hypermesh详细步骤.docx

合集下载

hypermesh详细步骤

hypermesh详细步骤

Hypermesh操作步骤第一步:打开hypermesh。

选择optisrtuct第二步:导入文件我们以catia画出来的三维图为例(其他软件画出来的实体是一样的)。

在file下拉菜单中选择import中的geometry。

第三步:选择如下图1所示的两个选项,其中在file type中有多个选项如图2。

第四步:导入我们的文件。

打开文件夹,在文件类型中选择all files 找到你的实体文件。

文件找到之后点击import。

导入之后进行你的视角调节。

调节按钮如下。

下图我框下来的两个按钮你可以自己按一下,就知道是什么作用。

第五步:选择geom 中的quick edit。

选择toggle edge,选择这个功能之后,实现的是你实体的边框线的增减,左点实体的边框线是去掉它,右击是增加,这个功能我们现在一般是不需要用到的。

所有你不用进行操作。

点击右下角的return。

第六步:点击2D按钮,选择automensh如下图surfs是选择我们实体的面进行网格划分,如果我们点击surfs前面的到黑色三角形,我们会看到另一个elems的选项,它的功能是在我们已经画好网格的情况下面,选择部分网格对这部分的网格进行网格划分,我们这次只用到surfs。

点击黄色框中的surfs,选择all,选择实体的所有的面。

你也可以一个面一个面的去点击实体。

实体面选择好之后,选择elements size输入你们自己规定的网格的边长。

在这里我输入1。

在mesh type中,我们点击黑色倒三角选择我们网格的形状,这里选择mixed。

选好之后点击mesh。

下面的图已经画好了网格,在图中我们看到边上有数字,它们代表了这个边上的网格的个数,我们通过鼠标左击或者右击来改变个数,这个功能大家适当使用,以优化网格为目的。

第七步:点击model点击type选择all,点击card image选择mat1。

点击右边的create。

点开左上角的material中,右击aa,选择card edit点击[E],[NU],[RHO]默认的就可以。

Hypermesh学习教程

Hypermesh学习教程

1.1 实例:创建、编辑实体并划分3D网格本实例描述使用HyperMesh分割实体,并利用Solid Map功能创建六面体网格的过程。

模型如图5-1所示。

图5-1 模型结构本实例包括以下内容。

●导入模型。

●通过面生成实体。

●分割实体成若干个简单、可映射的部分。

●使用Solid Map功能创建六面体网格。

打开模型文件。

(1)启动HyperMesh。

(2)在User Profiles对话框中选择Default(HyperMesh)并单击OK按钮。

(3)单击工具栏()按钮,在弹出的Open file… 对话框中选择solid_geom.hm 文件。

(4)单击Open按钮,solid_geom.hm文件将被载入到当前HyperMesh进程中,取代进程中已有数据。

使用闭合曲面(bounding surfaces)功能创建实体。

(1)在主面板中选择Geom页,进入solids面板。

(2)单击()按钮,进入bounding surfs子面板。

(3)勾选auto select solid surfaces复选框。

(4)选择图形区任意一个曲面。

此时模型所有面均被选中。

(5)单击Create按钮创建实体。

状态栏提示已经创建一个实体。

注意:实体与闭合曲面的区别是实体边线线型比曲面边线粗。

(6)单击return按钮返回主面板。

使用边界线(bounding lines)分割实体。

(1)进入solid edit面板。

(2)选择trim with lines子面板。

(3)在with bounding lines栏下激活solids选择器。

单击模型任意位置,此时整个模型被选中。

(4)激活lines选择器,在图形区选择如图5-2所示线。

(5)单击trim按钮产生一个分割面,模型被分割成两个部分,如图5-3所示。

图5-2 选择边线图5-3 分割实体使用切割线(cut line)分割实体。

(1)在with cut line栏下激活solids选择器,选择STEP 3创建的较小的四面体,如图5-4所示。

hyperworks超详细步骤(几何清理、中面、划分网格、载荷约束载荷、后处理、优化)

hyperworks超详细步骤(几何清理、中面、划分网格、载荷约束载荷、后处理、优化)

HyperMeshAltairHyperMesh、HyperView、HyperCrash、HyperForm、RADIOSS、HyperGraph、HyperStudy、MotionSolve、OptiStruct……用HyperWorks做CAE分析及优化的基本流程:1、导入CAD模型到HyperMesh中2、几何修复3、HyperMesh划分网格4、添加材料、属性、约束、载荷5、OptiStruct计算求解6、RADIOSS输出结果,查看载荷分布、位移等等7、OptiStruct做优化8、RADIOSS查看优化结果9、导出到CAD软件中进行二次设计进入2D——qualityindex网格质量查看,comp.QI值越高,网格质量越差,comp.QI=0,网格全部达标左图中黄色部分代表网格质量不太好的区域,绿色部分代表都达标区域。

可通过点击place node拖动不达标区域节点或点击elemen optimize单击网格单元使其达标。

进入2D——qualityindex网格质量查看,comp.QI值越高,网格质量越差,comp.QI=0,网格全部达标左图中黄色部分代表网格质量不太好的区域,绿色部分代表都达标区域。

可通过点击place node拖动不达标区域节点或点击elemen optimize单击网格单元使其达标。

用碳纤维车架演示一遍基本流程1、导入CAD模型到HyperMesh中CAD软件:UG NX、CATIA、PRO-E、SolidWorks等2、几何修复3、划分网格4、添加材料、属性、约束、载荷弹性模量、泊松比、密度——Assign建立载荷5、OptiStruct计算求解6、RADIOSS输出结果位移:6、RADIOSS输出结果压力:强度:7、OptiStruct做优化1)创建拓扑设计变量2)创建优化响应3)创建目标4)运行优化8、RADIOSS查看优化结果9、导回到CAD软件中进行二次设计。

HyperMesh入门教程[1]

HyperMesh入门教程[1]

HyperMesh入门教程HyperMesh的界面和工作流程HyperMesh的几何模型操作HyperMesh的网格划分和质量检查HyperMesh的连接建立和材料赋予HyperMesh的加载和约束设置HyperMesh的输出控制和求解器选择HyperMesh的界面和工作流程当您启动HyperMesh软件后,您会看到如下图所示的主界面:![HyperMesh主界面](^4^)菜单栏:位于界面顶部,包含了各种功能菜单,如File、View、G eometry、Mesh等。

工具栏:位于菜单栏下方,包含了常用的工具按钮,如打开文件、保存文件、撤销操作、重做操作等。

图形窗口:位于界面中央,用于显示和操作几何模型和网格模型。

面板区域:位于图形窗口右侧,用于显示和设置各种功能面板,如几何面板、网格面板、连接面板等。

状态栏:位于界面底部,用于显示当前的操作状态、鼠标位置、内存使用情况等。

导入或者创建几何模型对几何模型进行清理和修改对几何模型进行网格划分对网格模型进行连接建立和材料赋予对网格模型进行加载和约束设置选择合适的求解器并输出分析文件在每一个步骤中,您可以使用相应的菜单或者工具栏来执行各种操作,也可以使用相应的面板来设置各种参数。

在图形窗口中,您可以使用鼠标或者键盘来选择、挪移、旋转或者缩放模型。

在状态栏中,您可以查看当前的操作提示或者错误信息。

HyperMesh的几何模型操作在HyperMesh中,几何模型是由点、线、曲面和体组成的。

点是最基本的几何实体,用于定义空间中的位置。

线是由点连接而成的直线或者曲线,用于定义边界或者轮廓。

曲面是由线围成的平面或者曲面,用于定义形状或者区域。

体是由曲面围成的实体,用于定义物体或者结构。

HyperMesh可以导入或者创建各种格式的几何模型,如IGES、STEP、CATIA、SolidWorks等。

导入或者创建几何模型后,您可以使用Geometry菜单或者工具栏来对几何模型进行各种操作,如挪移、旋转、缩放、复制、镜像、合并、分割、修复等。

Hypermesh 软件

Hypermesh 软件

Hypermesh 软件操作方法1.打开:打开Hypermesh ,选择OptiStruct(第三个)点击ok进入操作界面。

2.画点:Geom(最右边竖排第一个):nodes(第一行第一个),输入x、y、z的值,点击create (右边绿色)。

画错可以点击reject取消(仅能取消前一次所画的点)。

画完之后return退出界面。

3.画线:Geom:lines(第一行第二个),选择linear nodes (第二个),画平滑曲线可以选择Smooth nodes ,依次点击想要连成线的两个点,两个点均变白之后,点击右边create完成,return 退出。

4.合成一条线:Geom:lines edit(第二行第二个),点第一条线变黑后点相连的第二条线,这样两条线就合成一条了。

5.画面:画面需要两条相连接的曲线。

Geom:surfaces,Ruled (第九个)line list选择一条线,点第二行的line list,选择第二条线,之后再点击一下Ruled ,点击右边create完成,return退出。

如果不出现平面,可以点击Shaded Geometry and Surface Edges (最上边一行第十四个),就会出现平面了。

画长方形可以画出两条对边,然后分别选择相对的两条线进行上述操作。

6.画体:需要一个平面和一条与平面相交的线。

Geom:Solids(第一行第三个),点击(第八个)后面的三角选择Drag along line,surf选择平面后点击line list 平面变黑,选择与平面相连的线,点击右边drag+完成,return退出。

7.移动:Tool(最右边竖排倒数第二个):translate(第三列第一个),左上点击左边三角选择所要平移的元素名称,右上点击左侧三角选择想要沿哪个轴平移。

Magnitude是平移的距离,如果想在原位置保留所要平移的元素,选择此元素,点击中间英文单词后选择duplicate,current comp进行复制。

Hypermesh中基本操作流程

Hypermesh中基本操作流程

Hypermesh中基本操作流程⼀、有限元模型(即“⽹格”)的组成(1)⽹格①节点——提供“⽹格”的⼏何信息②材料——提供“⽹格”的材料特性参数③属性——提供“⽹格”的⼏何补充信息(例如:将薄板简化为⼆维⽹格(shell单元)时,需要对⽽⼆维⽹格(shell单元)补充薄板的“厚度信息”)注:在hypermesh中“⽹格的⼏何补充信息”称为“属性(Property),并通过Property Collector完成属性的建⽴和管理;在Ansys中称作“实常数(Real Constans)”;在Hypermesh ANSYS模版中的Component Manager中也称为“实常数(Real Constans)”。

④单元类型⼩结:①②③④所提供的各种“⽹格”信息就创建出了“有限元⽹格模型”。

(2)当有限元模型带有边界条件时需要补充以下内容⑤载荷及边界条件(3)做优化时需要补充以下内容⑥设计变量(Design Variable)⑦响应(Response)⼆、以上内容在Hypermesh中的创建步骤步①:⽹格划分——即:完成“节点”的创建。

步②:在⼯具条中单击图标(Material Collector)打开“材料定义对话框”:在对话框中⾃由指定材料名称,单击card image后⾯的输⼊框:单击选择“Material”。

单击“create/edit”,弹出“Meterial”卡⽚:卡⽚中,DENS_FLAG为“密度”;EX_FLAG为“弹性模量”;NUXY_FLAG为“泊松⽐”,分别单击DENS_FLAG、EX_FLAG、NUXY_FLAG前边的,然后分别输⼊数值,如下所⽰:注:中的数值“1”为ID号,默认即可,不⽤管它。

步③:在⼯具条中单击图标(Property Collector),弹出如下对话框:输⼊Prop name,单击Type后边的输⼊框:单击选择“单元种类”,如shell63单元属于shell(板壳)类单元,则选择SHELL即可。

hypermesh教程

hypermesh教程

hypermesh教程HyperMesh是一款强大的有限元前处理软件,具有丰富的功能和灵活的操作方式。

本教程将介绍一些常用的操作和技巧,帮助初学者快速上手使用HyperMesh。

1. 启动HyperMesh首先,双击打开HyperMesh软件。

在启动界面选择创建一个新模型。

然后选择创建一个新的分析模型。

2. 导入几何模型在模型创建界面,点击菜单栏的“文件”选项,选择“导入”命令。

在弹出的对话框中选择几何模型文件,并点击“打开”按钮。

此时,几何模型将被导入到HyperMesh中。

3. 创建网格选择菜单栏的“网格”选项,然后点击“网格生成”命令。

根据需要选择适当的网格类型和参数,并点击“生成”按钮。

HyperMesh将自动生成网格。

4. 添加材料属性在模型创建界面,选择菜单栏的“材料”选项,然后点击“新建属性”命令。

在弹出的对话框中输入材料属性的名称和参数,并点击“确定”按钮。

然后将材料属性分配给相应的单元。

5. 定义边界条件选择菜单栏的“加载”选项,然后点击“新建边界条件”命令。

在弹出的对话框中选择边界条件的类型和参数,并点击“确定”按钮。

然后将边界条件应用到相应的单元。

6. 定义载荷同样,在加载菜单栏中选择“新建载荷”命令。

在弹出的对话框中选择载荷类型和参数,并点击“确定”按钮。

然后将载荷应用到相应的单元。

7. 进行分析在菜单栏中选择“求解”选项,然后点击“开始分析”命令。

HyperMesh将根据定义的网格、材料属性、边界条件和载荷进行计算,并显示分析结果。

8. 后处理选择菜单栏的“后处理”选项,然后点击“显示结果”命令。

在弹出的对话框中选择需要显示的结果类型和参数,并点击“确定”按钮。

HyperMesh将显示相应的分析结果图形。

9. 保存模型和结果在菜单栏中选择“文件”选项,然后点击“保存”命令。

在弹出的对话框中选择保存的文件路径和名称,并点击“保存”按钮。

这样,模型和分析结果将被保存到指定的文件中。

HyperMesh傻瓜教程

HyperMesh傻瓜教程

强度分析以A380铝支架分析为例:1.Start license services双击, 进入界面,再点击Start Server,取得软件应用许可,进入Hyper mesh工作界面;2.选择模块Nastran双击,弹出对话框,选择Nastran点击OK。

点击斜向下的绿色箭头,进入界面,将已建好的模型导入HyperMesh;3.选择模型,去实体选择要分析的模型,点击图标变灰色,隐藏其它模型。

点击F2,框选模型(如未选中,模型为壳层),将实体(solid)去掉,只留下壳层(1111)。

;4.数模几何清理(auto cleanup 与F11),避免两条轮廓线过于接近或夹角太小(小于30度),再进行人工修清理模型曲线,点击F11,进入界面,一般使用下图1、2、5创建点与点之间的线、点垂直于线的线、删除特征线(鼠标左键去掉曲线,右键添加)去倒角,geom,defeature,surf fillets,find,选中要去掉的倒角面,remove。

5.切法兰面为了确定零件上与加载点相关联的节点位置,我们在约束(螺栓位置)与加载处切法兰面。

(5、1)找到圆心Geom—circle—find center;常按鼠标左键,在白线上选择三点,点击“find”,出现圆心(5、2) 画圆center&radius 点找到的圆心,输入radius尺寸,点N1,在面上点三个点,点“create"按住左键选中曲线找到节点, M6的螺栓,法兰半径6、5;M8/8、5,M10/10、5,M12/12、5;(5、3)Surface edit —trim with lines—with lines;选面、点鼠标中键,选线, 点鼠标中键,选择N1、N2、N3点。

6.生成表面三角形壳单元在component中建shell,右键make current,使生成的壳单元在该层中,若生成的网格没有在shell中,可以通过tool-organize-elems-retrieve来转移点击F12—surface/trias(选择三角形单元)选中—mesh,接下来再修理网格(左键增加节点,右键去掉节点),例如,倒角、加强筋位置至少两层单元,应力集中、加载处细分网格;7.检查壳单元,并局部优化。

HyperMesh傻瓜教程(可编辑修改word版)

HyperMesh傻瓜教程(可编辑修改word版)

强度分析以A380铝支架分析为例:1.Start license services双击,进入界面,再点击Start Server,取得软件应用许可,进入Hyper mesh工作界面;2.选择模块Nastran双击,弹出对话框,选择Nastran点击OK。

点击斜向下的绿色箭头,进入界面,将已建好的模型导入HyperMesh;3.选择模型,去实体选择要分析的模型,点击图标变灰色,隐藏其它模型。

点击F2,框选模型(如未选中,模型为壳层),将实体(solid)去掉,只留下壳层(1111)。

;4.数模几何清理(auto cleanup 和F11),避免两条轮廓线过于接近或夹角太小(小于30度),再进行人工修清理模型曲线,点击F11,进入界面,一般使用下图1、2、5创建点和点之间的线、点垂直于线的线、删除特征线(鼠标左键去掉曲线,右键添加)去倒角,geom,defeature,surf fillets,find,选中要去掉的倒角面,remove。

5.切法兰面为了确定零件上与加载点相关联的节点位置,我们在约束(螺栓位置)和加载处切法兰面。

(5.1)找到圆心Geom—circle—find center;常按鼠标左键,在白线上选择三点,点击“find”,出现圆心(5.2)画圆center&radius 点找到的圆心,输入radius尺寸,点N1,在面上点三个点,点“create"按住左键选中曲线找到节点, M6的螺栓,法兰半径6.5;M8/8.5,M10/10.5,M12/12.5;(5.3)Surface edit —trim with lines—with lines;选面、点鼠标中键,选线, 点鼠标中键,选择N1、N2、N3点。

6.生成表面三角形壳单元在component中建shell,右键make current,使生成的壳单元在该层中,若生成的网格没有在shell中,可以通过tool-organize-elems-retrieve来转移点击F12—surface/trias(选择三角形单元)选中—mesh,接下来再修理网格(左键增加节点,右键去掉节点),例如,倒角、加强筋位置至少两层单元,应力集中、加载处细分网格;7.检查壳单元,并局部优化。

(完整word版)hypermesh教程

(完整word版)hypermesh教程

第一章 HyperMesh入门首先我们要了解什么是mesh,简单的说mesh就是网格的划分。

有过有限元分析背景的人都知道,做有限元分析首先第一步工作就是建模,就是把分析对象按照一定的尺寸、比例划分成相互连接、不间断的网格单元,成为一个可以计算的力学模型,这是进行有限元计算的基础。

其划分的结果对于以后计算的结果将产成直接的影响,或者说mesh 是保证有限元分析结果准确的重要条件。

下面我就最简单的分析对象-—金属壳体,向大家讲述怎样进行一个物体的mesh。

我们所用软件是HyperMesh,它对于有限元的前处理和后处理都具有比较强大功能。

第一节软件环境首先,我们要了解工作的目标,即最终要把一个金属壳体处理成怎样的网格。

打开练习一,这个文件中已经包含geom和放到中面的elems。

我们现在要搞清的第一概念就是geom和elems的区别。

Geom即为几何体,是我们分析对象的真实模型,实际物体的三维表现形式;elems即为网格单元,是我们分析对象的力学模型,是对实际物体的一种近似模拟,是把实际物体转换成可计算的力学和数学模型,它不是简单的线和面,是带有数据的线和面。

在HyperMesh中,我们把geom和elems统称为comps,comps可以理解为图层,这里的图层和CAD的图层的概念不同.这里comps是以后赋予模型材料和几何性质的一个最小单元,或者说对于不同材料性质和不同几何性质的elems要处于不同的comps中。

每个comps都会有个名字,所以同一个名字的comps包含两个部分,即XXX(名字)geom和XXX(名字)elems。

当然几何体和力学模型是两个完全独立的部分,所以两者完全可以放在不同的comps中的,对于图层名字的管理我们在下一章再做详细说明。

对于一个金属壳体,我们知道金属板是具有均有厚度的,即在三维上它总是有个方向上是保持不变的,这样我们就可以用比较简单的二维单元来描述金属壳体,这个二维单元我们称壳体单元.我们把这个壳体单元赋予它真实模型的厚度(几何性质)和材料性质,并且把这层壳体单元放到金属壳体的中面上去,即完成了我们建模的任务。

学习hypermesh第一步:面板详解

学习hypermesh第一步:面板详解
align node
对齐节点
映射节点到通过两个节点的虚线上
apply result
应用结果
在节点上显示位移结果
check elems
检查单元
检查单元质量,检查翘曲(wrap)、长宽比(aspect)、扭曲度(skew)、夹角(angles)、长度(length)、雅可比(jacobian)、连接关系(connectivity)和重复单元(duplicates)
Card
卡片
允许用户选择显示在卡片面板中的实体
Cntl card
控制卡
允许用户编辑求解器指定的数据
输入/输出面板Βιβλιοθήκη 8、客户化面板选项
中文名称
功能解释
Optios
Colors
颜色
改变屏幕的背景颜色
Graphics
图形
确定当前图形引擎:标准(standard)和高级(performance)
Page names
学习hypermesh第一步:认识面板
HyperMesh的主要面板
序号
名称
中文名称
1
geometry panels
几何面板
2
elements panels
单元面板
3
loads and boundary conditions panels
载荷和边界条件面板
4
organization panels
管理面板
截面切除
通过一组线切除一个平截面
tangents
相切
在一个节点和线上创建切线,或在两条线之间创建切线
reparam
重置参数
浓缩线数据以提高处理速度
Lines(线)子面板的选项及功能

(完整版)Hypermesh大全

(完整版)Hypermesh大全

(完整版)Hypermesh大全Hypermesh操作大全1.Geom1.1 Node节点(1)xyz坐标创建节点,可以选择坐标系,as node在节点上(2)On Geometry在几何上创建节点,可以在硬点、线、表面、平面上创建节点(3)Arc Center在圆弧圆心创建节点,可以在节点、线与硬点组成的圆弧中心创建节点,可以设定容差(默认忽略容差)(4)Extract Parametric在线、面上以输入参数阵列节点,定义阵列区域大小(百分比)与阵列节点数目Extract on Line在线上阵列节点,可以输入阵列节点数目,间隔算法有线性、指数与曲率控制(中间稀疏两边密或者中间密两边稀疏),可以输入间隔密度(5)Interpolate Nodes插值节点,输入在节点之间插值节点的数目以及算法,算法有线性、指数与曲率控制可以输入间隔密度Interpolate on Line在线上插值节点Interploate onSurface在面上的节点之间插值节点(6)Intersect交叉,在交叉处创建节点,可以创建【向量、线】与【线、实体、表面、平面】交叉处生成节点1.2 Node edit 编辑节点(1)associate关联节点,作用是把节点关联到【面、点、线、实体】,可以设置容差(2)move node移动节点,但是节点必须在面上(3)place node重置节点,将节点移动到选择目标面上,应对个别节点在平面外(4)remap在线上重新排布节点(5)align node 对齐节点,选中两个节点后,将其他节点移动到选中的两个节点的连线上(直线,无线延伸)1.3 temp nodes临时节点1.4 distance 测距(1)two nodes两节点测距(2)three nodes 三节点测距(3)two point 两硬点测距(4)three point三硬点测距1.5 Point创建硬点(1)XYZ坐标创建硬点(2)Arc Center 圆心创建硬点,可以在节点、线与硬点组成的圆弧中心创建节点,可以设定容差(默认忽略容差)(3)Extract Parametric在线、面上以输入参数阵列硬点,定义阵列区域大小(百分比)与阵列硬点数目(4)Intersect交叉,在交叉处创建节点,可以创建【向量、线】与【线、实体、表面、平面】交叉处生成硬点1.6 Lines 创建线(1)XYZ两点创建直线(2)Linear Nodes 以节点创建折线,可以选择封闭Smooth nodes创建光滑曲线Controlled Nodes创建可控曲线(3)Drag along Vector向量拉伸直线(4)Arc Center and Radius圆心半径创建圆弧Arc Nodes and Vector圆弧节点与向量Acr Three Nodes 三点圆弧(5)Circle Center and Radius 圆形半径创建圆Circle Nodes and Vector 圆心节点与向量创建远Circle Three Nodes 三点创建圆(6)Conic 创建圆锥曲线(7)Extract Edge 以面的边线或者边创建等距曲线(8)Intersect 创建交线,可以创建平面与线、表面、单元、平面的交线,也可以创建两个曲面的交线(9)Mainifold 在面上创建线,线过节点,可以用创建的线分割平面(10)Offset 偏置,可以创建等距偏移与非等距偏移(11)Midline 中间线,距离两边等距(12)Fillet 创建、删除倒角(13)Tangent 创建切线,可以创建点、线与线的切线(14)Normal to Geometry外一点(节点、硬点)做线、表面或者实体的垂线Normal from Geometry 从几何(线、表面或者实体)上一点做几何的垂线Normal 2D to Plane 通过平面上一点创建垂直于2D几何线的垂线(15)Features 由网格反求几何特征1.7 Line Edit编辑线(1)Combine 连接线,两条线中间有断开,连接两个端点(2)Split at point 在硬点处断开线(3)Split at joint 在连接处断开线(4)Split at line 在与线相交处断开线(5)Split at plane 在与面相交处断开线,其中面可以以多种方式创建(6)Smooth line光滑曲线,两种方式:a设定容差;b设定接近与一条线,其中接近方式有两种算法,一种为水平抛物线法(flat parabola),一种为B样条简化算法(bezer simplify)(7)Extend line 延长线1.8 Length长度确定选中线段的长度1.9Surfaces创建平面(1)Square三点创建平面(2)Cylinder Full 创建完整圆柱面,定义底部圆面的中心与高度法向节点,定义半径与高度,注意:底部圆心与法向节点之间距离不是圆柱高度,仅代表方向Cylinder Partial 创建部分圆柱面,与创建完整圆柱类似,其中major vector 确定半圆柱的起始0°位置,顶点、法向点与major vector点右手法则决定向量,Axis ratio为直径比,该数值大于0小于1,创建椭圆柱面(3)Cone full创建完整圆台面,与圆柱面类似Cone Partial创建部分圆台面,与部分圆柱面类似(4)Sphere Center and Radius球心半径创建圆球Sphere Partial 创建部分球面,输入球心点,R向点和Phi点或者theta点,分两个方向以角度来创建球面,轴线为球心中点与R点、球心与Phi点或者theta 点形成的轴线(5)T orus Center and Radius 创建圆环,指定轴线方向为法向量点与中心连线,Major radius为主直径,为圆环中心直径,Minor radius为圆环小直径Torus Three Nodes 三点创建圆环,major center 圆环主中心,minor center 圆环小环中心,minor radius圆环小环半径Torus Partial 创建部分圆环,定义圆环中心(center),主轴法向(normal)和主轴(6)Spin旋转曲面,用点或者线旋转创建平面(7)Drag along Vector/Line/Normal 沿着向量/线/法向拉伸直线创建平面(8)Spline/Filler 填充平面,可以用线、节点与硬点来创建封闭平面(9)Ruled 两条(或两组点)线扫描(10)Skin创建蒙皮(11)Fillet创建圆角(12)From FE用网格创建平面(13)Meshline以网格节点生成线然后创建面,与用FE创建不同的是Meshline 可以选择单元中间节点,该命令主要用来重建面,便于加载1.10 Surface Edi..........t编辑面(1)trim with nodesa.two nodes两点切面,点必须在面上b.multiple nodes 多点切面,多点连线为曲线c.node narmal to edge 节点与直线垂线分割面(2)trim with line用线切割面a.with cut line手动划线分割面b. with lines用线划分面c.with offset lines 用偏置线切割面,线必须已经是切割线,如果不是即有的自由边则需要先用with lines切割(3)trim with surface/plane用面切割面a.with plane用平面切割面,平面的定义可以沿着X、Y、Z轴和一个点定义,也可以向量或者三点向量定义b. with surfs用面来切割面,可以选择两个面全部分别切割c. self-intersecting surfs自相交面的分割(4)untrim不切割(5)offset偏置a.disjoint offset偏移选中面,其他不偏移b.continuous offset 连续偏移,偏移后偏移面与其他面还是相连的(6)extend延伸a.max extension最大延伸量,by distance 延伸距离,by thickness multiplier以壳体厚度倍增b.entend over edge延伸到边缘,to surface到面,by distance 依据距离,byfilling gaps依据间隙距离(7)shrink收缩面,相当于等距偏移,设定偏右距离1.11 Defeature.........缺陷处理(重点)(1)pinholes作用是填孔,设定容差小于多大的孔填死(2)surf fillets面圆角(3)edge fillets边圆角(4)duplicates找到重复面并删除(5)symmetry对称面设定1.12midsurface暂时用不到1.13dimensioning尺寸标注,修改实体尺寸1.14 solid(1)创建实体、圆柱、圆锥、球体、圆环与部分实体详见曲面生成功能(2)bounding surfaces曲面生成实体(3)spin面旋转生成实体(4)drag系列,面拉伸成体(5)ruled系列,类似于扫描1.15 solid edit重点。

hypermesh基础教程(进门、经典)[宝典]

hypermesh基础教程(进门、经典)[宝典]

hypermesh基础教程(进门、经典)[宝典] 第一章 HyperMesh入门首先我们要了解什么是mesh,简单的说mesh就是网格的划分。

有过有限元分析背景的人都知道,做有限元分析首先第一步工作就是建模,就是把分析对象按照一定的尺寸、比例划分成相互连接、不间断的网格单元,成为一个可以计算的力学模型,这是进行有限元计算的基础。

其划分的结果对于以后计算的结果将产成直接的影响,或者说mesh是保证有限元分析结果准确的重要条件。

下面我就最简单的分析对象——金属壳体,向大家讲述怎样进行一个物体的mesh。

我们所用软件是HyperMesh,它对于有限元的前处理和后处理都具有比较强大功能。

第一节软件环境首先,我们要了解工作的目标,即最终要把一个金属壳体处理成怎样的网格。

打开练习一,这个文件中已经包含geom和放到中面的elems。

我们现在要搞清的第一概念就是geom和elems的区别。

Geom即为几何体,是我们分析对象的真实模型,实际物体的三维表现形式;elems即为网格单元,是我们分析对象的力学模型,是对实际物体的一种近似模拟,是把实际物体转换成可计算的力学和数学模型,它不是简单的线和面,是带有数据的线和面。

在HyperMesh中,我们把geom和elems统称为comps,comps可以理解为图层,这里的图层和CAD的图层的概念不同。

这里comps是以后赋予模型材料和几何性质的一个最小单元,或者说对于不同材料性质和不同几何性质的elems要处于不同的comps中。

每个comps都会有个名字,所以同一个名字的comps包含两个部分,即XXX(名字)geom和XXX(名字)elems。

当然几何体和力学模型是两个完全独立的部分,所以两者完全可以放在不同的comps中的,对于图层名字的管理我们在下一章再做详细说明。

对于一个金属壳体,我们知道金属板是具有均有厚度的,即在三维上它总是有个方向上是保持不变的,这样我们就可以用比较简单的二维单元来描述金属壳体,这个二维单元我们称壳体单元。

控制臂hypermesh操作流程

控制臂hypermesh操作流程

操作流程1.导入文件打开hypermesh→导入需要的文件2.去除多余线条点页面菜单的Geom→edge edit→suppress,激活lines,然后选择不影响零件结构特征的线条,线条变白色表示选中,最后点面板菜单的suppress,就去除了选中的线条,线条变虚线表示已经去除。

3.拆分按照是否可设计把控制臂分成两块,一块是可设计区域,一块是不可设计区域(前衬套,后衬套,球头)。

从前衬套开始画分界面,点页面菜单的Geom→circles→three points,选中前衬套的边框线,点三个点(如图所示)再点create,出现一个完整的圆点return回到主菜单,点页面菜单的Geom→solid edit→trim with lines,激活with sweep lines 的solids点击一下控制臂,就选中整个零件,因为此时是一个整体。

激活lines,选择之前所画的圆,方向是Z方向点trim,出现黄色线条,说明有分界面生成,但是生成的分界面不规则,不是我们最终需要的,需要修改。

在所在界面with cut line中激活solids,选中设计区域,点击drag a cut line,在设计区域和前衬套交接处按左键画一条线横穿过来,再按左键,确定一条分界线按鼠标中键生成分界面在前衬套中把几个分散的模块合成一体,需要进行布尔运算。

在左边的面板菜单中选中boolean,激活A:solids,选中前衬套的分散的模块点calculate,分散的模块就整合为一体这样前衬套与设计区域的分界面就生成了。

按F2,激活线条,删除之前画的圆。

球头分界面的操作跟前衬套一样,依照前衬套的操作进行。

后衬套的分界面:进入trim with lines,激活with bounding lines的solid,选中设计区域,激活lines,选中后衬套与设计区域分界面的四条线点trim,这样后衬套与设计区域的分界面也生成了。

4.建立可设计部分(design)和非设计部分(nondesign component)在右边标签域的model里,点右键→creat→component,name=design,选择喜欢的颜色,property=none,点creat。

hypermesh制作步骤

hypermesh制作步骤

终于完成了,还可以点击defromed看结果
Hypermesh制作步骤
导入文件igs格式
打开软件后点nastran 点击右上角绿色箭头,选第三个,找要导 入的文件,点击import
设置材料
选第三个,在点creat/edit,设置参数如图
设置属性
点第四个,导入刚才建的材料material,如 图设置好后,点creat/edit,在设置t=5
网格划分后,返回。 再点第五个小图标创建SPC和force如图点 create就行
设置边界条件
激活spc,选中右击,选make current,在 点中analysis,在选constraints,
先在一边选,点create,然后在选另一边, 再create,如图,返回
同理,激活force,再在主界面选forces,进 入后,先在几何物体上点四个受力点,再 选中N1,顺时针选三点,把magnitude改成 100.点create
划分网格
Return返回主界面后,点选2D,在点右上 角的edit element,进入后点,create就行, 然后在return
在2D的状态下点automesh,进入后把 element size改成15,其他不用改,选上这 几个面后,点mesh,如图
方便起见,不在对网格进行修正
设置工况
返回后选load steps,spc选spc,LOAD选 force,命名后先create再edit,设置如图
做完以上步骤返回后,先保存,点红色的 按钮,设置如图,点export
保存完后,在主界面点solver,在第二行导 入刚保存的文件,注意不能用中文路径, 点solve运算。
约束与力设置好后,返回,导入材料属性, 点第二个小图标,再点assign,把刚才建的 材料倒进去,点property的空格导入,然后 再点comps,打上√。Assign后返回

HYPERMESH入门指南3

HYPERMESH入门指南3

仿真在线提供 作者 yidixunmeng简明目录第一章INTRUCTION第二章永久菜单第三章macro菜单第四章Geom面板第五章2D/3D面板第六章tools面板第七章一些画网格的例子第四章 Geom面板这一章主要讲解Geom面板,这个面板主要是构造几何,几何清理是画网格的第一个重要的步骤,它主要是为画2D网格打基础。

几何模型清理的优劣关系2D乃至3D网格质量,清理的好,质量就可能会很好,反之亦然。

如果你画四面体单元的话,几何清理更是至关重要。

他要求没有自由边,2D三角形单元没有T形连接,网格的质量不能太差。

至于满足这几条要求才能画好四面体单元。

在hm中几何体以点,线,面来显示,没有体的概念,操作都是以这三个几何要素为目标,这和ansys有所区别。

在hm里面一般都是先画好2D网格,在生成3D网格的,也就是说,3D网格以2D网格为基础,2D网格的质量在某种程度上决定3D网格的质量。

面的质量的优劣也是决定条件之一。

1.clean up面板在这个面板下游edges,surfaces, fixed points等三个子面板,在每个子面板的下一层还有自己的面板。

这面板的功能在day1 day2里面介绍的已经很详尽了。

在这里我主要说一些自己的经验。

将一个模型(一般是iges文件,)调到hm里的话,再这个模型中会有有很多的自由边(红线),如果他是真的自由边的话,就是模型的边界线,那你就不用管它,我们考虑的是在模型的内部有没有自由边。

一般来说在模型的内部是不允许有自由边的,但是有好多的自由边用toggle这个功能也不能使他变成绿线,这个时候你就要看看是不是有两条线在一起,或者调大cleanup tol,如果还不行,这个时候就要考虑补面了。

我自己补一个面,这样就可以了。

至于重合边(黄线),如果斯T字连接的话也不用去掉,如果是真的两个面重合的话,要删掉一个。

一般来说问题不大,我还没有作过复杂的模型,也不太清楚需要清理到何种程度,不过我按自己的标准,也作过了一些东西。

Hypermesh学习教程

Hypermesh学习教程

Hypermesh学习教程1.1 实例:创建、编辑实体并划分3D网格本实例描述使用HyperMesh分割实体,并利用Solid Map功能创建六面体网格的过程。

模型如图5-1所示。

图5-1 模型结构本实例包括以下内容。

●导入模型。

●通过面生成实体。

●分割实体成若干个简单、可映射的部分。

●使用Solid Map功能创建六面体网格。

打开模型文件。

(1)启动HyperMesh。

(2)在User Profiles对话框中选择Default(HyperMesh)并单击OK按钮。

(3)单击工具栏()按钮,在弹出的Open file… 对话框中选择solid_geom.hm 文件。

(4)单击Open按钮,solid_geom.hm文件将被载入到当前HyperMesh进程中,取代进程中已有数据。

使用闭合曲面(bounding surfaces)功能创建实体。

(1)在主面板中选择Geom页,进入solids面板。

(2)单击()按钮,进入bounding surfs子面板。

(3)勾选auto select solid surfaces复选框。

(4)选择图形区任意一个曲面。

此时模型所有面均被选中。

(5)单击Create按钮创建实体。

状态栏提示已经创建一个实体。

注意:实体与闭合曲面的区别是实体边线线型比曲面边线粗。

(6)单击return按钮返回主面板。

使用边界线(bounding lines)分割实体。

(1)进入solid edit面板。

(2)选择trim with lines子面板。

(3)在with bounding lines栏下激活solids选择器。

单击模型任意位置,此时整个模型被选中。

(4)激活lines选择器,在图形区选择如图5-2所示线。

(5)单击trim按钮产生一个分割面,模型被分割成两个部分,如图5-3所示。

图5-2 选择边线图5-3 分割实体使用切割线(cut line)分割实体。

(1)在with cut line栏下激活solids选择器,选择STEP 3创建的较小的四面体,如图5-4所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Hypermesh操作步骤
第一步:
打开hypermesh。

选择optisrtuct
第二步:导入文件
我们以catia画出来的三维图为例(其他软件画出来的实体是一样的)。

在file下拉菜单中选择import中的geometry。

第三步:选择如下图1所示的两个选项,其中在file type中有多个选项如图2。

第四步:导入我们的文件。

打开文件夹,在文件类型中选择all files 找到你的实体文件。

文件找到之后点击import。

导入之后进行你的视角调节。

调节按钮如下。

下图我框下来的两个按钮你可以自己按一下,就知道是什么作用。

第五步:选择geom中的quick edit。

选择toggle edge,选择这个功能之后,实现的是你实体的边框线的增减,左点实体的边框
线是去掉它,右击是增加,这个功能我们现在一般是不需要用到的。

所有你不用进行操作。

点击右下角的return。

第六步:
点击2D按钮,选择automensh
如下图surfs是选择我们实体的面进行网格划分,如果我们点击surfs前面的到黑色三角形,我们会看到另一个elems的选项,它的功能是在我们已经画好网格的情况下面,选择部分网格对这部分的网格进行网格划分,我们这次只用到surfs。

点击黄色框中的surfs,选择all,选择实体的所有的面。

你也可以一个面一个面的去点击实体。

实体面选择好之后,选择elements size输入你们自己规定的网格的边长。

在这里我输入1。

在mesh type中,我们点击黑色倒三角选择我们网格的形状,这里选择mixed。

选好之后点击mesh。

下面的图已经画好了网格,在图中我们看到边上有数字,它们代表了这个边上的网格的个数,我们通过鼠标左击或者右击来改变个数,这个功能大家适当使用,以优化网格为目的。

第七步:点击model
点击materials。

点击左边的create,在mat name中输入材料的名字,在这里我输入aa。

点击type选择all,点击card image选择mat1。

点击右边的create。

点开左上角的material中,右击aa,选择card edit
点击[E],[NU],[RHO]默认的就可以。

点击return。

点击propriets
点击右边create,在prop name中我们输入bb,type我们选择all。

Card image中我们选择pshell。

Material中的名字应当输入我们刚才建立的material的名字,这里应该是aa。

点击create即可。

Return一下。

选择左边的property,右击bb,选择card edit。

点击厚度[T],输入你需要的厚度,这里我输入1。

Return一下。

在次点击component。

点击update,点击comps,
勾选body.1。

选择select。

Return一下。

点击no property前面的黑色三角选择porperty,输入我们之前建立property的名字,这里我们应该输入bb。

点击右边的update即可。

Return一下。

选择load collectors。

选择左边的create。

输入loadcol name中的名字,这里我们输入cc。

在Card image中选择eigrl。

点击create。

Return一下。

点击左边的load collector,右击cc,选择card edit,选择[ND]、,我们输入我们需要的阶数,这里我们输入30即可。

Return一下。

选择analysis,点击load steps。

name输入名字,这里我们输入mode3。

Type中我们选择normal modes。

勾选method,输入1。

Create一下。

Return一下。

左边点击load step,右击mode3,选择card edit,勾选output,return一下。

选择analysis,选择control cards。

选择next。

点击next之后,选择param。

选择post,选择-1。

Return两下。

选optistruct。

请保证下面的几个选项是如图选择的选项,其他的默认。

那么我们现在再选择optistruct。

下面我们就在进行分析了。

如果正确,那么我们进行下一步,如果不正确,那么你们就自己
检查了。

点选hyper view。

查看我们的结果。

找到我们的文件位子。

点击apply
点击下图所示的第一个选项,再点击apply。

点击播放键即可以查看结果。

我们回到hypermesh。

把结果存为.hm。

文件即可。

我们给高老师传个文件为.hm,和.op2文件,两个文件。

相关文档
最新文档