后CLPWROK不许有效。
在桌面平台上这个信号能转换成为GPIO信号,这时它就不支持Intel AMT或者ASF。 BATLOW# (仅用于笔记本电脑) / TP0 (仅用于桌面电脑) I 电池低信号: 这个输入信号来自于笔记本电脑的电池组,当电池电量不足以维持系统发出一个信号。该信号有效时它会阻止系统从S3、S4、S5唤醒,也能引起一个SMI# 信号有效。 DPRSLPVR (仅用于笔记本电脑) / GPIO16 O 更深层睡眠-稳压信号:这个信号用于VRM在C4状态下将电压降到更低。当这个信号为高电平,稳压器输出更低的深睡眠电压。该信号为低电平时(默认值为低电平),稳压器输出正常的电压。(稳压器指VRM) DPRSTP# (仅用于笔记本电脑) / TP1 (仅用于桌面电脑) O 深度停机信号:这是DPRSLPVR信号的一个复制,低电平有效。在这1ms内PLT_RST#为低,而正是由于这1ms的低有效,系统才识别到PLT_RST#.该信号会对SIO,FWH,LAN,G(MCH),IDE,TPM等进行reset的动作.也就是说如果该信号异常,这些device都没办法被激活.该信号发出后立刻就会发出PCI_3S_RST#,可以当做是作用相似的第二次reset。
26:SD08—SD15 :8条高位数据总线
部分信号的名词解释
CLK:时钟
RESET:复位
INPUT CPU:初始化
ADS:地址状态
BEO#-7#:字节使能
AP:地址偶校验
APCHK#:地址校验检测状态
.DP0-7:数据偶校验
PCHK#:奇偶校验错使能
状态指针信号:当机器在S4或者S5状态下该信号为低电平有效。当机器在S3状态时可操作性引擎强制SLP_S4#连同SLP_S4#处于高电平,这个信号能用于其它设备了解本机的当前状态 电源正常信号:所有电源分配总线稳定99ms以及PCICLK稳定1ms时,PWROK给南桥一个有效标志。. PWROK可以异步驱动。PWROK低电平的,南桥就会认为PLTRST#有效。
PWRBTN# I 电源按钮:.电源按钮将引起SMI#或者SCI来指出系统的一个睡眠状态。如果系统已经是睡眠状态,那么这个信号将触发一个唤醒事件。如果PWRBTN#有效时间超过4s,不管系统在S0、S1、S3、S4状态,这时都会无条件转换到S5状态。这个信号的内部有一个上拉电阻及输入端有一个内设的16ms防反跳的设计。
总复位信号: PLTRST#是Intel 整个平台的总复位(如:I/O、 BIOS芯片、网卡、 北桥等等)。在加电期间及当S/W信号通过复位控制寄存器(I/O 寄存器 CF9h)初始化一个硬复位序列时ICH9确定PLTRST#的状态。在PWROK和VRMPWRGD为高电平之后ICH9驱动PLTRST#最少1毫秒是无效的。当初始化通过复位控制寄存器 (I/O 寄存器 CF9h)时ICH9驱动PLTRST#至少1毫秒是有效的
SUS_STAT# / LPCPD# O 挂起状态信号:该信号有效表明系统马上要进入低功率状态。它能监控这些设备以及内存从正常模式进入挂起模式,也能用于隔离其它外围设备的输出并关闭它们的电源,该信号在LPC I/F上调用LPCPD#来实现的。 SUSCLK O 挂起时钟信号:这个时钟是RTC时钟发生器通过其它芯片产生的时钟来输出的。 VRMPWRGD I CPU电源正常信号:这个信号直接连接到CPU电源管理芯片,该信号正常表示VRM是稳定的。这个输入信号与PWROK在内部是相与的.
KEN#:高速缓存使能
WB/WT#:回写/通写输入
FLUSH#:高速缓存清洗
AHOLD:地址占用请求
EADS#:有效外部地址
HIT#:命中指示
INV:无效输入
IERR:内部检验错
BUSCHK:总线检查输入
A20M#:地址位20屏蔽
PWT:页面高速缓存内存通写
2. 在PWROK有效之后,LAN_RST# 必须有效
3. 在VccLAN3_3 和 VccLAN1_05及Vcclan3_3电源都正常的情况下LAN_RST#必须有效1ms。
如果集成网卡不用LAN_RST#可以把它连接到Vss。 WAKE# I PCI Express* 唤醒事件 :边带唤醒信号在PCI Express插槽上有部件并发出唤醒请求信号 MCH_SYNC# I 北桥同步信号:这个输入信号与PWROK在内部是相与的,该信号连接到北桥的ICH_SYNC# 输出端。
在Sx(S0、S1、S3、S4、S5)状态下,当系统将Intel AMT或者ASF开启时,为了支持Moff/Sx 到M1/Sx的转换,这个引脚用来通知时钟控制器选择主时钟频率。
在桌面平台上这个信号能转换成为GPIO信号,这时它就不支持Intel AMT或者ASF。 STP_CPU# / GPIO25 (仅用于桌面电脑) O 阻断CPU时钟信号:这个信号有效时会命令外部时钟发生器关掉CPU时钟,在笔记本电脑上用于支持C3状态。在Sx(S0、S1、S3、S4、S5)状态下,当系统将Intel AMT或者ASF开启时,为了支持Moff/Sx 到M1/Sx的转换,这个引脚用来通知时钟控制器选择主时钟频率。
这个信号在挂起的时候是正常 CK_PWRGD O 时钟脉冲发生器电源正常信号:当主电源有效时这个信号去时钟发生器,当SLP_S3#和VRMPWRGD两个信号都为高电平时这个信号也是高电平有效 PMSYNC# (仅用于笔记本电脑) / GPIO0 O 电源管理同步信号:当该信号有效,在退出C5或者C6时该信号由北桥使CPUSLP#这个脚无效。这个信号也可以用于GPIO。 (仅用于笔记本电脑)/ GPIO32 (仅用于桌面电脑) I/O PCI时钟运行信号: 这个信号用于支持PCI协议。当连接到外部设备时需要申请重启时钟或者预防时钟停止 STP_PCI# / GPIO15 (仅用于桌面电脑) O 关闭PCI时钟信号: 当STP_PCI#信号是低电平时外部时钟脉冲发生器就会关闭PCI时钟信号。它以前用在笔记本电脑上去支持 PCI CLKRUN# 协议。
20. SBHE:高字节允许信号
21:MEM R:内存读信号
22:MEM W:内存写信号
23:SD7—SD0 : 8条低位数据总路线 SD3到I/O芯片上去了; SD2与Bios联系
24:LA23—LA17: 7条高位地址总线
25:SA19—SA0 :20条低位地址总线 (SA16-SA0到BIOSຫໍສະໝຸດ 去了) REQ:总线占用请求
STOP:停止数据传送
DEVSEL:设备选择
SERR:系统错误报告
SDONE:监听完成信号
PAK64:奇偶双字节校验
RSMRST#是一种信号。
RSMRST#信号是用来通知南桥5VSB和3VSB待机电压正常的信号,这个信号如果为低,则南桥收到错误的信息,认为相应的待机电压没有OK,所以不会进行下一步的上电动作。RSMRST#可以在I/O、集成网卡等元件上量测得到,除了量测RSMRST#信号的电压外,还要量测RSMRST#信号对地阻值,如果RSMRST#信号处于短路状态也是不行的,实际维修中,多发的故障是I/O或网卡不良引起RMSRST#信号不正常
BOFF#:总线屏蔽
FERR#:浮点数值出错
IGNNE#:忽略数值出错
SMT#:系统管理中断
SMIACT#:系统管理中断请求
D/C#:数据/控制指示
W/R#:写读指示
CBE#:总线命令和字节使能多路复合线
FRAME:帧周期信号
IRDY:主设备准备好
注释:在一个系统中关于Intel的AMT的支持,这个信号常用于控制DRAM的电源,
注释:在M1状态下(当主机处于S3、S4、S5状态及可操作子系统运行状态)这个信号被强制为高电平连同SLP_M#给DIMM提供充足的电源用于可操作子系统。 SLP_S5# O S5 休眠控制信号: SLP_S5# 是一个电源层控制信号.当系统进入S5(软关机)状态时SLP_S5# 用于关闭系统所有的非关键性电源。 SLP_M# O 可操作睡眠状态控制信号:用于电源层控制Intel AMT子系统。如果不存在可操作引擎固件,SLP_M#将与SLP_S3#同步。
当进入S3(挂起到内存)、S4(挂起到硬盘)、S5(软关机)状态时这个信号关掉所有的非关键性系统电源。 SLP_S4# O S4 休眠控制信号: SLP_S4# i是电源层控制信号. 当进入S4(挂起到硬盘)、S5(软关机)状态时这个信号关掉所有的非关键性系统电源。
注释: 这个Pin脚以前常用于控制ICH9的DRAM电源循环功能.
_RSMRST# I 恢复常态的复位信号:
这个信号用于重置供电恢复逻辑, 所有电源都有效至少10ms这个信号才会起作用,当解除有效后,这个信号是挂起的汇流排稳定的一个标志 LAN_RST# I LAN 复位
当这个信号有效的时候,在LAN内部控制器进行复位,在LAN的ccLAN3_3 和 VccLAN1_05及VccCL3_3电源正常状态下该信号才会有效。当解除有效后,这个信号是LAN汇流排稳定的一个标志注释: 1. 在RSMRST# 解除有效之前LAN_RST# 必须是有效的。