六年级奥数第1讲 定义新运算 2
六年级奥数定义新运算
第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义, 从而解答某些算式的一种运算.解答定义新运算, 关键是要正确地理解新定义的算式含义, 然后严格按照新定义的计算程序, 将数值代入, 转化为常规的四则运算算式进行计算.定义新运算是一种人为的、临时性的运算形式, 它使用的是一些特殊的运算符号, 如:*、△、⊙等, 这是与四则运算中的“+、-、×、÷”不同的.新定义的算式中有括号的, 要先算括号里面的. 但它在没有转化前, 是不适合于各种运算定律的.二、精讲精练【例题1】假设a*b=(a+b)+(a-b), 求13*5和13*(5*4).练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).. 求27*9.2、设a*b=a2+2b, 那么求10*6和5*(2*8).【例题2】设p、q是两个数, 规定:p△q=4×q-(p+q)÷2. 求3△(4△6).练习2:1、设p、q是两个数, 规定p△q=4×q-(p+q)÷2, 求5△(6△4).2、设p、q是两个数, 规定p△q=p2+(p-q)×2. 求30△(5△3).【例题3】如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222, 3*3=3+33+333, 4*2=4+44, 那么7*4=________;210*2=________.练习3:1、如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222, 3*3=3+33+333, ……那么4*4=________.2、规定, 那么8*5=________.【例题4】规定②=1×2×3, ③=2×3×4 , ④=3×4×5, ⑤=4×5×6, ……如果1/⑥-1/⑦ =1/⑦×A, 那么, A是几?练习4:1、规定:②=1×2×3, ③=2×3×4, ④=3×4×5, ⑤=4×5×6, ……如果1/⑧-1/⑨=1/⑨×A, 那么A=________.2、规定:③=2×3×4, ④=3×4×5, ⑤=4×5×6, ⑥=5×6×7, ……如果1/⑩+1/⑾=1/⑾×□, 那么□=________.【例题5】设a⊙b=4a-2b+ ab /2,求x⊙(4⊙1)=34中的未知数x.练习5:1、设a⊙b=3a-2b, 已知x⊙(4⊙1)=7求x.2、对两个整数a和b定义新运算“△”:a△b= , 求6△4+9△8.3、设M、N是两个数, 规定M*N=M/N+N/M, 求10*20-1/4.三、课后作业1、设a*b=3a-b×1/2, 求(25*12)*(10*5).2、如果2*1=1/2, 3*2=1/33, 4*3=1/444, 那么(6*3)÷(2*6)=________.3、如果1※2=1+2, 2※3=2+3+4, ……5※6=5+6+7+8+9+10, 那么x※3=54中, x=________.4、对任意两个整数x和y定于新运算, “*”:x*y=(其中m是一个确定的整数). 如果1*2=1, 那么3*12=________.面积计算一、知识要点计算平面图形的面积时, 有些问题乍一看, 在已知条件与所求问题之间找不到任何联系, 会使你感到无从下手. 这时, 如果我们能认真观察图形, 分析、研究已知条件, 并加以深化, 再运用我们已有的基本几何知识, 适当添加辅助线, 搭一座连通已知条件与所求问题的小“桥”, 就会使你顺利达到目的. 有些平面图形的面积计算必须借助于图形本身的特征, 添加一些辅助线, 运用平移旋转、剪拼组合等方法, 对图形进行恰当合理的变形, 再经过分析推导, 方能寻求出解题的途径.二、精讲精练【例题1】已知如图, 三角形ABC的面积为8平方厘米, AE=ED, BD=2/3BC, 求阴影部分的面积.练习1:1、如图, AE=ED, BC=3BD, S△ABC=30平方厘米. 求阴影部分的面积.2、如图所示, AE=ED, DC=1/3BD, S△ABC=21平方厘米. 求阴影部分的面积.3、如图所示, DE=1/2AE, BD=2DC, S△EBD=5平方厘米.求三角形ABC的面积.【例题2】两条对角线把梯形ABCD分割成四个三角形, 如图所示, 已知两个三角形的面积, 求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形, (如图所示), 已知两个三角形的面积, 求另两个三角形的面积是多少?2、已知AO=1/3OC, 求梯形ABCD的面积(如图所示).【例题3】四边形ABCD的对角线BD被E、F两点三等分, 且四边形AECF的面积为15平方厘米. 求四边形ABCD的面积(如图所示).练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分, 且四边形AECG的面积为15平方厘米. 求四边形ABCD的面积(如图).2、如图所示, 求阴影部分的面积(ABCD为正方形).【例题4】如图所示, BO=2DO, 阴影部分的面积是4平方厘米. 那么, 梯形ABCD的面积是多少平方厘米?练习4:1、如图所示, 阴影部分面积是4平方厘米, OC=2AO. 求梯形面积.2、已知OC=2AO, S△BOC=14平方厘米. 求梯形的面积(如图所示).3、已知S△AOB=6平方厘米. OC=3AO, 求梯形的面积(如图所示).【例题5】如图所示, 长方形ADEF的面积是16, 三角形ADB的面积是3, 三角形ACF的面积是4, 求三角形ABC的面积.练习5:1、如图所示, 长方形ABCD的面积是20平方厘米, 三角形ADF的面积为5平方厘米, 三角形ABE的面积为7平方厘米, 求三角形AEF的面积.2、如图所示, 长方形ABCD的面积为20平方厘米, S△ABE=4平方厘米, S△AFD=6平方厘米, 求三角形AEF的面积.三、课后练习1、已知三角形AOB的面积为15平方厘米, 线段OB的长度为OD的3倍. 求梯形ABCD的面积. (如图所示).2、已知四边形ABCD的对角线被E、F、G三点四等分, 且阴影部分面积为15平方厘米. 求四边形ABCD的面积(如图所示).3、如图所示, 长方形ABCD的面积为24平方厘米, 三角形ABE、AFD的面积均为4平方厘米, 求三角形AEF的面积.。
小学数学六年级奥数《定义新运算(二)》练习题(含答案)
小学数学六年级奥数《定义新运算(二)》练习题(含答案)一、填空题1.规定:a ※b =(b+a )×b ,那么(2※3)※5= .2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= .3.定义运算“△”如下:对于两个自然数a 和b ,它们的最大公约数与最小公倍数的和记为a △b .例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= .4.已知a ,b 是任意有理数,我们规定: a ⊕b = a +b -1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 .5.x 为正数,<x >表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 .6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x = .7.如果1※4=1234,2※3=234,7※2=78,那么4※5= .8.我们规定:符号○表示选择两数中较大数的运算,例如:5○3=3○5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3.请计算:=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛••25.210623799343.03323625.026176.0 .9.规定一种新运算“※”: a ※b =)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x = .10.对于任意有理数x , y ,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m=x (m ≠0),则m 的数值是 .○ △ △ ○二、解答题11.设a ,b 为自然数,定义a △b ab b a -+=22.(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4).12.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a -b ,如果a <b ,则定义a ※b= b - a .(1)计算:(3※4)※9;(2)这个运算满足交换律吗?满足结合律吗?也是就是说,下面两式是否成立?①a ※b= b ※a ;②(a ※b )※c= a ※(b ※c ).13.设a ,b 是两个非零的数,定义a ※b ab b a +=. (1)计算(2※3)※4与2※(3※4).(2)如果已知a 是一个自然数,且a ※3=2,试求出a 的值.14.定义运算“⊙”如下:对于两个自然数a 和b ,它们的最大公约数与最小公倍数的差记为a ⊙b . 比如:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70-2=68.(1)求12⊙21,5⊙15;(2)说明,如果c 整除a 和b ,则c 也整除a ⊙b ;如果c 整除a 和a ⊙b ,则c 也整除b ;(3)已知6⊙x =27,求x 的值.———————————————答 案——————————————————————1. 100.因为2※3=(3+2)×3=15,所以(2※3)※5=15※5=(5+15)×5=100.2. 8.依题意,得305)2(=⨯-a ,解得8=a .3. 42.18△12=(18,12)+[18,12]=6+36=42.4. 98.原式]1313[4)]253()186[(4⊕⊗=-⨯⊕-+⊗=982254254]11313[4=-⨯=⊗=-+⊗=5. 11.<19>为不超过19的质数,有2,3,5,7,11,13,17,19共8个.<93>为不超过的质数,共24个,易知<1>=0,所以原式=<<19>+<93>>=<8+24>=<32>=11.6. 6.x ⊙5-5⊙x=(3 x -2×5)-(3×5-2 x )=5 x -25,由5 x -25=5,解得x=6.7. 45678.8. 21. 因为•6.0○322617=○322617=,0.625△853323=△853323=, •3.0△319934=△319934=,106237○10623725.2=○4949=, 所以,原式2149318532=++=.9. 2.令x ※3=y ,则y ※4=421200,又4212002726252413532244⨯⨯⨯=⨯⨯⨯=,所以y=24,即x ※3=24.又24=432323⨯⨯=⨯,故x =2.10. 4.由题设的等式x ※y=cxy by ax -+及x ※m=x (m ≠0),得000=⋅⋅-+⋅m c bm a ,所以bm=0,又m ≠0,故b=0.因此x ※y=ax -cxy.由1※2=3,2※3=4,得⎩⎨⎧=-=-46232c a c a 解得a =5,c =1. 所以x ※y =5x -xy ,令x =1,y=m 得5-m=1,故m =4.11. (1)原式()()62585834342222=⨯-++⨯-+=;(2)原式()323222⨯-+=△4=7△4=37474722=⨯-+;(3)原式()525222⨯-+=△()19434322=⨯-+△132831319131922=⨯-+=.12. (1)原式=(4-3)※9=1※9=9-1=8;(2)因为表示a ※b 表示较大数与较小数的差,显然a ※b= b ※a 成立,即这个运算满是交换律,但一般来说并不满足结合律,例如:(3※4)※9=8,而3※(4※9)=3※(9-4)=3※5=5-3=2.13. (1)按照定义有2※36132332=+=,3※412253443=+=. 于是(2※3)※4613=※4=3127451324241361344613=+=+. 2※(3※4)=2※60012012425252421225122521225=+=+=. (2)由已知得233=+aa ① 若a ≥6,则3a ≥2,从而233>+a a 与①矛盾.因此a ≤5,对a =1,2,3,4,5这5个可能的值,一一代入①式中检查知,只有a =3符合要求.14. (1)为求12⊙21,先求出12与21的最小公倍数和最大公约数分别为84,3,因此12⊙21=84-3=81,同样道理5⊙15=15-5=10.(2)如果c 整除a 和b ,那么c 是a 和b 的公约数,则c 整除a ,b 的最大公约数,显然c 也整除a ,b 最小公倍数,所以c 整除最小公倍数与最大公约的差,即c 整除a ⊙b .如果c 整除a 和a ⊙b ,由c 整除a 推知c 整除a ,b 的最小公倍数,再由c 整除a ⊙b 推知, c 整除a ,b 的最大公约数,而这个最大公约数整除b ,所以 c 整除b .(3)由于运算“⊙”没有直接的表达式,解这个方程有一些困难,我们设法逐步缩小探索范围.因为6与x 的最小公倍数不小于27+1=28,不大于27+6=33,而28到33之间,只有30是6的倍数,可见6和x 的最小公倍数是30,因此它们的最大公约数是30-27=3.由“两个数的最小公倍数与最大公约数的积=这两个数的积”,得到x30.⨯63⨯=所以15x.=。
小学六年级奥数系列讲座:定义新运算(含答案解析)
定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
13*5=(13+5)+(13-5)=18+8=26 5*4=(5+4)+(5-4)=10 13*(5*4)=13*10=(13+10)+(13-10)=26 3△(4△6) =3△【4×6-(4+6)÷2】 =3△19 =4×19-(3+19)÷2 =76-11 =652.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
六年级小升初常考奥数题型 第1讲定义新运算(例题和答案、讲解)
第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2、设a*b=a 2+2b ,那么求10*6和5*(2*8)。
3、设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【答案】1.648 2.112、65 3.193.25【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
练习2:1、设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2、设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3、设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【答案】1.36 2.902 3.412【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,7*4=7+77+777+7777=8638210*2=210+210210=2104203*3=3+33+333,……那么4*4=________。
六年级奥数新定义运算
x※16=34 4x-2×16+0.5×16×x=34 12x-32=34 x=5.5
新定义运算,是指用一个符号和已知运算表达式表示一种新的运算,1、严格按照计算程序,带入数值,转 化成四则运算,2、新运算中有括号的,要先算括号里面的,但四则运算法则不再适用,3,新运算符号常 有※☆▽△等。
例2,设mn是两个数,规定m△n=4×m-(m+n)÷2,求6△(3△5) 根据规定先算(3△5) 3△5=4×3-(3+5)÷2=12-8÷2=12-4=8 6△(3△5)=6△8=4×6-(6+8)÷2=24-14÷2=24-7=17
小学奥数六年级 新定义运算一
新定义运算,是指用一个符号和已知运算表达式表示一种新的运算,1、严格按照计算程序,带入数值,转 化成四则运算,2、新运算中有括号的,要先算括号里面的,但四则运算法则不再适用,3,新运算符号常 有※☆▽△等。
例1,a*b=(a+b)+(a-b),求13*5,13*(5*4)
*代表着一种新运算,四则运算法则不再适用,但有括号,要先算括号里面的,比如第二个
13*5=(13+5)+(13-5)=18+8=26
13*(5*4)要先算括号里的,即 原式=13*[(5+4)+(5-4)] =13*10 =(13+10)+(13-10) =23+3 =26
小学奥数六年级 新定义运算二
小学奥数六年级 新定义运算三
பைடு நூலகம்
小学奥数六年级 新定义运算四
小学奥数六年级 新定义运算五
新定义运算,是指用一个符号和已知运算表达式表示一种新的运算,1、严格按照计算程序,带入数值,转 化成四则运算,2、新运算中有括号的,要先算括号里面的,但四则运算法则不再适用,3,新运算符号常 有※☆▽△等。
六年级奥数-定义新运算
定义新运算【知识点拨】基本概念:定义新运算,是在四则运算的基础上,用一种特殊的符号来表示某种特定的运算,在计算时必须严格按照所定义的运算格式进行代换计算的一种新型运算。
解答定义新运算这种类型的题目,应分两步去做:首先按照新定义的运算方式将字母替换成数,然后根据四则运算求出算式的值。
如:设a△b=a+b+ab3△2=3+2+3×2=115△5=5+5+5×5=35【典型例题】例1.假设a ★b = ( a + b )÷b 。
求8 ★5 。
【解析】该题的新运算被定义为: a ★b等于两数之和除以后一个数的商。
这里要先算括号里面的和,再算后面的商。
这里a代表数字8,b代表数字5。
8 ★5 =例2.如果a◎b=a×b-(a+b)。
求6◎(9◎2)。
【解析】根据定义,要先算括号里面的。
这里的符号“◎”就是一种新的运算符号。
例3.若A*B表示(A+3B)×(A+B),求5*7的值。
【解析】A*B是这样计算出来:先计算A+3B的结果,再计算A+B的结果,最后两个结果求乘积。
【练一练】1.对于任意的两个数a和b,规定a*b=3×a-b÷3。
求8*9的值。
2.若规定运算a*b=2(a+b),求(3*5)*2的值。
3、定义a△b=ba+ab,则4△50=例4.定义新运算为a△b=(a+1)÷b,求6△(3△4)的值。
【解析】所求算式是两重运算,先计算括号,所得结果再计算。
例5.如果1※2=1+112※3=2+22+2223※4=3+33+333+333+3333计算:(3※2)×5。
【解析】通过观察发现:a※b中的b表示加数的个数,每个加数数位上的数字都由a组成,都由一个数位,依次增加到b个数位。
例6.规定x△y=3x-2y,已知x△(4△1)=7,求x的值。
【解析】【练一练】4、已知a@b表示a除以3的余数再乘以b,求13@4的值。
小学六年级奥数 第1周定义新运算~例2
经典例题
【例题2】 设p、q是两个数,规定:p△q=4×q-(p+q)÷2。 求3△(4△6)。
经典例题
【例题2】 设p、q是两个数,规定:p△q=4×q-(p+q)÷2。 求3△(4△6)。
思路导航
根据定义先算4△6。在这里“△”是新的 运算符号。
经典例题
【例题2】
设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。 详细解答
3△(4△6) =3△【4×6-(4+6)÷2】
=3△19 =4×19-(3+19)÷2 =65
举一反三练习
1、设p、q是两个数,规定p△q=4×q-(p+q)÷2, 求5△(6△4)。
5△(6△4) =5△【4×4-(6+4)÷2】 =5△11 =4×11-(5+11)÷2 =36
知识要点
定义新运算是指运用某种特殊符号来表示特定的意义, 从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含 义,然后严格按照新定义的计算程序,将数值代入,转化为常 规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用 的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运 算中的“+、-、×、÷”不同的。
举一反三练习
2、设p、q是两个数,规定p△q=p2+(p-q)×2。 求30△(5△3)。
30△(5△3) =30△【52+(5-3)×2】。 =30△29 =302+(30-29)×2】。 =902
举一反三练习
小学六年级奥数新定义运算
第一周定义新运算【名言警语】天才因为累积,聪慧在于勤劳。
——华罗庚【知识点精讲】一、什么是定义新运算?定义新运算指用一个符号和已知运算表达式表示一种新的运算。
二、怎么解答定义新运算?解答这种题重点是要正确地理解新定义的算式含义,而后严格依据新定义的计算程式,将数值代入,转变为惯例的四则运算算式进行计算。
定义新运算是一种特别设计的运算形式,它使用的是一些特别的运算符号,如* 、△、▽、⊙、等,这是与四则运算中“+、-、×、÷”不一样。
新定义运算式中有括号的,要先算括号里面的。
但它在没有转变前,是不合适于各样运算定律的。
例 1、假定a* b=(a+b)+(a-b),求 13*5 和 13* ( 5*4 )。
【贯通融会】1、设a*b=(a+b)×(a-b),求 27*9 。
2、设a*b=a2+2b, 求 10*6 和 5*(2*8)。
3、设a* b=3a-b×1,求( 25*12 ) * ( 10*5 )。
2例 2、设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)【贯通融会】1、设p、q是两个数,规定:p △q=4 ×q-(p +q) ÷2。
求 5 △( 6△4)。
2、设p、q是两个数,规定:p △q=p 2+(p -q) ×2。
求 30△( 5△3)。
3、设M、N是两个数,规定:M *N M N,求10 *20-1。
N M4例 3、假如 1 * 5 1 11 1111111,222222,11111 2 * 422223 * 3333333,4* 2444,那么7* 4;210*2。
【一反三】1、假如 1 * 51111111111, 2 *4222 2222222,111113 * 3333333 ,⋯那么4 * 4。
2、定a*b a aa aaa aa a ,那么 8 * 5。
(b-1 )个 a3、假如2* 111,4* 31,那么(6 * 3)( 2 *6), 3 *2444。
小学六年级奥数——新定义运算
第一周定义新运算【名言警句】天才由于积累,聪明在于勤奋。
?——华罗庚【知识点精讲】一、什么是定义新运算?定义新运算指用一个符号和已知运算表达式表示一种新的运算。
二、怎么解答定义新运算?解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、△、▽、⊙、?等,这是与四则运算中“+、-、×、÷”不同。
新定义运算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例1、假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【举一反三】1、设a*b=(a+b)×(a-b),求27*9。
2、设a*b=a 2+2b,求10*6和5*(2*8)。
3、设a*b=3a -b ×21,求(25*12)*(10*5)。
例2、设p 、q 是两个数,规定:p △q=4×q-(p +q) ÷2。
求3△(4△6)【举一反三】1、设p 、q 是两个数,规定:p △q=4×q-(p +q) ÷2。
求5△(6△4)。
2、设p 、q 是两个数,规定:p △q=p 2+(p -q) ×2。
求30△(5△3)。
3、设M 、N 是两个数,规定:*M N M N N M =+,求110*204-。
例3、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,4*2444=+,那么7*4= ;210*2= 。
【举一反三】1、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,…那么4*4= 。
2、规定*a b a aa aaa aa a =+++⋅⋅⋅⋅⋅⋅,那么8*5= 。
小学数学6年级培优奥数讲义 第01讲-定义新运算(教师版)
第01讲定义新运算教学目标学会理解新定义的内容;理解新定义内容的基础上能够解决用新定义给出的题目;学会自己总结解题技巧。
知识梳理一、知识概念1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。
注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。
(2)我们还要知道,这是一种人为的运算形式。
它是使用特殊的运算符号,如:*、▲、★、◎、 、Δ、◆、■等来表示的一种运算。
(3)新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
2、一般的解题步骤是:一是认真审题,深刻理解新定义的内容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。
典例分析例1、对于任意数a,b,定义运算“*”:a*b=a×b-a-b。
求12*4的值。
【解析】根据题目定义的运算要求,直接代入后用四则运算即可。
12*4=12×4-12-4=48-12-4=32例2、假设a ★ b = ( a + b )÷ b 。
求8 ★ 5 。
【解析】该题的新运算被定义为: a ★b等于两数之和除以后一个数的商。
这里要先算括号里面的和,再算后面的商。
这里a代表数字8,b代表数字5。
8 ★ 5 = (8 + 5)÷ 5 = 2.6例3、如果a ◎b=a ×b-(a+b)。
求6◎(9◎2)。
【解析】根据定义,要先算括号里面的。
这里的符号“◎”就是一种新的运算符号。
6◎(9◎2)=6◎[9×2-(9+2)]=6◎7=6×7-(6+7)=42-13=29例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。
求6Δ5。
【解析】仔细观察发现“Δ”前面的数字是加数每个数位上的数字,而加数分别是一位数,二位数,三位数,……“Δ”后面的数字是几,就有几个加数。
小学六年级奥数——新定义运算
第一周 定义新运算【名言警句】天才由于积累,聪明在于勤奋。
——华罗庚【知识点精讲】一、什么是定义新运算?定义新运算指用一个符号和已知运算表达式表示一种新的运算。
二、怎么解答定义新运算?解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、△、▽、⊙、等,这是与四则运算中“+、-、×、÷”不同。
新定义运算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例1、假设a *b=(a +b)+(a-b),求13*5和13*(5*4)。
【举一反三】1、设a *b =(a+b)×(a-b),求27*9。
2、设a *b=a 2+2b ,求10*6和5*(2*8)。
3、设a *b=3a -b ×21,求(25*12)*(10*5)。
例2、设p 、q 是两个数,规定:p △q=4×q -(p +q) ÷2。
求3△(4△6)【举一反三】1、设p 、q 是两个数,规定:p △q=4×q -(p +q) ÷2。
求5△(6△4)。
2、设p 、q 是两个数,规定:p △q=p 2+(p -q) ×2。
求30△(5△3)。
3、设M 、N 是两个数,规定:*M N M N N M =+,求110*204-。
例3、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,4*2444=+,那么7*4= ;210*2= 。
【举一反三】1、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,…那么4*4= 。
2、规定*a b a aa aaa aa a =+++⋅⋅⋅⋅⋅⋅,那么8*5= 。
小学奥数模块教程第1章 定义新运算
第二章 定义新运算一、例题解析1.定义新运算“*”,对于任何数a 和b ,a*b=a b a +;当a=2,b=3时,2*3=232+=2.5 (1)计算1996*1998,1998*1996; (2)计算1997*7*1,1997*(7*1);2.定义一种运算“∧”,对于任何两个正数a 和b ,a ∧b=ba ab+;计算,2∧4∧8∧16∧16,计算,16∧2∧8∧16∧4。
3、有一个数学运算符号“”,使下列算式成立:2 4=8,53=13,35=11,9 7=25,求73=?4.规定a △b=a+(a+1)+(a+2)+…(a+b-1)(a 、b 均为自然数,b>a )如果x △10=65;那么x=?二、巩固练习1、a *b 表示a 的3倍减去b 的1/2 ,例如:1*2=1 ×3-2×21=2; 根据以上的规定,计算: ①10*6 ②7*(2*1)2、有一个数学运算符号“”,使下列算式成立:2132= 63,5497 =4511,6571=426。
求11354的值。
3、定义两种运算“ ”、 ,对于任意两个整数a 、b ,a b= a+b-1,a b=a×b-1。
①计算4[(68)(35)的值;②若x(x4)=30,求x 的值。
4、对于任意的整数x 、y ,定义新运算“△”,x △y =2ymx 6x y(其中m 是一个确定的整数),如果1△2=2,则2△9=?5、x 和y 表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值。
六年级奥数分册:第1周定义新运算
六年級舉一反三教材第一周定義新運算專題簡析:定義新運算是指運用某種特殊符號來表示特定的意義,從而解答某些特殊算式的一種運算。
解答定義新運算,關鍵是要正確地理解新定義的算式含義,然後嚴格按照新定義的計算程式,將數值代入,轉化為常規的四則運算算式進行計算。
定義新運算是一種人為的、臨時性的運算形式,它使用的是一些特殊的運算符號,如:*、等,這是與四則運算中的“∆、#、*、·”不同的。
新定義的算式中有括弧的,要先算括弧裏面的。
但它在沒有轉化前,是不適合於各種運算定律的。
例題1。
假設a*b=(a+b)+(a-b),求13*5和13*(5*4)。
13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26練習11..將新運算“*”定義為:a*b=(a+b)×(a-b).求27*9。
2.設a*b=a 2+2b ,那麼求10*6和5*(2*8)。
3.設a*b=3a -12×b ,求(25*12)*(10*5)。
例題2。
設p 、q 是兩個數,規定:p △q=4×q-(p+q)÷2。
求3△(4△6).3△(4△6).=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65練習21. 設p 、q 是兩個數,規定p △q =4×q -(p+q )÷2,求5△(6△4)。
2. 設p 、q 是兩個數,規定p △q =p 2+(p -q )×2。
求30△(5△3)。
3. 設M 、N 是兩個數,規定M*N =M N +N M ,求10*20-14。
例題3。
如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
【思路导航】经过观察,可以发现本题的新运算“*”被定义为。
因此练习3: 1.如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……那么4*4=________。
2.规定, 那么8*5=________。
3.如果2*1=1/2,3*2=1/33,4*3=1/444,那么(6*3)÷(2*6)=________。
【例题4】规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果1/⑥-1/⑦ =1/⑦×A ,那么,A 是几?【思路导航】这题的新运算被定义为:@ = (a -1)×a ×(a +1),据此,可以求出1/⑥-1/⑦ =1/(5×6×7)-1/(6×7×8),这里的分母都比较大,不易直接求出结果。
根据1/⑥-1/⑦ =1/⑦×A ,可得出A = (1/⑥-1/⑦)÷1/⑦ = (1/⑥-1/⑦)×⑦ = ⑦/⑥ -1。
即7*4=7+77+777+7777=8638 210*2=210+210210=210420A =(1/⑥-1/⑦)÷1/⑦ =(1/⑥-1/⑦)×⑦ = ⑦/⑥-1=(6×7×8)/(5×6×7)-1 = 1又3/5-1 = 3/5练习4:1.规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……如果1/⑧-1/⑨=1/⑨×A ,那么A=________。
2.规定:③=2×3×4,④=3×4×5,⑤=4×5×6,⑥=5×6×7,……如果1/⑩+1/⑾=1/⑾×□,那么□=________。
3.如果1※2=1+2,2※3=2+3+4,……5※6=5+6+7+8+9+10,那么x ※3=54中,x =________。
【例题5】设a ⊙b=4a -2b+1/2ab,求z ⊙(4⊙1)=34中的未知数x 。
【思路导航】先求出小括号中的4⊙1=4×4-2×1+1/2×4×1=16,再根据x ⊙16=4x -2×16+1/2×x ×16 = 12x -32,然后解方程12x -32 = 34,求出x 的值。
列算式为练习5:1.设a ⊙b=3a -2b ,已知x ⊙(4⊙1)=7求x 。
2.对两个整数a 和b 定义新运算“△”:a △b= ,求6△4+9△8。
3.对任意两个整数x 和y 定于新运算,“*”:x*y = (其中m 是一个确定的整数)。
如果1*2=1,那么3*12=________。
4⊙1=4×4-2×1+1/2×4×1=16 x ⊙16=4x -2×16+1/2×x ×16 =12x -32 12x -32 = 34 12x= 66 x =5.5第2讲简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a-b-c = a-(b+c),使运算过程简便。
所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。
1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。
所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36 = 1.2×30。
这样一转化,就可以运用乘法分配律了。
所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6【例题4】计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把37.9分成25.4和12.5两部分。
当出现12.5×6.4时,我们又可以将6.4看成8×0.8,这样计算就简便多了。
所以原式=3又3/5×25又2/5+(25.4+12.5)×6.4=3又3/5×25又2/5+25.4×6.4+12.5×6.4=(3.6+6.4)×25.4+12.5×8×0.8=254+80=334练习4:计算下面各题:1.6.8×16.8+19.3×3.22.139×137/138+137×1/1383.4.4×57.8+45.3×5.6【例题5】计算81.5×15.8+81.5×51.8+67.6×18.5【思路导航】先分组提取公因数,再第二次提取公因数,使计算简便。
所以原式=81.5×(15.8+51.8)+67.6×18.5=81.5×67.6+67.6×18.5=(81.5+18.5)×67.6=100×67.6=6760练习5:1.53.5×35.3+53.5×43.2+78.5×46.52.235×12.1++235×42.2-135×54.33.3.75×735-3/8×5730+16.2×62.5。