(优选)传热学第五章
传热学-第五章 对流换热(Convection Heat Transfer)
[ ] qw,x
=
−λ⎜⎜⎝⎛
∂t ∂y
⎟⎟⎠⎞w , x
W m2
注意和第三类边 界条件的区别
根据牛顿冷却公式
[ ] qw,x = hx (tw -t∞ ) W m2
根据能量守恒
对流换热过程 微分方程式
[ ] hx
=
−
tw
λ
− t∞
⎜⎜⎝⎛
∂t ∂y
⎟朝下
自然对流
(5) 流体的热物理性质
热导率 λ [w/(m℃)]
比热容 c [J/(kg℃)]
密 度 ρ [kg/m3]
动力粘度 η [Ns/m2] 运动粘度 ν =η/ρ [m2/s] 体积胀系数 α [1/K]
α
=
1 ⎜⎛ v⎝
∂v ∂T
⎟⎞ ⎠p
=
−
1
ρ
⎜⎛ ⎝
∂ρ
∂T
⎟⎞ ⎠p
λ↑ ⇒ h↑流体内部和流体与壁面间导热热阻小
第五章 对流换热(Convection Heat Transfer)
§5-1 对流换热概说
1. 对流换热的定义和性质
定义:对流换热是指 流体流经固体时流体 与固体表面之间的 热量传递现象。
对流换热与热对流不同,既有热对流,也有导热;不是 基本传热方式 对流换热实例:(1) 暖气管道; (2) 电子器件冷却;(3) 换热器
ρ、c↑ ⇒ h↑单位体积流体能携带更多能量
η ↑ ⇒ h↓有碍流体流动、不利于热对流 α ↑ ⇒ h↑自然对流换热增强
综上所述,表面传热系数是众多因素的函数:
h = f (u, tw , tf , λ, cp , ρ, α ,η, l )
对流换热分类小结
传热学第五章答案
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
传热学第五章_对流换热原理-6
2-2)管内流体平均温度
t f
c p tudf
f
c pudf
2 R 2um
R
turdr
0
f
其中,tf为根据焓值计算的截断面平均温度。
由热平衡方程
dQ hx (tw t f )x * 2R * dx cpumR2dt f
和
dQ q * 2R * dx
可得
dt f 2q 2hx (tw t f ) x
t
( tw t r tw t f
)rR
( r )rR tw t f
const
而同时又有
q
(
t r
)
r
R
h(t w
tf
)
于是,得
(
t r
)
r
R
h
const
tw t f
上式又表明,常物性流体在热充分发展段的一个特点是 换热系数保持不变。
另外,如果边界层在管 中心处汇合时流体流动 仍然保持层流,那么进 入充分发展区后也就继 续保持层流流动状态, 从而构成流体管内层流 流动过程。
若 Pr<1, 则意味着流动进口段长于热进口段; 1-3)管内流动充分发展段的流态判断
Re 2300 2300 Re 10 4 Re 10 4
层流 过渡流 旺盛湍流
2)管内流体平均速度与平均温度
2-1)管内流体运动平均速度
um
f udf 0f
2
R 2
R rudr V
0
f
其中,V-体积流量;f-管的截断面积;u-局部流速
dx c pum R
c pum R
积分上式可得全管长流体的平均温度。
由于热边界存在有均匀壁温和均匀热流两种典型情
《传热学》资料第五章传热过程与传热器
《传热学》资料第五章传热过程与传热器一、名词解释1.传热过程:热量从高温流体通过壁面传向低温流体的总过程.2.复合传热:对流传热与辐射传热同时存在的传热过程.3.污垢系数:单位面积的污垢热阻.4.肋化系数: 肋侧表面面积与光壁侧表面积之比.5.顺流:两种流体平行流动且方向相同6.逆流: 两种流体平行流动且方向相反7.效能:换热器实际传热的热流量与最大可能传热的热流量之比.8.传热单元数:传热温差为1K时的热流量与热容量小的流体温度变化1K所吸收或放出的热流量之比.它反映了换热器的初投资和运行费用,是一个换热器的综合经济技术指标.9.临界热绝缘直径:对应于最小总热阻(或最大传热量)的保温层外径.二、填空题1.与的综合过程称为复合传热。
(对流传热,辐射传热)2.某燃煤电站过热器中,烟气向管壁传热的辐射传热系数为20 W/(m2.K),对流传热系数为40 W/(m2.K),其复合传热系数为。
(60W/(m2.K))3.肋化系数是指与之比。
(加肋后的总换热面积,未加肋时的换热面积)4.一传热过程的热流密度q=1.8kW/m2,冷、热流体间的温差为30℃,则传热系数为,单位面积的总传热热阻为。
(60W/(m2.K),0.017(m2.K)/W)5.一传热过程的温压为20℃,热流量为lkW,则其热阻为。
(0.02K/W)6.已知一厚为30mm的平壁,热流体侧的传热系数为100 W/(m2.K),冷流体侧的传热系数为250W/(m2.K),平壁材料的导热系数为0.2W/(m·K),则该平壁传热过程的传热系数为。
(6.1W/(m2.K))7.在一维稳态传热过程中,每个传热环节的热阻分别是0.01K/W、0.35K/W和0.009lK /W,在热阻为的传热环节上采取强化传热措施效果最好。
(0.35K/W)8.某一厚20mm的平壁传热过程的传热系数为45W/(m2.K),热流体侧的传热系数为70W/(m2K),冷流体侧的传热系数为200W/(m2.K),则该平壁的导热系数为。
传热学第5章
w
•t — 热边界层厚度 •与t 不一定相等
•边界层的传热特性: •在层流边界层内垂直于壁面方向上的热量传递主要依 靠导热。湍流边界层的主要热阻为层流底层的导热热阻 。
1对流换热
•层流:温度呈抛物线分 布•湍流:温度呈幂函数分 布
•湍流边界层贴壁处的温度 梯度明显大于层流
•故:湍流换热比层流换热强!
•边界层内:平均速度梯度很大;
•
y=0处的速度梯度最大
6对流换热
•由牛顿粘性定律:
•速度梯度大,粘滞应力大
•边界层外: u 在 y 方向不变化, u/y=0
•粘滞应力为零 — 主流区
•流场可以划分为两个区: •边界层区:N-S方程
•主流区: u/y=0,=0;无粘性理想流体;
•
欧拉方程
•——边界层概念的基本思想
•强迫对流换热 •自然对流换热
7对流换热
•
(2) 流动的状态 •层流 •:主要靠分子扩散(即导热)。
•湍流 •:湍流比层流对流换热强烈
•
(3) 流体有无相变
•沸腾换热 •凝结换热
8对流换热
• (4) 流体的物理性质
• 1)热导率,W/(mK), 愈大,对流换热愈强烈;
• 2)密度,kg/m3 • 3)比热容c,J/(kgK)。c反映单位体积流体热容
• 与 t 的关系:分别反映流体分子和流体微团的动量
•
和热量扩散的深度
•普朗特数
2对流换热
•综上所述,边界层具有以下特征:
•( • a) (b) 流场划分为边界层区和主流区。
•流动边界层:速度梯度较大,动量扩散主要区域。
•热边界层:温度梯度较大,热量扩散的主要区域
• (c) 流态:边界层分为层流边界层和湍流边界层 。湍流边界层分为层流底层、缓冲层与湍流核心。
传热学第五章对流换热
1.流动边界层(Velocity boundary layer )
如果流体为没有粘性流体,流体流过平板时,流速在截 面上一直保持不变。 如果流体为粘性流体,情况会如何呢?我们用一测速仪 来测量壁面附近的速度分布。测量发现在法向方向上, 即y方向上,壁面上速度为零,随着y方向的增加,流速 急剧增加,到达一薄层后,流速接近或等于来流速度, 德国科学家普朗特L.Prandtl研究了这一现象,并且在 1904年第一次提出了边界层的、分类 三、对流换热的机理 四、影响因素 五、研究方法 六、h的物理意义
一.定义
流体流过与其温度不同的固体表面时所发生的热量交换称为 对流换热。 对流换热与热对流不同, 既有热对流,也有导热; 不是基本传热方式。 对流换热遵循牛顿冷却定律:
qw tw
x
y
t∞
u∞
图5-1 对流换热过程示意
圆管内强制对流换热 其它形式截面管道内的对流换热 外掠平板的对流换热 外掠单根圆管的对流换热 外掠圆管管束的对流换热 外掠其它截面形状柱体的对流换热 射流冲击换热
外部流动
对 流 换 热
有相变
自然对流(Free convection) 混合对流 沸腾换热 凝结换热
大空间自然对流 有限空间自然对流
大容器沸腾 管内沸腾 管外凝结 管内凝结
λ ∂t 换热微分方程(描写h的本质,hx = − ∆t ( ∂y ) y =0 dA) 连续性方程(描写流体流动状态,即质量守恒) 动量微分方程(描写流动状态,即动量守恒) 能量微分方程(描写流体中温度场分布)
对流换热微分方程组 先作假设: (1)仅考虑二维问题; (2)流体为不可压缩的牛顿流体,稳定流动; (3)常物性,无内热源; (4)忽略由粘性摩擦而产生的耗散热。 以二维坐标系中的微元体为分析对象,根据热力学第一定 律,对于这样一个开口系统,有:
传热学第五章对流换热
§5-1 §5-2 §5-3 §5-4 §5-5 §5-6 §5-7 §5-8
对流换热
Convective heat transfer
对流换热概说 对流换热的数学描写 对流换热边界层微分方程组 对流换热边界层积分方程组 相似理论与量纲分析 管内受迫流动 横向外掠圆管的对流换热 自然对流换热及实验关联式
λ ∂t 换热微分方程(描写h的本质,hx = − ∆t ( ∂y ) y =0 dA) 连续性方程(描写流体流动状态,即质量守恒) 动量微分方程(描写流动状态,即动量守恒) 能量微分方程(描写流体中温度场分布)
对流换热微分方程组 先作假设: (1)仅考虑二维问题; (2)流体为不可压缩的牛顿流体,稳定流动; (3)常物性,无内热源; (4)忽略由粘性摩擦而产生的耗散热。 以二维坐标系中的微元体为分析对象,根据热力学第一定 律,对于这样一个开口系统,有:
同理:() dτ qm hout − qm hin ≈ ρcp (
y
H y + dy − H y =
∂t ∂v ⋅ v + ⋅ t )dxdydτ ∂y ∂y
(qm h)out − (qm h)in ∴ ∂t ∂t ∂u ∂v = ρ c p (u + v )dxdy + ρ c p t ( + )dxdy ∂x ∂y ∂x ∂y ∂t ∂t = ρ c p (u + v )dxdy (d ) ∂x ∂y
1.流动边界层(Velocity boundary layer )
如果流体为没有粘性流体,流体流过平板时,流速在截 面上一直保持不变。 如果流体为粘性流体,情况会如何呢?我们用一测速仪 来测量壁面附近的速度分布。测量发现在法向方向上, 即y方向上,壁面上速度为零,随着y方向的增加,流速 急剧增加,到达一薄层后,流速接近或等于来流速度, 德国科学家普朗特L.Prandtl研究了这一现象,并且在 1904年第一次提出了边界层的概念。
传热学第五章_对流换热原理-1
Velocity = v Velocity = 0
Velocity Temperature
Boundary Boundary
Layer
Layer
HOT SURFACE, TEMP = TH
3. 热边界层厚度δt和流动边界层厚度δ的区 别与联系
(2) 边界层产生原因:
由于粘性的作用,流体与 壁面之间产生一粘滞力, 粘滞力使得靠近壁面处的 速度逐渐下降,最后使壁 面上的流体速度降为零, 流体质点在壁面上产生一 薄层。随着流体的流动, 粘滞力向内传递,形成的 薄层又阻碍邻近流体层中 微粒运动的作用,依此类 推,形成的薄层又阻碍邻 近流体层微粒运动,到一 定程度,粘滞力不再起作 用。
➢ 如果流体为粘性流体,情况会如何呢?我们用一测速仪来 测量壁面附近的速度分布。测量发现在法向方向上,即y 方向上,壁面上速度为零,随着y方向的增加,流速急剧 增加,到达一薄层后,流速接近或等于来流速度,普朗特 研究了这一现象,并且在1904年第一次提出了边界层的概 念。
普朗特在仔细观察了粘性流体流过固体表面的特性后提出了 突破性的见解。他认为,粘滞性起作用的区域仅仅局限在 靠近壁面的薄层内。在此薄层以外,由于速度梯度很小粘 滞性所造成的切应力可以略而不计,于是该区域中的流动 可以作为理想流体的无旋流动。这种在固体表面附近流体 速度发生剧烈变化的薄层称为流动边界层(又称速度边界 层).图5—5示出了产生流动边界层的两种常见情形。如 图5—5a所示,从y=o处u=0开始,流体的速度随着离开 壁面距离y的增加而急剧增大,经过一个薄层后u增长到接 近主流速度。这个薄层即为流动边界层,其厚度视规定的 接近主流速度程度的不同而不同。通常规定达到主流速度 的99%处的距离y为流动边界层的厚度,记为δ 。
第五章-传热学
h
' h,x
' h,y
cpuxtvytdxdy
8
单位时间内微元体热力学能的增加为
dU
d
cp
t
dxdy
于是根据微元体的能量守恒
h
dU
d
可得
2t x2
2t y2
dxdy
cpuxtvytdxdy
cp
t
dxdy
cptux tvy ttu xv y
2t x2
2t y2
2
20
cp
uxt
v t y
=
2t x2
2t y2
1
11 1
1
2
1 1
1
2
对流换热微分方程组简化为
h t tw tf y w
u v 0 x y
简化方程组只有4个方
程,但仍含有h、u、v、 p、t 等5个未知量,方
程组不封闭。如何求解?
uuxvuy1ddpxy2u2
u t x
v t y
26
第六节 相似理论基础
相似原理指导下的实验研究仍然是解决复杂对流换 热问题的可靠方法。
相似原理回答三个问题: (1)如何安排实验? (2)如何整理实验数据? (3)如何推广应用实验研究结果?
一、 相似原理的主要内容
1.物理现象相似的定义 2.物理现象相似的性质 3.相似特征数之间的关系 4.物理现象相似的条件
三、解的函数形式——特征数关联式
特征数是由一些物理量组成的无量纲数,例如毕 渥数Bi和付里叶数Fo。对流换热的解也可以表示成 特征数函数的形式,称为特征数关联式。
通过对流换热微分方程的无量纲化可以导出与对 流换热有关的特征数。
传热学 第五章 对流换热
t qw
n w
第三类边界条件?
思考
对流换热微分方程表明,在边界上垂直于壁面的热量传 递完全依靠导热,那么在对流换热过程中流体的流动起 什么作用?
hx
tw t
x
t y
y0,x
c
p
t
u t x
v
t y
2t x2
2t y 2
流场决定温度场
小结
我们学习了 影响对流换热的一些因素; 对流换热微分方程:对流换热系数的定义 对流换热微分方程组:连续性方程、动量方程、能量方程
A qxdA
A
hx
tw
t
x
dA
h
1 A
A hxdA
对流换热的 核心问题
对流换热的影响因素
对流换热是流体的导热和热对流两种基本传热方式共同作用的结果。 影响因素:
1)流动的起因:强迫对流换热与自然对流换热 2) 流动的状态:层流和紊流 3) 流体有无相变 4) 流体的物理性质
5) 换热表面的几何因素
v
t y
2t x2
2t y 2
2) 对流换热的单值性条件
(1) 几何条件 (2) 物理条件 (3) 时间条件 (4) 边界条件
1904年,德国科学家普朗特(L. Prandtl)提出著名 的边界层概念后,上述方程的求解才成为可能。
第一类边界条件 t w f x, y, z,
q 第二类边界条件 w f x, y, z,
采用氢冷须注意其密封结构,否则泄露后会发生爆炸。
5) 换热表面的几何因素
强迫对流
(1)管内的流动
(2)管外的流动
自然对流
(3)热面朝上
(4)热面朝下
对流换热分类
传热学第五章
h Atw t
以后除非特殊声明外,我们所说的对流换热系数皆指平均对流换
热系数,以 h 表示.
h(x)规律说明
Laminar region
x (x) h (x) 导热
Transition region
扰动
h(x)
Turbulent region
湍流部分的热阻很小,热阻主要集中在
粘性底层中.
2.按有无相变分
单相介质传热:对流换热时只有一种流体.
相变换热:传热过程中有相变发生.
物质有三态,固态,液态,气态或称三相.
相变换热有分为:
沸腾换热:(boiling heat transfer)物质由液态变为气态时发生 的换热.
凝结换热:(condensation heat transfer)物质由气态变为 液态时发生的换热. 熔化换热(melting heat transfer) 凝固换热(solidification heat transfer) 升华换热(sublimation heat transfer) 凝华换热(sublimation heat transfer )
由上述分析可见,边界层控制着传热过程,故一些研究人员试图通过
破坏粘性底层来达到强化传热的目的,并取得了一些成果.
二、边界层微分方程组.
牛顿流体(Newtonian fluid),常物性,无内热源,耗散不计,稳态,
二维,略去重力.
完性分析已知:u,t,l 的量级为0(1) , t 的量级为0()
以此五个量为分析基础。
2.动量方程(momentum equation)
u v 0 x y
u
u
u x
v
u y
Fx
p x
传热学-第五章-对流原理.
三个准则数分别称为努谢尔特准则,雷诺 准则和普朗特准则,相应地用符号Nu、Re 和Pr表示,代入式(d)中,得
N uARcePer
写成一般形式的无量纲关系式,则为
u=f〔Re,Pr)
上两式称之为准则方程式,式中的系 数和指数,或方程的具体形式由试验确
定。
至于自然对流换热,无论是理论分析还 是试验分析,都觉察正是由于壁面和流 体之间存在的温度差,使流体密度不均 匀所产生的浮升力,导致了自然对流运 动的发生和进展。自然对流换热系数α 与其影响因素的一般关系式为
如下图,流体接触管道后,便从两侧流过, 并在管壁上形成边界层。正对着来流方向 的圆管最前点,即φ=0处,流速为零, 边界层厚度为零。此后,在圆管壁上形成 层流边界层,并随着φ角的增大而增厚。 当厚度增加到肯定程度时,便过渡到紊流 边界层。在圆管壁φ=80°四周处,流体 脱离壁面并在圆管的后半部形成旋涡。
明显,流体温度的分布与流体的流淌有关, 深受速度边界层的影响。流体呈层流状态时, 流体微团沿相互平行的流线进展,没有横向 流淌,不发生物质交换,壁面法线方向上的 热量传递,根本上靠分子的导热进展,层内 温度变化较大,温度分布呈抛物线型。对于 紊流边界层,其中层流底层的热量传递也是 靠导热,而在紊流核心层的热交换,除靠分 子的导热外,主要靠流体涡流扰动的对流混 合,从而使得层流底层的温度梯度最大,而 在紊流核心层温度变化平缓比较均匀全都。
二、
从上节可以知道,在大多数状况下, 影响无相变对流换热过程的换热系数 α的物理因素可归结为流体流态、物 性、换热壁面状况和几何条件、流淌 缘由四个方面。争论说明,对于管内 受迫流淌,假设假定物性是常数,不 随温度而变,争论的是平均对流换热 系数。影响换热系数α的因素有流速V, 管径D,流体密度ρ,动力粘度μ,比 热cp和导热系数λ。
传热学5第五章
(0-4)第五章 对流传热分析q = h (t w — t f ) W/m 2 =h (t w — t f ) A W、流动的起因和流动状态、流体的热物理性质本书采用国际单位制,各热物性的单位)如下: 1 •密度 p , k g / m 3; 2 •定压比热容C p , kJ /(k g K); 3.动力黏度Ns / m 2或 kg /( s m)u / y运动黏度=卩/pm 2/s4. 体积膨胀系数 ,1/ K;比体积v ,m 3/kg1v1v TpT P理想气体 =1/T ,对液体或蒸汽,由实验测定,可查附录物性表。
5.热导率入,W /(m K) ; a , m 2/s 。
第一节对流传热概述图5-1几种常见的换热设备示意图、流体的相变四、换热表面几何因素h f u,t w, t f, ,C p, , , ,l (5-1)第二节对流传热微分方程组、对流传热过程微分方程式式中图5-3连续性方程的推导x 方向:M x udyM x M x dx M x x dxxy 方向:M y vdxM y M y dy M ydyy (5-3)、动量微分方程式tq xy w ,xW/m 2(1)q xh x (t wt f )xh x t x⑵th x tt xy w,x(5-2a)t t wh x ---------------------------Xy w,x(5-2b)其中wf x't f t w 01、连续性方程Y 卅严霧如图5-4动量微分方程的推导dxdy DUd(1) 微元体的质量X加速度:Du u u u= u v——d x yDv v v v= u v——d x y(2) 微元体所受的外力:体积力:X dx dyY dx dy表面力:(——-——汪)dx dyx y(—y——y ) dx dyy xu u u x yx x 方向:P ( u v ) = X + ----------------------------x y x yx y yx22z uuu 、p u u P (u v ) =X —+ 2 2 x yxxy22,vv v 、p v v P (uv ):=Y —+22 xyyxy(1)(2) (3)⑷vvvy xyy 方向: P ( u v ) = 丫 + —(5-4a)(4)黏滞x方向导入的净能量三(x+ x dx ) xy方向导入的净能量三2ydx dyx方向热对流传递的净能量三x—(x+ x dx) xdx dy⑴惯性力项,即质量与加速度之积;(2)体积力;⑶压强梯度; 力。
传热学-第五章
E bλ =
e
c2 (λT )
c1λ − 5 −1
式中, 波长, 黑体温度, 式中,λ— 波长,m ; T — 黑体温度,K ; c1 — 第一辐射常数,3.742×10-16 W⋅m2; 第一辐射常数,3.742× c2 — 第二辐射常数,1.4388×10-2 W⋅K; 第二辐射常数,1.4388× 图5-6是根据上式描绘的 黑体光谱辐射力随波长和 温度的依变关系。 温度的依变关系。 λm与 的关系由Wien Wien位移 λm与T 的关系由Wien位移 定律给出, 定律给出,
d Ac d Ω = 2 = sin θ d θ d ϕ r
图5-8
立体角定义图
图5-9
计算微元立体角的几何关系
(5) 定向辐射强度L(θ,ϕ ): 定义:单位时间内,物体在垂直发射方向的单位面积上, 定义:单位时间内,物体在垂直发射方向的单位面积上, 在单位立体角内发射的一切波长的能量,参见图5 10。 在单位立体角内发射的一切波长的能量,参见图5-10。 d Φ (θ , ϕ ) L (θ , ϕ ) = d A cos θ d Ω (6) Lambert 定律 黑体辐射的第 定律(黑体辐射的第
λ2
1
∆Eb =
∫λ
E bλ d λ
图5-7 特定波长区段内的 黑体辐射力
黑体辐射函数: 黑体辐射函数:
Fb(λ1 −λ2 )
∫λ E λ dλ = 1 λ E dλ = 1 λ E dλ − λ E dλ = ∫λ λ σT ∫ λ ∫ λ E λ dλ σT ∫
b
1 2 2 1
图5-12 几种金属导体在不同方向上的定向发射率 2 ε(θ )(t=150℃) ℃
前面讲过,黑体、灰体、 前面讲过,黑体、灰体、白体等都是 理想物体, 理想物体,而实际物体的辐射特性并 不完全与这些理想物体相同,比如, 不完全与这些理想物体相同,比如, (1) 实际物体的辐射力与黑体和灰体 的辐射力的差别见图5 的辐射力的差别见图5-13;(2) 实 际物体的辐射力并不完全与热力学温 度的四次方成正比; 度的四次方成正比;(3) 实际物体的 定向辐射强度也不严格遵守Lambert 定向辐射强度也不严格遵守 Lambert 定律,等等。 定律,等等。所有这些差别全部归于 上面的系数,因此, 上面的系数,因此,他们一般需要实 验来确定,形式也可能很复杂。 验来确定,形式也可能很复杂。在工 程上一般都将真实表面假设为漫发射 面。
传热学第五章答案
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x y
(u
u x
v
u ) y
p x
(
ቤተ መጻሕፍቲ ባይዱ
2u x2
2u y 2
)
(b)
1 (1 1 1)
1
1
(2 1 1
1) 2
(u
u x
v
u y
)
p x
2u y 2
(b' )
(u
v x
v
v ) y
p y
(
2v x2
2v y 2
)
(c)
1 (1 1
)
(2
2 12
2 ) 2
00
(c' )
c(p u
t x
v
t ) y
例:二维、稳态、强制对流、层流、忽略重力
此时,将主流方向的数量级看为1,y方向的数量级 看成小量用Δ表示,基本量的数量级如下:
主流速度: u 数量级为1
Y方向速度:v 数量级为Δ
温度:
t 数量级为 1
边界层厚度:δ数量级Δ
导热系数:λ数量级为Δ2 粘性系数:η数量级为Δ2
X方向壁面特征长度:l 数量级为1
1
a
1
a
Pr 1 Pr 1
t t
油类 Pr 在102 103 的量级 气体
对一般气体和液体 Pr 0.7 联立 t Pr1 3 可求出 t 对液态金属 Pr 0.01 的量级 t 不能用上式求 t
归纳得出;
1)换热与流动有关,即与Re数有关
Re Vd
2)换热与流体物性有关,即与Pr数有关
(
2t x2
ν——反映了流体分子的动量扩散的能力参数,ν越大, 粘性的影响传递越远,δ越厚。
a——反映了流体分子的热量扩散的能力参数,a越大, 热扩散越快,δt越厚。
Pr数反映了动量和热量在流动中扩散的相对程度, 两者之比是热边界层与速度边界层增厚的相对快慢。
当
a Pr 1
t
(条件:平板、忽略重力场、应力梯度为零)
粘滞应力为零 — 主流区
主流区:速度梯度为0, =0;可视为无粘性理想
流体; 欧拉方程 ——边界层概念的基本思想
流体外掠平板时流动边界层有层流和紊流之分
临界距离:由层流边界层开始向湍流边界层过渡的
距离,xc
临界雷诺数:Rec
Rec
惯性力 粘性力
u xc
u xc
平板: Rec 3105 ~ 3106; 取Rec 5105
体热量传递的渗透深度。
流动边界层与热边界层的状况决定了热量传 递过程和边界层内的温度分布
层流:温度呈抛物线分布
湍流:温度呈幂函数分布 湍流边界层贴壁处的温度梯度明显大于层流
T y
w,t
T y
w,L
故:湍流换热比层流换热强!
与 t 的关系:分别反映流体分子和流体微
团的动量和热量扩散的深度。两者既有区别又 有联系:
小:空气外掠平板,u=10m/s:
x100mm 1.8mm; x200mm 2.5mm
边界层内:平均速度梯度很大;y=0处的速度梯度最大 由牛顿粘性定律: u 速度梯度大,粘滞应力大
y
边界层外: u 在 y 方向不变化, u/y=0
边界层区:流体的粘性作用起主导作用,流体的运 动可用粘性流体运动微分方程组描述(N-S方程)
Tw
t — 热边界层厚度定义:在y方向,当过余温度为
来流过余温度99%时所对应的厚度。
y 0, w T Tw 0 y t , T Tw 0.99
Tw
t把温度场分成两部分:主流区和热边界层区。
在主流区,流体的温度变化可看成零,仅考虑热 边界层中温度的变化。
t与 相似,随着 x 增加而增厚,它反映了流
xc
Rec
u
湍流边界层:
粘性底层(层流底层):紧靠壁面处,粘滞力会占绝对 优势,使粘附于壁的一极薄层仍然会保持层流特征,具 有最大的速度梯度
流动边界层的几个重要特性
(1) 边界层厚度与壁的定型尺寸L相比极小,<<L
(2) 边界层内存在较大的速度梯度
(3) 边界层流态分层流与湍流;湍流边界层紧靠壁 面处仍有层流特征,粘性底层(层流底层)
式中ν 、a 的单位都是 m2 / s,故Pr数是无因次数。
玻尔豪森在下面两个假定下,将两个边界层厚度之间 的关系得出:
1)假定两种边界层都是从平板前缘形成的 2) t 1
分析得出: t Pr1 3 (层流、0.6 Pr 50)
三、Pr数
Pr
a
c
c
Pr数反映了流体的物性参数对换热的影响,故称为物 性相似准则数。
(优选)传热学第五章
由于粘性作用,流体流速在靠近壁面处随离壁面的距 离的缩短而逐渐降低;在贴壁处被滞止,处于无滑移 状态
从y =0、u = 0 开始,u 随着 y 方向离壁面距离的增加而迅 速增大;经过厚度为 的薄层, u 接近主流速度 u
y = 薄层 — 速度边界层
— 边界层厚度
定义:u/u=0.99 处离壁的距离为边界层厚度
二维对流换热,其微 分方程组已导出:
u v 0 x y
(u
u x
v
u y
)
Fx
p x
(
2u x2
2u y 2
)
(u
v x
v
v y
)
Fy
p y
(
2v x2
2v y 2
)
cp u
t x
v
t y
2t x2
2t y 2
将此方程组进 行数量级比较
u v 0
(a)
x y
1
1
u v 0
(a' )
Pr
a
Re数反映了速度边界层对换热的影响,Pr数反映了 热边界层和速度边界层的关系,故影响对流换热 的关系式一定是Re与Pr的函数,记为
Nu f (Re , Pr )
Nu——努塞尔数
四、 边界层换热微分方程组 边界层概念的引入可使换热微分方程组得以简化。
数量级分析:比较方程中各量或各项的量级的相对大 小;保留量级较大的量或项;舍去那些量级小的项, 方程大大简化
(4) 流场可以划分为边界层区与主流区 边界层区:由粘性流体运动微分方程组描述 主流区:由理想流体运动微分方程—欧拉方程描述
(5)边界层内 p 0 对平板还有 p 0
y
x
边界层概念也可以用于分析其他情况下的流动和换 热:如:流体在管内受迫流动、流体外掠圆管流动、 流体在竖直壁面上的自然对流 二、 热边界层(Thermal boundary layer) 当壁面与流体间有温差时,会产生温度梯度很大的 温度边界层(热边界层)
1)速度边界层的厚度与温度边界层的厚度不一 定相等。如图
y
t
o
x
2)速度边界层是从x=0处开始发展的,而温度边界 层可从任意点开始,因为加热可从任意点开始。
从物理意义上看:温度边界层反映了导温系数a对热 量传递的影响,而速度边界层反映了粘性系数ν对流 动的影响。这两系数对换热的影响可用
a
Pr
——普朗特数,反映流体物性对换热 的影响