2011年全国高考文科数学试题及答案-辽宁

合集下载

2011年高考全国数学试卷(新课标)-文科(含详解答案)

2011年高考全国数学试卷(新课标)-文科(含详解答案)

绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(MN )(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U MN MN =∴=(2)函数(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥ 【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数(0)y x x =≥的反函数为2(0)4x y x =≥.(3)设向量,a b 满足||||1a b ==,12a b ⋅=-,则2a b += (A 2 (B 3 (C 5(D 7【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=,所以23a b +=(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系. 【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂足,若2,1AB AC BD ===,则CD = (A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, AC l ⊥,∴AC ⊥平面β,BC ∴=又BD l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -= (A) -12 (B)1 4- (C)14 (D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值. 【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()()2(1)2222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12CC = (A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离23OM =,在Rt OMN∆中,30OMN ︒∠=, ∴132ON OM ==,故圆N 的半径2213r R ON =-=,∴圆N的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年辽宁省高考文科数学试卷及答案(word版)

2011年辽宁省高考文科数学试卷及答案(word版)

2011年普通高等学校招全国统一考试(浙江卷)数 学(理科)本试卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页,非选择题部分3至4页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共2页)1. 答题前,考生务必将自己的姓名、准备考证号用黑色字迹的签字笔或钢笔分别填写在试卷个答题纸规定的位置上。

2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:如果事件,A B 互斥,那么柱体的体积公式()()()P A B P A P B +=+ v sh =如果事件,A B 相互独立,那么其中s 表示柱体的底面积,h 表示柱体的高 锥体的体积公式 13v sh = 一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设函数2,0,(),0.x x f x x x -≤⎧=⎨⎩ 若()4f α=,则实数α= (A ) —4或—2 (B ) —4或2 (C )—2或4 (D )—2或2(2)把负数z 的共轭复数记作i,i 为虚数单位。

若z=1+i,则(1)z z -+∙=(A )3i - (B )3i + (C )13i + (D)3(3)若某几何体的三视图如图所示,则这个几何体的直观图可以是 ()()()P A B P A P B ∙=∙(4)下列命题中错误的是(A )如果平面α⊥平面β,那么平面α内一定直线平行于平面β(B )如果平面α垂直于平面β,那么平面α内一定不存在直线垂直于平面β(C )如果平面α⊥平面γ,平面β⊥平面γ,l αβ⋂=,那么l ⊥平面γ(D )如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β(5)设实数x 、y 是不等式组,若x 、y 为整数,则34x y +的最小值为 (A )14 (B )16 (C )17 (D )19(6)若02πα<<,02πβ-<<,1cos ()23πα+=,cos ()42πβ-=,则c o s ()2βα+=(A (B )(C (D ) (7)若a 、b 为实数,则“01ab <<”是“1a b <”或1b a >的 (A )充分二而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(8)已知椭圆 221221x y C a b =+=(a >b >0)与双曲线 22214y C x =-=有公共的焦点,1C 的一条最近线与以2C 的长轴为直径的圆相交于,A B 来两点。

2011年高考试题——数学文(辽宁卷)精校版

2011年高考试题——数学文(辽宁卷)精校版

2011年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中.只有一项是符合题目要求的.(1)已知集合A={x 1x >},B={x 2x 1-<<}},则A I B=(A ) {x 2x 1-<<}} (B ){x 1-x >} (C ){x 1x 1-<<}} (D ){x 2x 1<<}}(2)i 为虚数单位,(A )0 (B )2i (C )-2i (D )4i(3)已知向量a=(2,1),b=(-1,k ),a ·(2a-b )=0,则k(A )-12 (B )-6 (C )6 (D )12(4)已知命题P :∃n ∈N ,2n >1000,则⌝p 为(A )∀n ∈N ,2n ≤1000 (B )∀n ∈N ,2n >1000(C )∃n ∈N ,2n ≤1000 (D )∃n ∈N ,2n <1000(5)若等比数列{a n }满足a n a n+1=16n ,则公比为(A )2 (B )4 (C )8 (D )16(6)若函数f (x )=))((a -x 1x 2x +为奇函数,则a= (A )21 (B )32 (C )43 (D )1 (7)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,3B F AF =+,则线段AB 的中点到y 轴的距离为(A )43 (B )1 (C )45 (D )47 (8)一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是(A )4 (B )32 (C )2 (D )3(9)执行右面的程序框图,如果输入的n 是4,则输出的P 是(A) 8(B) 5(C) 3(D) 2(10)已知球的直径SC=4,。

A.,B 是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC 的体积为(A )33 (B)233(C) 43 (D)53 (11)函数f (x )的定义域为R ,f (-1)=2,对任意x R ∈,f (x )>2,则f(x)>2x+4的解集为(A )(-1,1) (B)(-1,+∞ (C)(-∞,-1) (D)(-∞,+∞)(12)已知函数f (x )=Atan(x ωϕ+)(02πωϕ>,<),Y=f(x)的部分图像如图,则24πf ()=(A )3 3(C) 33(D)23 第Ⅱ卷本卷包括必考题和选考题两部分。

2011年辽宁高考数学试题及答案(文科)

2011年辽宁高考数学试题及答案(文科)

2011年普通高等学校招生全国统一考试数学试卷(文科)(辽宁卷)解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题 目要求的.主题1. 已知集合A ={x 1|>x },B ={x 21|<<-x }},则A B = A .{x 21|<<-x }B .{x 1|->x }C .{x 11|<<-x }D .{x 21|<<x } 难度 易 正确答案D提示一 本题考查集合运算.考查学生基础知识.清晰交集运算是解题的前提. 提示二 借助数轴画出两个集合的区域,则重合的部分即为A B. 提示三{}{}{}=1,12,12.A x x B x x A B x x >=-<<∴=<< 主题2. i 为虚数单位,=+++7531111ii i i A .0 B .2i C .i 2- D .4i 难度 易 正确答案A提示一 此题考查复数运算.考查学生的基本运算能力.清晰ni 的化简是解题的前提. 提示二 利用01231,,1,i i i i i i ===-=-进行化简求值是解题的关键. 提示三35724421111111111110i i i i i i i i i i i i i i i i+++=+++=-+-=⋅⋅⋅⋅. 主题3. 已知向量)1,2(=a ,),1(k -=b ,0)2(=-⋅b a a ,则=k A .12- B .6-C .6D .12 难度 易 正确答案D提示一 此题考查向量的坐标运算,考查学生的运算能力.清晰向量和数量积的坐标运算是解题的前提.提示二 利用向量的坐标运算化简2,a b - 然后利用数量积的坐标运算化简(2)a a b ⋅-,进而得到含有k 的等式,解之.提示三 2(4,2)(1,)(5,2)a b k k -=--=-,(2)(2,1)(5,2)10212.a a b k k k ∴⋅-=⋅-=+-=- 又(2)0,120,12.a a b k k ⋅-=∴-=∴=主题4. 已知命题P :∃n ∈N ,2n >1000,则⌝P 为 A .∀n ∈N ,2n ≤1000 B .∀n ∈N ,2n >1000 C .∃n ∈N ,2n ≤1000D .∃n ∈N ,2n <1000 难度 易 正确答案A提示一 此题考查特称命题的否定,考查学生对基础知识的掌握.清晰否定量词的使用是解题的前提.提示二 利用特称命题的否定为全称命题是解题的关键.提示三 特称命题的否定为全称命题,“∃”变“∀”,“ >”变“≤”,故选A. 主题5. 若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2B .4C .8D .16 难度 中 正确答案B提示一 此题考查等比数列的公比.考查学生应用基本量思想解题的能力.清晰等比数列的通项公式是解题的前提.提示二 采用赋值法,令1,2n =得到两个等量关系进行求解. 提示三 令1n =得1216a a =;令2n =得22316a a =;两式相除得23116,16,4a q q a ==∴=±.由1216a a =知0 4.q q >∴=,主题6. 若函数))(12()(a x x xx f -+=为奇函数,则a =A .21B .32C .43D .1 难度 中 正确答案A提示一 本题考查奇函数的性质.考查学生转化能力和计算能力.清晰奇函数的性质()()f x f x =--是解题的前提.提示二 利用函数为奇函数则有()()f x f x =--恒成立进行转化是解题的关键.提示三()f x 为奇函数,()(),f x f x ∴=--即(21)()(21)()x xx x a x x a =+--+--恒成立,整理得:12a =,故选A. 7.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为A .34B .1C .54D .74主题8. 一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图 如右图所示,左视图是一个矩形,则这个矩形的面积是 A .4 B .32 C .2D .3 难度 中 正确答案B提示一 此题考查几何体的三视图,考查学生的分析解决问题能力和空间形象能力,清晰三视图的观察方法是解题的前提.提示二 根据俯视图和左视图得到几何体的性质是解题的关键. 提示三 由题意可设棱柱的底面边长为a ,则其体积为2323, 2.4a a a ⋅==得由俯视图易知,三棱柱的左视图是以2为长,3为宽的矩形,所以其面积为23,故选B. 9.执行右面的程序框图,如果输入的n 是4,则输出的P 是 A .8 B .5 C .3 D .2主题10. 已知球的直径SC=4,A ,B 是该球球面上的两点,AB=2, ∠ASC=∠BSC=45°,则棱锥S-ABC 的体积为 A .33B .233C .433 D .533难度 中 正确答案C提示一 此题考查棱锥的体积.考查学生的画图能力和空间想象能力.利用题设条件准确画出图形是解题的前提.提示二 采用分割的技巧求体积是解题的关键.提示三 如图所示,连接OA,OB(O 为球心),2,AB OAB =∴∆ 为正三角形, 又45BSC ASC ∠=∠=且SC 为直径,ASC BSC ∴∆∆与均为等腰直角三角形,BOASC,,,BO SC AO SC AO BO O SC ABO ∴⊥⊥=∴⊥ 又面.11343()44,3343S ABC C OAB S OAB OAB V V V S SO OC ---∆∴=+=⋅⋅+=⨯⨯⨯=故选C.11.函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为 A .(1-,1) B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)主题12. 已知函数)(x f =A tan (ωx +ϕ)(2||,0πϕω<>),y =)(x f 的部分图像如下图,则=)24(πfA .2+3B .3C .33D .23- 难度 中 正确答案B提示一 此题考查函数解析式,考查学生的识图和用图能力,清晰A ωϕ、、的含义是解题的前提.提示二 利用图象得到周期,利用点308π(,)代入解析式确定ϕ,利用(0,1)代入解析式确定A ,进而明确函数的解析式,然后求()24f π.提示三 由图知,3=-==22882T T πππω∴∴,,,()tan(2),f x A x ϕ∴=+将308π(,)代入得,3tan(2+=08A πϕ⨯)即3tan()0,4πϕ+=又ϕ2π<,=4πϕ∴.()sin(2).4f x A x π∴=+又(0)1,tan1, 1.()tan(2)tan 3.4242443f A A f πππππ=∴=∴=∴=⨯+== 二、填空题:本大题共4小题,每小题5分.主题13. 已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为___________ 难度 中正确答案 22(2)10x y -+=提示一 此题考查圆的方程.考查学生对待定系数法的掌握情况.清晰圆的几何性质是解题的前提. 提示二 应用弦AB 的垂直平分线过圆心的性质是解题的关键. 提示三 由题意,线段AB 的中点(3,2)M ,1,2AB k =-∴线段AB 中垂线所在直线方程为22(3)y x -=-,由22(3),0y x y -=-⎧⎨=⎩得圆心20(,),则圆C 的半径 22(21)(03)10,r =-+-=故圆C 的方程为22(2)10x y -+=.14.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示 年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程321.0254.0ˆ+=x y.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加 ____________万元.主题15. S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=____________. 难度 易 正确答案1-提示一 此题考查等差数列的性质.考查学生应用方程思想解题的能力.清晰等差数列的求和公式和通项公式是解题的前提.提示二 利用基本量思想确定等差数列的首项和公差是解题的关键. 提示三(法一)设等差数列{}n a 首项为1a ,公差为d26112165,26,22S S a d a d ⨯⨯=∴+=+ 11414,27a d a d ∴=-=-, 又41131,13,a a d a d =+=∴=-12(13)7,2,7d d d a ∴-=-∴=-=5154781,1a a d a ∴=+=-=-∴=-提示四(法二)26,S S = 即121234563456,0a a a a a a a a a a a a +=+++++∴+++=, 即452()0a a +=,541a a ∴=-=-.主题16. 已知函数a x e x f x +-=2)(有零点,则a 的取值范围是___________. 难度 中正确答案 (],2ln22-∞-提示一 本题考查函数的零点.考查学生的等价转化能力和计算能力.清晰导数法研究函数的性质是解题的前提.提示二 利用“函数()f x 有零点,则min ()0f x ≤”是解题的关键.提示三 '()2,()2x x f x e x a f x e =-+∴=- ,令'()0f x =,得ln 2x =, 当ln 2x <时,'()0,()f x f x <在(),ln 2-∞上是减函数 当ln 2x >时,'()0,()f x f x >在()ln 2,+∞上是增函数, 故min ()(ln 2)2ln 2f x f a ==-+,若函数()f x 有零点,则min ()0f x ≤,即2ln 20,2ln 22a a -+≤∴≤-. 三、解答题:解答应写文字说明,证明过程或演算步骤. 主题17. (本小题满分12分)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a . (I )求b a; (II )若c 2=b 2+3a 2,求B . 难度 中正确答案(I )2;(II )45提示一 此题考查解三角形.考查学生灵活应用正弦定理和余弦定理解题的能力.清晰正弦定理和余弦定理的转化作用是解题的前提.提示二 (1)利用正弦定理将边转化为角进行化简;(2)利用余弦定理和第一问的结论进行转化求解.提示三(I )由正弦定理得,22sin sin cos 2sin A B A A +=,即22sin (sin cos )2sin B A A A +=故sin 2sin , 2.bB A a==所以………………6分 (II )由余弦定理和222(13)3,cos .2ac b a B c+=+=得 由(I )知222,b a =故22(23).c a =+可得212cos ,cos 0,cos ,4522B B B B =>== 又故所以 …………12分 主题18.(本小题满分12分)如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD . (I )证明:PQ ⊥平面DCQ ;(II )求棱锥Q —ABCD 的的体积与棱锥P —DCQ 的体积的比值. 难度 中正确答案(I )详见提示;(II )1.提示一 此题考查线面垂直的证明和棱锥的体积.考查学生的空间想象能力和转化能力.清晰线面垂直的判定定理和棱锥的体积公式是解题的前提.提示二(1)借助几何图形的特点,利用垂直关系的转化证明PQ ⊥DC 和PQ ⊥QD 是解题的关键;(2)确定AQ 为棱锥Q —ABCD 的高和PQ 为棱锥P —DCQ 的高是解题的关键.提示三(I )由条件知PDAQ 为直角梯形,因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD.又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC.在直角梯形PDAQ 中可得DQ=PQ=22PD ,则PQ ⊥QD 所以PQ ⊥平面DCQ. ………………6分 (II )设AB=a .由题设知AQ 为棱锥Q —ABCD 的高,所以棱锥Q —ABCD 的体积311.3V a = 由(I )知PQ 为棱锥P —DCQ 的高,而PQ=2a ,△DCQ 的面积为222a , 所以棱锥P —DCQ 的体积为321.3V a =故棱锥Q —ABCD 的体积与棱锥P —DCQ 的体积的比值为1.…………12分主题19. 某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.(I )假设n =2,求第一大块地都种植品种甲的概率;(II )试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm 2)如下表:品种甲 403 397 390 404 388 400 412 406 品种乙419403412418408423400413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据n x x x ,,,21⋅⋅⋅的的样本方差])()()[(1222212x x x x x x ns n -+⋅⋅⋅+-+-=,其中x 为样本平均数. 难度 中 正确答案(I )16; (II )选择种植品种乙 提示一 此题考查古典型概率以及样本平均数和样本方差.考查学生的对事件的识别能力和计算能力.清晰古典型概率和准确记忆期望、样本平均数和样本方差的计算公式是解题的前提. 提示二(1)利用随机事件的概率公式mP n=进行计算;(2)利用样本平均数和样本方差的公式分别计算两种情况下数值,通过数值大小比较确定选择哪一种品种.提示三(I )设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A=“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个; (1,2),(1,3),(1,4),(2,3),(2,4),(3,4). 而事件A 包含1个基本事件:(1,2). 所以1().6P A =………………6分 (II )品种甲的每公顷产量的样本平均数和样本方差分别为:222222221(403397390404388400412406)400,81(3(3)(10)4(12)0126)57.25.8x S =+++++++==+-+-++-+++=甲甲………………8分 品种乙的每公顷产量的样本平均数和样本方差分别为:2222222221(419403412418408423400413)412,81(7(9)06(4)11(12)1)56.8x S =+++++++==+-+++-++-+=乙乙………………10分由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙. 19.(本小题满分12分) 主题 20.(本小题满分12分)设函数)(x f =x +ax 2+b ln x ,曲线y =)(x f 过P (1,0),且在P 点处的切斜线率为2. (I )求a ,b 的值; (II )证明:)(x f ≤2x -2. 难度 中正确答案(I )1, 3.a b =-=(II )详见提示.提示一 此题考查导数的几何含义和不等式的证明.考查学生灵活应用等价转换思想的能力和构造函数证明不等式的解题能力.清晰导数的几何含义和导数法的应用是解题的前提.提示二(1)利用切线的斜率等于在该点处得导数和点在曲线上联立方程,求解a ,b 的值;(2)利用构造函数()()(22)g x f x x =--,然后借助求导研究函数的最大值,达到证明不等式的目的. 提示三(I )()12.bf x ax x'=++…………2分 由已知条件得(1)0,10,(1) 2.12 2.f a f a b =+=⎧⎧⎨⎨'=++=⎩⎩即 解得1, 3.a b =-= ………………5分(II )()(0,)f x +∞的定义域为,由(I )知2()3ln .f x x x x =-+设2()()(22)23ln ,g x f x x x x x =--=--+则3(1)(23)()12.x x g x x x x-+'=--+=- 01,()0;1,()0.()(0,1),(1,).x g x x g x g x ''<<>><+∞当时当时所以在单调增加在单调减少而(1)0,0,()0,()2 2.g x g x f x x =>≤≤-故当时即 ………………12分 21.(本小题满分12分)如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .(I )设12e =,求BC 与AD 的比值; (II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由.解:(I )因为C 1,C 2的离心率相同,故依题意可设22222122242:1,:1,(0)x y b y x C C a b a b a a+=+=>> 设直线:(||)l x t t a =<,分别与C 1,C 2的方程联立,求得2222(,),(,).a b A t a t B t a t b a-- ………………4分 当13,,,22A B e b a y y ==时分别用表示A ,B 的纵坐标,可知 222||3||:||.2||4B A y b BC AD y a === ………………6分 (II )t=0时的l 不符合题意.0t ≠时,BO//AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN 相等,即2222,b a a t a t a b t t a--=- 解得222221.ab e t a a b e-=-=-⋅- 因为2212||,01,1, 1.2e t a e e e-<<<<<<又所以解得 所以当202e <≤时,不存在直线l ,使得BO//AN ; 当212e <<时,存在直线l 使得BO//AN. ………………12分 请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,A ,B ,C ,D 四点在同一圆上,AD 的延长线与BC 的延长线交于E 点,且EC =ED .(I )证明:CD //AB ;(II )延长CD 到F ,延长DC 到G ,使得EF =EG ,证明:A ,B ,G ,F 四点共圆.解:(I )因为EC=ED ,所以∠EDC=∠ECD.因为A ,B ,C ,D 四点在同一圆上,所以∠EDC=∠EBA.故∠ECD=∠EBA ,所以CD//AB. …………5分(II )由(I )知,AE=BE ,因为EF=FG ,故∠EFD=∠EGC从而∠FED=∠GEC.连结AF ,BG ,则△EFA ≌△EGB ,故∠FAE=∠GBE ,又CD//AB ,∠EDC=∠ECD ,所以∠FAB=∠GBA.所以∠AFG+∠GBA=180°.故A ,B ,G ,F 四点共圆 …………10分23.(本小题满分10分)选修4-4:坐标系统与参数方程在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧==ϕϕsin cos y x (ϕ为参数),曲线C 2的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (0>>b a ,ϕ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点间的距离为2,当α=2π时,这两个交点重合.(I )分别说明C 1,C 2是什么曲线,并求出a 与b 的值;(II )设当α=4π时,l 与C 1,C 2的交点分别为A 1,B 1,当α=4π-时,l 与C 1,C 2的交点为A 2,B 2,求四边形A 1A 2B 2B 1的面积.解:(I )C 1是圆,C 2是椭圆.当0α=时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a ,0),因为这两点间的距离为2,所以a =3.当2πα=时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1.(II )C 1,C 2的普通方程分别为22221 1.9x x y y +=+=和 当4πα=时,射线l 与C 1交点A 1的横坐标为22x =,与C 2交点B 1的横坐标为 310.10x '= 当4πα=-时,射线l 与C 1,C 2的两个交点A 2,B 2分别与A 1,B 1关于x 轴对称,因此, 四边形A 1A 2B 2B 1为梯形.故四边形A 1A 2B 2B 1的面积为(22)()2.25x x x x ''+-= …………10分24.(本小题满分10分)选修4-5:不等式选讲已知函数)(x f =|x -2||-x -5|.(I )证明:3-≤)(x f ≤3;(II )求不等式)(x f ≥x 28-x +15的解集.解: (I )3,2,()|2||5|27,25,3, 5.x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩当25,327 3.x x <<-<-<时所以3() 3.f x -≤≤ ………………5分(II )由(I )可知,当22,()815x f x x x ≤≥-+时的解集为空集;当225,()815{|535}x f x x x x x <<≥-+-≤<时的解集为;当25,()815{|56}x f x x x x x ≥≥-+≤≤时的解集为.综上,不等式2()815{|536}.f x x x x x ≥-+-≤≤的解集为 …………10分。

2011全国高考文科数学试卷及答案完整版(全国卷)

2011全国高考文科数学试卷及答案完整版(全国卷)

2011年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1.设集合U= U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ð , 则A .{}12,B .{}23,C .{}2,4D .{}1,42.函数0)y x =≥的反函数为的反函数为A .2()4x y x R =∈B .2(0)4x y x =≥C .24y x =()x R ∈ D .24(0)y x x =≥3.权向量a,b 满足 ,则1||||1,2a b a b ==⋅=-,则2a b +=ABCD4.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .3 5.下面四个条件中,使 成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2 BCD .19.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A .12种 B .24种C .30种D .36种 10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .14-C .14D .1211.11.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4 B.C .8D.12.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N的面积为A .7πB .9πC .11πD .13π第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上(注意:在试卷上作答无效)13.(10的二项展开式中,x 的系数与x 9的系数之差为: .14.已知a ∈(3,2ππ),t a n 2,c o s αα=则=15.已知正方体ABCD —A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE与BC 所成角的余弦值为 。

2011年辽宁卷(文科数学)

2011年辽宁卷(文科数学)

2011年普通高等学校招生全国统一考试文科数学(辽宁卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1}A x x =>,{12}B x x =-<<,则A B =IA .{12}x x -<<B .{1}x x >-C .{11}x x -<<D .{12}x x <<2.i 为虚数单位,3571111i i i i+++=A .0B .2iC .2i -D .4i3.已知向量(2,1)a =r ,(1,)b k =-r ,(2)0a a b ⋅-=r r r,则k =A .12-B .6-C .6D .12 4.已知命题p :n N ∃∈,21000n >,则p ⌝为A .n N ∀∈,21000n ≤B .n N ∀∈,21000n >C .n N ∃∈,21000n ≤D .n N ∃∈,21000n < 5.若等比数列{}n a 满足116n n n a a +=,则公比为A .2B .4C .8D .16 6.若函数()(21)()xf x x x a =--为奇函数,则a =A .12B .23C .34D .17.已知F 是抛物线2y x =的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为A.34B.1C.54D.748.一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是A .4 B..2 D9.执行右面的程序框图,如果输入的n 是4,则输出的p 是12.已知球的直径4SC =,A ,B是该球球面上的两点,AB =ASC BSC ∠=∠45=o ,则棱锥S ABC -的体积为A.3 B.3 C.3 D.311.函数()f x 的定义域为R ,(1)2f -=,对任意x R ∈,,()2f x '>,则()24f x x >+的解集为A.(1,1)-B.(1,)-+∞C.(,1)-∞-D.(,)-∞+∞ 16.已知函数()tan()f x A x ωϕ=+(0ω>>0,2πω<),()y f x =的部分图像如下图,则()24f π=A.2 B.2二、填空题:本大题共4小题,每小题5分,共20分.13.已知圆C 经过(5,1)A ,(1,3)B 两点,圆心在x 轴上,则C 的方程为 . 14.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:$0.2540.321y x =+.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加 万元.15.n S 为等差数列{}n a 的前n 项和,26S S =,41a =,则5a = . 16.已知函数()2x f x e x a =-+有零点,则a 的取值范围是 .三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第1721:题为必做题,每个试题考生都必须作答.第22,23,24题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(本小题满分12分)若ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c .2sin sin cos a A B b A +2a =.(Ⅰ)求ab; (Ⅱ)若2223c b a =+,求B . 18.(本小题满分12分)如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,12QA AB PD ==. (Ⅰ)证明:PQ ⊥平面DCQ ;(Ⅱ)求棱锥Q ABCD -的体积与棱锥P DCQ -的体积的比值.PDBC19.(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.(Ⅰ)假设4n =,在第一大块地中,种植品种甲的小块地的数目记为X ,求X 的分布列和数学期望;(Ⅱ)试验时每大块地分成8小块,即8n =,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg /2hm )如下表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种? 19.(本小题满分12分)设函数2()ln f x x ax b x =++,曲线()y f x =过(1,0)P ,且在P 点处的切斜线率为2.(Ⅰ)求a ,b 的值; (Ⅱ)证明:()22f x x ≤-. 21.(本小题满分12分)如图,已知椭圆1C 的中心在原点o ,长轴左、右端点M ,N 在x 轴上,椭圆2C 的短轴为MN ,且1C ,2C 的离心率都为e ,直线l MN ⊥,l 与1C 交于两点,与2C 交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .(Ⅰ)设12e =,求BC 与AD 的比值;(Ⅱ)当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由.(二)选考题:共10分.请考生在第22,23,24题中任选一题作答.如果多做,按所做的第一题计分.22.(本小题满分10分)选修41-:几何证明选讲如图,A ,B ,C ,D 四点在同一圆上,AD 的延长线与BC 的延长线交于E 点,且EC ED =.(Ⅰ)证明:CD //AB ;(Ⅱ)延长CD 到F ,延长DC 到G ,使得EF EG =,证明:A ,B ,G ,F 四点共圆.23.(本小题满分10分)选修44-:坐标系统与参数方程在平面直角坐标系xoy 中,曲线1C 的参数方程为cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),曲线2C 的参数方程为cos sin x a y b ϕϕ=⎧⎨=⎩(0a b >>,ϕ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θα=与1C ,2C 各有一个交点.当0α=时,这两个交点间的距离为2,当2πα=时,这两个交点重合.(Ⅰ)分别说明1C ,2C 是什么曲线,并求出a 与b 的值; (Ⅱ)设当4πα=时,l 与1C ,2C 的交点分别为1A ,1B ,当4πα=-时,l 与1C ,2C 的交点为2A ,2B ,求四边形1221A A B B 的面积.24.(本小题满分10分)选修45-:不等式选讲 已知函数()25f x x x =---. (Ⅰ)证明:3()3f x -≤≤;ABCDEFG(Ⅱ)求不等式2≥-+的解集.()815f x x x。

2011年高考试题与答案(全国卷文科数学)答案与解析

2011年高考试题与答案(全国卷文科数学)答案与解析

2011年普通高等学校招生全国统一考试文科数学(必修+选修II )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1.设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ðA .{}12,B .{}23,C .{}2,4D .{}1,42.函数2(0)y x x =≥的反函数为A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.权向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=A .2B .3C .5D .74.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .3 5.下面四个条件中,使a b >成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2B .3C .2D .19.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A .12种 B .24种 C .30种 D .36种 10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1211.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4B .42C .8D .8212.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为 A .7π B .9π C .11π D .13π第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年全国统一高考数学试卷(文科)(新课标版)答案与解析

2011年全国统一高考数学试卷(文科)(新课标版)答案与解析

2011年全国统一高考数学试卷(文科)(新课标版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2011•新课标)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【考点】交集及其运算.【专题】计算题.【分析】利用集合的交集的定义求出集合P;利用集合的子集的个数公式求出P的子集个数.【解答】解:∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3}∴P的子集共有22=4故选:B【点评】本题考查利用集合的交集的定义求交集、考查一个集合含n个元素,则其子集的个数是2n.2.(5分)(2011•新课标)复数=()A.2﹣i B.1﹣2i C.﹣2+i D.﹣1+2i【考点】复数代数形式的混合运算.【专题】计算题.【分析】将分子、分母同时乘以1+2i,再利用多项式的乘法展开,将i2用﹣1 代替即可.【解答】解:=﹣2+i故选C【点评】本题考查复数的除法运算法则:分子、分母同乘以分母的共轭复数.3.(5分)(2011•新课标)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y=x3 B.y=|x|+1 C.y=﹣x2+1 D.y=2﹣|x|【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】常规题型.【分析】首先由函数的奇偶性排除选项A,然后根据区间(0,+∞)上y=|x|+1=x+1、y=﹣x2+1、y=2﹣|x|=的单调性易于选出正确答案.【解答】解:因为y=x3是奇函数,y=|x|+1、y=﹣x2+1、y=2﹣|x|均为偶函数,所以选项A错误;又因为y=﹣x2+1、y=2﹣|x|=在(0,+∞)上均为减函数,只有y=|x|+1在(0,+∞)上为增函数,所以选项C、D错误,只有选项B正确.故选:B.【点评】本题考查基本函数的奇偶性及单调性.4.(5分)(2011•新课标)椭圆=1的离心率为()A.B.C.D.【考点】椭圆的简单性质.【专题】计算题.【分析】根据椭圆的方程,可得a、b的值,结合椭圆的性质,可得c的值,有椭圆的离心率公式,计算可得答案.【解答】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D.【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分.5.(5分)(2011•新课标)执行程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.5040【考点】程序框图.【专题】图表型.【分析】通过程序框图,按照框图中的要求将几次的循环结果写出,得到输出的结果.【解答】解:经过第一次循环得到经过第二次循环得到经过第三次循环得到;经过第四次循环得经过第五次循环得;输出结果此时执行输出720,故选B【点评】本题考查解决程序框图中的循环结构的输出结果问题时,常采用写出几次的结果找规律.6.(5分)(2011•新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】本题是一个古典概型,试验发生包含的事件数是3×3种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P=,故选A.【点评】本题考查古典概型概率公式,是一个基础题,题目使用列举法来得到试验发生包含的事件数和满足条件的事件数,出现这种问题一定是一个必得分题目.7.(5分)(2011•新课标)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣B.﹣C.D.【考点】二倍角的余弦;直线的图象特征与倾斜角、斜率的关系.【专题】计算题.【分析】根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tanθ的值,然后根据同角三角函数间的基本关系求出cosθ的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把cosθ的平方代入即可求出值.【解答】解:根据题意可知:tanθ=2,所以cos2θ===,则cos2θ=2cos2θ﹣1=2×﹣1=﹣.故选:B.【点评】此题考查学生掌握直线的斜率与倾斜角之间的关系,灵活运用同角三角函数间的基本关系化简求值,是一道中档题.8.(5分)(2011•新课标)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【考点】简单空间图形的三视图.【专题】作图题.【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选D.【点评】本题考查简单空间图形的三视图,考查由三视图看出原几何图形,再得到余下的三视图,本题是一个基础题.9.(5分)(2011•新课标)已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18 B.24 C.36 D.48【考点】直线与圆锥曲线的关系.【专题】数形结合法.【分析】首先设抛物线的解析式y2=2px(p>0),写出次抛物线的焦点、对称轴以及准线,然后根据通径|AB|=2p,求出p,△ABP的面积是|AB|与DP乘积一半.【解答】解:设抛物线的解析式为y2=2px(p>0),则焦点为F(,0),对称轴为x轴,准线为x=﹣∵直线l经过抛物线的焦点,A、B是l与C的交点,又∵AB⊥x轴∴|AB|=2p=12∴p=6又∵点P在准线上∴DP=(+||)=p=6∴S△ABP=(DP•AB)=×6×12=36故选C.【点评】本题主要考查抛物线焦点、对称轴、准线以及焦点弦的特点;关于直线和圆锥曲线的关系问题一般采取数形结合法.10.(5分)(2011•新课标)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(﹣,0)B.(0,)C.(,)D.(,)【考点】函数零点的判定定理.【专题】计算题.【分析】分别计算出f(0)、f(1)、f()、f()的值,判断它们的正负,再结合函数零点存在性定理,可以得出答案.【解答】解:∵f(0)=e0﹣3=﹣2<0 f(1)=e1+4﹣3>0∴根所在的区间x0∈(0,1)排除A选项又∵∴根所在的区间x0∈(0,),排除D选项最后计算出,,得出选项C符合;故选C.【点评】e=2.71828…是一个无理数,本题计算中要用到等的值,对计算有一定的要求.11.(5分)(2011•新课标)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称【考点】正弦函数的对称性;正弦函数的单调性.【专题】三角函数的图像与性质.【分析】利用辅助角公式(两角和的正弦函数)化简函数f(x)=sin(2x+)+cos(2x+),然后求出对称轴方程,判断y=f(x)在(0,)单调性,即可得到答案.【解答】解:因为f(x)=sin(2x+)+cos(2x+)=sin(2x+)=cos2x.由于y=cos2x的对称轴为x=kπ(k∈Z),所以y=cos2x的对称轴方程是:x=(k∈Z),所以A,C错误;y=cos2x的单调递减区间为2kπ≤2x≤π+2kπ(k∈Z),即(k∈Z),函数y=f(x)在(0,)单调递减,所以B错误,D正确.故选D.【点评】本题是基础题,考查三角函数的化简,三角函数的性质:对称性、单调性,考查计算能力,常考题型.12.(5分)(2011•新课标)已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()A.10个B.9个C.8个D.1个【考点】对数函数的图像与性质;函数的周期性.【专题】压轴题;数形结合.【分析】根据对数函数的性质与绝对值的非负性质,作出两个函数图象,再通过计算函数值估算即可.【解答】解:作出两个函数的图象如上∵函数y=f(x)的周期为2,在[﹣1,0]上为减函数,在[0,1]上为增函数∴函数y=f(x)在区间[0,10]上有5次周期性变化,在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数,在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数,且函数在每个单调区间的取值都为[0,1],再看函数y=|lgx|,在区间(0,1]上为减函数,在区间[1,+∞)上为增函数,且当x=1时y=0;x=10时y=1,再结合两个函数的草图,可得两图象的交点一共有10个,故选:A.【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2011•新课标)已知a与b为两个垂直的单位向量,k为实数,若向量+与向量k﹣垂直,则k=1.【考点】数量积判断两个平面向量的垂直关系.【专题】计算题.【分析】利用向量垂直的充要条件:数量积为0;利用向量模的平方等于向量的平方列出方程,求出k值.【解答】解:∵∴∵垂直∴即∴k=1故答案为:1【点评】本题考查向量垂直的充要条件、考查向量模的性质:向量模的平方等于向量的平方.14.(5分)(2011•新课标)若变量x,y满足约束条件则z=x+2y的最小值为﹣6.【考点】简单线性规划.【专题】计算题.【分析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数z=x+2y变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.【解答】解:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由y=x﹣9与2x+y=3的交点得到A(4,﹣5)∴z=4+2(﹣5)=﹣6故答案为:﹣6.【点评】本题考查线性规划问题,考查根据不等式组画出可行域,在可行域中,找出满足条件的点,把点的坐标代入,求出最值.15.(5分)(2011•新课标)△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.【考点】正弦定理的应用;余弦定理.【专题】解三角形.【分析】先利用余弦定理和已知条件求得BC,进而利用三角形面积公式求得答案.【解答】解:由余弦定理可知cosB==﹣,求得BC=﹣8或3(舍负)∴△ABC的面积为•AB•BC•sinB=×5×3×=故答案为:【点评】本题主要考查了正弦定理和余弦定理的应用.在求三角形面积过程中,利用两边和夹角来求解是常用的方法.16.(5分)(2011•新课标)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.【考点】旋转体(圆柱、圆锥、圆台);球的体积和表面积.【专题】计算题;压轴题.【分析】所成球的半径,求出球的面积,然后求出圆锥的底面积,求出圆锥的底面半径,即可求出体积较小者的高与体积较大者的高的比值.【解答】解:不妨设球的半径为:4;球的表面积为:64π,圆锥的底面积为:12π,圆锥的底面半径为:2;由几何体的特征知球心到圆锥底面的距离,求的半径以及圆锥底面的半径三者可以构成一个直角三角形由此可以求得球心到圆锥底面的距离是,所以圆锥体积较小者的高为:4﹣2=2,同理可得圆锥体积较大者的高为:4+2=6;所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为:.故答案为:【点评】本题是基础题,考查旋转体的体积,球的内接圆锥的体积的计算,考查计算能力,空间想象能力,常考题型.三、解答题(共8小题,满分70分)17.(12分)(2011•新课标)已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.【考点】等比数列的前n项和.【专题】综合题.【分析】(I)根据数列{a n}是等比数列,a1=,公比q=,求出通项公式a n和前n项和S n,然后经过运算即可证明.(II)根据数列{a n}的通项公式和对数函数运算性质求出数列{b n}的通项公式.【解答】证明:(I)∵数列{a n}为等比数列,a1=,q=∴a n=×=,S n=又∵==S n∴S n=(II)∵a n=∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣nlog33)=﹣(1+2+…+n)=﹣∴数列{b n}的通项公式为:b n=﹣【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.18.(12分)(2011•新课标)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积.【专题】计算题;证明题;综合题.【分析】(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(II)要求棱锥D﹣PBC的高.只需证BC⊥平面PBD,然后得平面PBC⊥平面PBD,作DE⊥PB于E,则DE⊥平面PBC,利用勾股定理可求得DE的长.【解答】解:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD.(II)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(I)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.由题设知PD=1,则BD=,PB=2.根据DE•PB=PD•BD,得DE=,即棱锥D﹣PBC的高为.【点评】此题是个中档题.考查线面垂直的性质定理和判定定理,以及点到面的距离,查了同学们观察、推理以及创造性地分析问题、解决问题能力.19.(12分)(2011•新课标)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)【考点】随机抽样和样本估计总体的实际应用;众数、中位数、平均数;离散型随机变量的期望与方差.【专题】计算题;综合题.【分析】(I)根据所给的样本容量和两种配方的优质的频数,两个求比值,得到用两种配方的产品的优质品率的估计值.(II)根据题意得到变量对应的数字,结合变量对应的事件和第一问的结果写出变量对应的概率,写出分布列和这组数据的期望值.【解答】解:(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为∴用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为∴用B配方生产的产品的优质品率的估计值为0.42;(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,【点评】本题考查随机抽样和样本估计总体的实际应用,考查频数,频率和样本容量之间的关系,考查离散型随机变量的分布列和期望,本题是一个综合问题20.(12分)(2011•新课标)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.【考点】圆的标准方程;直线与圆相交的性质.【专题】直线与圆.【分析】(Ⅰ)法一:写出曲线与坐标轴的交点坐标,利用圆心的几何特征设出圆心坐标,构造关于圆心坐标的方程,通过解方程确定出圆心坐标,进而算出半径,写出圆的方程;法二:可设出圆的一般式方程,利用曲线与方程的对应关系,根据同一性直接求出参数,(Ⅱ)利用设而不求思想设出圆C与直线x﹣y+a=0的交点A,B坐标,通过OA⊥OB建立坐标之间的关系,结合韦达定理寻找关于a的方程,通过解方程确定出a的值.【解答】解:(Ⅰ)法一:曲线y=x2﹣6x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(3﹣2,0).可知圆心在直线x=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2)2+t2,解得t=1,故圆C的半径为,所以圆C的方程为(x﹣3)2+(y﹣1)2=9.法二:圆x2+y2+Dx+Ey+F=0x=0,y=1有1+E+F=0y=0,x2 ﹣6x+1=0与x2+Dx+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为x2+y2﹣6x﹣2y+1=0(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足方程组,消去y,得到方程2x2+(2a﹣8)x+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根与系数的关系得到x1+x2=4﹣a,x1x2=①,由于OA⊥OB可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以可得2x1x2+a(x1+x2)+a2=0②由①②可得a=﹣1,满足△=56﹣16a﹣4a2>0.故a=﹣1.【点评】本题考查圆的方程的求解,考查学生的待定系数法,考查学生的方程思想,直线与圆的相交问题的解决方法和设而不求的思想,考查垂直问题的解决思想,考查学生分析问题解决问题的能力,属于直线与圆的方程的基本题型.21.(12分)(2011•新课标)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)证明:当x>0,且x≠1时,f(x)>.【考点】利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【专题】综合题;压轴题;分类讨论;转化思想.【分析】(I)据切点在切线上,求出切点坐标;求出导函数;利用导函数在切点处的值为切线的斜率及切点在曲线上,列出方程组,求出a,b的值.(II)构造新函数,求出导函数,通过研究导函数的符号判断出函数的单调性,求出函数的最值,证得不等式.【解答】解:(I).由于直线x+2y﹣3=0的斜率为﹣,且过点(1,1)所以解得a=1,b=1(II)由(I)知f(x)=所以考虑函数,则所以当x≠1时,h′(x)<0而h(1)=0,当x∈(0,1)时,h(x)>0可得;当从而当x>0且x≠1时,【点评】本题考查导函数的几何意义:在切点处的导数值为切线的斜率、考查通过判断导函数的符号求出函数的单调性;通过求函数的最值证明不等式恒成立.22.(10分)(2011•新课标)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.【考点】圆周角定理;与圆有关的比例线段.【专题】计算题;证明题.【分析】(I)做出辅助线,根据所给的AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根,得到比例式,根据比例式得到三角形相似,根据相似三角形的对应角相等,得到结论.(II)根据所给的条件做出方程的两个根,即得到两条线段的长度,取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH,根据四点共圆得到半径的大小.【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2﹣14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=(12﹣2)=5.故C,B,D,E四点所在圆的半径为5【点评】本题考查圆周角定理,考查与圆有关的比例线段,考查一元二次方程的解,考查四点共圆的判断和性质,本题是一个几何证明的综合题.23.(2011•新课标)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【考点】简单曲线的极坐标方程;轨迹方程.【专题】计算题;压轴题.【分析】(I)先设出点P的坐标,然后根据点P满足的条件代入曲线C1的方程即可求出曲线C2的方程;(II)根据(I)将求出曲线C1的极坐标方程,分别求出射线θ=与C1的交点A的极径为ρ1,以及射线θ=与C2的交点B的极径为ρ2,最后根据|AB|=|ρ2﹣ρ1|求出所求.【解答】解:(I)设P(x,y),则由条件知M(,).由于M点在C1上,所以即从而C2的参数方程为(α为参数)(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2﹣ρ1|=.【点评】本题考查点的极坐标和直角坐标的互化,以及轨迹方程的求解和线段的度量,属于中档题.24.(2011•新课标)设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【考点】绝对值不等式的解法.【专题】计算题;压轴题;分类讨论.【分析】(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f(x)≥3x+2的解集即可.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得﹣=﹣1,故a=2【点评】本题是中档题,考查绝对值不等式的解法,注意分类讨论思想的应用,考查计算能力,常考题型.。

2011年辽宁高考数学文科试卷带详解

2011年辽宁高考数学文科试卷带详解

2011年普通高等学校招生全国统一考试(辽宁卷)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x 1|>x },B ={x 21|<<-x },则A B = ( )A. {x 21|<<-x }B. {x 1|->x }C. {x 11|<<-x }D. {x 21|<<x }【测量目标】集合的基本运算(交集).【考查方式】集合的表示(描述法),求集合的交集. 【参考答案】D【试题解析】利用数轴可以得到A B ={x 1|>x } {x 21|<<-x }={x 21|<<x }. 2.i 为虚数单位,3571111i i i i+++= ( ) A. 0B. 2iC. 2i -D. 4i【测量目标】复数代数形式的四则运算.【考查方式】结合复数代数形式和方幂来考查四则运算. 【参考答案】A 【试题解析】3571111i i i i 0i i i i +++=-+-+=. 3.已知向量(2,1)=a ,(1,)k =-b ,(2)0-=a a b ,则=k ( )A. 12-B. 6-C. 6D. 12【测量目标】平面向量的数量积的综合应用.【考查方式】给出两向量数量积为零的条件,求待定参数. 【参考答案】D【试题解析】因为(2,1),(1,)k ==-a b ,所以2(5,2)k -=-a b .(步骤1) 又(2)0⋅-=a a b ,所以0)2(152=-⨯+⨯k ,得12=k .(步骤2)4.已知命题P :∃n ∈N ,2n >1000,则P ⌝为 ( )A. ∀n ∈N ,2n ≤1000B. ∀n ∈N ,2n >1000C. ∃n ∈N ,2n ≤1000D. ∃n ∈N ,2n <1000【测量目标】全称命题和特称命题的否定. 【考查方式】结合不等式考查特称命题的否定. 【参考答案】A【试题解析】特称命题的否定是全称命题,“>”的否定是“≤”,故正确答案是A 5.若等比数列{a n }满足a n a n +1=16n ,则公比为 ( )A. 2B. 4C. 8D. 16 【测量目标】等比数列的性质.【考查方式】给出相邻两项数列积的规律,化简得出数列的公比. 【参考答案】B【试题解析】设等比数列{a n }的公比为q ,116n n n a a +=,11216n n n a a +++∴=,(步骤1)∴216,4q q ==(步骤2) 6.若函数))(12()(a x x xx f -+=为奇函数,则a = ( )A.21 B. 32 C. 43D. 1 【测量目标】函数奇偶性的综合应用.【考查方式】利用奇函数的原点对称性,代入特殊点求出函数中的未知数. 【参考答案】A【试题解析】∵ 函数))(12()(a x x xx f -+=为奇函数,∴(2)(2),f f -=2(41)(2)a --+--即2=(41)(2)a +-,解得12a =.7.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为 ( )A.34B. 1C.54D.74【测量目标】抛物线的简单几何性质.【考查方式】给出焦点弦的线段关系,间接求解点到坐标轴的距离. 【参考答案】C【试题解析】设 A ,B 两点的横坐标分别为,m n 则由=3AF BF +及抛物线的定义可知132m n ++=, (步骤1) ∴1,2m n +=5.24m n +=(步骤2)即线段AB 的中点到y 轴的距离为5.4(步骤3)8.一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是 ( )A. 4B.32C. 2D.3【测量目标】由三视图求几何体的表面积与体积.【考查方式】给出正三棱柱的体积和线段的长度,转化为求对应平面的面积. 【参考答案】B【试题解析】设棱长为a ,由体积为32可列等式=⋅a a 24332,2=a ,(步骤1) 所求矩形的底边长为323=a ,这个矩形的面积是3223=⨯.(步骤2) 9.执行下面的程序框图,如果输入的n 是4,则输出的p 是 ( )A. 8B. 5C. 3D. 2【测量目标】选择结构的程序框图.【考查方式】考查循环结构的流程图, 注意循环条件的设置,以及循环体的构成,特别是注意最后一次循环的k 的值. 【参考答案】C【试题解析】若输入n =4,则执行s =0,t =1,k =1,p =1,判断1<4成立,进行第一次循环;(步骤1)p =2,s =1,t =2,k =2,判断2<4成立,进行第二次循环;(步骤2) p =3,s =2,t =2,k =3,判断3<4成立,进行第三次循环;(步骤3) p =4,s =2,t =4,k =4,判断4<4不成立,故输出p =4(步骤4).10.已知球的直径4SC A B =,,是该球球面上的两点,2AB =,45ASC BSC ∠=∠=,则棱锥S ABC -的体积为( )A.33 B. 233 C.433 D.533【测量目标】球体和三棱锥的体积.【考查方式】给出球体内部三棱锥的线段关系,利用线面垂直的关系求出对应三棱锥的体积.【参考答案】C【试题解析】设球心为O ,则BO AO ,是两个全等的等腰直角三角形斜边上的高,斜边,4=SO 故2==BO AO ,(步骤1)且有SC AO ⊥,SC BO ⊥. ∴1()3S ABC S AOB C AOB AOB V V V S SO OC ---=+=+△=3344243312=⨯⨯⨯.(步骤2) 11.函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为 ( )A.(1-,1)B.(1-,+∞)C.(∞-,1-)D.(∞-,+∞)【测量目标】函数的单调性、导函数的性质和不等式的应用.【考查方式】给出函数值和导函数满足的条件,将不等式转化为函数的值域,进而求出对应的解集. 【参考答案】B【试题解析】设()()(24)g x f x x =-+ , ()()2g x f x ''-=. (步骤1)因为对任意x ∈R ,2)(>'x f ,所以对任意x ∈R ,()0g x '>,则函数g (x )在R 上单调递增. (步骤2)又因为g (-1)=(1)(24)0f ---+=,故()0g x >,即()24f x x >+的解集为(1,)-+∞(步骤3)12.已知函数)(x f =A tan (ωx +ϕ)(π0,||2ωϕ><),y =)(x f 的部分图像如下图,则π()24f = ( )A. 2+3B.3C.33D.23- 【测量目标】)(x f =A tan (ωx +ϕ)的图象及性质.【考查方式】结合正切函数的图象,在给定范围内求出周期,进而得出解析式和函数值. 【参考答案】B 【试题解析】如图可知3ππ288T =-,即ππ24ω=,所以2=ω,(步骤1) 再结合图像可得ππ2π,82k k ϕ⨯+=+∈Z ,即πππ42k ϕ=+<,所以4143<<-k ,(步骤2)只有0=k ,所以π4ϕ=,又图像过点(0,1),代入得A tan π4=1,所以A =1,函数的解析式为π()tan(2)4f x x =+,则ππ()tan 3246f ==. (步骤3)第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为___________. 【测量目标】圆的方程,直线方程,直线与圆的位置关系.【考查方式】由圆上的两点坐标确定出过圆心的直线,进而求出圆的方程. 【参考答案】22(2)10x y -+= 【试题解析】直线AB 的斜率是311152AB k -==--,中点坐标是(3,2).故直线AB的中垂线方程()223y x -=-,(步骤1) 由()223,0,y x y -=-⎧⎪⎨=⎪⎩得圆心坐标(2,0)C ,||r AC ==223110+=,故圆的方程为22(2)10x y -+=.(步骤2)14.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x的回归直线方程:321.0254.0ˆ+=x y.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元. 【测量目标】回归直线方程的实际应用.【考查方式】由回归直线方程中系数的意义可直接求解. 【参考答案】0.254【试题解析】由于321.0254.0ˆ+=x y,当x 增加1万元时,年饮食支出y 增加0.254万元.15.S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=____________. 【测量目标】等差数列的综合应用.【考查方式】给出等差数列的某几项和之间的关系,通过待定系数法求出等差数列通项公式和某一项. 【参考答案】1-【试题解析】设等差数列的公差为d ,解方程组1116526,231,a d a d a d ⨯⎧+=+⎪⎨⎪+=⎩得2d =-, (步骤1)541.a a d =+=-(步骤2)16.已知函数()e 2xf x x a =-+有零点,则a 的取值范围是___________.【测量目标】函数的零点,单调性,极值,导数的性质,函数的零点与方程根的联系.. 【考查方式】通过函数有零点转化为方程有根,将里面的参数提取出来作为函数值来处理,应用导数和极值求出其参数的取值范围. 【参考答案】(],2ln 22-∞-【试题解析】函数()e 2xf x x a =-+有零点等价于()0,f x =即e 2xx a -+有解. 等价于2e xa x =-有解. (步骤1) 令()2e x g x x =-,∴()2e x g x '=-.当ln 2x >时,()0g x '<;当ln 2x <时,()0g x '>.(步骤2) ∴当ln 2x =时,()2e x g x x =-取到最大值2ln 22-,∴a 的取值范围是(],2ln 22-∞-.(步骤3)三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a . (I )求ba; (II )若c 2=b 2+3a 2,求B . 【测量目标】正弦定理和余弦定理.【考查方式】给出三角形中边和角满足的等式关系,由正弦定理和余弦定理求出相应的边和角.【试题解析】(I )由正弦定理得,22sin sin sin cos 2sin B A B A A +=,即22sin (sin cos )2sin B A A A += (步骤1)故sin 2sin ,B A =所以2.ba=(步骤2)………………6分 (II )由余弦定理和222(13)3,cos .2ac b a B c+=+=得(步骤1) 由(I )知222,b a =故22(23).c a =+(步骤2)可得21cos ,2B =又cos 0,B >故2cos ,2B =所以45B =. (步骤3) …………12分 18.(本小题满分12分)如图,四边形ABCD 为正方形, QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD . (I )证明:PQ ⊥平面DCQ ;(II )求棱锥Q ABCD -的的体积与棱锥P DCQ -的体积的比值.【测量目标】空间点、线、面之间的位置关系,线线、线面、面面垂直的性质与判定,三棱锥的体积.【考查方式】线线垂直⇒线面垂直, 给定线段间比例关系由此求出三棱锥体积. 【试题解析】(I )由条件知四边形PDAQ 为直角梯形因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD .又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC . (步骤1)在直角梯形PDAQ 中可得DQ =PQ =22PD ,则PQ ⊥QD (步骤2) 所以PQ ⊥平面DCQ . (步骤3) ………………6分 (II )设AB =a .由题设知AQ 为棱锥Q ABCD -的高,所以棱锥Q ABCD -的体积311.3V a = (步骤1)由(I )知PQ 为棱锥P DCQ -的高,而PQ =2a ,△DCQ 的面积为222a , 所以棱锥P DCQ -的体积为321.3V a =(步骤2) 故棱锥Q ABCD -的体积与棱锥P DCQ -的体积的比值为1 (步骤3).……12分 19.(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.(I )假设n =2,求第一大块地都种植品种甲的概率;(II )试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm 2)如下表: 品种甲403 397 390 404 388 400 412 406品种乙 419 403 412 418 408 423 400 413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据n x x x ,,,21⋅⋅⋅的的样本方差])()()[(1222212x x x x x x ns n -+⋅⋅⋅+-+-=,其中x 为样本平均数.【测量目标】简单随机抽样,随机事件的概率,用平均数和方差估计总体的数字特征. 【考查方式】列出基本事件数,从而得出概率; 根据两类个体的平均数和方差来相互比较作出优化选择. 【试题解析】(I )设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A =“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个; (1,2),(1,3),(1,4),(2,3),(2,4),(3,4).(步骤1) 而事件A 包含1个基本事件:(1,2). 所以1().6P A =(步骤2)………………6分 (II )品种甲的每公顷产量的样本平均数和样本方差分别为:1(403397390404388400412406)400,8x =+++++++=甲2222222221(3(3)(10)4(12)0126)57.25.8S =+-+-++-+++=甲(步骤1) ………………8分 品种乙的每公顷产量的样本平均数和样本方差分别为:1(419403412418408423400413)412,8x =+++++++=乙2222222221[7(9)06(4)11(12)1]56.8S =+-+++-++-+=乙(步骤2) ………………10分 由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙. (步骤3) 20.(本小题满分12分)设函数)(x f =x +ax 2+b ln x ,曲线y =)(x f 过P (1,0),且在P 点处的切斜线率为2.(I )求a ,b 的值; (II )证明:()22f x x -….【测量目标】函数的单调性和导数的关系,极值,不等式的证明.【考查方式】给出点坐标和切点斜率代入解析式中求出各参数,利用函数的单调性和导数来证明不等式. 【试题解析】 (I )()12.bf x ax x'=++0x ≠(步骤1) …………2分 由已知条件得(1)0,(1) 2.f f =⎧⎨'=⎩即10,12 2.a a b +=⎧⎨++=⎩解得1, 3.a b =-=(步骤2) ………………5分(II )()(0,)f x +∞的定义域为,由(I )知2()3ln .f x x x x =-+(步骤1)设2()()(22)23ln ,g x f x x x x x =--=--+则3(1)(23)()12.x x g x x x x-+'=--+=-(步骤2) 01,()0;1,()0.x g x x g x ''<<>><当时当时所以()g x 在(0,1)单调增加,在(1,)+∞单调减少.而(1)0,0,()0,()2 2.g x g x f x x =>-剟故当时即(步骤3) …………12分21.(本小题满分12分)如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l MN ⊥,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .(I )设12e =,求BC 与AD 的比值; (II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由.【测量目标】椭圆方程,直线斜率,直线与椭圆的位置关系,直线与直线的平行,不等式的应用.【考查方式】给出两椭圆之间的线段关系,进而设出椭圆和直线方程,求出对应线段的比例关系;将平行直线转化为斜率相等的条件,代入式后求出离心率的范围.【试题解析】(I )因为C 1,C 2的离心率相同,故依题意可设22222122242:1,:1,(0)x y b y x C C a b a b a a+=+=>> 设直线:(||)l x t t a =<,分别与C 1,C 2的方程联立,求得2222(,),(,).a b A t a t B t a t b a-- (步骤1)………………4分 当13,,,22A B e b a y y ==时分别用表示A ,B 的纵坐标,可知 222||3||:||.2||4B A y b BC AD y a === (步骤2)………………6分 (II )t =0时的l 不符合题意.0t ≠时,BO //AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN 相等,即2222,b a a t a t a b t t a--=- 解得222221.ab e t a a b e-=-=-- (步骤1) 因为2212||,01,1, 1.2e t a e e e-<<<<<<又所以解得 所以当202e <…时,不存在直线l ,使得BO //AN ; 当212e <<时,存在直线l 使得BO //AN . (步骤2) ………………12分 请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,A ,B ,C ,D 四点在同一圆上,AD 的延长线与BC 的延长线交于E 点,且EC =ED .(I )证明:CD //AB ;(II )延长CD 到F ,延长DC 到G ,使得EF =EG ,证明:A ,B,G ,F 四点共圆.【测量目标】直线与圆的位置关系,直线的平行.【考查方式】根据圆的性质和直线的位置关系证明出线段的平行;结合圆和三角形中的角度关系证明圆上各点对应关系.【试题解析】(I )因为EC =ED ,所以∠EDC =∠ECD .(步骤1)因为A ,B ,C ,D 四点在同一圆上,所以∠EDC =∠EBA .(步骤2)故∠ECD =∠EBA ,所以CD //AB . (步骤3)…………5分(II )由(I )知,AE =BE ,因为EF =EG ,故∠EFD =∠EGC从而∠FED =∠GEC . (步骤1)连结AF ,BG ,则△EF A ≌△EGB ,故∠F AE =∠GBE ,(步骤2)又CD //AB ,∠EDC =∠ECD ,所以∠F AB =∠GBA .所以∠AFG +∠GBA =180°.故A ,B ,G ,F 四点共圆 (步骤3)…………10分23.(本小题满分10分)选修4-4:坐标系统与参数方程 在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧==ϕϕsin cos y x (ϕ为参数),曲线C 2的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (0>>b a ,ϕ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点间的距离为2,当α=π2时,这两个交点重合. (I )分别说明C 1,C 2是什么曲线,并求出a 与b 的值; (II )设当α=π4时,l 与C 1,C 2的交点分别为A 1,B 1,当α=π4-时,l 与C 1,C 2的交点为A 2,B 2,求四边形A 1A 2B 2B 1的面积.【测量目标】圆和椭圆的参数方程,梯形的面积.【考查方式】根据射线与圆和椭圆的位置关系求出参数方程中各参数,进而求出交点横坐标由此得出梯形的面积.【试题解析】(I )C 1是圆,C 2是椭圆.(步骤1)当0α=时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a ,0),因为这两点间的距离为2,所以a =3.当π2α=时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1.(步骤2)(II )C 1,C 2的普通方程分别为22221 1.9x x y y +=+=和(步骤1) 当π4α=时,射线l 与C 1交点A 1的横坐标为22x =,与C 2交点B 1的横坐标为 310.10x '= 当π4α=-时,射线l 与C 1,C 2的两个交点A 2,B 2分别与A 1,B 1关于x 轴对称,(步骤2)因此,四边形A 1A 2B 2B 1为梯形.故四边形A 1A 2B 2B 1的面积为(22)()2.25x x x x ''+-= (步骤3)…………10分 24.(本小题满分10分)选修4-5:不等式选讲已知函数)(x f =|2x -||-5x -|.(I )证明: 3()3f x -剟;(II )求不等式)(x f ≥x 28-x +15的解集.【测量目标】不等式的证明,分段函数和集合的基本运算.【考查方式】对绝对值函数的分段讨论,进而得出不等式的解集.【试题解析】(I )3,2,()|2||5|27,25,3, 5.x f x x x x x x -⎧⎪=---=-<<⎨⎪⎩……(步骤1)当25,327 3.x x <<-<-<时所以3() 3.f x -剟 (步骤2)………………5分(II )由(I )可知,当22,()815x f x x x -+时剠的解集为空集;当225,()815{|535+3}x f x x x x x <<-+-时的解集为≤厔; 当25,()815{|26}x f x x x x x -+时的解集为厖剟.(步骤1)综上,不等式2()815{|536}.f x x x x x -+-的解集为厔? (步骤2)…………10分。

2011年辽宁高考数学试题及答案(文科)

2011年辽宁高考数学试题及答案(文科)

2011年普通高等学校招生全国统一考试(辽宁卷)数学(文科)考试说明:本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

(1)答题前,考生先将自己的姓名、准考证号码填写清楚。

(2)请按照题号顺序在各题目的答题区内作答,在草稿纸和试卷上答题视为无效。

(3)保持卡面清洁,不得折叠、不要弄皱,不准使用涂改液和刮纸刀等用具。

第Ⅰ卷(选择题 共60分)一.选择题(每题5分,共12小题,满分60分,每小题只有一个选项正确。

) 1. 若集合}22{+=+=x x x A ,},02{2>+=x x B 则=⋂B AA .)0,2(-B .)0,2[-C . ),0(+∞D .),0[+∞ 2. 复数ii -12的共轭复数是A .i -1B .i +1C .i +-1D .i --13.已知43)4sin(-=+πx ,则x 2sin 的值是A .81-B .81 C .42 D .42-4. 抛物线x y122-=的准线与双曲线13922=-y x 的两条渐近线所围成的三角形面积是A .3B .32C .2D .335. A 、B 两名同学在4次数学考试中的成绩统计如下面的茎叶图所示,若A 、B 的平均成绩分别是A X 、BX,则下列结论正确的是A .A X >BX ,B 比A 的成绩稳定 B .A X <BX ,B 比A 的成绩稳定 C .A X >BX ,A 比B 的成绩稳定 D .A X<BX, A 比B 的成绩稳定6. 双曲线)0,0(12222>>=-b a by ax 的左、右焦点分别为1F 、2F ,离心率为e ,过的直线与双曲线的右支交与A 、B 两点,若AB F 1△是以A 为直角顶点的等腰直角三角形,则=2e A .323- B .323+ C .225+ D .225- 7. 函数)(xf y =在定义域)3,23(-内可导,其图像如图所示,记)(x f y =的导函数为)(x f y '=,则不等式0)(≤'x f 的解集为 A .]3,2[]1,31[⋃-B .]38,34[]31,1[⋃-C .]2,1[]21,23[⋃-D .),3[]2,1[]21,23[+∞⋃⋃-8.执行下面的程序框图,若9=P ,则输出的=SA .187B .98C .52D .13109. 已知某个几何体的三视图如图(正视图中的弧线是半圆),根据图中标出的尺寸,可得这个几何体的表面积是(单位:2cm )A .π24+B .π34+C .π26+D .π36+10.现将一个边不等的凸五边形的各边进行染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色,则共有( )种染色方法A .30B .36C .48D .5011.下列命题中正确的一项是 A .“21=m ”是“直线013)2(=+++my x m 与直线03)2()2(=-++-y m x m 相互平行”的充分不必要条件B .“直线l 垂直平面α内无数条直线”是“直线l 垂直于平面α”的充分条件C .已知a ,b ,c 为非零向量,则“a •b=a •c ”是“b=c ”的充要条件D .R x p ∈∃:,0222≤++x x 。

2011年辽宁省高考数学试卷(文科)

2011年辽宁省高考数学试卷(文科)

2011年辽宁省高考数学试卷(文科)一.选择题:本大题共12 小题.每小题5 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、(2011�6�1辽宁)已知集合A{x|x>1},B={x|-1<x<2}则A∩B=()A、{x|-1<x<2} B、{x|x>-1} C、{x -1<x<1} D、{x|1<x<2} 考点:交集及其运算。

专题:计算题。

分析:利用交集的定义:由所有的属于两个集合的公共元素组成的集合;求出交集.解答:解:∵A={x|x >1},B={x|-1<x<2} ∴A∩B={x|1<x<2} 故选D 点评:本题考查利用集合的交集、补集、并集的定义,求出集合的交集、并集、补集.2、(2011�6�1辽宁)i 为虚数单位,=()A、0 B、2i C、-2i D、4i 考点:虚数单位i 及其性质。

专题:计算题。

分析:直接利用i 的幂运算,化简表达式即可得到结果.解答:解:= =0 故选A.点评:本题是基础题,考查复数的基本运算,i 的幂的运算性质,考查计算能力,常考题型.3、(2011�6�1辽宁)已知向量=(2,1),=(-1,k),�6�1(2 -)=0,则k=()A、-12 B、-6 C、6 D、12 考点:数量积判断两个平面向量的垂直关系。

分析:利用向量的数量积个数求出;再利用向量的运算律将已知等式展开,将的值代入,求出k 的值.解答:解:∵∴∵即10-k+2=0 解得k=12 故选D 点评:本题考查向量的坐标形式的数量积公式、考查向量的分配律.4、(2011�6�1辽宁)已知命题p:�6�9n∈N,2 n >1000,则¬p 为()A、�6�6n∈N,2 n ≤1000 B、�6�6n∈N,2 n >1000 C、:�6�9n∈N,2 n ≤1000 D、:�6�9n∈N,2 n <1000 考点:命题的否定。

专题:综合题。

分析:利用含量词的命题的否定形式:将“任意”与“存在”互换;结论否定,写出命题的否定.解答:解:∵命题p:�6�9n∈N,2 n >1000,则¬p 为�6�6n∈N,2 n ≤1000 故选A 点评:本题考查含量词的命题的否定形式:将“任意”与“存在”互换;结论否定即可.5、(2011�6�1辽宁)若等比数列a n 满足a n a n+1 =16 n ,则公比为()A、2 B、4 C、8 D、16 考点:等比数列的性质。

da2011年高考数学试卷答案 辽宁文

da2011年高考数学试卷答案 辽宁文

【参考答案】 【1】.D提示:直接计算即可. 【2】.A提示:根据2i 1=-,357111111110i i i i i i i i+++=-+-=. 【3】.D提示:2(4,2)(1,)(5,2)k k -=--=-a b ,由(2)0⋅-=a a b ,得(2,1)(5,2)0k ⋅-=, 解得12.k = 【4】.A提示:直接否定就行.即:,()p x M p x ∃∈,则:,().p x M p x ⌝∀∈⌝ 【5】.B提示:由116nn n a a +=,将n 换成1n +得11216n n n a a +++⋅=,所以有1121161616n n n n n n a a a a ++++⋅==⋅,即216q =,4q =.【6】.A提示:可以采用定义加以求解,也可采用特殊值法,(1)(1)f f -=-,解得1.2a = 【7】.C 提示:由2yx =,可知124p =,又=3AF BF +,可知点A 到y 轴的距离与点B 到y 轴的距离之和为15||||23222p AF BF +-⨯=-=,再利用梯形中位线定理,可以求出线段AB 的中点到y 轴的距离为54. 【8】.B提示:设正三棱柱底面边长及高为a,根据体积为2a =,所以底面正三角形的高为2=.【9】.C提示:按照程序框图的流程,直接进行演算即可. 【10】.C提示:由ASC BSC ∠=∠,能够知道SC AB ⊥,过A 向SC 作垂线,垂足为H ,连接BH ,由于ASC BSC ∆≅∆,所以BH SC ⊥,这样,大棱锥S ABC -被分割成两个小棱锥,一个是S ABH -,另一个是C ABH -,其中2AH BH ==,所以13S ABC ABH V S SC -∆=⨯⨯【11】.B提示:构造函数()()24g x f x x =--()x ∈R ,所以()()2g x f x ''=-,根据题意,()20f x '->,因此,()0g x '>,故()g x 在R 上是增函数,又因为(1)(1)2(1)42240.g f -=--⨯--=+-=所以,()(24)0f x x -+>,也即()(1)g x g >-,由()g x 的单调性,可得 1.x >- 【12】.B提示:由图像可知,3πππ2884T =-=,所以1π2T =,即2ω=.又3π()08f =,即3π0t a n (2)8A ϕ=⨯+, 又π||2ϕ<,故π4ϕ=. 再由(0)1f =,故1A =. 综上可知,π()tan(2)4f x x =+.所以π()24f =【13】.22(2)10x y -+=提示:设所求圆的圆心为(,0)a ,圆的方程为222()x a y r -+=,则有2222(5)1(1)9a r a r ⎧-+=⎪⎨-+=⎪⎩,,解得2210.a r =⎧⎨=⎩,故所求圆的方程为22(2)10x y -+=. 【14】.0.254提示:由321.0254.0ˆ+=x y可以看出,x 每增加一个单位,y 增加0.254个单位. 【15】.-1提示:根据已知条件,得34560a a a a +++=,又3645a a a a +=+,所以,450a a +=,又41a =,所以5 1.a =-【16】.(,2ln 22]-∞-提示:函数()f x 有零点,可以转化为函数的最小值不大于0,利用导数,可以求出函数()f x 在(,ln 2)-∞上是减函数,在(ln 2,)+∞上是增函数,所以()f x 的最大值为(ln 2)22ln 2f a =-+,因此22ln 20a -+≤,即(,2ln 22]a ∈-∞-.【17】.解:(I )由正弦定理得,22sin sin sin cos A B B A A +=,即22sin (sin cos )B A A A +=,即sin B A =,所以ba=(Ⅱ)有余弦定理222cb =,得cos B =由(I )知222b a =,故22(2c a =.可得21cos 2B =,又cos 0B >,故cos B =所以45B =. 【18】.解:(I)由条件知PDAQ 为直角梯形.因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD .又四边形ABCD 为正方形,DC AD ⊥,所以DC ⊥平面PDAQ ,可得PQ ⊥DC .在直角梯形PDAQ 中可得2DQ PQ PD ==,则PQ ⊥QD . 所以PQ ⊥平面.DCQ (Ⅱ)设.AB a =由题设知AQ 为棱锥Q ABCD -的高,所以棱锥Q ABCD -的体积3113V a =.由(Ⅰ)知PQ 为棱锥P DCQ -的高,而PQ ,△DCQ 的面积为22a . 所以棱锥P DCQ -的体积3213V a =, 故棱锥Q ABCD -的体积与棱锥P DCQ -的体积的比值为1 .【19】.解:(Ⅰ)设第一大块地中的两小块地编号为1,2.第二大块地中的两小块地编号为3,4,令事件A =“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个:(1,2 ),(1,3) ,(1,4),(2,3),(2,4),(3,4),而事件A 包含l 个基本事件:(1,2), 所以()P A =16. (II )品种甲的每公顷产量的样本平均数和样本方差分别为:2222222221(403397390404388400412406)400,81[3(3)(10)4(12)0126]57.25.8x S =⨯+++++++==⨯+-+-++-+++=甲甲品种乙的每公顷产量的样本平均数和样本方差分别为:2222222221[419403412418408423400413]412,81[7(9)06(4)11(12)1]56.8x S =⨯+++++++==⨯+-+++-++-+=乙乙由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙. 【20】.解:(Ⅰ)()12,bf x ax x'=++由已知条件得(1)0,(1) 2.f f =⎧⎨'=⎩即1+0,12 2.a a b =⎧⎨++=⎩解得1, 3.a b =-=(Ⅱ)()f x 的定义域为+∞(0,),由I ()知23ln f x x x x -+()=.设2()()(22)23ln ,g x f x x x x x =--=--+则3(1)(23)()12.x x g x x x x-+'=--+=- 当01x <<时,()0;1()0.g x x g x ''>><当时,所以()g x 在区间(0,1)内单调增加,在区间+∞(1,)内单调减少.而(1)0.0g x =>故当时,g x ≤()0,即f x x ≤()2-2.【21】.解:(I )因为1C ,2C 的离心率相同,故依题意可设22222122242:1,:1,(0)x y b y x C C a b a b a a+=+=>>.设直线:(||)l x tt a =<,分别与1C ,2C 的方程联立,求得((A t B t当12e =时,,2b a =分别用,A B y y 表示,A B 的纵坐标,可知 222||3||:||.2||4B A y b BC AD y a ===(II )t =0时的l 不符合题意,0t ≠时,BO //AN 当且仅当BO 的斜率与AN 的斜率相等,即,a b t t a=-解得222221.ab e t a a b e-=-=-⋅-因为221||,01,1, 1.2e t a e e e-<<<<<<又所以所以当02e <≤时,不存在直线l ,使得BO //AN ;1e <<时,存在直线l 使得BO //AN . 【22】.解:(I )因为EC ED =,所以EDC ECD ∠=∠. 因为,,,A B C D 四点在同一圆上,所以EDC EBA ∠=∠. 故ECD EBA ∠=∠, 所以//CD AB .(II )由(I )知,AE BE =,因为EF EG =,故EF D EG C ∠=∠,从而FED GEC ∠=∠.连结,AF BG ,则EFA EGB ∆≅∆,故FAE GBE ∠=∠, 又CD //AB ,EDC EBA ∠=∠,所以FAB GBA ∠=∠. 所以AFG GBA ∠=∠=180°. 故,,,A B G F 四点共圆.【23】.解:(I )1C 是圆,2C 是椭圆.当0α=时,射线l 与1C ,2C 交点的直角坐标分别为(1,0),(a ,0),因为这两点间的距离为2,所以a =3. 当π2α=时,射线l 与1C ,2C 交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以1b =.(II )1C ,2C 的普通方程分别为22221 1.9x x y y +=+=和 当π4α=时,射线l 与1C 交点1A 的横坐标为2x =,与2C 交点1B 的横坐标为x '=当π4α=-时,射线l 与1C ,2C 的两个交点22,A B 分别与11,A B 关于x 轴对称,因此,四边形1221A A B B 为梯形.故四边形1221A A B B 的面积为(22)()2.25x x x x ''+-=【24】.(I )证明:3,2,()|2||5|27,25,3, 5.x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩当25x <<时,327 3.x -<-< 所以3() 3.f x -≤≤ (II )解:由(I )可知, 当2x ≤时,2()815f x x x ≥-+的解集为空集;当25x <<时,2()815f x x x ≥-+的解集为{|55}x x ≤<;当5x ≥时,2()815f x x x ≥-+的解集为{|56}x x ≤≤. 综上,不等式2()815f x x x ≥-+的解集为{|56}.x x ≤≤【End】。

高考文科数学(辽宁卷)

高考文科数学(辽宁卷)

2011年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A ={x 1|>x },B ={x 21|<<-x }},则A I B = A .{x 21|<<-x } B .{x 1|->x }C .{x 11|<<-x }D .{x 21|<<x }2.i 为虚数单位,=+++7531111ii i i A .0 B .2i C .i 2-D .4i3.已知向量)1,2(=a ,),1(k -=b ,0)2(=-⋅b a a ,则=k A .12- B .6-C .6D .12 4.已知命题P :∃n ∈N ,2n >1000,则⌝P 为 A .∀n ∈N ,2n ≤1000 B .∀n ∈N ,2n >1000C .∃n ∈N ,2n ≤1000D .∃n ∈N ,2n <1000 5.若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8D .166.若函数))(12()(a x x xx f -+=为奇函数,则a =A .21B .32C .43D .17.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB的中点到y 轴的距离为A .34 B .1 C .54D .748.一个正三棱柱的侧棱长和底面边长相等,体积为32, 它的三视图中的俯视图如右图所示,左视图是一个矩形, 则这个矩形的面积是A .4B .32C .2D .39.执行右面的程序框图,如果输入的n 是4,则输出的P 是 A .8 B .5 C .3 D .210.已知球的直径SC=4,A ,B 是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC 的体积为A 3B 23C 43D 5311.函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为 A .(1-,1) B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)12.已知函数)(x f =A tan (ωx +ϕ)(2||,0πϕω<>),y =)(x f 的部分图像如下图,则=)24(πfA .3B 3C .33D .23二、填空题:本大题共4小题,每小题5分.13.已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为___________. 14.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:321.0254.0ˆ+=x y.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元.15.S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=____________. 16.已知函数a x e x f x +-=2)(有零点,则a 的取值范围是___________. 三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A 2. (I )求b a; (II )若c 2=b 23a 2,求B .18.(本小题满分12分)如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD . (I )证明:PQ ⊥平面DCQ ;(II )求棱锥Q —ABCD 的的体积与棱锥P —DCQ 的体积的比值.19.(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙. (I )假设n =2,求第一大块地都种植品种甲的概率;(II )试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在个小块2品种甲 403397390404388400412406品种乙419 403 412 418 408 423 400 413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据n x x x ,,,21⋅⋅⋅的的样本方差])()()[(1222212x x x x x x n s n -+⋅⋅⋅+-+-=,其中x 为样本平均数.20.(本小题满分12分)设函数)(x f =x +ax 2+b ln x ,曲线y =)(x f 过P (1,0),且在P 点处的切斜线率为2.(I )求a ,b 的值;(II )证明:)(x f ≤2x -2.21.(本小题满分12分)如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .(I )设12e =,求BC 与AD 的比值; (II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4-1:几何证明选讲如图,A ,B ,C ,D 四点在同一圆上,AD 的延长线与BC 的延长线交于E 点,且EC =ED . (I )证明:CD //AB ;(II )延长CD 到F ,延长DC 到G ,使得EF =EG ,证明:A ,B ,G ,F 四点共圆.23.(本小题满分10分)选修4-4:坐标系统与参数方程在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧==ϕϕsin cos y x (ϕ为参数),曲线C 2的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (0>>b a ,ϕ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点间的距离为2,当α=2π时,这两个交点重合. (I )分别说明C 1,C 2是什么曲线,并求出a 与b 的值; (II )设当α=4π时,l 与C 1,C 2的交点分别为A 1,B 1,当α=4π-时,l 与C 1,C 2的交点为A 2,B 2,求四边形A 1A 2B 2B 1的面积.24.(本小题满分10分)选修4-5:不等式选讲已知函数)(x f =|x -2||-x -5|. (I )证明:3-≤)(x f ≤3;(II )求不等式)(x f ≥x 28-x +15的解集.参考答案一、选择题1—5 DADAB 6—10 ACBCC 11—12 BB 二、填空题13.22(2)10x y -+= 14.0.254 15.—1 16.(,2ln 22]-∞- 三、解答题17.解:(I )由正弦定理得,22sin sin cos A B A A +=,即22sin (sin cos )B A A A +=故sin ,bB A a==所以 ………………6分(II )由余弦定理和222(1,cos .2ac b B c+=+=得由(I )知222,b a =故22(2.c a =+可得21cos ,cos 0,cos 4522B B B B =>==o 又故所以 …………12分 18.解:(I )由条件知PDAQ 为直角梯形因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD.又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC.在直角梯形PDAQ 中可得DQ=PQ=2PD ,则PQ ⊥QD 所以PQ ⊥平面DCQ. ………………6分 (II )设AB=a .由题设知AQ 为棱锥Q —ABCD 的高,所以棱锥Q —ABCD 的体积311.3V a =由(I )知PQ 为棱锥P —DCQ 的高,而,△DCQ 的面积为22a , 所以棱锥P —DCQ 的体积为321.3V a =故棱锥Q —ABCD 的体积与棱锥P —DCQ 的体积的比值为1.…………12分19.解:(I )设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A=“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个;(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).而事件A 包含1个基本事件:(1,2). 所以1().6P A =………………6分 (II )品种甲的每公顷产量的样本平均数和样本方差分别为:222222221(403397390404388400412406)400,81(3(3)(10)4(12)0126)57.25.8x S =+++++++==+-+-++-+++=甲甲………………8分 品种乙的每公顷产量的样本平均数和样本方差分别为:2222222221(419403412418408423400413)412,81(7(9)06(4)11(12)1)56.8x S =+++++++==+-+++-++-+=乙乙………………10分 由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙. 20.解:(I )()12.bf x ax x'=++…………2分 由已知条件得(1)0,10,(1) 2.12 2.f a f a b =+=⎧⎧⎨⎨'=++=⎩⎩即 解得1, 3.a b =-= ………………5分(II )()(0,)f x +∞的定义域为,由(I )知2()3ln .f x x x x =-+设2()()(22)23ln ,g x f x x x x x =--=--+则3(1)(23)()12.x x g x x x x-+'=--+=- 01,()0;1,()0.()(0,1),(1,).x g x x g x g x ''<<>><+∞当时当时所以在单调增加在单调减少而(1)0,0,()0,()2 2.g x g x f x x =>≤≤-故当时即 ………………12分 21.解:(I )因为C 1,C 2的离心率相同,故依题意可设22222122242:1,:1,(0)x y b y x C C a b a b a a+=+=>>设直线:(||)l x tt a =<,分别与C 1,C 2的方程联立,求得2222(,),(,).a b A t a t B t a t b a-- ………………4分 当13,,,2A B e b a y y ==时分别用表示A ,B 的纵坐标,可知 222||3||:||.2||4B A y b BC AD y a === ………………6分(II )t=0时的l 不符合题意.0t ≠时,BO//AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN -相等,即2222,b a a t a t a b t t a--=-解得222221.ab e t a a b e-=-=-⋅- 因为2212||,01,1, 1.2e t a e e e-<<<<<<又所以解得 所以当202e <≤时,不存在直线l ,使得BO//AN ; 当21e <<时,存在直线l 使得BO//AN. ………………12分 22.解:(I )因为EC=ED ,所以∠EDC=∠ECD.因为A ,B ,C ,D 四点在同一圆上,所以∠EDC=∠EBA. 故∠ECD=∠EBA ,所以CD//AB. …………5分(II )由(I )知,AE=BE ,因为EF=FG ,故∠EFD=∠EGC从而∠FED=∠GEC.连结AF ,BG ,则△EFA ≌△EGB ,故∠FAE=∠GBE , 又CD//AB ,∠EDC=∠ECD ,所以∠FAB=∠GBA. 所以∠AFG+∠GBA=180°.故A ,B ,G ,F 四点共圆 …………10分 23.解:(I )C 1是圆,C 2是椭圆.当0α=时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a ,0),因为这两点间的距离为2,所以a =3. 当2πα=时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1.(II )C 1,C 2的普通方程分别为22221 1.9x x y y +=+=和 当4πα=时,射线l 与C 1交点A 1的横坐标为2x =,与C 2交点B 1的横坐标为10x '=当4πα=-时,射线l 与C 1,C 2的两个交点A 2,B 2分别与A 1,B 1关于x 轴对称,因此,四边形A 1A 2B 2B 1为梯形. 故四边形A 1A 2B 2B 1的面积为(22)()2.25x x x x ''+-= …………10分24.解:(I )3,2,()|2||5|27,25,3, 5.x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩当25,327 3.x x <<-<-<时所以3() 3.f x -≤≤ ………………5分 (II )由(I )可知,当22,()815x f x x x ≤≥-+时的解集为空集;当225,()815{|55}x f x x x x x <<≥-+-≤<时的解集为;当25,()815{|56}x f x x x x x ≥≥-+≤≤时的解集为.综上,不等式2()815{|56}.f x x x x x ≥-+-≤≤的解集为 …………10分。

2011年辽宁卷文科数学高考试卷(原卷 答案)

2011年辽宁卷文科数学高考试卷(原卷 答案)

绝密★启用前2011年普通高等学校招生全国统一考试(辽宁卷)文科数学本试卷共24题,共150分。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第I 卷(选择题)一、单选题 1.已知集合A={x },B={x},则A B=( )A .{x }B .{x }C .{x}D .{x}2.(2)i 为虚数单位,3571111i i i i +++=( ) A .0B .2iC .-2iD .4i3.已知向量()2,1a =r,()1,r b k =−,()20a a b ⋅−=,则k =( )A .-12B .-6C .6D .124.已知命题:N,21000n P n ∃∈>,则P ⌝为( )A .N,2100n n ∀∈…B .N,21000n n ∀∈> C .N,21000n n ∃∈…D .N,21000n n ∃∈<5.若等比数列{a n }满足a n a n +1=16n ,则公比为( ) A .2 B .4 C .8 D .16 6.若函数f (x )=为奇函数,则a=( )A .B .C .D .17.已知F 为抛物线2y x =的焦点,,A B 是该抛物线上的两点,3AF BF +=,则线段AB 的中点到y 轴的距离为 ( ) A .34B .1C .54D .749.执行右面的程序框图,如果输入的n 是4,则输出的P 是A .8B .5C .3D .211.函数()f x 的定义域为R ,()12f −=,对任意x ∈R ,()2f x '>,则()24f x x >+的解集为( ) A .()1,1−B .()1,−+∞C .(),1−∞−D .(),−∞+∞12.已知函数f (x )=A tan (ωx +φ)(ω>0,|φ|2π<),y =f (x )的部分图象如图,则f (24π)=( )A .2+BC .3D .2第II 卷(非选择题)二、填空题13.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________. 14.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:^y =0.245x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_______万元. 15.15.(15)S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=____________。

2011年高考辽宁卷文科数学试题及答案

2011年高考辽宁卷文科数学试题及答案

2011年普通高等学校招生全国统一考试文科数学(辽宁卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合A ={x 1|>x },B ={x 21|<<-x }},则A B =(A ){x 21|<<-x }(B ){x 1|->x } (C ){x 11|<<-x } (D ){x 21|<<x } (2)i 为虚数单位,=+++7531111iiii(A )0 (B )2i (C )i 2- (D )4i(3)已知向量)1,2(=a ,),1(k -=b ,0)2(=-⋅b a a ,则=k(A )12-(B )6-(C )6 (D )12(4)已知命题P :∃n ∈N ,2n>1000,则⌝P 为(A )∀n ∈N ,2n≤1000 (B )∀n ∈N ,2n>1000 (C )∃n ∈N ,2n≤1000 (D )∃n ∈N ,2n<1000 (5)若等比数列{a n }满足a n a n +1=16n ,则公比为(A )2 (B )4 (C )8 (D )16(6)若函数))(12()(a x x xx f -+=为奇函数,则a =(A )21 (B )32 (C )43 (D )1(7)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为 (A )34(B )1 (C )54(D )74(8)一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是(A )4 (B )32 (C )2 (D )3 (9)执行右面的程序框图,如果输入的n 是4,则输出的P 是(A )8(B )5 (C )3 (D )2(10)已知球的直径SC=4,.A.,B 是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC 的体积为(A )3(B )3(C )3(D 3(11)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为(A )(1-,1) (B )(1-,+∞) (C )(∞-,1-) (D )(∞-,+∞)(12)已知函数)(x f =A tan (ωx +ϕ)(2||,0πϕω<>),y =)(x f 的部分图像如下图,则=)24(πf(A )2+ (B(C ) 3(D )2-二、填空题:本大题共4小题,每小题5分. (13)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为___________. (14)调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:321.0254.0ˆ+=x y.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元.(15)S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=____________. (16)已知函数a x e x f x +-=2)(有零点,则a 的取值范围是___________.三、解答题:解答应写文字说明,证明过程或演算步骤. (17)(本小题满分12分)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A a . (I )求b a;(II )若c 2=b 22,求B .(18)(本小题满分12分)如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(I )证明:PQ ⊥平面DCQ ;(II )求棱锥Q —ABCD 的的体积与棱锥P —DCQ 的体积的比值.(19)(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.(I )假设n =2,求第一大块地都种植品种甲的概率;(II )试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm 2)如下表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据n x x x ,,,21⋅⋅⋅的的样本方差])()()[(1222212x x x x x x ns n -+⋅⋅⋅+-+-=,其中x 为样本平均数.(20)(本小题满分12分)设函数)(x f =x +ax 2+b ln x ,曲线y =)(x f 过P (1,0),且在P 点处的切斜线率为2.(I )求a ,b 的值;(II )证明:)(x f ≤2x -2.(21)(本小题满分12分)如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .(I )设12e =,求B C 与A D 的比值;(II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由.请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图,A ,B ,C ,D 四点在同一圆上,AD 的延长线与BC 的延长线交于E 点,且EC =ED .(I )证明:CD //AB ;(II )延长CD 到F ,延长DC 到G ,使得EF =EG ,证明:A ,B ,G ,F 四点共圆.(23)(本小题满分10分)选修4-4:坐标系统与参数方程在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧==ϕϕsin cos y x (ϕ为参数),曲线C 2的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (0>>b a ,ϕ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点间的距离为2,当α=2π时,这两个交点重合.(I )分别说明C 1,C 2是什么曲线,并求出a 与b 的值; (II )设当α=4π时,l 与C 1,C 2的交点分别为A 1,B 1,当α=4π-时,l 与C 1,C 2的交点为A 2,B 2,求四边形A 1A 2B 2B 1的面积.(24)(本小题满分10分)选修4-5:不等式选讲已知函数)(x f =|x -2||-x -5|. (I )证明:3-≤)(x f ≤3;(II )求不等式)(x f ≥x 28-x +15的解集.2011年普通高等学校招生全国统一考试文科数学(辽宁卷)参考答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题不给中间分. 一、选择题1—5 DADAB 6—10 ACBCC 11—12 BB 二、填空题13.22(2)10x y -+= 14.0.254 15.—116.(,2ln 22]-∞- 三、解答题17.解:(I )由正弦定理得,22sin sin cos A B A A +=,即22sin (sin cos )B A A A +=故sin ,b B A a==所以………………6分(II )由余弦定理和222,cos 2c b B c=+=得由(I )知222,b a =故22(2.c a =+可得21cos ,cos 0,cos 4522B B B B =>==又故所以 …………12分18.解:(I )由条件知PDAQ 为直角梯形因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD.又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC.在直角梯形PDAQ 中可得DQ=PQ=2PD ,则PQ ⊥QD所以PQ ⊥平面DCQ. ………………6分 (II )设AB=a .由题设知AQ 为棱锥Q —ABCD 的高,所以棱锥Q —ABCD 的体积311.3V a =由(I )知PQ 为棱锥P —DCQ 的高,而,△DCQ的面积为22a ,所以棱锥P —DCQ 的体积为321.3V a =故棱锥Q —ABCD 的体积与棱锥P —DCQ 的体积的比值为1.…………12分19.解:(I )设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A=“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个; (1,2),(1,3),(1,4),(2,3),(2,4),(3,4). 而事件A 包含1个基本事件:(1,2). 所以1().6P A =………………6分(II )品种甲的每公顷产量的样本平均数和样本方差分别为:222222221(403397390404388400412406)400,81(3(3)(10)4(12)0126)57.25.8x S =+++++++==+-+-++-+++=甲甲………………8分 品种乙的每公顷产量的样本平均数和样本方差分别为:2222222221(419403412418408423400413)412,81(7(9)06(4)11(12)1)56.8x S =+++++++==+-+++-++-+=乙乙………………10分由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙. 20.解:(I )()12.b f x ax x'=++…………2分由已知条件得(1)0,10,(1) 2.12 2.f a f a b =+=⎧⎧⎨⎨'=++=⎩⎩即解得1, 3.a b =-= ………………5分(II )()(0,)f x +∞的定义域为,由(I )知2()3ln .f x x x x =-+设2()()(22)23ln ,g x f x x x x x =--=--+则3(1)(23)()12.x x g x x xx-+'=--+=-01,()0;1,()0.()(0,1),(1,).x g x x g x g x ''<<>><+∞当时当时所以在单调增加在单调减少而(1)0,0,()0,()2 2.g x g x f x x =>≤≤-故当时即 ………………12分 21.解:(I )因为C 1,C 2的离心率相同,故依题意可设22222122242:1,:1,(0)x y b y x C C a b abaa+=+=>>设直线:(||)l x tt a =<,分别与C 1,C 2的方程联立,求得((A t B t ………………4分当1,,,22A B e b a y y ==时分别用表示A ,B 的纵坐标,可知222||3||:||.2||4B A y b BC AD y a===………………6分(II )t=0时的l 不符合题意.0t ≠时,BO//AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN -相等,即,abtt a=-解得222221.abe t a a be-=-=-⋅-因为221||,01,1, 1.2e t a e e e-<<<<<<又所以解得所以当02e <≤时,不存在直线l ,使得BO//AN ;当12e <<时,存在直线l 使得BO//AN. ………………12分22.解:(I )因为EC=ED ,所以∠EDC=∠ECD.因为A ,B ,C ,D 四点在同一圆上,所以∠EDC=∠EBA. 故∠ECD=∠EBA ,所以CD//AB. …………5分(II )由(I )知,AE=BE ,因为EF=FG ,故∠EFD=∠EGC从而∠FED=∠GEC.连结AF ,BG ,则△EFA ≌△EGB ,故∠FAE=∠GBE , 又CD//AB ,∠EDC=∠ECD ,所以∠FAB=∠GBA. 所以∠AFG+∠GBA=180°.故A ,B ,G ,F 四点共圆 …………10分 23.解:(I )C 1是圆,C 2是椭圆.当0α=时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a ,0),因为这两点间的距离为2,所以a =3. 当2πα=时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1.(II )C 1,C 2的普通方程分别为22221 1.9xx y y +=+=和当4πα=时,射线l 与C 1交点A 1的横坐标为2x =,与C 2交点B 1的横坐标为10x '=当4πα=-时,射线l 与C 1,C 2的两个交点A 2,B 2分别与A 1,B 1关于x 轴对称,因此,四边形A 1A 2B 2B 1为梯形. 故四边形A 1A 2B 2B 1的面积为(22)()2.25x x x x ''+-= …………10分24.解:(I )3,2,()|2||5|27,25,3, 5.x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩当25,327 3.x x <<-<-<时所以3() 3.f x -≤≤ ………………5分 (II )由(I )可知,当22,()815x f x x x ≤≥-+时的解集为空集;当225,()815{|55}x f x x x x x <<≥-+-≤<时的解集为;当25,()815{|56}x f x x x x x ≥≥-+≤≤时的解集为.综上,不等式2()815{|56}.f x x x x x ≥-+-≤≤的解集为 …………10分2011年普通高等学校招生全国统一考试文科数学(辽宁卷)一.选择题:本大题共12小题.每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、(2011•辽宁)已知集合A {x |x >1},B ={x |﹣1<x <2}则A ∩B =( ) A 、{x |﹣1<x <2} B 、{x |x >﹣1}C 、{x ﹣1<x <1}D 、{x |1<x <2}考点:交集及其运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年普通高等学校招生全国统一考试(辽宁卷)
数 学(供文科考生使用)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的
姓名、准考证号填写在答题卡上. 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需
改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3
41
2.i 3 4 5 6 7.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB
的中点到y 轴的距离为
A .
34
B .1
C .
54
D .
74
8.一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图
如右图所示,左视图是一个矩形,则这个矩形的面积是
A .4
B .32
C .2
D .3
9.执行右面的程序框图,如果输入的n 是4,则输出的P 是 A .8 B .5 C .3 D .2
10.已知球的直径SC=4,A ,B 是该球球面上的两点,AB=2,
∠ASC=∠BSC=45°,则棱锥S-ABC 的体积为
A B
11
12
13. 14.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查
显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直
线方程:321.0254.0ˆ+=x y
.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元.
15.S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=____________. 16.已知函数a x e x f x +-=2)(有零点,则a 的取值范围是___________.
三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)
△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A . (I )求
b
a

(II )若c 2=b 22,求B .
20.(本小题满分12分)
设函数)(x f =x +ax 2+b ln x ,曲线y =)(x f 过P (1,0),且在P 点处的切斜线率为2.
(I )求a ,b 的值;
(II )证明:)(x f ≤2x -2.
21.(本小题满分12分)
如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l ⊥MN ,l 与C 1交于两点,与C 2交于两
点,这四点按纵坐标从大到小依次为A ,B ,C ,D .
(I )设1
2
e =
,求BC 与AD 的比值; (II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由.
22.ED .
23.(I )分别说明C 1,C 2是什么曲线,并求出a 与b 的值; (II )设当α=
4
π
时,l 与C 1,C 2的交点分别为A 1,B 1,当α=4
π
-
时,l 与C 1,C 2的
交点为A 2,B 2,求四边形A 1A 2B 2B 1的面积.
24.(本小题满分10分)选修4-5:不等式选讲
已知函数)(x f =|x -2||-x -5|. (I )证明:3-≤)(x f ≤3;
(II )求不等式)(x f ≥x 28-x +15的解集.
参考答案
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题
的主要考查内容比照评分参考制订相应的评分细则.
1—13.14.1516.17
由(I )知222,b a =故22(2.c a =
可得2
1cos ,cos 0,cos 4522
B B B B =
>== 又故所以 …………12分 18.解:(I )由条件知PDAQ 为直角梯形
因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD.
又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC.
在直角梯形PDAQ 中可得,则PQ ⊥QD
所以PQ ⊥平面DCQ. ………………6分 (II )设AB=a .
由题设知AQ 为棱锥Q —ABCD 的高,所以棱锥Q —ABCD 的体积311.3
V a = 由(I )知PQ 为棱锥P —DCQ 的高,而
,△DCQ
2
, 所以棱锥P —DCQ 的体积为321.3
V a =
故棱锥Q —ABCD 的体积与棱锥P —DCQ 的体积的比值为1.…………12分 19
3,4,
20.解:(I )()12.b
f x ax x
'=++
…………2分 由已知条件得(1)0,10,
(1) 2.12 2.
f a f a b =+=⎧⎧⎨

'=++=⎩⎩即 解得1, 3.a b =-= ………………5分
(II )()(0,)f x +∞的定义域为,由(I )知2
()3ln .f x x x x =-+
设2
()()(22)23ln ,g x f x x x x x =--=--+则
3(1)(23)()12.x x g x x x x
-+'=--+
=- 01,()0;1,()0.()(0,1),(1,).
x g x x g x g x ''<<>><+∞当时当时所以在单调增加在单调减少
而(1)0,0,()0,()2 2.g x g x f x x =>≤≤-故当时即 ………………12分 21.解:(I )因为C 1,C 2的离心率相同,故依题意可设
22222
122242:1,:1,(0)x y b y x C C a b a b a a
+=+=>>
k AN -当
12
e <<时,存在直线l 使得BO//AN. ………………12分 22.解:
(I )因为EC=ED ,所以∠EDC=∠ECD.
因为A ,B ,C ,D 四点在同一圆上,所以∠EDC=∠EBA. 故∠ECD=∠EBA ,
所以CD//AB. …………5分
(II )由(I )知,AE=BE ,因为EF=FG ,故∠EFD=∠EGC
从而∠FED=∠GEC.
连结AF ,BG ,则△EFA ≌△EGB ,故∠FAE=∠GBE , 又CD//AB ,∠EDC=∠ECD ,所以∠FAB=∠GBA. 所以∠AFG+∠GBA=180°.
故A ,B ,G ,F 四点共圆 …………10分 23.解:
(I )C 1是圆,C 2是椭圆.
当0α=时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a ,0),因为这两点间
的距离为2,所以a =3. 当
π
α=
时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重
24
所以3() 3.f x -≤≤ ………………5分 (II )由(I )可知,
当2
2,()815x f x x x ≤≥-+时的解集为空集;
当225,()815{|55}x f x x x x x <<≥-+-≤<时的解集为; 当25,()815{|56}x f x x x x x ≥≥-+≤≤时的解集为.
综上,不等式2()815{|56}.f x x x x x ≥-+≤≤的解集为 …………10分。

相关文档
最新文档