电脑主板开机电路..
笔记本 待和开机电路
待机和开机电路1.待机电路讲解在开机键上没有高电平电压时,待机电路没有输出+3V或5V电压的情况下需要检修待机电路,待机电路通常采用一片待机芯片,待机芯片常用线性稳压集成电路,常见待机芯片有五脚的、六脚的和八脚的三种。
待机电路有两大作用:●只供给主板上需要待机电压的设备(芯片),为3.3V/5V的直流电压。
●给快捷键键提供高电平。
待机芯片具如下特点:●一个引脚接主供电,一个引脚输出3.3V或5V电压。
●待机芯片为在不开机的时候就输出3.3V或5V电压。
●待机芯片为开机电路提供3.3V或5V电压,因此待机芯片通常靠近开机芯片。
●从开机按键往回找,可以找到待机芯片。
很多笔记本电脑的开机键是通过键盘芯片和排线连到主板,连线比较复杂,查找不方便,可以根据其外形和位置查找。
●若开机电路中的3.3V或5V电压正常,说明待机芯片工作正常。
●待机电路的好坏可根据测量开机键上的电压来判定。
测开机按键上是否有3.3V或5V电压,IBM的待机电压为5V,SONY的待机电压为3.3V。
2.IBM T30待机电路分析IBM T30待机电路如图。
完整的电源供接请参见附录1.1.电源输入电路笔记本电脑的电源输入电路一般有三路。
第一路的由电源适配器经保护隔离电路输出的VINT16电压,此电压经隔离二极管VD10后,输出约为16V的电源电压。
第二路的由主电池经保护隔离电路输出的M-BA T-PWR电压,此电压经保险F9后送到隔离二极管VD19后,输出约为12V的电源电压。
第三路的由从电池经保护隔离电路输出的S-BA T-PWR电压,此电压经保险管F10后送到隔离二极管VD23后,输出约为12V的电源电压。
三路中有一路电压R629送到待机芯片的第5脚,由于电源适配器的电压高于电池电压,所以当插上电源适配器时,由电源适配器给待机电路供电,没有插上电源适配器时,由电池给待机电路供电。
属于并联关系,所以这三路供电之中只要有一路的供电正常,待机电路就能正常工作。
电源主板开机电路工作原理分析
电源主板开机电路工作原理分析只要将A TX电源的第14脚的电压拉低,A TX电源就开始工作,输出各组电压。
如图7-1所示,只要将A TX电源的第14脚对地短接,A TX电源就能开始工作。
对于不能触发开机的土板,如果知道A TX电源的启动原理,就可以直接将A TX电源的第14脚对地短接而强行开机,以检查除了开机电路外其他的电路是否正常,如图7-2所示。
开机电路就是在接收到开机触发信号后,通过电路实现将A TX电源第14脚的电压拉低的这么一个功能,它的电路原理如图7-3所示。
在A TX电源接上市电后,电源虽然没有启动,但第9脚会有5V的电压输出,称之为待命电乐。
5V待命电压经过稳压电路后,输出3.3V的电压供给触发电路。
另外,5V待命电压经过一个电阻接到开机键的一端。
开机时按下开机键,A点的电压被拉低,这样就会产生一个触发信号输入到触发电路中。
触发电路从B点输出一个逻辑高电平(这个电压是一直保持的,直到第二次触发),这个高电平加在三极管的发射结(be)之间使得三极管导通,从而使集电极(c)的电位被拉低,也就是A TX 电源的第14脚电位被拉低,这样A TX电源即开始工作,输出各组电压供给主板。
关机时按下开机键,A点的电压被拉低,这样就会产生一个触发信号输入到触发电路中。
触发电路接收到触发信号后使B点的电压翻转,即由原来的逻辑高电平翻转为逻辑低电平(这个电压是一直保持的,直到第二次触发)。
由于三极管发射结(be)没有偏置电压,于是三极管截止,集电极(c)的电位升高,也就是A TX电源的第14脚电位升高,这样A TX电源即停止工作。
有些主板不上CPU是不能开机的,例如一些SOCKET478 CPU座的主板,它是将三极管的发射极接到CPU座的AF26引脚,如图7-4所示。
CPU后,通过CPU的AF26引脚与AE26引脚(接地)相连,结果就与图7-3所示的电路一样,因此也就能控制开机了。
根据这个原理,在CPU假负载上将AF26引脚与AE26引脚相连(SOCKET478的CPU假负载),如图7-5所示,这样主板就认为有CPU存在,因此小上CPU也能进行开机。
笔记本开机电路学习
1.工作机制
开机电路是主板中重要的单元电路,它的主要任务是看控制电源管理芯片,使其开启工作输出工作电压,为笔记本各个电路供电,进而使笔记本开始工作。
开机电路通过电源开关触发主板的开机电路,开机电路中的南桥芯片或是开机控制芯片对触发信号进行处理后,最终发出控制信号,控制信号触发电源供电电路开始工作,使电源供电电路向各级电路输出相应的工作电压,为其提供工作电压。
当关机时,按开关键的瞬间,开机键又被接地,3V电压经过开机键接地,此时开机键通过开机控制芯片的第32脚向开机控制芯片内部的触发电路发送一个由低到高的触发信号。此信号将开机控制芯片内部的触发电路触发,这时触发电路通过开你控制芯片的第18脚向南桥输出一个控制信号。接着南桥返回控制信号,此时开机控制芯片再向电源管理芯片发出关机控制信号。随后电源管理芯片停止向电源供电电路发送脉冲信号,电源供电路停止工作,笔记本关机。
开机原理图
) h* m! R3 G4 t( y
2 E. K4 k( j% y: ~ N6 ^3 T# J
在笔记本接入电池时或是适配器且没有按下开机键时,电池或电源适配器的电压经过电源供电电路转换电压后,为开机控制芯片,南桥芯片,电源管理芯片等提供待机电压。
当按下开机键的瞬间,开机键接地,3V的电压经过开机键接地。此时开机键的电压信号由低变高,产生一个开机触发信号。此开机触发信号经过二极管D7和开机控制芯片(KB926QF)的第32脚,被送到开机控制芯片内部的触发电路。经过触发电路的检测后,由开机控制芯片的第18脚(PBTN OUT#)输出一个控制信号到南桥(INH8M)的C2脚,(PBTN#)。接着南桥的芯片的AG23脚(SLP_S3#),AD18脚(SLP_S5#)向开机控制芯片的第6,14脚输出控制信号,开机控制芯片接受到控制信号后,从第121脚的输出高电平控制信号,控制电源供电电路工作,为笔记本电路提供正常的工作电压。
主板开机电路
▪ (4)I/O芯片
▪ 在支持Pentium 4 CPU的主板中,开机电路是 由I/O芯片内部的门电路控制电源的第14脚的,所 以Pentium 4主板的开机电路应该在I/O芯片内部。
▪ 在这里I/O芯片和南桥芯片的关系是:电源开 关输出一个电压,通过I/O芯片内部门电路转换 进入南桥,再由南桥内部输出一个电压进入I/O芯 片内部的另一个门电路(控制14脚的门电路),然后 由此门电路来改变电源第14脚的电压,使电源开 始工作,如图7.4所示为I/O芯片。
▪ 当关闭计算机时,在按下开机键的瞬间,开机键 的电压再次变为低电平,南桥内部的触发电路没有 被触发。
▪ 在松开开机键的瞬间,开机键的电压变为高电平, 此时南桥内部的触发电路被触发,这时触发电路向 三极管Q21输出低电平,三极管Q21截止,这时 ATX电源第14脚的电压又变为高电平,ATX电源停 止工作,主板处于停止状态。
▪ 1.经过南桥的开机电路
▪ 经过南桥的开机电路的电路原理图如图7.6所 示。
▪ 图中,1117为稳压三极管,作用是将电源的 SB5V电压变成+3.3v电压,Q21为三极管,它的 作用是控制电源第14脚的电压,当它导通时,电 源第14脚的电压变为低电平。
▪ 当电脑的主机通电后,ATX电源的第14脚输出 +5V电压,ATX电源的第14脚通过一个末级控制 三极管和一个二极管连接到南桥的触发电路中, 由于南桥内部的触发电路没有工作,三极管Q21 的b极为低电平,三极管Q21处于截止。
▪ 74系列非门电路的1、3、5、9、13脚输入电压,2、4、6、 8、12脚输出电压,且当第l、3、5、9、13脚输入的是高电 压时,第2、4、6、8、12脚输出的是低电压;当第1、3、5、 7、9、13脚输入的是低电压时,第2、4、6、8、12脚输出 的是高电压。
开机触发电路的原理
开机触发电路的原理主板开机触发电路的原理:首先我先声明一句话,如果这句话你不记牢的话,你就干脆不要学这个电路了。
这句话是该电路的基本的基本的基础。
这句话就是:经过主板开机键触发(PWR-SW)主板开机电路工作,开机电路将触发信号进行处理,最终将电源第14脚(绿线)拉成低电平,一旦14脚的高电平拉低,触发电源工作,使电源各引脚输出相应的电压,为各个设备供电(即电源开始工作的条件是电源接口的第14脚绿线由高电平变为低电平)。
ATX电源插座上有20根线,由紫线、红线、黄线、黑线、灰线、白线等构成。
32.768KHz晶振为实时晶振,它是ATX电源开关的振荡晶体,也是CMOS的振荡晶体。
1117为电压转换器,作用是将电源的SB5V电压变成+3.3V电压。
该图中用虚线连接的I/O芯片,它的含义是:威盛主板一般用的是南桥来开机(开机电路集成在南桥),而英特尔一般用的是I/O芯片来开机(开机电路集成在I/O 芯片里)。
在触发电路中凡是参加开机的元件均由电源9引脚(紫线)提供+5V供电,该5V电压因为电源一插上插座就会输出5V电压,因此称为待机电压,叫+5VSB(stand by)。
电源线插到主板上的电源插座上时,该电压送到南桥或I/O,为南桥或I/O里面的开机电路提供工作条件,南桥或I/O里的开机电路开始工作。
并送一个电压给晶振,晶振起振,起振电压为0.4V到1.6V。
同时,+5VSB高电位经电阻R,在PW-ON非接地端形成+3.3V高电位。
当PW-ON被触发(即闭合短接)瞬间,相当于将其接地。
+3.3V高电位信号被拉低,变为低电位,南桥(或I/O)接收到低电位信号发出高电平,将图中三极管导通,相当于三极管作为开关作用时闭合导通。
那么绿线的5V电压就接地,被拉成低电平,这恰是文中开始是耳提面命的一句话,也即由此触发电源工作,电源开始输出各路电压(红5V、橙3.3V、黄12V),实现开机。
另外你要学会跑电路,初学者一般遵循从POW-SW到南桥或I/O,在反着从PS ON(绿线)到南桥或I/O查找线路。
主板开机电路故障检修
主板开机电路故障检修一、故障原因分析:1、电源损坏造成无法开机。
2、开机电路故障造成无法开机。
3、主板其它地方有短路造成电源保护而无法开机。
4、开关按钮接触不良造成无法开机。
二、故障测试点及排除:1、怀疑主机电源好坏:首先接好电源,按下开关,如果不能通电,再把主机的电源拔下来,用镊子把电源的绿线和黑线短路,看电源风扇转不,如果转,说明电源是好的。
也可用万用表测量各路电压是否正常,以防万一。
ATX电源电压误差是5%。
2、怀疑主机开关好坏:再把ATX电源线和主板接好,把主板上的开关针、复位针等拔起,用镊子短路开关针触发电源开关,看能不能开机,如果能,就说明是主机箱的开关坏,把主机箱开关拆出清洗。
如果短路开关针触发电源还是不能开机,说明主板真的不能触发开机,把主板从机箱里拆出来检修。
3、把主板拆下来,先把板上的灰尘清扫干净,以免防碍检修。
先目测一下,看主板上面有无元器件烧坏,鼓包,电脑板上有无烧焦、断线的。
把主板放好,插上假负载,插好电源,测试卡,做好检修准备。
4、直接短路接绿线和黑线。
如果此时可以加电开机说明故障在软开机电路本身。
如果此时不可以加电或风扇转一下就停、诊断卡灯亮一下就灭,主板诊断卡上的灯狂闪、电源发出响声说明主板有短路现象。
(一般是5V、12V短路)ATX电源内部保护.5、对于主板短路,可测ATX电源插座的各供电脚对地阻值,从而缩小检查范围。
橙色线100-300欧左右;红色线75-380欧左右;黄、紫、灰、绿在300-600欧左右。
ATX电源对黄12V和红5V进行短路保护。
使用红5V电压的元件有南桥、I/O、bios、声卡、串口芯片、并口芯片、5V滤波电容、电源管理芯片、门电路芯片、场管等。
使用黄12V电压的元件有场管、12V滤波电容、电源管理芯片、串口芯片等使用橙3.3V电压的元件有南北桥、I/O、bios、时钟芯片、网卡芯片、声卡芯片、1394芯片、滤波贴片电容等。
轻微短路时有发烫感觉使用紫5V电压的元件有南北桥、I/O、网卡(需转换成3.3V待机电压使用)、门电路、滤波电容、稳压二极管等。
电脑主板开机电路检测流程
开机电路检测流程测量ATX电源接口的红5V,黄12V是否严重对地短路。
1:南桥附近是否有2.5V,3.3V,1.8V的待机电压(南桥不同,待机电压也不同)2:实时晶振是否起振(两脚是否有0.4V左右电压)3:CMOS跳线中间引脚是否为高电平。
(CMOS是否设置正确)4:测量POW开关处是否有2.5V以上高电平。
5:短接POW开关测量是否有低电平触发南桥成功(W83627HF除外)6:查绿线到南桥成I/O之间的线路是否正常。
注:开机电路中易损元件:(1):与开机电路相关的门电路,三极管。
(2):给南桥提供待机电压的正电压稳压器或其它供电元件。
(3):与I/O或南桥。
维修实例1.GPS-810C(E)J:测试点正常不工作,刷BIOS(用联冠810T)无效,后查北桥供电的3055场效应管损坏,板上标识为Q4,更换后OK。
2.-P4主板:型号为Titan667。
测试卡从C1到B0,测试卡过C1,表明CPU已经工作,检测内存不过,查内存的供电,发现它的负载电压只有0.85V。
正常应为1.25V,查其与Q96,Q97两个场管相连,摘下后测得Q96为软击穿,更换后故障排除。
3.-810主板不能点亮测试卡从D3到00,DE-00循环跳变,这种故障表明检测内存不过,经查内存的供电,时钟,复位,片选,行,列,选信号均正常,于是目测主板,将CPU与风扇除去,发现风扇卡与主板之间有划痕,且已划段3根线,经补线后,加电测量,一切正常。
4.-精英K7VMA主板;主板上有两个CPU风扇接口,插其中一个自动断电,查不正常的风扇接口,发现其5V由D4二极管供给,二极管正向端连南桥,由此怀疑南桥中的温控电路出毛病,将其二极管摘除,将风扇5V端与D5的负端相连后,故障排除。
5.精英P6-IEAT或P6-IPAT,815EP主板开机不显,各项电压正常的情况下多为南桥坏。
(通病)6.磐正AMD主板进入系统后自动关机,更换CPU风扇后,故障解决。
第六章 主板开机电路
第六章 主板开机电路
3,门电路 门电路芯片一般为14引脚芯片,控制触发信 门电路芯片一般为14引脚芯片,控制触发信 号或者控制信号。74H系列一般输入低电平 号或者控制信号。74H系列一般输入低电平 时输出高电平,输入高电平时输出低电平。 4,I/O芯片 I/O芯片 有些主板中I/O芯片内部集成开机控制模块, 有些主板中I/O芯片内部集成开机控制模块, 一般有IT8712、IT8702、W83267F、 一般有IT8712、IT8702、W83267F、 W83267HF、W83697F等。 W83267HF、W83697F等。
第六章 主板开机电路
当松开开机键的瞬间,开机键由低电平变 为高电平,向触发器发送上升沿触发信号。 触发器被触发,输出端输出状态被翻转, 由高电平变为低电平发送给南桥,南桥则 发送高电平信号给与非门变低后至或非门 变高。则开机控制三极管接通。ATX电源 变高。则开机控制三极管接通。ATX电源 开始工作。
第六章 主板开机电路
5、开机键 开间键一般一脚接地。另一脚连5VSB和门 开间键一般一脚接地。另一脚连5VSB和门 电路或I/O或南桥。 电路或I/O或南桥。 当两脚短接后,产生最开始的触发信号。
第六章 主板开机电路
开机电路工作原理 开机电路包括CMOS供电电路和电源开关触发电 开机电路包括CMOS供电电路和电源开关触发电 路。 1,由南桥组成的开机电路。 CMOS电路参考上章,一般由南桥组成的开机 CMOS电路参考上章,一般由南桥组成的开机 电路有:开机控制三极管、门电路芯片(反向 器)、电源开关等组成。 ATX待机时,电源开关一脚连接由三端稳压器 ATX待机时,电源开关一脚连接由三端稳压器 提供的3.3V供电,并连向南桥。PSON产生3.5V以 提供的3.3V供电,并连向南桥。PSON产生3.5V以 上供电。这时南桥产生高电平信号,并通过反向 器提供给开机控制三极管(由于反向器转换,此 时开机控制三极管B 时开机控制三极管B极为低电平)。
主板开机电路
以SB为开机
以SB为开机原理
当工作条件都满足时,按下开关,这时信号PWRBTSW#将由高电位转为低电位(瞬间为 LOW还会拉为HI),用来触发南桥上的 PWRBTSW#为低电位,,会将信号SUSB#信号, 定义为高电位,这个信号通过外部的门电路将电 源上的PS_ON定义为低电位,电源开始为主板供 电。
intel主板构架
AMD主板构架
Hale Waihona Puke 开机电路以I/O为开机的工作原理
当工作条件都满足时,按下开关,这时信号PWRBTSW#将由高电位转为低电位(瞬间为 LOW还会拉为HI),用来触发I/O上的 PWRBTSW#为低电位,同时送入南桥,南桥检 测到此信号为低电位时,会将信号SLP_S3#信号, 定义为高电位,送入I/O,这时I/O上的PS_ON会 将电源上的PS_ON定义为低电位,电源开始为主 板供电。
• -PWRBTSW:是前面板向I/O发出一个开机信号,此信号为负脉冲信 号,正常电位为5V。 • PWRBTSW:是I/O发出到ICH7的开关信号,此信号为负脉冲信号, 正常电位为3.3V。 • SLP-S3:为ICH发出用于进入STR状态的信号,也是ICH7发出用于 控制ATX上电的信号。接入I/O,当I/O检测到为高电位时则PSON被 拉低。 • PSON#:用于控制ATX的PSON信号,正常开机该信号为低电位。 • RTC:(Real Time Circuit)简写,时实时钟电路,PC的时间产生由这 部分电路产生。也是上电的关键电路。集成在ICH7内部。 • SUSCLK:该信号为一CLK信号,当ICH7内部的RTC电路正常时, ICH7将发出该信号用于芯片内部刷新电路。 • RTCRST-:RTC电路RESET信号,低电位有效,用于RESET与RTC 相关寄存器。正常情况为3.3V的高电位。
主板电路工作原理
主板各电路工作原理主要内容:1、主板开机电路2、主板供电电路(含主供电及其他供电电路)3、时钟电路4、复位电路5.1 主板开机电路5.1.1软开机电路的大致构成及工作原理开机电路又叫软开机电路,是利用电源(绿线被拉成低电平之后,电源其它电压就可以输出)的工作原理,在主板自身上设计的一个线路,此电路以南桥或I/O为核心,由门电路、电阻、电容、二极管(少见)三极管、门电路、稳压器等元件构成,整个电路中的元件皆由紫线5V提供工作电压,并由一个开关来控制其是否工作,(如图4-1)当操作者瞬间触发开机之后,会产生一个瞬间变化的电平信号,即0或1的开机信号,此信号会直接或间接地作用于南桥或I/O内部的开机触发电路,使其恒定产生一个0或1的的信号,通过外围电路的转换之后,变成一个恒定的低电平并作用于电源的绿线。
当电源的绿线被拉低之后,电源就会输出各路电压(红5V、橙3.3V、黄12V等)向主板供电,此时主板完成整个通电过程。
图5-1 主板通电电路的工作原理图5.1.2学习重点:①主板软开机电路的大致构成及工作原理;②软开机线路的寻找;④主板不通电故障的检修;⑤实际检修中需注意的特殊现象。
5.1.3实例剖析:一款MS-6714主板,故障为不能通电,其开机电路如图5-2所示(图5-2)通过以上线路发现,开机电路由W83627HF-AW组成整个线路,按照主板不通电故障的检修流程进行检修,测其67脚没有3.3V左右的控制电压,此时就算更换I/O仍是不能工作的,于是查找相关线路,发现此点的控制电压是由FW82801DB直接发出,再查此南桥的1.5V的待机电压异常,跟寻此点线路,发现南桥旁一个型号为702的场效应管损坏,更换此管后,故障排除。
注:W83627系列I/O在Intel芯片组的主板中从Intel810主板开始,到目前的主板当中,都有广泛的应用,而且在实际维修中极容易损坏.5.1.4目前主板中常见的几种开机电路图:ASROCK P4S61 开机电路图5.2 主板供电电路5.2.1主板供电电路(见图5-3 )是主板中最容易损坏的部分,在实际的维修中占有相当大的比例,在学习本节之前,我们先来了解一下主板的供电机制。
笔记本开机电路
笔记本开机电路开机电路是主板中重要的单元电路,它的主要是控制电源管理芯片,使其开启工作输出工作电压,为笔记本各个电路供电,使笔记本开始工作。
开机电路通过电源开关触发主板的开机电路,开机电路中的南桥芯片或是开机控制芯片对触发信号进行处理后,最终发出控制信号,控制信号触发电源供电电路使其工作,使电源供电电路向各级电路输出相应的工作电压,为其提供工作电压。
尽管笔记本电脑开机电路的设计与应用中元件及芯片的组合布局方式完全不相同,但实现的原理与目的始终是一致的。
也就是通过控制电源管理芯片来控制电源供电电路的开启与关闭,现实控制主板的开启与关闭。
开机电路组成1. 开机控制芯片笔记本中的开机控制芯片称EC(Embedded Controller),在开机的过程中它控制着绝大多数重要信号的时序。
开机芯片不论在开机还是关机状态下,它都处于工作状态,另外,开机控制芯片一般还负责笔记本的键盘和鼠标(也就是触摸板或是摇杆),监视电源适配器和电池的供电,完成电池充电,放电校正以及电池保护,系统电源监控,电池安全监控,各种温度的监控等。
2. 南桥芯片大部分笔记本的南桥内部都包含有一个开机触发电路,该触发电路在接受到开机控制芯片发来的触发信号(PWERBTN#)后,向电源管理芯片输出一个控制信号,使电源供电电路开始工作,输出各个电路所需的工作电压。
3. 南桥内部触发电路正常工作的条件包括一下几个:○1.为南桥提供主供电。
供电电压为2.5V-3.3V,一般都是由CMOS电池供电或是待机电压供电。
○2.提供32.768kHz的时钟信号。
南桥或是开机控制芯片的内部内置了振荡器,外部连接了一个32.768kHz的晶振,在得到电源供电或是CMOS电池供电后,向南桥提供一个触发信号。
○3.开机信号的触发,在按下电源开关键后,由开机控制芯片给南桥提供一个触发信号。
当满足上面的3个条件后,南桥内部的触发电路就会工作。
开机电路工作原理由于各个笔记本电脑厂商不用,开机电路形式会有所不同,但基本电路原理相同。
主板开机电路详解
主板开机电路详解主板开机电路工作原理由于主板厂商的设计不同,主板开机电路会有所不同,但基本电路原理相同,即经过主板开机键触发主板开机电路工作,开机电路将触发信号进行处理,最终向电源第14脚发出低电平信号,将电源的第14脚的高电平拉低,触发电源工作,使电源各引脚输出相应的电压,为各个设备供电(即电源开始工作的条件是电源接口的第14脚变为低电平)。
主板开机电路的工作条件是:为开机电路提供供电、时钟信号和复位信号,具备这三个条件,开机电路就开始工作。
其中供电由ATX电源的第9脚提供,时钟信号由南桥的实时时钟电路提供,复位信号由电源开关、南桥内部的触发电路提供。
下面根据开机电路的结构分别讲解开机电路的详细工作原理。
1.经过门电路的开机电路经过门电路的开机电路的电路原理图如图7-7所示。
图中,1117为稳压三级管,作用是将电源的SB5V电压变成+3.3V电压,Q21为三极管,它的作用是控制电源第14脚的电压,当它导通时,电源第14脚的电压变为低电平。
74门电路是一个双上升沿D触发器,此触发器在时钟信号输入端(第3脚CP端)得到上升沿信号时触发,触发后它的输出端的状态就会翻转,即由高电平变为低电平或由低电平变为高电平。
74触发器的时钟信号输入端(CP 端)和电源开关相连,接收电源开关送来的触发信号,输出端直接连接到南桥的触发电路中,向南桥发送触发信号。
它的作用是代替南桥内部的触发器发出触发信号,使南桥向电源输出高电平或低电平。
当电脑的主机通电后,ATX电源的第14脚输出+5V电压,ATX电源的第14脚通过一个末级控制三极管和一个二极管连接到南桥的触发电路中,由于74触发器没有被触发,南桥没有向三极管Q21输出高电平,因此三极管Q21的b极为低电平,三极管Q21处于截至,电源的各个针脚没有输出电压。
同时ATX电源的第9脚输出+5V待命电压。
+5V待命电压通过稳压三极管(1117)或电阻后,产生+3.3V电压,此电压分开成两条路,一条直接通向南桥内部,为南桥提供主供电,而另一条通过二极管或三极管,再通过COMS的跳线针(必须插上跳线帽将他们连接起来)进入南桥,为CMOS电路提供供电,这时南桥外的32.768KHz晶振向南桥提供32.768KHz频率的时钟信号。
主板南桥组成的开机电路原理
主板南桥组成的开机电路原理主板南桥作为主板上的一个重要组成部分,负责管理和控制主板上各个部件的通信和数据传输。
开机电路是主板南桥中的一个重要部分,它负责启动计算机系统,将各个硬件组件初始化并连接起来,同时负责将BIOS程序加载到内存中,以便后续的系统启动。
下面将详细介绍开机电路的原理以及其主要功能。
开机电路的原理主要涉及到主板上的一些电路元件、电源和时钟信号。
当用户按下电源按钮时,电源向主板发送一个开机信号。
这个开机信号被主板南桥检测到后,会触发主板上的开机电路开始工作。
开机电路的主要功能包括以下几个方面:1.电源管理:开机电路负责对电源进行管理和控制,它可以监控电源状态,并进行电压和电流的调节。
如果电源供应不足或者出现异常,开机电路会将系统进入保护模式或自动关机,以避免硬件损坏。
2.时钟信号生成:开机电路还会生成时钟信号,这个时钟信号用于同步各个硬件设备的工作。
所有的硬件设备都需要依赖时钟信号进行同步操作,以确保计算机系统的正常运行。
3.设备初始化:开机电路负责对主板上的各个硬件设备进行初始化操作,包括CPU、内存、显卡、硬盘等。
它会根据预设的规则和设备参数,在硬件设备上设置合适的工作模式和参数,以确保系统能够正确识别和使用硬件设备。
4.系统检测:开机电路会对计算机系统进行自检,以确保系统硬件的正常工作。
它会检测CPU、内存、硬盘、显卡等设备是否正常,如果发现异常,会通过声音或者灯光等方式提示用户。
5.启动加载BIOS:开机电路会将BIOS程序从硬盘或者固态硬盘中加载到内存中。
BIOS程序是计算机的基本输入输出系统,它负责与计算机硬件进行通信,主要用于引导系统启动。
在开机电路的工作过程中,它会与BIOS程序、电源和时钟等元件进行通信和协作。
根据具体的实现方式和电路设计,开机电路可能包含电源管理芯片、时钟芯片、CMOS存储器、开关电路等。
总的来说,开机电路是主板南桥中的一个重要组成部分,它负责启动计算机系统,对各个硬件设备进行初始化,并将BIOS程序加载到内存中。
主板开机电路
主板开机电路根据主板的设计不同,开机电路的控制方式也不同:有的通过南桥直接控制,有的通过I/O芯片控制,也有的通过门电路控制,不管开机电路控制方式如何,开机电路的功能都是相同的。
主板控制方式一、开机电路的功能:它主要任务是控制ATX电源的绿线(PS-ON)变为低电平(即开机)从而使 +3.3V、+5V、+12V 等各路供电开始输出给主板。
二、开机电路的组成:2、南桥或I/O芯片3、门电路(74HCT14内含斯密特触发IC,不可用7404/7405/7406 代换)4、开机键(PW-ON)5、电阻、电容、三极管等元件主板开机键(PW-ON)标识:PWR-SW、PWR-BT、PWR-BN、PWR-ON、PWR-ON/OFF、PS-ON、POWER-ON、ATX-POWER、SWITCH-POWER、DC-SW三、南桥内部开机触发电路的工作条件1、5VSB转换后为南桥提供3.3VSB的待机电压2、CMOS跳线上有2.2V以上的工作电压(跳线帽设置正常)3、32.768kHz的实时晶振开始起振(两脚有压差0.4V~1.6V)4、触发排针要有3v-5v电压。
(有少数主板为0.8V电压)四、开机电路工作原理开机电路原理图南桥内部集成开机触发器,所有的开机触发器都是低电平有效。
翻转。
改变其输出的电平状态。
从而实现开机或关机。
通过“南桥”实现开机通过“南桥”和“IO”实现开机主板上的三种开机方式注:开机触发器的工作过程:一、在待机时由于没有按下开机键,那么开机触发器就没有“1—0—1”的电平信号输入,此时开机触发器内部的阀门开关不导通,没有信号输出,则绿色不能被拉低,即关机状态。
二、点开机键后,触发器的输入端得到“1—0—1”的触发信号,然后触发器内部阀门开关导通,输出一个持续的电平状态:(输出持续电平,有高电平,有低电平,一般南桥芯片输出为持续的高电平,I/O芯片输出为持续低电平,SIS芯片组的南桥输出持续的低电平,南北桥集成的芯片组输出为持续的低电平,去控制绿色,最终把绿色拉为低电平,从而实现开机,然后 ATX 输出各路供电)三、再次点开机键时(即开机),触发器输入端得一个相对持续的低电平有效触发信号,然后就撤销所输出的电平状态,使PS-ON(绿色)恢复到高电平状态(即关机)。
ASUS笔记本开机电路分析
03
ASUS笔记本开机电路的工作流程
电源电路的工作流程
总结词:提供电能
详细描述:电源电路是开机电路中的核心部分,主要负责将外部电源提供的电能 进行转换和调节,为整个开机电路提供稳定、可靠的电能。电源电路通常包括输 入电路、变压器电路和输出电路等部分。
因电源问题导致的开机失败。
加强电路保护
增加过流保护、过压保护等电路 保护措施,防止电流过大或电压 不稳对开机电路造成损坏。
优化启动程序
精简不必要的启动程序,缩短 启动时间,提高开机成功率。
定期维护与清洁
定期对笔记本进行维护和清洁 ,确保散热良好,避免因过热
导致开机失败。
优化开机电路的设计方案
01
02
检查开机按键是否正常,按下 开机键时是否有电压变化。
检查过热保护电路是否正常, 使用温度检测仪检测笔记本温 度。
检查显示电路是否正常,使用 示波器检测显示信号。
开机电路维修步骤及注意事项
确保电源适配器输出 电压正常,否则应更 换电源适配器。
检查开机按键是否正 常,如有问题应更换 按键。
检查过热保护电路是 否正常,如有问题应 修复或更换相关元件。
触发电路
触发电路是ASUS笔记本开 机电路中的重要组成部分, 主要负责提供开机触发信号 ,启动整个开机流程。
触发电路通常由开关按键、 上盖开关、插拔开关等组成 ,它们的作用是检测用户是 否进行了开机操作或插拔设 备等操作。
当用户按下开关按键或打开 上盖时,触发电路会接收到 相应的信号,并通过一系列 的信号传递和处理,最终启 动开机流程。
第13讲 主板开机电路
图7-5 开机键
7.1.2主板开机电路工作原理 由于主板厂商的设计不同,主板开机电路会有所 不同,但基本电路原理相同,即经过主板开机键触 发主板开机电路工作,开机电路将触发信号进行处 理,最终向电源第14脚发出低电平信号,将电源 的第14脚的高电平拉低,触发电源工作,使电源 各引脚输出相应的电压,为各个设备供电。 主板开机电路的工作条件是:为开机电路提供供 电、时钟信号和复位信号,具备这三个条件,开机 电路就开始工作。其中供电由ATX电源的第9脚提 供,时钟信号由南桥的实时时钟电路提供,复位信 号由电源开关、南桥内部的触发电路提供。 下面根据开机电路的结构分别讲解开机电路的详 细工作原理。
图中,1117为稳压三极管,作用是将电源的SB5V电压变 成+3.3v电压,Q21为三极管,它的作用是控制电源第14 脚的电压,当它导通时,电源第14脚的电压变为低电平。I /O芯片在这里的作用是通过其内部的两个门电路控制电 源第14脚的电压的高低。 当电脑的主机通电后,ATX电源的第14脚输出+5v电压, ATX电源的第14脚通过一个末级控制三极管和一个二极管 连接到I/O芯片的门电路中,由于这时I/O芯片没有向三 极管输出高电平,因此三极管Q21的b极为低电平,三极管 Q21处于截止,电源的各个针脚没有输出电压。 同时ATX电源的第9脚输出+5V待命电压。+5v待命电压 通过稳压三极管(1l 17)或电阻后,产生+3.3V电压,此电 压分开成两条路,一条直接通向南桥内部,为南桥提供主 供电,而另一条通过二极管或三极管,再通过CMOS的跳 线针(必须插上跳线帽将它们连接起来)进入南桥,为 CMOS电路提供供电,这时南桥外的32.768kHz晶振向南 桥提供32.768kHz频率的时钟信号。
主板开机电路分析及故障检修
主板开机电路分析及故障检修主板开机电咱分析根据主板的设计不同,主板的开机电路控制方式也不同,有通过南桥直接控制的,有通过I/O直接控制的,也有通过电路控制的,不管开机电路控制方式如何,开机电路的功能都是相同的,即通过开机键实现电脑的开机和关机.主板开机电路工作机制主板开机电路是主板中的重要单元电路,它的主要任务是控制A TX电源给主板输出工作电压,使主板开始工作.主板开机电路通过电源开关(PW-ON)触发主板开机电路,开机电路中的南桥芯片或I/O芯片对触发信号进行处理后,最终发出控制信号,控制开机控制三极管或门电路将A TX电源的第16针脚(24针电源插头)或第14针脚(20针电源插头)的高电位拉低(A TX电源关闭状态下此脚的电压为3.5V以上),以触发A TX电源主电源电路开始工作,使A TX电源各针脚输出相应工作电压,为主板等设备提供工作电压.尽管在主板各部分电路的设计与应用中元器件及芯片的组合布局方式不完全相同.但是实现的原理与目的始终是一致的,即通过控制的PSON针脚,(第16针脚或第14针脚)的电位高低来控制A TX电源的开启与关闭,继而控制主板的开启与关闭.当PSON针脚电压为高电平时,A TX电源中的主电源电路处于关闭状态,当PSON针脚的电压变为低电平时,A TX电源中的主电源电路便启动,开如输出各种电压,因此通过控制PSON针脚夫的电压高低,就控制了主板的开启与关闭.主板开机电路组成主板的开杨电路主要由A TX电源插座、南桥芯片、I/O芯片(有的没有)、门电路、开机键、开机芯片(只有华硕主板有)和一些电阻、电容、三极管、二极管等元器件组成。
1、A TX电源接口其中第9针脚和第14针或第16针与开机电路有关联。
A TX电源中包括两种电源电路:待机电源电路和主电源电路。
2、南桥芯片南桥内部开机触发电路正常工作和条件是:为南桥提供供电。
主供电为2。
5-3。
3V,一般是A TX电源待机电压通过稳压器1117或1084等转换后向南桥供电,或直接由CMOS电池供电。
电脑主板开机电路的功能板SOL-STM-PCSTART功能板产品说明书
SOL-STM-PCSTART芯片级检测与维修功能板使用说明书中盈创信(北京)科技有限公司目录一、简介 (3)二、SOL-STM-PCSTART功能板介绍 (3)2.1 功能介绍 (3)2.2 外观及接口说明 (4)2.3 功能板指示灯状态说明 (4)三、功能板电路图及元器件规格 (5)3.1 功能板电路图 (5)3.2 元器件规格表 (5)四、标准故障点设置位置及方法 (6)4.1 故障点设置方法 (6)4.2 故障点设置方案 (7)4.3 故障点设置方法建议 (7)五、料包清单 (7)六、注意事项 (8)七、装箱清单 (8)一、简介中盈创信芯片级检测与维修实训室方案专为芯片级检测与维修实训室设计,实训室设备组件包括芯片级检测与维修功能板、智能检测平台、智能检测平台管理系统。
其中功能板属于实训类消耗品,每一种功能板均为某种设备中某一部分电路的还原及改进,可对功能板进行故障循环的设定及维修。
功能板可以与中盈创信智能检测平台配合,实现功能板的维修前故障检测,维修后维修结果确认,进而与中盈创信芯片级检测与维修实训室管理软件联动,实现课程组织、实验管理、教师及学生管理、成绩管理等功能。
中盈创信芯片级检测与维修实训室方案是各院校组建芯片级检测与维修实训室培养芯片级检测与维修人才的理想选择。
二、SOL-STM-PCSTART功能板介绍2.1 功能介绍SOL-STM-PCSTART功能板为电脑主板开机电路的功能板,可实现电脑开机过程。
2.2 外观及接口说明1、外接连线接口:40PIN的排线接口(与检测平台上端40PIN排线接口相连,用于维修前及维修后检测,维修过程中无需连接。
)2、外接连线接口:40PIN的排线接口(与检测平台下端40PIN排线接口相连,用于维修前及维修后检测,维修过程中无需连接。
)3、红色指示灯4、绿色指示灯5、开关按钮6、输入电源:9V的直流电源。
2.3 功能板指示灯状态说明1、插上直流电源,电源红色指示灯亮,这时侯相当电脑通电的状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
72
68 PANSW PWR-sw 83627 IO
67 73
SLP_S3 32.768 KHZ
VRTC
BAT
开机原理:
1、ATX电源9#5VSB经稳压器变为3.3V给南桥供电。有 的还要变成1.8V 2、cmos电路给RTC电路( 时钟电路)供电 3、有了RTC后产生32.768khz时钟给南桥 这三个条件为南桥工作必须的三条件 4、按下开机键,拉低电位,触发IO ,IO向南桥发出 PWRBTN开机请求信号,南桥在具备开机条件后回送 SLP开机模式信号给IO 5、IO发出pson开机信号拉低ATX电源14#,电源开始工 作,送出3.3V,5V,12V
开机电路
开机电路原理与维修
开机电路作用:
开机电路------开机触发电路 按下开机键打开ATX电源产生3.3v、5v、12v电 压
绿色线
主板
开机电路的组成:
ATX电源 三端稳压器 南桥 Io 开机插针
IO芯片识别:
1.外观类似网卡芯片,但无晶振在附近,四面有脚。 2.位置在主板边缘 3.常见型号:w83627 83697 ITE8705 8712 SMSG 作用:1,控制管理外部接口,例如ps/2, 2,控制开关机 3,检测主板温度,风扇转速 故障:io本身损坏常见
电源关键脚位:
电源几个关键脚功能,必须记住
1脚3.3v 9脚(紫色)5VSB 待机电压
1
10
10脚12v
20脚5v
14脚(绿色) PSON开机触发脚
8脚(灰色) PWROK电源好信号
开机电路原理: 3.3V 9#--5VSB ATX 14# PWRBTN PS-ON VCC5 ICH南桥 核心 1117 PCI A14脚
IO三种触发方式:
低电平触发
高电平触发
常见IO触发脚位:
常见IO触发脚位:
不开机的维修:
1.电源线----------测电压或测通断 2.ATX电源--------三步骤 3.Cmos跳线或电池----------看主板说明 4.主板故障 5.测量PCI A14脚供电判断南桥供电 6.32.768khz晶振电压和波形。 7. IO 或者南桥故障 (1) 代换法,挨着换 (2)测量IO 与南桥通讯脚、信号脚
开机插针:
1.开机按键 power on
缩写为PWR-ON ,PWR-SW ON/OFF ,PWR-BT
2.复位键
RESET
缩写为RST
3.电源指示灯 PWR-LED 缩写为PLED , PD,MSG
上四下五标准结构
4.硬盘指示灯 HDD-LED 缩写为 HLED,HD
5.喇叭 SPEAKER
三端稳压器:
电压输出
R1
1117
功能:将输入的5Vsb(待机)电压转换成3.3V 或1.8V 电压输入 R1,R2是反馈取样电阻稳定输出电压
R2
这脚直通上 面的输出脚
1084除体积功率较1117大之外其他一样
ATX电源检测:
开机电路最终目的是电源,电源好坏直接影响开机。 1》9#紫色线5V 待机电压,14#绿色线开机触发电压 2》14#、15#短接,有5V(20#红色),12V(10#黄色) ,3.3V(1#,橙色) 3》8#灰色线有电源好信号PG, 高电平 以上三个条件缺一不可,否则认为电源损坏,维修或更换电源,维修方法 将在显示器维修中具体讲解。 3.3V --------主板内存供电 5V -------芯片供电 12V --------cpu 供电