三角形专题复习课
八年级直角三角形复习课说课稿9篇

八年级直角三角形复习课说课稿9篇教学目标:理解直角三角形中五个元素的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,提高分析问题、解决问题的能力。
教学重点:能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形。
教学难点:能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形,提高分析问题、解决问题的能力。
教学过程:一、课前专训根据条件,解下列直角三角形在Rt△ABC中,∠C=90°(1)已知∠A=30°,BC=2;(2)已知∠B=45°,AB=6;(3)已知AB=10,BC=5;(4)已知AC=6,BC=8、二、复习什么叫解直角三角形?三、实践探究解直角三角形问题分类:1、已知一边一角(锐角和直角边、锐角和斜边)2、已知两边(直角边和斜边、两直角边)四、例题讲解例1、在△ABC中,AC=8,∠B=45°,∠A=30°.求AB.例2、⊙O的半径为10,求⊙O的内接正五边形ABCDE的边长(精确到0.1).五、练一练1.在平行四边形ABCD中,∠A=60°,AB=8,AD=6,求平行四边形的面积. 2.求半径为12的圆的内接正八边形的边长(精确到0.1).六、总结通过今天的学习,你学会了什么?你会正确运用吗?通过这节课的学习,你有什么感受呢,说出来告诉大家.七、课堂练习1.等腰三角形的周长为,腰长为1,则底角等于_________.2.Rt△ABC中,∠C=90°,∠A=60°,a+b=+3,解这个直角三角形.3.求半径为20的圆的内接正三角形的边长和面积.八、课后作业1.在菱形钢架ABCD中,AB=2 m,∠BAD=72,焊接这个钢架约需多少钢材(精确到0.1m)2.思考题(选做):CD切⊙O于点D,连接OC,交⊙O于点B,过点B作弦AB⊥OD,点E为垂足,已知⊙O的半径为10,sin ∠COD=,求:(1)弦AB的长;(2)CD的长.八年级直角三角形复习课说课稿(精选篇2)一、教学目标(一)知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。
第十一章-三角形单元复习课

拓展提升
10. 如果三角形的两边长分别为3和5,则周
长L的取值范围是
(D )
A. 6<L<15
B. 6<L<16
C. 11<L<13
D. 10<L<16
11. 如图,在Rt△ABC中,AC⊥BC, CD⊥AB,∠1=∠2,有下列结论: ①AC∥DE;②∠A=∠3; ③∠B=∠1;④∠B与∠2互余;⑤ ∠A=∠2. 其中正确的有______①_②__③_. (填序号)
(3)如图③,BD为∠ABC的平分线,CD为∠ACB的外角 的平分线,它们相交于点D,请猜想∠A与∠D之间的数 量关系,并说明理由.
解:(3)∵BD为∠ABC的平分线, CD为∠ACB的外角的平分线, ∴∠2=1/2∠ABC,∠1=1/2∠ACE, ∠D=∠1-∠2=1/2(∠ACE-∠ABC)=1/2∠A.
巩固训练
5. 将几根木条用钉子钉成如下的模
型,其中在同一平面内不具有稳定
性的是
(C )
6. 一个三角形的两边长分别为3 cm和8 cm,则此三角形第三边的长
可能是( C )
A. 3 cm B. 5 cm C. 7 cm D. 11 cm
7. 如图,在△ABC中,∠A=63°, MN∥BC,若∠AEN=133°,则∠B
变式训练
1. 已知三条线段的比是:①1∶3∶4;②1∶2∶3;③
1∶4∶6;④3∶3∶6;⑤6∶6∶10;⑥3∶4∶5.
其中可构成三角形的有
(B )
A. 1组 B. 2组 C. 3组 D. 4组
2. 如果三角形的一个外角的平分线平行于三角形的边,
则这个三角形是 A. 锐角三角形
( B)
B. 等腰三角形
12. 如图,在△ABC中,∠C=80°,若沿图 中虚线截去∠C,则1+∠2=___2_60_°___.
三角形全等(复习课)教学设计

课题三角形全等(复习课)一、教学目标(1)通过对三角形全等判定的深入探讨,进一步熟悉分类讨论思想,系统感受全等三角形的各种情况。
(2)在与他人交流的过程中,合理清晰地表述自己的观点;在恰当的问题情境中,进一步体会三角形全等的有关知识。
二、教学内容分析教学重点:对“边边角”情况的探讨。
教学难点:三角形的四组元素分别相等时的反例。
三、学情分析用已有的知识探究一个新的问题———三角形全等,其内容本身有一定难度(没有直接的因果关系),对学生要求很高。
八年级学生已经具备了一定的学习能力,在这节课中,让学生主动参与,动手操作,合作交流,是教学所必需的,对此,教师宜适时点拨,引导。
四、教学过程设计(一)温故知新导言:前面我们已经研究了三角形的全等。
那么,在这一章中,你都学到了哪些知识?你有怎样的感受?[设计说明]在质疑中发现问题,在问题中展开教学,可以激活学生的数学思维,在解决问题中深化对知识的理解。
(二)问题引入1.教师“抛出”问题1同学们,在研究三角形全等的过程中,你是否存在一些疑问?对于“如果满足三组角相等,这两个三角形是不是也全等”,你是怎么思考的?你认为能全等吗?如果能,请说明原因;如果不全等,请举出反例。
(学生运用分类的思想,最先想到的是这样一种情形:如果满足三组角相等,这两个三角形是不是也全等。
)[设计说明]把问题抛给学生,对其养成独立思考、善于分析问题有所帮助;同时,恰当的反例可以起到激活思维、诱发探索新知的欲望,也可以让学生感受数学反例的重要作用。
2.抛出问题2请同学们接着思考:一对三角形共有六对元素,从中任取三对进行组合,能组合成多少种情况?[设计说明]本环节教学设计,在此明晰分类思想,学生会例举出的三组对应元素有以下五种不同的组合:①三边;②两边一夹角;③两边一邻角;④两角一边;⑤三角。
3.抛出问题3这五种组合,是否都能判断两个三角形全等呢?我们已知:①,②,④符合全等三角形的判定定理,⑤刚才已举出反例。
相似三角形的专题复习课

αα6600°°
EEE
6α6α00°°
CCC
1.矩形ABCD中,把DA沿AF对折,使D与
CB边上的点E重合,若A善D于=1在0复, A杂B图=形8,
则EF=___5___
中寻找基本型
D
A
F
C
EE
B
2.已知:D为BC上一点, ∠B= ∠C= ∠EDF=60°, BE=6 , CD=3 , CF=4 ,
长线于点E.
求证:OC2=OA·OE.
旋转型
例3. D为△ABC内的一点,E为△ABC外的一点,且∠1=
∠2,∠3=∠4.
求证:(1)△ABD∽△CBE;
(2)△ABC∽△DBE.
证明:(1)∵∠1=∠2,∠3=∠4(已知), ∴△ABD∽△CBE.
双垂直型 例4:在Rt△ABC中,∠ACB=90°,CD⊥AB于 点D.
A
D E
解:∵∠AED=∠B, ∠A=∠A
∴△AED∽ △ABC(两角对 应相等,两三角形相似)
B
C
∴ AD DE
AC BC
∴ AD·BC=AC·DE
练1.如图所示,当满足下列条件之一时,都可判 定△ADC∽△ACB.
①
∠ACD=∠B
,
②
∠ACB=∠ADC
,
D
③
AD AC
AC 或AC2 AB
AD• AB。
学习目标
1、进一步熟练相似三角形的性质与判定。 2、归纳总结相似三角形的几种基本图形, 能利用这些基本图形进行相关的计算与证明。
回顾与反思
判定两个三角形相似的方法:
1.定义:三角对应相等,三边对应成比例的两个三 角形相似。 2.平行三角形一边的直线和其他两边相交(或两边的延 长线),所构成的三角形与原三角形相似. 3.三边对应成比例的两个三角形相似。 4.两边对应成比例且夹角相等的两个三角形相似。
九年级数学《相似三角形判定-复习课》教案

22.1.2 相似三角形判定复习课一、学习目标1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。
2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。
二、教学过程尝试教学六环模式教师活动学生活动设计意图备注复习导入复习引入:1.如图1,在□ABCD中,G是BC延长线上一点,AG与BD交于点E,与DC交于点F,则图中相似三角形共有()A 3对B 4对C 5对D 6对FEAB GDC2.要判定△ABC∽△A'B'C',已知条件AB BC=A B B C,,,,(1)还要添加条件____或____.(2)若∠A=∠A′,可添加条件____学生完成,回顾相似三角形判定方法。
帮助学生回忆相似三角形的几种判定方法。
以简单的选择、判断题复习相关知识点。
目标展示:1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。
2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。
学生熟悉学习目标学生按照学习目标复习知识点。
帮助学生梳理知识要点。
学教新课自学指导:1 你能记得多少种判定三角形相似的方法?2 三角形相似的基本图形是有哪些?根据自学指导的思考题,回顾知识要点。
以相似三角形的基本图形为主线回顾知识点。
从形的角度帮助学生更好地理解知识点。
议探交流尝试练习:学生完成尝试练习1、2两题。
议探交流:组内相互交流,先对议,再互议。
教师适时巡堂,深入小组,进行个别指导。
学生独立自主完成学生相互交流,师徒互教,组内互教,小组展示小组展示:归纳总结:1D,E分别为△ABC的AB, AC上的点,且DE∥BC,∠DCB=∠A,把每两个相似的三角形称为一组,那么图中共有相似三角形_____组,(选择其中一组并加以证明。
)变式:D,E分别为△ABC的AB, AC上的点,若AB=10,AC=8,AD=5,当AE=_____△ADE与△ABC相似。
各组内定代表,师友共同抢答,展示各自的结论,其他同学适时补充纠正。
全等三角形复习课---公开课省公开课获奖课件说课比赛一等奖课件

B E CF
(4)若∠B=∠DEF=90°BC=EF,要以“HL” 为根据, 还缺条件_A_C=_D_F _
= =
二、挖掘“隐含条件”判全等
AD
1.如图(1),AB=DC,AC=DB,
则△ABC≌△DCB吗?说说理由
B 图(1) C
2.如图(2),点D在AB上,点E在AC B
D
上,CD与BE相交于点O,且
B
5.如图在△ ABC、 △ ADE中∠B=∠ED,
D
AC=AE, 且∠CAE=∠ 吗?为何?
解: BC=DE,理由是: ∵ ∠CAE=∠BAD ∴ ∠CAE+ ∠ EAB ∠ =∠BAD + ∠EAB ∴ ∠CAB= ∠EAD 在△ CAB与△ EAD中 ∠CAB= ∠EAD ∠B=∠D
回忆知识点:
➢1、全等图形旳定义是什么?全等三角形旳定 义是什么?
➢2、全等三角形旳性质是什么?
➢3、一般三角形全等旳鉴定有几种定理?分别 是?直角三角形全等旳鉴定有几种定理?分别是?
➢4、角平分线旳性质是什么?角平分线旳鉴定 是什么?
➢4分钟后,比谁能精确旳回答上面旳问题。
本章总结提升
本章知识框架
CAB旳角平分线AE交边CB于E点,过E点作EF⊥AB于
F,已知AB等于10㎝,求△EFB旳周长?
解:∵AE平分∠ CAB ,EF⊥AB于F ,
C
∠ACB=90°∴EC ⊥AC于C
∴CE=FE, 又∵AE=AE, ∴Rt △ACE≌ Rt
E
△AFE(HL)
∟
∴AC=AF, ∴EF+BE=CE+BE=BC=AC=AF,
AB=AC ∠BAF= ∠CAF AF=AF ∴ △ABF≌ △ACF(SAS)∴ BF=CF
三角形的初步认识复习教案

三角形的初步认识复习教案一、教学目标:1. 复习并巩固学生对三角形的基本概念、性质和分类的理解。
2. 提高学生运用三角形知识解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队协作精神。
二、教学内容:1. 三角形的基本概念:三角形的定义、三角形的组成。
2. 三角形的性质:三角形的内角和、三角形的边长关系。
3. 三角形的分类:锐角三角形、直角三角形、钝角三角形。
4. 三角形的画法:如何准确地画出一个三角形。
5. 三角形在实际生活中的应用:举例说明三角形在现实生活中的应用。
三、教学重点与难点:1. 教学重点:三角形的基本概念、性质和分类,以及三角形在实际生活中的应用。
2. 教学难点:三角形内角和、边长关系的理解和运用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过思考和讨论来复习三角形的相关知识。
2. 利用实物模型、图片等教学资源,帮助学生直观地理解三角形的性质和分类。
3. 设计具有挑战性的练习题,激发学生的学习兴趣,提高学生解决问题的能力。
五、教学过程:1. 导入:通过提问方式引导学生回顾三角形的基本概念,激发学生的学习兴趣。
2. 讲解:详细讲解三角形的基本概念、性质和分类,并通过实物模型、图片等进行展示。
3. 练习:设计一些具有针对性的练习题,让学生独立完成,巩固所学知识。
4. 讨论:组织学生进行小组讨论,分享彼此的学习心得和解决问题的方法。
5. 总结:对本节课的主要内容进行总结,强调三角形的内角和、边长关系等关键知识点。
6. 作业布置:布置一些有关三角形应用的问题,让学生在课后思考和解决。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组讨论表现,评估学生的学习积极性。
2. 练习题评价:对学生的练习题进行批改,评估学生对三角形基本概念、性质和分类的掌握程度。
3. 课后作业评价:对学生的课后作业进行批改,了解学生对三角形在实际生活中应用的理解和运用能力。
第十一章《三角形》复习课教学设计

预设1:因为50°+40°=90°,两个锐角的和是90°,第三个角一定是直角,所以是直角三角形。(师评价:我们知道在直角三角形中,两个锐角的和是90°。看来他已经会学以致用了,真不错,表扬他!)
预设2:因为180°-50°-40°=90°,第三个角一定是直角,所以是直角三角形。(你是根据什么来求的?三角形的内角和是180°,可以求出第三个角,在判断)
①2cm,5cm,6cm
②4cm,4cm, 9cm
师小结:也就是当两条较短边之和大于第三边,才能围成三角形。如果老师给你这样的9根小棒:3根3cm、3根5cm和3根8cm的小棒,要求摆出一个等边三角形和两个等腰三角形。
(2)想一想你准备先摆哪一个三角形怎样选小棒
预设①预设学生回答:我选3根一样的围成一个等边三角形,再从剩下的里面选两根一样的围等腰三角形。得到:等边:3 3 3 等腰:5 5 8 或者 8 8 5
1.学生汇报 师生共同整理知识点
①三角形有三条边,三个顶点,三个角
②三角形内角和 条线段都可以围成一个三角形呢)
④具有稳定性;
师:把三角形按角分可以分成:锐角、直角、钝角三角形
我们还学过一些特殊三角形,比如?
师:刚才我们一起把三角形的主要知识进行的梳理,下面我们就用学过的三角形有关知识进行练习。
师:我们一起来看一看(课件依次出示)问:你也是这样画的吗?画对的请举手。
师:如果以直角三角形中的一条直角边作为底,你能找出它的高吗(课件出示)师指出:也就是直角三角形的两条直角边互为底和高。如果我以这条边为底,是从哪个顶点画高(师指锐角三角形说,让学生指一指)如果我以这条边为底(指另一条边),是从哪个顶点画高(师指锐角三角形说,让学生指一指)那么任意一个三角形的高都有几条(3条)我们在画高时一定要注意和底边相对应。(老师演示)
《三角形的复习课》教学设计

治学之法2014-02《三角形的复习课》教学设计文/石忠富【教学内容】三角形的特征、特性、分类、内角和、三角形的高。
【教学目标】1.使学生进一步掌握三角形各部分的名称与意义、三角形内角和、三角形分类的有关知识。
2.巩固掌握三角形的特性,三角形任意两边之和大于第三边以及三角形的内角和是180°。
3.知道锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形的特点并能够辨认和区别它们。
4.引导学生开展自主复习,初步掌握复习方法,形成基本复习技能。
5.提高复习课学习的兴趣,培养积极的学习态度,使学生获得成功的情感体验。
复习重点:复习三角形单元相关基础知识,初步掌握单元复习的基本方法。
复习难点:通过复习活动,提高学生上复习课的学习兴趣,培养学生积极的学习态度,并使学生获得成功的情感体验。
【教学设想】《三角形的复习》这一内容安排在学生已经学习了三角形的有关知识之后,学生对三角形已经有了直观的认识,并且已经初步认识了三角形的特性,知道了三角形的两边之和大于第三边,还学会了三角形的分类,知道了三角形的内角和是180°。
本节课主要是通过对三角形知识的梳理,把整个单元的知识从零碎的片段整理成一个完整的三角形知识体系,并且让学生在对知识的梳理过程中更加深入对三角形知识的理解。
使学生由比较“混沌”的状态到“深刻清晰”地掌握,是本节课的灵魂所在。
对于这类目标的达成,心理学研究告诉我们,按需要的是“体验”和“思辨”并行,在体验中感受、积累,在思辨中提炼、内化。
具体到教学流程,我先借用直观的三角形图,引导学生对三角形进行整理和思考,在大脑中初步梳理出三角形由三条线段围成的封闭图形,并且三角形有三个角、三个顶点、三条边。
然后根据三角形边的特点和边所需的要求对三角形进行分类,并且让学生思考怎样才能围成三角形。
然后再根据角的特点对三角形进行分类。
在按边分类和按角分类的过程中,讨论如何用集合的形式表示出三角形的分类。
全等三角形的复习课教学设计

课题:全等三角形复习课一、教材分析:本节课是全等三角形的全章复习课,首先帮助学生理清全等三角形全章知识脉络,进一步了解全等三角形的概念,理解性质、判定和运用;掌握角的平分线的性质和判定的证明及运用。
其次对学生所学的全等三角形知识进行查缺补漏,再次通过拓展延伸以及展望中考的习题训练,提高学生综合运用全等三角形解决问题的能力,并对中考对全等三角形考察方向有一个初步的感知,为以后的复习指明方向。
在练习的过程中,要注意强调知识之间的相互联系,使学生养成以联系和发展的观点学习数学的习惯.二、学情分析在知识上,学生经历全等三角形全章的学习,对全等三角形和角平分线的概念、性质、判定以及应用基本掌握,初步具有整体认识,但由于间隔时间有点长所以遗忘较多,全等三角形是学习初中几何的基础和工具也是中考必考内容。
对全等三角形的综合应用以及全章知识脉络的形成正是以上各种能力的综合体现,教学中要充分发挥学生的主体作用,通过复习学生在全等三角形的计算、证明对学生的推理能力、发散思维能力和概括归纳能力将有所提高.三、教学目标1.进一步了解全等三角形的概念及角平分线的性质,掌握三角形全等的条件和性质;会应用全等三角形的性质与判定及角平线的性质解决有关问题.2.在题组训练的过程中,引导学生总结出全等三角形解题的模型,培养学生归纳总结的能力,使学生体会数形结合思想、转化思想在解决问题中的作用.3.培养学生把已有的知识建立在联系的思维习惯,并鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流与合作。
四、教学重难点重点:全等三角形及角平分线的性质与判定的应用.难点:能理解运用三角形全等解题的基本过程,灵活应用角平分线的判定的证明及运用.五、教法与学法以“尝试指导效果回授”为主,以自学、练习法为辅;在具体的教学活动中,要给予学生充足的时间让学生自主学习,先形成自己的全等三角形知识认知体系,尝试完成练习;给予学生充足的空间展示学习结果,通过讨论交流、学生互评、教师最后点评方式实现本节课的教学目的.六、教具准备多媒体课件,三角尺,圆规.七、课时安排1课时八、教学过程问题与情境活动1创设情境,引出课题.1、某同学把一块三角形玻璃打碎成三片,现在他只需带上第块就可配到与原来一样的三角形玻璃.师:上述问题实质是判断三角形全等需要什么条件的问题.2.有一个简易平分角的仪器(如图),其中AB二AD,BC=DC,将A点放角的顶点,AB和AD沿AC画一条射线AE,AE就是NBAD的平分线,为什么?◊E今天我们这节课来复习全等三角形章节.(引出课题)师生互动设计理念【教师活动】1.创设情境,引出课题.2.板书课题.【学生活动】独立思考,并小组交流意见.1、让学生在情境中明白这节课学习的重点.2、复习旧知识,回忆全等三角形的概念、性质及判定方法和实际应用的解决;3、角的平分线的定义,让学生体验利用证明三角形全等的方法来对画法角形;已知两角及两边作三角形;作一个角等于已知角;作角的平分线。
七年级数学《三角形-复习》教学设计

B 、 3cm, 5cm, 9cmC 、 14cm, 9cm, 6cmD 、 5cm, 6cm, 11cm2.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定4.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C(∠C 除外)相等的角的个数是( )第4题图第2A B CD于O,则∠AOC+∠DOB=()第6题图A、900B、1200C、1600D、1800题组三:1、已知两条线段的长分别是3cm、8cm ,要想拼成一个三角形,且第三条线段a的长为奇数,问第三条线段应取多少长?2、有两边相等的三角形一边的长是5 cm,另一边的长是8cm,求它的周长3、指导复习题7第3、6、7、9、10拓展思维1、如图:D是△ABC中BC 边上一点,试说明2AD<AB+BC+AC。
2、有一六边形,截去一三角形,内角和会发生怎样变化?请画图说明。
活动5推荐作业,补充升华必做题:习题复习题7第2、8题选做题:习题:设计出多边形镶嵌的图案吗?【师生互动】提示:由AC+CD>AD与AB+BD>AD相加可得。
【课件展示】六边形,截去一三角形,内角和会发生怎样变化?【设计意图】鼓励学生能用所学知识,解决实际问题。
【设计意图】为使学生的主体作用得以有效发挥,尊重学生的个体差异,为不同学生的发展创造条件,作业层推荐、分类要求。
B AD CB。
初二数学《三角形的有关证明复习》课时教案

初二数学《三角形的有关证明复习》课时教案【课题】《三角形的有关证明复习》【课型】复习【教学目标】1.了解三角形全等的识别方法和三角形全等的性质,能够证明与等腰三角形、直角三角形、线段垂直平分线、角平分线相关的性质定理和判定定理.2.理解互逆命题、互逆定理,体会反证法的含义.3.能够利用尺规作图作等腰三角形、直角三角形、已知线段的垂直平分线和已知角的角平分线.【教学方法】自主探究法【教具与教学准备】导学案、PPT、多媒体【学情分析】通过观察、操作、想象、推理、交流等活动能够解决本节课的内容。
【教学过程】一、激趣导入,交代目标:(一)激趣导入设计意图(以旧引新,从学生熟知的知识入手,起点低,让全体同学都参与,也为类比探索新知做好准备。
)知识回顾(15分钟)【课堂梳理】知识点一全等三角形1.判断三角形全等的方法:①(三个公理)______、______、_____、②(一个定理)_____.2.全等三角形的性质:①线段相等:对应边相等、对应边上的_______、对应中线、______相等.②角相等:相等.注:利用全等三角形证明线段或角相等知识点二等腰三角形3.等腰三角形性质:①定理: .(等边对等角)②推论: .(三线合一)4.等腰三角形的判断方法:①定义: .②定理: .(等角对等边)知识点三等边三角形5.等边三角形概念: .6.等边三角形的性质:①等边三角形的三条边______.(边)②等边三角形的三个内角都等于______.(角)7.等边三角形的判定:①______相等的三角形是等边三角形.②三个角相等的三角形是 .③有一个角等于____的等腰三角形是等边三角形.注:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质.知识点四直角三角形8.直角三角形的性质:①直角三角形的两个锐角 .②直角三角形两条直角边的平方和等于 .③在直角三角形中,如果有一个锐角等于____,那么它所对的直角边等于斜边的 .9.直角三角形的判定:①有两个角的三角形是直角三角形.②如果三角形两边的平方和等于,那么这个三角形为直角三角形.10.直角三角形全等的判定方法:(HL) . 注:(HL)只适用于直角三角形.知识点五线段垂直平分线11.段垂直平分线的定理: .12.线段垂直平分线的逆定理: .13.三角形垂直平分线定理: .知识点六角平分线14.角平分线的定理: .15.角平分线的逆定理: .16.三角形角平分线定理: .注:若一个点到三角形三边以及到三角形三个顶点的距离相等,这个点一定为三角形三边垂直平分线与三个内角角平分线的交点.(二)交代目标多媒体出示,让一名学生读出来,共同学习,从而明确本节课的学习目标设计意图:明确本节课的学习目标,使学生的学习有针对性。
《三角形复习课》教案

举例:若两个三角形的三组对应边分别相等,则这两个三角形全等。
2.教学难点
(1)三角形内角和定理的应用:如何运用内角和定理解决实际问题,如求三角形未知角度等。
举例:已知三角形的两个内角,求第三个内角。
1.教学重点
(1)三角形的性质:熟练掌握三角形的定义、分类及性质,特别是三角形的内角和定理、三边关系。
举例:三角形内角和形与等边三角形的判定与性质:区分等腰三角形与等边三角形,了解它们的性质及应用。
举例:等腰三角形两腰相等,等边三角形三边相等,且对应角相等。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
《三角形复习课》教案
一、教学内容
《三角形复习课》教案
本节课我们将复习人教版八年级数学下册第七章《三角形》的相关内容。主要包括以下知识点:
1.三角形的定义、分类及性质;
2.三角形的内角和定理;
3.三角形的三边关系;
4.等腰三角形的性质与判定;
5.等边三角形的性质与判定;
6.三角形全等的条件与性质;
7.直角三角形的性质与判定。
4.培养学生的数学建模素养,通过等腰三角形、等边三角形和全等三角形的性质学习,使学生能够构建数学模型,解决相关问题。
【公开课教案】相似三角形专题复习—“一线三等角”型

相似三角形专题复习————“一线三等角”型【教学目标】1、会用“一线三等角”的基本图形解决相似中的相关问题2、通过抽象模型,图形变换,变式类比等方法提高综合解题能力【重点】运用“一线三等角”相似型的基本图形解题。
【难点】“一线三等角”的基本图形的提炼、变式和运用【教学方法】合作探究、分析讲授【教具准备】三角尺,多媒体.【教学过程】一.基本图形回顾:设计意图一、复习回顾,揭示目标情景,引入课题:三个基本图形呈现提供不同类型的相似三角形,让学生说出每一个图形中相似形的对应关系,使学生的“直观经验”由“量”变产生“质“变。
从模型引入本专题,使学生对产生模型有个感性的认识,为下一环节抽象模型打好铺垫引入课题:二、抽象模型,揭示实质:二、抽象模型,揭示实质抽象模型的目的是让学生的认识从“特殊“上升到“一般”,这是核心结论的生成阶段,时间上用多一点,要求学生写出证明过程,为后续的学习提供帮助,同时让学生对“一线三等角”基本图形的本质理解,在整节课的设计中起承上启下的作用,为下面的运用规律和知识有枢纽的效果。
三.运用新知,看图作三.运用新知,看图作答:四:从特殊到一般:答通过前面的学习,为了让学生学以致用,设置一个练习及变式训练注意:这里要求学生提炼“一线三等角的基本图形,说出两个相似三角形,要求对应的顶点写在对应的位置,并利用相似的性质求解四、从特殊到一般:从特殊的直角改变成一般的角,并让学生证明,明白从特殊到一般的原理,同时展示三种常见形态五、典例解析,综合运用:五、典例解析,综合运用六、深入探究:七、小结收获交流归纳(1)由“一线三等角”基本图形搭建桥梁可以得到识开始在具体题目中的实际运用,设计上承接了前面的图形,能结合动点问题,勾股定理等知识并运用“一线三等角”相似型解决问题。
学生重点分析解题方法和数学思想的渗透,提高学生综合应用能力。
六、深入探究:相似三角形,熟悉这类题经常是以等边三角形、等腰梯形、正方形、矩形为图形背景出现。
解直角三角形(复习课)课件

结合勾股定理和三角函数计算直角三 角形中的未知量。
利用给定的条件,设计合理的方案解 决实际问题,如设计桥梁、建筑等结 构的支撑体系。
06
复习与总结
重点回顾
直角三角形的定义与性质
回顾直角三角形的定义、性质和判定条件,理解其在几何图形中 的重要地位。
求解角度。
常见错误分析
混淆边和角
在解题过程中,有时会混淆边和角,导致计算错误。
忽视勾股定理的条件
在使用勾股定理时,需要确保三角形是直角三角形,否则会导致错 误。
角度范围错误
在计算角度时,需要注意角度的范围,避免出现负角度或超过180 度的角度。
解题方法总结
勾股定理法
适用于已知两边长度, 求第三边长度的情况。
船只安全航行。
物理实验
测量角度
在物理实验中,经常需要测量各 种角度。解直角三角形的方法可 以用来计算这些角度,确保实验
结果的准确性。
计算力的大小
在物理实验中,经常需要计算力的 大小。通过解直角三角形,可以精 确地计算出力的大小,确保实验结 果的可靠性。
确定物体的位置
在物理实验中,物体的位置是非常 重要的。通过解直角三角形,可以 计算出物体的位置,确保实验的准 确性和可靠性。
04
解题技巧与策略
解题思路
01
02
03
04
明确问题要求
首先需要理解题目的要求,确 定需要求解的是什么。
选择合适的三角形
根据问题描述,选择一个合适 的直角三角形来解决问题。
利用勾股定理
在直角三角形中,勾股定理是 一个重要的工具,可以帮助我
们求解边长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形专题复习
【自主探究】
F 面是小强用三根火柴组成的图形,其中符合三角形概念的是(
C •两点确定一条直线
D .三角形的稳定性
3.若一个三角形的两边长分别为3和7,则第三边长可能是(
A . 2
B . 3
C . 4
D . 5
4.如图所示, △ ABC 中AB 边上的高用线是(
) A .线段AG B .线段BD C .线段BE D .线段CF
5. BD 是^ ABC 的中线,AB=5,BC=3 △ ABD 和^ BCD 的周长的差 是 .
6.如图,点E 在^ABC 边BC 的延长线上,CD 平分/ ACE 若/ A=70°, / DCA=65,贝B 的度数是
7. AE 是△ ABC 的角平分线,AD 丄BC 于点D ,若/ BAC=130, B / C=30,则/ DAE 的度数是 8.如图,在△ ABC 中,AD 平分/ BAC , P 为线段 AD 上一点,PE1AD 交 BC 的延长线于点 E,若/ B=35°, / ACB=85,则/E=
9.若正n 边形的内角为140,边数n 为
10. 一个多边形截去一个角后,形成新多边形的内角和为 2520,则原多边 形边数为 _______ .
11.若一个多边形除了一个内角外,其余各内角之和为 2570,,则这个内角的度数为
【合作探究】
专题一 三角形的三边关系
例:三角形的三边长是三个连续的自然数,且三角形的周长小于 20,求三边的长.
1这里所运用的几何原理是(
B.两点之间线段最短 A .垂线段最短
) .
E D P E DC
变式:小刚准备用一段长50米的篱笆围成一个三角形形状的场地,用于饲养鸡,已知第一条边长为m米,由于条件限制第二条边长只能比第一条边长的3倍少2米.
①用含m的式子表示第三条边长;
②第一条边长能否为10米?为什么?
③若第一条边长最短,求m的取值范围
专题二三角形内角和、外角及其相关定理
例:如图,在△ ABC中,/ B=/ C=45,点D在BC边上,点E在AC边上,且/ ADE=
/ AED,连结DE.
(1)当/ BAD=60,求/ CDE的度数;
(2)当点D在BC (点B、C除外)边上运动时,
的数量关系,并说明理由.
变式:1.已知△ ABC中,/ ACB=90,CD为AB边上的高,
分别交CD AC于点F、E,求证:/ CFE=/ CEF
2.如图,AE、0B、OC分别平分/ BAC / ABC / ACB 0D丄BC,
求证:/ 1 = / 2.
3.已知将一块直角二角板DEF放置在△ ABC上,使得该二角板的两条直角
边DE, DF恰好分别经过点B、C.
(1)/ DBG/DCB= _________ 度;
V
(2)过点A作直线直线MN // DE,若/ ACD=20,试求/ CAM的大小.一
4.如图,在平面直角坐标系中,/ ABO=2Z BAO, P为x轴正半轴一动点,BC平分/ ABP, PC
平分/ APF, OD平分/ POE
(1)求/ BAO的度数;
(2)求值:/ C=15』/ OAP;
2
X
(3)P在运动中,/ C+/ D的值是否变化?若发生变化,说明理由;若不变,求其值.
专题三多边形内角和及外角和例:如图,小明从点A出发,前进10m后向右转20°再前进10m后又向右转20°这样一直
下去,直到他第一次回到出发点A 为止,他所走的路径构成了一个多边
(2)这个多边形的内角和是多少度?
形.
(1 )小明一共走了多少米?
专题四本章中的思想方法
方程思想
例:如图,在△ ABC中, / C=/ ABC,BEI AC △ BDE是等边三角形, 求
/C的度数.
分类讨论思想
例:已知等腰三角形的两边长分别为10和6 ,则三角形的周长是_____________
变式:1.已知BD CE是△ ABC的两条高,直线BD CE相交于点H.
(1)如图,①在图中找出与/ DBA相等的角,并说明理由;
②若/ BAC=100,求/ DHE的度数;
(2)若^ ABC中,/ A=50°,直接写出/ DHE的度数是
2.已知△ ABC中,/ A=70°, / ACB=30, D为BC边延长线上一点, BM平分/ ABC, E为射线BM上一点.
(1)如图1,连接CE
①若CE// AB,求/ BEC勺度数;②若CE平分/ ACD,
求/ BEC的度数.
(2)若直线CE垂直于△ ABC的一边,请直接写出另C P
/ BEC的度数.
化归思想(化为基本图形)
/A+/B+/C+/D+/E + /F =
E
E
D。