高二解三角形综合练习题

合集下载

解三角形综合练习题

解三角形综合练习题

解三角形综合练习题解三角形一、选择题1、在中,若,则等于()A、B、C、D、2、在△ABC 中,,则A等于()A、60B、45C、120D、303、有一长为1公里的斜坡,它的倾斜角为20,现要将倾斜角改为10,则坡底要伸长A、1公里B、 sin10公里C、 cos10公里D、 cos20公里4、等腰三角形一腰上的高是,这条高与底边的夹角为,则底边长= ()A、2B、C、3D、5、已知锐角三角形的边长分别为2、3、x,则x的取值范围是()A、B、<x<5C、2<x<D、<x<56、在中,,,,则解的情况()A、无解B、有一解C、有两解D、不能确定7、在△ABC中,若,则∠A= ()A、B、C、D、8、在△ABC中,A为锐角,lgb+lg()=lgsinA=-lg, 则△ABC 为()A、等腰三角形B、等边三角形C、直角三角形D、等腰直角三角形9、如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与,测得,,米,并在点测得塔顶的仰角为,则塔高= ()A、米B、90米C、米D、米10、某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离与第二辆车与第三辆车的距离之间的关系为()A、B、C、D、不能确定大小二、填空题(本大题共5个小题,每小题5分,共25分)11、在中,三边、、所对的角分别为、、,已知,,的面积S=,则;12、在△ABC中,已知AB=4,AC=7,BC边的中线,那么BC= ;13、在△ABC中,||=3,||=2,与的夹角为60,则|-|=____ __;14、三角形的一边长为14,这条边所对的角为,另两边之比为8:5,则这个三角形的面积为;15、下面是一道选择题的两种解法,两种解法看似都对,可结果并不一致,问题出在哪儿?【题】在△ABC中,a=x,b=2,B=,若△ABC有两解,则x的取值范围是()A、B、(0,2)C、D、【解法1】△ABC有两解,asinB<b<a,xsin<2<x, 即故选C、【解法2】△ABC有两解,bsinA<a<b, 即0<x<2, 故选B、你认为是正确的(填“解法1”或“解法2”)16、在中,若,则的形状是A、正三角形B、等腰三角形C、直角三角形D、等腰直角形三、解答题:(共6 小题,共75分;解答应写出文字说明、证明过程或演算步骤。

【高二】高二数学解三角形的实际应用举例综合测试题(含答案)

【高二】高二数学解三角形的实际应用举例综合测试题(含答案)

【高二】高二数学解三角形的实际应用举例综合测试题(含答案)解三角形的实际应用举例同步练习1.在△ ABC,下面的公式是正确的()a.ab=sinbsinab.asinc=csinbc、 asin(a+b)=csinad。

c2=a2+b2-2abcos(a+b)2.已知三角形的三边长分别为a、b、a2+ab+b2,则这个三角形的最大角是()a、135°b.120°c.60°d.90°3.海上有a、b两个小岛相距10nmile,从a岛望b岛和c岛成60°的视角,从b岛望a岛和c岛成75°角的视角,则b、c间的距离是()a、 52nmileb。

103nmilec。

1036nmiled。

56N英里4.如下图,为了测量隧道ab的长度,给定下列四组数据,测量应当用数据a、α、a、bb。

α、β、ac.a、b、γd.α、β、γ5.有人以每小时AKM的速度向东走,而南风以每小时AKM的速度吹,那么此人感到的风向为,风速为.6.在△ ABC,tanb=1,Tanc=2,B=100,然后是C=7.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°然后朝着灯塔的方向航行塔的距离是.8.a层和B层之间的距离为20m。

B栋底部至a栋顶部的仰角为60°,a栋顶部至B栋顶部的俯角为300。

那么a层和B层的高度分别为9.在塔底的水平面上某点测得塔顶的仰角为θ,由此点向塔沿直线行走30米,测得塔顶的仰角为2θ,再向塔前进103米,又测得塔顶的仰角为4θ,则塔高是米.10.在△ ABC,确认cos2aa2-cos2bb2=1a2-1b211.欲测河的宽度,在一岸边选定a、b两点,望对岸的标记物c,测得∠cab=45°,∠cba=75°,ab=120m,求河宽.(精确到0.01m)12.a船在a,B船在a船以东偏南45°,距离a船9海里,以20海里/小时的速度向西偏南15度行驶。

解三角形专项练习(含解答题)

解三角形专项练习(含解答题)

解三角形专练1.在ABC △中,已知4,6a b ==,60B =,则sin A 的值为2.在ABC ∆中,若0120,2==A b ,三角形的面积3=S ,则三角形外接圆的半径为( )A.B .2 C..43.边长为8,7,5的三角形的最大角与最小角的和是( ) A . 120 B . 135 C . 90 D . 1504.在△ABC 中,已知a =4,b =6,C =120°,则边C 的值是( ) A .8 B. C. D.5.在三角形ABC 中,若1tan tan tantan ++=B A B A ,则C cos 的值是B. 22C. 21D. 21-6.在△ABC 中,若22tan tan b a B A =,则△ABC 的形状是( )A .直角三角形B .等腰或直角三角形C .不能确定D .等腰三角形7.在△ABC 中,角,,A B C 所对的边分别为,,a b c .若22265b c a bc+-=,则 sin()B C +=( )A .-45 B.45 C .-35 D.358.设△ABC 的三内角A 、B 、C 成等差数列,sinA 、sinB 、 sinC 成等比数列,则这个三角形的形状是( ) A.直角三角形 B.钝角三角形 C.等腰直角三角形 D.等边三角形9.在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,若18=a ,24=b ,︒=45A ,则这样的三角形有( )A.0个 B. 两个 C. 一个 D. 至多一个10.已知锐角A 是ABC ∆的一个内角,,,a b c 是三角形中各角的对应边,若221sin cos 2A A -=,则下列各式正确的是( )A. 2b c a +=B. 2b c a +<C. 2b c a +≤D. 2b c a +≥11.在ABC ∆中,已知30,4,34=∠==B AC AB ,则ABC ∆的面积是A .34B .38 C.34或38D .312.在ABC ∆中,角角,,A B C 的对边分别为,,a b c ,若22a b -=且sin C B =,则A 等于A .6πB .4π C .3πD .23π13.若∆ABC 的三角A:B:C=1:2:3,则A 、B 、C 分别所对边a :b :c=( )A.1:2:3B.2 D. 1:2: 14.△ABC 的三个内角A,B,C 的对边分别a ,b ,c ,且a cosC,b cosB,c cosA 成等差数列,则角B 等于( )A 30B .60C 90 D.12015.在∆ABC 中,三边a ,b,c 与面积S 的关系式为2221()4Sa b c =+-,则角C 为( )A .30B 45C .60D .90 16.△ABC 中,a b sin B =2,则符合条件的三角形有( ) A .1个 B .2个 C .3个D .0个17.设∆ABC 的内角A,B ,C 所对边的长分别为a,b,c ,若b+c= 2a,.3sinA=5sinB ,则角C=( ) A .3πB .23πC .34π D.56π18.若三角形ABC 中,sin(A +B)sin(A -B)=sin 2C ,则此三角形的形状是( ) A .等腰三角形 B .直角三角形 C .等边三角形D .等腰直角三角形19.已知两座灯塔A 、B 与C 的距离都是a ,灯塔A 在C 的北偏东20°,灯塔B 在C 的南偏东40°,则灯塔A 与灯塔B 的距离为 ( )A .a B.2aD20.在△ABC 中,若cos cos A bB a =,则△ABC 的形状( ) A .直角三角形 B .等腰或直角三角形C .不能确定D .等腰三角形21.已知ABC ∆的内角A B C ,,的对边分别为a b c ,,,且120c b B ==︒,则ABC ∆的面积等于________.22.在△ABC 中,角A B C ,,的对边分别为a b c ,,,且a b c <<2sin b A =. 则角B 的大小为_______;23.在△ABC 中,sin :sin :sin 3:2:4A B C =,则cos C 的值为________. 24.在ABC ∆中.若1b =,c =23C π∠=,则a=___________。

高二解三角形练习题及答案

高二解三角形练习题及答案

高二解三角形练习题及答案一、选择题1. 已知∠ABC=60°,边AB=5,边AC=8,求∠ACB的大小。

A. 30°B. 45°C. 60°D. 90°2. 已知∠ABC=90°,边AB=15,边BC=20,求∠ACB的大小。

A. 30°B. 45°C. 60°D. 90°3. 在△ABC中,∠A=30°,∠B=60°,底边AC=10,求∠C的大小。

A. 30°B. 45°C. 60°D. 90°4. 在△ABC中,∠A=45°,边AB=7,边AC=7,求∠C的大小。

A. 30°B. 45°C. 60°D. 90°二、填空题1. 在等腰三角形ABC中,∠C的度数是_____。

2. 在直角三角形ABC中,边AB的边长是12,边BC的边长是___,边AC的边长是___。

3. 在△ABC中,边AB的边长是6,∠A的度数是60°,∠B的度数是____,边AC的边长是___。

三、解答题1. 已知△ABC中,∠C=90°,边AB=5,边BC=12,求边AC的边长和∠ACB的大小。

解:根据勾股定理,我们可以得到AC的边长为13。

由于∠ACB是直角三角形的一个内角,所以必然等于90°。

所以,边AC的边长为13,∠ACB的大小为90°。

2. 已知△ABC中,边AB=8,边BC=10,边AC=12,求∠ACB的大小。

解:根据余弦定理,我们可以得到:cos∠ACB = (AB² + BC² - AC²) / (2 × AB × BC)cos∠ACB = (8² + 10² - 12²) / (2 × 8 × 10)cos∠ACB = 156 / 160cos∠ACB = 0.975∠ACB = arccos(0.975)使用计算器计算,得到∠ACB约为 12.68°。

高二数学解三角形试题

高二数学解三角形试题

高二数学解三角形试题1.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东,行驶后,船到达C处,看到这个灯塔在北偏东,这时船与灯塔距离为__________km.【答案】30【解析】解:如图,依题意有AB=15×4=60,∠MAB=30°,∠AMB=45°,在△AMB中,由正弦定理得,解得BMsin450=60sin300,BM=30,故可知船与灯塔距离为30 km.2.本题满分12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c, a=2bsinA(1)求B的大小;(2)求cosA+sinC的取值范围.【答案】(1).(2)的取值范围为.【解析】本题是中档题,考查三角函数的化简求值,正弦定理与两角和与差的正弦函数的应用,考查计算能力(Ⅰ)结合已知表达式,利用正弦定理直接求出B的值.(Ⅱ)利用(Ⅰ)得到A+C的值,化简cosA+cosC为一个角的三角函数,结合角的范围即可求出表达式的取值范围1)由,根据正弦定理得,所以,由为锐角三角形得.(2).由为锐角三角形知,,.解得所以,所以.由此有,所以,的取值范围为.3.(本小题满分12分)在中,内角对边的边长分别是,已知,.(1)若的面积等于,求;(2)若,求的面积.【答案】(1),.(2)的面积.【解析】本试题主要是考查了解三角形的运用。

(1)先根据题意由余弦定理得得到ab的值,,进而结合面积公式得到a,b的值。

(2)因为正弦定理,已知条件化为b=2a 联立方程组得到a,b的值,进而求解面积。

解:(1)由余弦定理得,,又因为的面积等于,所以,得.联立方程组解得,.(2)由正弦定理,已知条件化为联立方程组解得,.所以的面积.4.在中,已知,则( )A.B.C.D.【答案】B【解析】5.在中,,则此三角形解的情况是( )A.一解B.两解C.一解或两解D.无解【答案】B【解析】由正弦定理可知,并且因为,所以有两解.6.(本小题满分12分)在△ABC中,a、b、c分别为角A、B、C所对的边,C=2A,,.(Ⅰ)求的值;(Ⅱ)求b的值.【答案】(Ⅰ).(Ⅱ)b=5.【解析】(I)由正弦定理.(II)由a+c=10,,得到a=4,c=6,再由余弦定理,可建立关于b的方程,求出b的值.(Ⅰ).(Ⅱ)由及可解得a=4,c=6.由化简得,.解得b=4或b=5.经检验知b=4不合题意,舍去.所以b=5.7.如图,在山脚测得出山顶的仰角为,沿倾斜角为的斜坡向上走米到,在处测得山顶的仰角为,求证:山高.【答案】【解析】主要考查正弦定理的应用。

高二数学解三角形练习题

高二数学解三角形练习题

高二数学解三角形练习题解三角形是高中数学中的重要内容,通过解题练习可以帮助我们巩固和拓展解三角形的知识。

下面将为大家提供一些高二数学解三角形的练习题,希望大家能够认真思考和解答。

练习题一:已知三角形ABC,其中∠B = 90°,AB = 5cm,BC = 12cm。

求∠A和∠C的大小。

解答:由于∠B = 90°,所以三角形ABC是直角三角形。

根据勾股定理,AC² = AB² + BC²。

代入已知数据,可得AC² = 5² + 12² = 25 + 144 = 169,即AC = 13cm。

应用正弦定理,sinA = BC / AC = 12 / 13,sinC = AB / AC = 5 / 13。

通过计算可以得到sinA ≈ 0.923,sinC ≈ 0.385。

由反三角函数可得∠A ≈ 69.3°,∠C ≈ 23.6°。

练习题二:已知三角形ABC,其中∠A = 60°,BC = 6cm,AC = 8cm。

求∠B和∠C的大小。

解答:应用余弦定理,BC² = AB² + AC² - 2 * AB * AC * cosA。

代入已知数据,可得36 = AB² + 64 - 16 * AB * AC * 0.5。

化简后得到AB² - 2 * AB * AC + 28 = 0。

通过解一元二次方程,可以得到AB ≈ 5.135cm 或AB ≈ 1.865cm。

由于AB和BC的长度之和必须大于AC,所以排除AB ≈ 1.865cm 的情况。

因此,AB ≈ 5.135cm。

应用正弦定理,sinB = AB / AC = 5.135 / 8,sinC = BC / AC = 6 / 8。

通过计算可以得到sinB ≈ 0.642,sinC ≈ 0.75。

由反三角函数可得∠B ≈ 40.9°,∠C ≈ 48.6°。

解直角三角形的综合练习

解直角三角形的综合练习

解直角三角形的应用1、(2012四川内江,11,3分)如图4所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为A .12B .55C .1010D .255【解析】欲求sinA ,需先寻找∠A 所在的直角三角形,而图形中∠A 所在的△ABC 并不是直角三角形,所以需要作高.观察格点图形发现连接CD (如下图所示),恰好可证得CD ⊥AB ,于是有sinA =CDAC =210=55.【答案】B2、(2012浙江丽水4分,16题)如图,在直角梯形ABCD 中,∠A=90°,∠B=120°,AD=3,AB=6.在底边AB 上取点E ,在射线DC 上取点F ,使得∠DEF=120°.(1)当点E 是AB 的中点时,线段DF 的长度是________; (2)若射线EF 经过点C ,则AE 的长是________.C B A图4CBA图4D【解析】:AE=21AB=3.在Rt △ADE 中,tan ∠ADE=33=AD AE =3.所以∠ADE=60°,所以DE=32213cos ==∠ADEAD ,∠AED=∠EDF=∠BEF=30°,所以ED=EF.过点E 作EG ⊥DC 于G ,则DF=2DG=2×DE ·cos30°=2×23×23=6;(2)过C 作CH ⊥直线AB 于E ,那么CH=AD=3,由勾股定理D 得BH=1。

所以CD=7。

易知△BCE ~△EDC ,所以BE :CE=CE :CD ,所以CE 2=CD ×DC ,设BE=x ,则CE 2=7x 。

在Rt △CEH 中,由勾股定理得CE 2=EH 2+CH 2,得(x+1)2+3=7x ,解之,得x=1或4。

当x=1时,AE=5;当x=4时,AE=2。

故AE 的长为5或2。

【答案】:(1)6;(2)2或53、(2012广安中考试题第23题,8分)(8分)如图10,2012年4月10日,中国渔民在中国南海黄岩岛附近捕鱼作业,中国海监船在A 地侦察发现,在南偏东60o 方向的B 地,有一艘某国军舰正以每小时13海里的速度向正西方向的C 地行驶,企图抓捕正在C 地捕鱼的中国渔民。

高中解三角形练习题及答案

高中解三角形练习题及答案

高中解三角形练习题及答案一、选择题1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为. A.90°B.120°C.135°D.150°2.在△ABC中,下列等式正确的是. A.a∶b=∠A∶∠B C.a∶b=sin B∶sin AB.a∶b=sin A∶sin B D.asin A=bsin B3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为. A.1∶2∶ C.1∶4∶9B.1∶3∶D.1∶2∶34.在△ABC中,a=5,b=,∠A=30°,则c等于. A.25 B.5C.2或D.或55.已知△ABC中,∠A=60°,a=6,b=4,那么满足条件的△ABC的形状大小.A.有一种情形 C.不可求出B.有两种情形 D.有三种以上情形6.在△ABC中,若a2+b2-c2<0,则△ABC是. A.锐角三角形B.直角三角形C.钝角三角形D.形状不能确定7.在△ABC中,若b=3,c=3,∠B=30°,则a=. A. B.23C.或2D.28.在△ABC中,a,b,c分别为∠A,∠B,∠C的对边.如果a,b,c成等差数列,∠B=30°,△ABC的面积为 A.1?323,那么b=.C.2?32B.1+D.2+9.某人朝正东方向走了x km后,向左转150°,然后朝此方向走了km,结果他离出发点恰好km,那么x的值是.A. B.2C.或 D.310.有一电视塔,在其东南方A处看塔顶时仰角为45°,在其西南方B处看塔顶时仰角为60°,若AB=120米,则电视塔的高度为.A.603米二、填空题11.在△ABC中,∠A=45°,∠B=60°,a=10,b =. 12.在△ABC中,∠A=105°,∠B=45°,c=2,则b=. 13.在△ABC中,∠A=60°,a=3,则B.60米C.60米或60米 D.30米a?b?c=.sinA?sinB?sinC,则∠C=.14.在△ABC中,若a2+b2<c2,且sin C=15.平行四边形ABCD中,AB=46,AC=43,∠BAC=45°,那么AD= 16.在△ABC中,若sin A∶sin B∶sin C =2∶3∶4,则最大角的余弦值=三、解答题17.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.18.在△ABC中,已知b=,c=1,∠B=60°,求a 和∠A,∠C.19.根据所给条件,判断△ABC的形状. acos A=bcos B;20.△ABC中,己知∠A>∠B>∠C,且∠A=2∠C,b =4,a+c=8,求a,c的长.cab==. cosAcosBcosC第一章解三角形参考答案一、选择题 1.B解析:设三边分别为5k,7k,8k,中间角为 ?,5k2+64k2-49k21由cos ?==,得 ?=60°,25k8k2∴最大角和最小角之和为180°-60°=120°..B.B.C.C.C.C.Ba+c=2ba+c=2b?31解析:依题可得:?acsin30?= ??ac=622??22b=-2ac3ac222b=a+c-2accos30?代入后消去a,c,得b2=4+2,∴b=3+1,故选B..C10.A 二、填空题 11.56. 12.2. 13.2.解析:设 bca+b+ca3a===k,则=k===sinAsinAsin60?sin A+sin B +sin CsinBsinC2.14.2?.15.4. 16.-1.三、解答题17.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小.解法1:由正弦定理得sin C=∵csin A=6³266sin5°=²=.2222=3,a=2,c=,<2<6,∴本题有二解,即∠C=60°或∠C=120°,∠B=180°-60°-45°=75°或∠B=180°-120°-45°=15°.故b=asin B,所以b=3+1或b=-1, sinA∴b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°.解法2:由余弦定理得b2+2-2bco s5°=4,∴b2-2b+2=0,解得b=±1.又2=b2+22-2³2bcos C,得cos C=±所以∠B=75°或∠B=15°.∴b=+1,∠C=60°,∠B=75°或b=3-1,∠C =120°,∠B=15°. 18.解析:已知两边及其中一边的对角,可利用正弦定理求解.1,∠C=60°或∠C=120°,bc=, sinBsinCc?sinB1?sin60?1∴sin C===.2b解:∵∵b>c,∠B=60°,∴∠C<∠B,∠C=30°,∴∠A =90°.由勾股定理a=b2+c2=2,即a=2,∠A=90°,∠C=30°.解三角形广州市第四中学刘运科一、选择题.本大题共10小题.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.△ABC的内角A,B,C的对边分别为a,b,c,若c?b?B?120等于 AB.2CD,则a2.在△ABC中,角A、B、C的对边分别为a、b、c,已知A? A. 1B.2C13,a?b?1,则c?D3. 已知△ABC中,a?A.135b?B?60?,那么角A等于B.90C.45D.304. 在三角形ABC中,AB?5,AC?3,BC?7,则?BAC的大小为2?5?3??B. C. D.6435.△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c?2a,则cosB?A.13A.4B.4C.D.36. △ABC中,已知tanA?A.13511,tanB?,则角C等于2B.120C.45D.07. 在?ABC中,AB=3,AC=2,BC=,则AB?AC?2332B.? C. D.32238. 若△ABC的内角A、B、C的对边分别为a、b、c,且acosA?bcosB,则 A.△ABC为等腰三角形 B.△ABC为直角三角形 C.△ABC为等腰直角三角形 D.△ABC为等腰三角形或直角三角形. 若tanAtanB>1,则△ABCA.?A. 一定是锐角三角形 C. 一定是等腰三角形22B. 可能是钝角三角形 D. 可能是直角三角形10. △ABC的面积为S?a?,则tanA.1B.1A=1C.4D.1二、填空题:本大题共4小题.11. 在△ABC中,三个角A,B,C的对边边长分别为a?3,b?4,c?6,则bccosA?cacosB?abcosC的值为1?12.在△ABC中,若tanA?,C?150,BC?1,则AB? . 313. 在△ABC中,角A、B、C所对的边分别为a、b、c ,若3b?ccosA?acosC,则cosA?_________________。

千题百炼- 三角恒等与解三角形综合必刷大题100题(原卷版)

千题百炼- 三角恒等与解三角形综合必刷大题100题(原卷版)

专题11 三角恒等与解三角形综合必刷大题100题任务一:善良模式(基础)1-40题1.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,角A 、B 、C 的度数成等差数列,b = (1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值.2.已知函数()22sin cos 6f x x x x π⎛⎫=-- ⎪⎝⎭.(1)求()f x 的最小正周期;(2)当,44x ππ⎛⎫∈- ⎪⎝⎭时,求()f x 的值域.3.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且222sin b A c a +=. (1)求角A ;(2)若a =2tan tan tan a b cA B C=+,求ABC 的面积.4.在ABC 中,120BAC ∠=︒,sin ABC ∠=D 是CA 延长线上一点,且24AD AC ==. (1)求sin ACB ∠的值; (2)求BD 的长.5.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2222sin sin sin b c a B Abc C +--=. .1.求角C 的值;(2)若4a b +=,当边c 取最小值时,求ABC 的面积.6.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知2cos c b b A -=⋅.(1)若a =3b =,求c ; (2)若角2C π=,求角B .7.已知△ABC 中,C ∠为钝角,而且8AB =,3BC =,AB (1)求B 的大小;(2)求cos 3cos AC A B +的值.8.在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且()sin cos 0a B B C ++=. (1)若sin 2a A b =,求sin B ;(2)若a =2sin sin B C =,求ABC 的面积.9.在ABC 中,三内角A ,B ,C 对应的边分别是a ,b ,c ,cos cos 2cos 0b C c B A ++=,且1a =. (Ⅰ)求角A 的大小;(Ⅱ)若ABC ABC 的周长.10.已知函数()()()cos sin f x x x x x =∈R . (1)求()f x 的最小正周期和单调增区间;(2)在ABC 中,角,,A B C 的对边分别为,,a b c .若2B f ⎛⎫= ⎪⎝⎭6b =,求ABC 的面积的取值范围.11.在ABC 中,角、、A B C 所对的边分别是a b c 、、,且2B A C =+,b = (1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值12.在ABC 中,已知2cos S bc A =,其中S 为ABC 的面积,a ,b ,c 分别为角A ,B ,C 的对边. (1)求角A 的值;(2)若6tan 5B =,求sin 2C 的值.13.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足3sin c a B =,cos B =, (.)求证:4A π=;(.)若边AB 上中线CD ABC 的面积.14.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c sin (2cos )A a B =+. (1)求B ;(2)若△ABC △ABC 的周长的最小值.15.已知平面向量(sin cos ,2sin )a x x x =+,(sin cos ,)b x x x =-,函数()(R)f x a b x =⋅∈. (1)求()f x 的最小正周期及单调递减区间; (2)若(0,)m π∈,223m f ⎛⎫=- ⎪⎝⎭,求sin m 的值.16.在ABC 中,4ABC π∠=,D 是边BC 上一点,且5AD =,3cos 5ADC ∠=.(1)求BD 的长;(2)若ABC 的面积为14,求AC 的长.17.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(2)cos cos 0a c B b A ++=. (1)求B ;(2)若4b =,求ABC 的面积的最大值.18.如图,在ABC ∆中,2AC =,3A π∠=,点D 在线段AB 上.(1)若1cos 3CDB ∠=-,求CD 的长;(2)若2AD DB =,sin ACD BCD ∠=∠,求ABC ∆的面积.19.已知△ABC 的内角,,A B C 的对边分别为,,a b c ,且()2cos cos cos A b C c B a +=. (1)求角A ;(2)在ABC 中,D 为BC 边上一点,且()12AD AB AC =+,2AD =,求ABC 面积的最大值.20.已知函数()21sin sin 22f x x x x π⎛⎫=-+- ⎪⎝⎭(1)求()f x 的最小正周期;(2)求()f x 在区间02π⎡⎤⎢⎥⎣⎦,上的最大值.21.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin sin 2sin cos 0A B C B --=. (1)求内角C 的大小;(2)若ABC ∆的周长为6+c 的长度.22.ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且满足 ()()cos 2cos b A c a B π=+-. (1)求角B 的大小;(2)若b =ABC ∆a c +的值.23.已知函数()23sin cos f x x x x =x ∈R . (1)求函数()f x 的最小正周期;(2)若2a f ⎛⎫= ⎪⎝⎭,263a ππ⎛⎫<< ⎪⎝⎭,求3cos 2a π⎛⎫+ ⎪⎝⎭的值.24.在ABC ∆中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足sin 4sin b B a A =,()2222bc b a c =--.(1)求角B 的大小; (2)求()sin 2A B -的值.25.在ABC 中,内角A ,B ,C 所对的边长分别为,,,cos 23cos()1a b c C A B ++=. (1)求角C ;(2)若2c =,求ABC 面积的最大值.26.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c 满足cos cos 2cos ca Bb A C+=,且BC 边上一点P 使得PA PC =. (1)求角C 的大小;(2)若3PB =,sin BAP ∠=ABC 的面积.27.已知向量()2cos ,sin a x x =,()cos ,b x x =-,且()1f x a b =⋅-. (1)求()f x 的单调递增区间;(2)先将函数()y f x =的图象上所有点的横坐标缩小到原来的12倍(纵坐标不变),再将所得图象向左平移12π个单位,得到函数()y g x =的图象,求方程()1g x =在区间0,2x π⎡⎤∈⎢⎥⎣⎦上所有根之和.28.已知函数443()2sin cos 224x x f x x =++-. (1)求()f x 的最小正周期;(2)求()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上对称轴、对称中心及其最值.29.函数()()2sin f x A x ωϕ=+(0A >,0>ω,02πϕ<<),且()y f x =的最大值为2,其图象相邻两对称轴间的距离为2,并过点()1,2. (1)求ϕ;(2)计算()()12f f ++…()2019f .30.设函数2()sin(2)2cos 16f x x x π=-+-.(Ⅰ)当[0,]2x π∈时,求函数()f x 的值域;(Ⅱ)ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且1()2f A =,2223a b =,1c =,求ABC ∆的面积.31.已知通数()cos()(0,0)f x x ωϕωϕπ=+><<的图像经过点1,62π⎛⎫- ⎪⎝⎭,图像与x 轴两个相邻交点的距离为π.(.)求()f x 的解析式:(.)若335f πθ⎛⎫+=- ⎪⎝⎭,求sin θ的值.32.已知向量()3sin ,2cos a x x =-,()2cos ,cos b x x =,函数()1()f x a b x =⋅+∈R .(1)求函数()f x 的单调递增区间;(2)在ABC ∆中,内角A 、B 、C 所对边的长分别是a 、b 、c ,若()2f A =,4C π,2c =,求ABC∆的面积ABC S ∆.33.在ABC ∆中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足:()2222sin sin b c a C c B +-=.(.)求角A 的大小;(Ⅱ)若1a =,求b c +的最大值.34.在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC .如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .35.在①sinsin 2A Bb c B +=)cos sin c A b a C -=-,③cos cos cos c a b C A B+=+这三个条件中任选一个,补充在下面的问题中,并解答问题.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________. (1)求C ;(2)若ABC 的面积为AC 的中点为D ,求BD 的最小值.36.在①22cos a b c B -=(A +B )=1+22sin 2C这两个条件中选一个,补充在下面的横线处,然后解答问题.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,设△ABC 的面积为S ,已知___. (1)求角C 的值;(2)若b =4,点D 在边AB 上,CD 为∠ACB 的平分线,△CDB ,求边长a 的值.注:如果选择多个条件分别解答,按第一个解答计分.37.在①2cos (cos cos )A c B b C a +=,②222sin sin sin sin sin B C A B C +-=cos b cC C a++=这三个条件中任选一个,补充在下面问题中,并作答.问题:在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且________. (1)求角A ;(2)若O 是ABC 内一点,120AOB ∠=︒,150AOC ∠=︒,1b =,3c =,求tan ABO ∠. 注:如果选择多个条件分别解答,按第一个解答计分. 38.在①cos cos 2B b C a c=-+,②sin sin sin A b cB C a c +=-+,③23S BA BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,若2a =,4c =,求AC 边上的垂线长.39.在.cos cos 2B b C a c=-+,.sin sin sin A b cB C a c +=-+,.2S BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,7b =,5c =,求a 的值.40.记ABC 的内角,,A B C 的对边分别为,,a b c .请在下列三个条件中任选一个作为已知条件,解答问题.①()sin sin()sin a c A c A B b B -++=;②2S AB CB =⋅(其中S 为ABC 的面积);③sin cos c B C -=.(1)若4,3b ac ==,求a c +的值;c ,求a的取值范围.(2)若ABC为锐角三角形,且2任务二:中立模式(中档)1-40题1.在.2sin tan a B b A =;.cos sin b a C A =;.()22222cos a c b bc A +-=-三个条件中任选一个,补充在下面问题中,并作答.问题:已知ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,且a =___________. (1)求角A 的大小; (2)求ABC 面积的最大值.2.已知函数2()2cos 1cos (01)f x x x x ωωωω=-+<<,直线3x π=是函数()f x 的图象的一条对称轴.(1)求函数()f x 的单调递增区间;(2)令()22263g x f x f x m ππ⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭,若12,x x 是函数()g x 在0,2π⎡⎤⎢⎥⎣⎦的零点,求()12cos x x +的值.3.ABC 的内角A ,B ,C 的对边分别是a ,b ,c sin cos c B C +=. (1)求角B 的大小;(2)若b =D 为AC 边上一点,1BD =,且___________,求ABC 的面积.(从①BD 为ABC ∠的平分线,②D 为AC 的中点,这两个条件中任选一个补充在上面的横线上并作答)4.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,设ABC 面积的大小为S 32AB AC S ⋅=. (1)求A 的值;(2)若ABC 的外接圆直径为1,求22b c +的取值范围.5.在ABC 中,1a =,2b =.(1)若边c =ABC 的面积S ;(2)在下列三个条件中选择一个作为已知,使ABC 存在且唯一确定,并求出sin A . ①2B A =; ②π3A B +=; ③2C B =6.已知(1,2)m x ω=,2(2sin 1,cos )n x x ωω=-,令().f x m n =⋅其中01ω<<,满足()43f x f x π⎛⎫-= ⎪⎝⎭. (1)求()f x 的解析式;(2)在锐角ABC 中,角,,A B C 所对边分别为,,a b c ,()1f B =且1c =,求ABC 的面积的取值范围.7.在①()()()sin sin sin sin A B a b C B c +-=-,②sin sin 2B C b a B +=,③2tan tan tan B bA B c=+中任选一个,补充在横线上,并回答下面问题.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且________. (1)求角A 的大小;(2)已知2AB =,D 为AB 中点,且2CD ab =,求ABC 面积.8.如图,D 是直角ABC 斜边上一点(不含端点),AB AD =,记BAD ∠=α,ADC β∠=.(1sin 2αβ-的最大值;(2)若AC =,求角β的值.9.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,点M 在边BC 上,已知2cos 2a C b c =+. (1)求A ;(2)若AM 是角A 的平分线,且2AM =,求ABC 的面积的最小值.10.1.已知a ,b ,c 分别是ABC 的内角A ,B ,C 所对的边,()()3cos cos 4cos cos a b A a B c A a C c +=+,再从下面条件①与②中任选1个作为已知条件,完成以下问题.(1)证明:ABC 为锐角三角形;(2)若8CA CB ⋅=,CD 为ABC 的内角平分线,且与AB 边交于D ,求CD 的长. ①2cos 3C =;②1cos 9A =.11.在①2cos (cos cos )A c B b C a +=cos b cC C a++=这两个条件中任选一个,补充在下面问题中,并作答.问题:在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且________.(1)求角A ;(2)若O 是ABC 内一点,120,150,1,3∠=︒∠=︒==AOB AOC b c ,求tan ABO ∠.12.在“①2cos a B c =;②(),m a c b =-,(),n c b a b =++,//m n ”这两个条件中任选一个,补充在下面问题中,并进行求解.问题:在ABC 中,a ,b ,c 分别是三内角A ,B ,C 的对边,已知4b =,D 是AB 边上的点,且3AD DB =,()211sin sin 2cos sin224C A B C -=+,若_______________,求CD 的长度.13.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin sin 2sin B C A +=,3sin 4sin =b C c A ,点D 在射线AC 上,满足cos 2cos ABD B ∠=. (1)求ABD ∠;(2)设ABD ∠的角平分线与直线AC 交于点E ,求证:111BA BD BE+=.14.在ABC 中,内角、、A B C 所对边分别为a b c 、、,若2222sin sin sin cos cos C A B A B -=++. (1)求C ;(2)若ABC 为锐角三角形,且4b =,求ABC 面积的取值范围.15.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =cos (cos )+-C B B cos 0A =.(1)求角A 的大小;(2)求2b c +的取值范围.16.已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,7cos 25c B a b =-. (1)求cos C ;(2)若点A ,B 是函数()2sin 133f x x ππ⎛⎫=+- ⎪⎝⎭的图象在某个周期内的最高点与最低点,求ABC 面积的最大值.17.在平面四边形ABCD 中,AB =1,BC =CD =2,AD =3. (1)证明:3cos A -4cos C =1;(2)记△ABD 与△BCD 的面积分别为S 1,S 2,求S 12+S 22的最大值.18.在锐角ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos c b a B b A -=-. (1)求角A 的大小;(2)若1a =,求ABC 周长的范围.19.在.cos cos 2B b C a c -=+,.sin sin sin A b cB C a c+=-+,.2S BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,若2a =,4c =,AB 边上的中垂线交AC 于D 点,求BD 的长.20.ABC 的内角A ,B ,C 的对边分别为a ,b ,c 且满足2a =,()cos 2cos a B c b A =-. (1)求角A 的大小; (2)求ABC 周长的范围.21.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2cos 2b cC a-=. (1)求角A 的大小;(2)若ABC 的周长为6,求ABC 面积S 的最大值.22.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin 2A Bc B b +=. (1)求角C 的大小;(2)若8b =,cos B D 为边BC 上一点,且7AD =,求BD DC 的值.23.如图,在ABC 中,AB AC >,AD 、AE 分别为BC 边上的高和中线,4=AD ,3DE =(1)若90BAC ∠=︒,求AB 的长;(2)是否存在这样的ABC ,使得射线AE 和AD 三等分BAC ∠?24.已知函数2())2sin 1,(0,0)2x f x x ωϕωϕωϕπ+⎛⎫=++-><< ⎪⎝⎭为奇函数,且()f x 图像相邻的对称轴之间的距离为2π(1)求函数()f x 的解析式及其减区间;(2)在ABC 中,角A 、B 、C 对应的边为a 、b 、c ,且a =26f A π⎛⎫+= ⎪⎝⎭ABC 的周长的取值范围.25.在ABC 中,角,,A B C 的对边分别为,,a b c ,满足sin (1cos )3sin cos cos sin B C A C A C +=+ 且π2C ≠. (1)求证:2b a =;(2)若2c =,求ABC 的面积的最大值.26.在ABC 中,AC AB >,31cos 32A =,8AB =.(1)若ABC S =△BC ;(2)若()1cos 8B C -=,求ABC S ∆.27.1.已知向量()cos ,sin m x x →=,()cos x n x →=,设()12f x m n →→=⋅-,π0,3x ⎡⎤∈⎢⎥⎣⎦.(1)求()f x 的值域; (2)若方程()23f x =有两个不相等的实数根1x ,2x ,求()12cos x x +,()12cos x x -的值.28.如图,ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,c =,且cos (2)cos -=-a c B c b C .(1)求角C 的大小;(2)在ABC 内有点M ,CMA CMB ∠=∠,且3BM AM =,直线CM 交AB 于点Q ,求cos CQA ∠.29.已知,,a b c 分别为ABC 三个内角,,A B C 的对边,且满足22,c a ab =+记ABC 的面积为S. (1)求证:2C A =;(2)若ABC 为锐角三角形,4b =,且S λ<恒成立,求实数λ的范围.30.已知a ,b ,c 分别是ABC 的内角A ,B ,C 所对的边,从下面条件①与②中任选一个作为已知条件,并完成下列问题: (1)求B ;(2)若4AC =,求ABC 的周长的最大值.条件①:cos (2)cos 0b C a c B --=;条件②:()(sin sin )()sin a b A B a c C +-=-. 注:如果选择不同的条件分别解答,按照第一种选择的解答计分. 31.在①cos cos 2B b C a c =-+,②sin sin sin A b cB C a c+=-+,③23S BA BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,BD 是ABC ∠的平分线交AC 于点D ,若1BD =,求4a c +的最小值.32.在①cos cos 2B b C a c=-+,②sin sin sin A b cB C a c +=-+,③23S BA BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,作AB AD ⊥,使得四边形ABCD 满足3ACD π∠=,AD =ACDS的最值33.在.cos cos 2B b C a c=-+,.sin sin sin A b c B C a c +=-+,.2S BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,若b =2-c a 的取值范围.34.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且22cos c a b A -=,3b =.(1)求B 的大小;(2)若a =ABC 的面积;(3)求ac a c+的最大值.35.如图,在四边形ABCD 中,34ABC π∠=,AB AD ⊥,AB =(1)若AC =ABC ∆的面积;(2)若6ADC π∠=,CD =AD 的长.36.在.cos cos 2B b C a c=-+,.sin sin sin A b c B C a c +=-+,.2S BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,求a c b+的取值范围.37.在ABC 中,a 、b 、c 分别为内角A 、B 、C 的对边,且()()2sin 2sin 2sin a A b c B c b C =+++. (1)求A 的大小;(2)若sin sin 1B C +=,试判断ABC 的形状;(3)若3a =,求ABC 周长的最大值.38.如图,在四边形ABCD 中,2D B ∠=∠,且1AD =,3CD =,cos B =(1)求AC 的长;(2)求四边形ABCD 面积的最大值.39.现给出三个条件:①a sin 2A C +=b sin A ,②a cos C +c cos A =2b cosB ,③2c -a =2b cos A .从中选出一个补充在下面的问题中,并解答问题.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,________.(1)求角B 的大小;(2)若b =2,求△ABC 周长的取值范围.40.目前,中国已经建成全球最大的5G 网络,无论是大山深处还是广袤平原,处处都能见到5G 基站的身影.如图,某同学在一条水平公路上观测对面山项上的一座5G 基站AB ,已知基站高50m AB =,该同学眼高1.5m (眼睛到地面的距离),该同学在初始位置C 处(眼睛所在位置)测得基站底部B 的仰角为37°,测得基站顶端A 的仰角为45°.(1)求出山高BE (结果保留整数);(2)如图,当该同学面向基站AB 前行时(保持在同一铅垂面内),记该同学所在位置M 处(眼睛所在位置)到基站AB 所在直线的距离m MD x =,且记在M 处观测基站底部B 的仰角为α,观测基站顶端A 的仰角为β.试问当x 多大时,观测基站的视角AMB ∠最大?参考数据:sin80.14︒≈,sin370.6︒≈,sin 450.7︒≈,sin1270.8︒≈.任务三:邪恶模式(困难)1-20题1.ABC 中,D 是BC 上的点,AD 平分BAC ∠,ABD △面积是ADC 面积的2倍.(1)求sin sin B C∠∠的值;(2)从①1AD =,②DC =cos C =这三个条件中选择两个条件作为已知,求BD 和AC 的长.2.已知函数()()1sin sin cos 2f x x x x ωωω=+-(0>ω)图象的相邻两条对称轴之间的距离为2π. (1)求()f x 的单调递增区间以及()f x 图象的对称中心坐标;(2)是否存在锐角α,β,使2π23αβ+=,3ππ222f f αβ⎛⎫⎛⎫+⋅+ ⎪ ⎪⎝⎭⎝⎭α,β的值;若不存在,请说明理由.3.已知函数()2()2sin 1(0,0 )2x f x x ωϕωϕωϕπ+⎛⎫++-><< ⎪⎝⎭为奇函数,且()f x 图象的相邻两对称轴间的距离为 2π. (1)求()f x 的解析式与单调递减区间;(2)将函数()f x 的图象向右平移 6π个单位长度,再把横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,当 0,2x π⎡⎤∈⎢⎥⎣⎦时,求方程()22()30g x x +-=的所有根的和.4.已知函数()sin (0)f x x x ωωω=>.(1)当03ω<<时,函数()()3y f x f x πω=--的图象关于直线512x π=对称,求()f x 在[]0,π上的单调递增区间;(2)若()f x 的图像向右平移3π个单位得到的函数()g x 在[,]2ππ上仅有一个零点,求ω的取值范围.5.在平面四边形ABCD 中,3AB =,5AD =,120BAD ∠=︒,60BCD ∠=︒(1)求BD 的长;(2)求AD BC AB CD ⋅+⋅的最大值.6.在.cos cos 2B b C a c=-+,.sin sin sin A b c B C a c +=-+,.2S BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,作AB AD ⊥,使得四边形ABCD 满足3ACD π∠=,AD = 求BC 的取值范围.7.已知A ∠是ABC 的内角,函数()()3cos sin 2f x x x A π⎛⎫=-- ⎪⎝⎭的最大值为14.(1)求A ∠的大小;(2)若()()124g x f x ⎡⎤=+⎢⎥⎣⎦,关于x 的方程()()2410g x m g x -+=⎡⎤⎡⎤⎣⎦⎣⎦在,33x ππ⎛⎫∈- ⎪⎝⎭内有两个不同的解,求实数m 的取值范围.8.如图,有一景区的平面图是一个半圆形,其中O 为圆心,直径AB 的长为2km ,C ,D 两点在半圆弧上,且BC CD =,设COB θ∠=;(1)当π12θ=时,求四边形ABCD 的面积. (2)若要在景区内铺设一条由线段AB ,BC ,CD 和DA 组成的观光道路,则当θ为何值时,观光道路的总长l 最长,并求出l 的最大值.9.某校要在一条水泥路边安装路灯,其中灯杆的设计如图所示,AB 为地面,CD ,CE 为路灯灯杆,CD AB ⊥,2π3DCE ∠=,在E 处安装路灯,且路灯的照明张角π3MEN ∠=,已知4CD =m ,2CE =m .(1)当M ,D 重合时,求路灯在路面的照明宽度MN ;(2)求此路灯在路面上的照明宽度MN 的最小值.10.已知向量1(sin ,1),3cos ,2m x n x ⎛⎫==- ⎪⎭.令函数()()f x m n m =+⋅. (1)求函数()f x 的最小正周期和单调递增区间;(2)ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,ACB ∠的角平分线交AB 于D .其中,函数()f C 恰好为函数()f x 的最大值,且此时()CD f C =,求3a b +的最小值.11.如图,在四边形ABCD 中,CD =BC =cos 14CBD ∠=.(1)求BDC ∠;(2)若3A π∠=,求ABD △周长的最大值.12.已知函数()cos 14f x x x π⎛⎫=+- ⎪⎝⎭. (1)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的值域; (2)是否同时存在实数a 和正整数n ,使得函数()()g x f x a =-在[]0,x n π∈上恰有2021个零点?若存在,请求出所有符合条件的a 和n 的值;若不存在,请说明理由.1360°的扇形的弧上任取一点P ,作扇形的内接矩形PNMQ ,使点Q 在OA 上,点N ,M 在OB 上,设矩形PNMQ 的面积为y .(1)按下列要求写出函数的关系式:①设PN =x ,将y 表示成x 的函数关系式;②设△POB =θ,将y 表示成θ的函数关系式;(2)请你选用(1)中的一个函数关系式,求出y 的最大值.14.如图,在梯形ABCD 中,//AB CD ,2AB =,5CD =,23ABC π∠=.(1)若AC =ABCD 的面积;(2)若AC BD ⊥,求tan ABD ∠.15.已知a ,b ,c 是ABC 的内角A ,B ,C 的对边,且ABC 的面积214S c =.(1)记(2,1)m c =,(2,cos )n a B =-,若//m n . (i )求角C , (ii )求a b的值;(2)求a b的取值范围.16.如图,某污水处理厂要在一个矩形污水处理池ABCD 的池底水平铺设污水净化管道(Rt FHE ∆三条边,H 是直角顶点)来处理污水,管道越长,污水净化效果越好.要求管道的接口H 是AB 的中点,,E F 分别落在线段,BC AD 上,已知20AB =米,AD =BHE θ∠=.(1)试将污水净化管道的总长度L (即Rt FHE ∆的周长)表示为θ的函数,并求出定义域;(2)问θ取何值时,污水净化效果最好?并求出此时管道的总长度.17.某房地产开发商在其开发的某小区前修建了一个弓形景观湖.如图,该弓形所在的圆是以AB 为直径的圆,且300AB =米,景观湖边界CD 与AB 平行且它们间的距离为A 点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作PQ .设2AOP θ∠=.(1)用θ表示线段,PQ 并确定sin 2θ的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将PQ 的长度设计到最长,求PQ 的最大值.18.随着生活水平的不断提高,人们更加关注健康,重视锻炼,“日行一万步,健康一辈子”.通过“小步道”,走出“大健康”,健康步道成为引领健康生活的一道亮丽风景线.如图,A B C A ---为某市的一条健康步道,AB ,AC 为线段,BC 是以BC 为直径的半圆,AB =,4km AC =,6BAC π∠=.(1)求BC 的长度;(2)为满足市民健康生活需要,提升城市品位,改善人居环境,现计划新增健康步道A D C --(B ,D在AC 两侧),AD ,CD 为线段.若3ADC π∠=,A 到健康步道B C D --的最短距离为,求D 到直线AB 距离的取值范围.19.已知函数()21cos 2sin 222xxxf x ωωω=+-(0>ω)在一个周期内的图象如图所示,A 为()f x 图象的最高点,B ,C 为()f x 图象与x 轴的交点,且ABC 为等腰直角三角形.(1)求ω的值及函数()f x 的值域;(2)若()85f α=,且84,33α⎛⎫∈- ⎪⎝⎭,求()1f α+的值;(3)已知函数()y g x =的图象是由()y f x =的图象上各点的横坐标缩短到原来的12倍,然后再向左平移1个单位长度得到的,若存在()0,2x ∈,使()()24g 12g x a x ⎡⎤+=⋅-⎣⎦成立,求a 的取值范围.20.已知△ABC 中,函数3()cos()sin()2f x x A x π=+⋅-的最大值为14. (1)求△A 的大小;(2)若1()2(())4g x f x =+,方程24[()][()]10g x m g x -+=在[,]33x ππ∈-内有两个不同的解,求实数m 取值范围.。

高二数学解三角形测试题(附答案)

高二数学解三角形测试题(附答案)

解三角形测试题一、选择题:1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于〔〕A.60°B.60°或120°C.30°或150°D.120°2、符合以下条件的三角形有且只有一个的是〔〕A.a=1,b=2 ,c=3 B.a=1,b=2,∠A=30°C.a=1,b=2,∠A=100°D.b=c=1, ∠B=45°3、在锐角三角形ABC中,有〔〕A.cosA>sinB且cosB>sinA B.cosA<sinB且cosB<sinAC.cosA>sinB且cosB<sinA D.cosA<sinB且cosB>sinA4、假设(a+b+c)(b+c-a)=3abc,且sinA=2sinBcosC, 那么ΔABC是〔〕A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形5、设A、B、C为三角形的三内角,且方程(sinB-sinA)x2+(sinA-sinC)x +(sinC-sinB)=0有等根,那么角B 〔〕A.B>60°B.B≥60°C.B<60°D.B ≤60°6、满足A=45,c=6,a=2的△ABC的个数记为m,则a m的值为〔〕A.4 B.2 C.1 D.不定7、如图:D,C,B三点在地面同一直线上,DC=a,从C,D两点测得A点仰角分别是β,ABα(α<β),则A 点离地面的高度AB 等于 〔 〕A .)sin(sin sin αββα-a B .)cos(sin sin βαβα-⋅aC .)sin(cos sin αββα-a D .)cos(sin cos βαβα-a8、两灯塔A,B 与海洋观察站C 的距离都等于a(km), 灯塔A 在C 北偏东30°,B 在C 南 偏东60°,则A,B 之间的相距 〔 〕A .a (km)B .3a(km)C .2a(km)D .2a (km)二、填空题:9、A 为ΔABC 的一个内角,且sinA+cosA=127, 则ΔABC 是______三角形. 10、在ΔABC 中,A=60°, c:b=8:5,内切圆的面积为12π,则外接圆的半径为_____.11、在ΔABC 中,假设S ΔABC =41 (a 2+b 2-c 2),那么角∠C=______. 12、在ΔABC 中,a =5,b = 4,cos(A -B)=3231,则cosC=_______.三、解答题:13、在ΔABC 中,求分别满足以下条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ; ③sinC=BA BA cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).D Cα β14、已知ΔABC 三个内角A 、B 、C 满足A+C=2B,A cos 1+ C cos 1 =-B cos 2 , 求2cosCA 的值.15、二次方程ax 2-2bx+c=0,其中a 、b 、c 是一钝角三角形的三边,且以b 为最长.①证明方程有两个不等实根; ②证明两个实根α,β都是正数; ③假设a=c,试求|α-β|的变化范围.16、海岛O 上有一座海拨1000米的山,山顶上设有一个观察站A,上午11时,测得一轮船在岛北60°东C 处,俯角30°,11时10分,又测得该船在岛的北60°西B 处,俯角60°.①这船的速度每小时多少千米?②如果船的航速不变,它何时到达岛的正西方向?此时所在点E离岛多少千米?一、BDBBD AAC 二、〔9〕钝角 〔10〕3314 〔11〕4π 〔12〕81三、〔13〕分析:化简已知条件,找到边角之间的关系,就可判断三角形的形状. ①由余弦定理ac ac c a ac b c a ac b c a =-+⇒=-+⇒-+=︒22222222212260cos 0)(2=-∴c a ,c a =∴. 由a=c 及B=60°可知△ABC 为等边三角形. ②由AAb B a A b cos sin tan tan 222⇒=,2sin 2sin ,cos sin cos sin sin sin cos sin cos sin cos sin 22222B A B B A A AB a b B A A B B B a =∴=∴==⇒=∴A=B 或A+B=90°,∴△ABC 为等腰△或Rt △. ③BA B A C cos cos sin sin sin ++= ,由正弦定理:,)cos (cos b a B A c +=+再由余弦定理:b a acb c a c bc c b a c +=-+⨯+-+⨯22222222∆∆∴+=∴=--+∴Rt ABC b a c b a c b a 为,,0))((222222. ④由条件变形为2222)sin()sin(ba b a B A B A +-=+-︒=+=∴=∴=⇒=--+-++∴90,2sin 2sin sin sin sin cos cos sin ,)sin()sin()sin()sin(2222B A B A B A BA B A B A b a B A B A B A B A 或. ∴△ABC 是等腰△或Rt △. 点评:这类判定三角形形状的问题的一般解法是:由正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简考察边或角的关系,从而确定三角形的形状. 有时一个条件既可用正弦定理也可用余弦定理甚至可以混用. 如本例的②④也可用余弦定理,请同学们试试看.〔14〕分析:︒=+︒=∴=+120,60,2C A B B C A 再代入三角式解得A 或 C. 解:︒=+︒=∴=-︒∴=+120.60,2180,2C A B B B B C A .∴由已知条件化为:22cos )120cos(.22)120cos(1cos 1-=+-︒∴-=-︒+A A A A),120cos(cos A A -︒设ααα-︒=+︒==-60,60,2C A CA 则.代入上式得:)60cos(α-︒ )60cos()60cos(22)60cos(ααα-︒+︒-=+︒+.化简整理得023cos 2cos 242=-+αα222cos ,22cos ,0)3cos 22)(2cos 2(=+=∴=+-⇒C A 即ααα. 注:此题有多种解法. 即可以从上式中消去B 、C 求出cosA ,也可以象本例的解法.还可以用和、差化积的公式,同学们可以试一试.〔15〕分析:证明方程有两个不等实根,即只要验证△>0即可.要证α,β为正数,只要证明αβ>0,α+β>0即可. 解:①在钝角△ABC 中,b 边最长.ac b ac b B ac c a b B 424)2(,cos 20cos 122222-=--=∆-+=<<-∴且.0cos 4)(24)cos 2(2222>--=--+=B ac c a ac B ac c a 〔其中0cos 40)(22>-≥-B ac c a 且∴方程有两个不相等的实根. ②,0,02>=>=+aca b αββα ∴两实根α、β都是正数. ③a=c 时,=-=-+=-+=-∴⎪⎪⎩⎪⎪⎨⎧===+424)(2)(,12222222a b a a c a bαββααβββααββα2||0,4cos 40,0cos 1,cos 44)cos 2(22222<-<<-<∴<<--=--+βα因此B B B aa B ac c a . 〔16〕分析:这是一个立体的图形,要注意画图和空间的简单感觉.解:①如图:所示. OB=OA 3330tan =(千米),3=OC 〔千米〕 则313120cos 222=︒⋅-+=OC OB OC OB BC 〔千米〕3926010313=÷=∴v 船速〔千米/小时〕 ②由余弦定理得:=∠=∠∴=⨯-+=∠OBC EBO BC OB OC BC OB OBC sin sin ,261352cos 222 =︒+∠-︒=∠-=∠=-)]30(180sin[sin ,26135cos ,26393)26135(12EBO OEB EBO .131330sin cos 30cos sin )30sin(=︒⨯∠+︒⨯∠=︒+∠EBO EBO EBO 再由正弦定理,得OE=1.5〔千米〕,5),(639==vBEBE 千米〔分钟〕. 答:船的速度为392千米/小时;如果船的航速不变,它5分钟到达岛的正西方向,此时所在点E 离岛1.5千米.。

2024届新高考数学复习:专项(解三角形的综合运用大题)历年好题练习(附答案)

2024届新高考数学复习:专项(解三角形的综合运用大题)历年好题练习(附答案)

2024届新高考数学复习:专项(解三角形的综合运用大题)历年好题练习1.[2023ꞏ新课标Ⅰ卷]已知在△ABC中,A+B=3C,2sin (A-C)=sin B.(1)求sin A;(2)设AB=5,求AB边上的高.2.△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.3.[2023ꞏ新课标Ⅱ卷]记△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC面积为3,D为BC的中点,且AD=1.(1)若∠ADC=π3,求tan B;(2)若b2+c2=8,求b,c.4.[2022ꞏ新高考Ⅰ卷,18]记△ABC的内角A,B,C的对边分别为a,b,c,已知cos A 1+sin A=sin 2B1+cos 2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.5.[2023ꞏ全国乙卷(理)]在△ABC 中,已知∠BAC =120°,AB =2,AC =1. (1)求sin ∠ABC ;(2)若D 为BC 上一点,且∠BAD =90°,求△ADC 的面积.6.[2023ꞏ河北石家庄模拟]在①cos C =217 ,②a sin C =c cos ⎝⎛⎭⎫A -π6 ,这两个条件中任选一个,补充在下面问题中的横线处,并完成解答.问题:△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,B =π3 ,D 是边BC 上一点,BD =5,AD =7,且________,试判断CD 和BD 的大小关系________.注:如果选择多个条件分别解答,按第一个解答计分.7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sin C . (1)求A ;(2)若2 a +b =2c ,求sin C .8.[2022ꞏ全国乙卷(理),17]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C sin (A -B )=sin B sin (C -A ).(1)证明:2a 2=b 2+c 2;(2)若a =5,cos A =2531 ,求△ABC 的周长.参考答案1.答案解析:方法一 (1)在△ABC 中,A +B =π-C ,因为A +B =3C ,所以3C =π-C ,所以C =π4 . 因为2sin (A -C )=sin B ,所以2sin (A -π4 )=sin (3π4 -A ),展开并整理得2 (sin A -cos A )=22 (cos A +sin A ), 得sin A =3cos A ,又sin 2A +cos 2A =1,且sin A >0,所以sin A =31010 .(2)由正弦定理BCsin A =AB sin C ,得BC =AB sin C ×sin A =522×31010 =35 ,由余弦定理AB 2=AC 2+BC 2-2AC ꞏBC cos C ,得52=AC 2+(35 )2-2AC ꞏ35 cos π4 , 整理得AC 2-310 AC +20=0, 解得AC =10 或AC =210 ,由(1)得,tan A =3>3 ,所以π3 <A <π2 ,又A +B =3π4 ,所以B >π4 ,即C <B ,所以AB <AC ,所以AC =210 ,设AB 边上的高为h ,则12 ×AB ×h =12 ×AC ×BC sin C ,即5h =210 ×35 ×22 ,解得h =6,所以AB 边上的高为6.方法二 (1)在△ABC 中,A +B =π-C ,因为A +B =3C ,所以3C =π-C ,所以C =π4 . 因为2sin (A -C )=sin B ,所以2sin (A -C )=sin [π-(A +C )]=sin (A +C ),所以2sin A cos C -2cos A sin C =sin A cos C +cos A sin C , 所以sin A cos C =3cos A sin C , 易得cos A cos C ≠0,所以tan A =3tan C =3tan π4 =3,又sin A >0,所以sin A =332+12 =31010 . (2)由(1)知sin A =31010 ,tan A =3>0,所以A 为锐角,所以cos A =10,所以sin B =sin (3π4 -A )=22 (cos A +sin A )=22 ×(1010 +31010 )=255 ,由正弦定理AC sin B =ABsin C ,得AC =AB ꞏsin Bsin C =5×25522=210 ,故AB 边上的高为AC ×sin A =210 ×31010 =6.2.答案解析:(1)由正弦定理和已知条件得BC 2-AC 2-AB 2=AC ꞏAB .① 由余弦定理得BC 2=AC 2+AB 2-2AC ꞏAB cos A .②由①②得cos A =-12 .因为0<A <π,所以A =2π3 .(2)由正弦定理及(1)得AC sin B =AB sin C =BCsin A =23 ,从而AC =23 sin B ,AB =23 sin (π-A -B )=3cos B -3 sin B .故BC +AC +AB =3+3 sin B +3cos B =3+23 sin ⎝⎛⎭⎫B +π3 . 又0<B <π3 ,所以当B =π6 时,△ABC 周长取得最大值3+23 . 3.答案解析:(1)因为D 为BC 的中点,所以S △ABC =2S △ADC =2×12 ×AD ×DC sin ∠ADC =2×12 ×1×DC ×32 =3 , 解得DC =2,所以BD =DC =2,a =4.因为∠ADC =π3 ,所以∠ADB =2π3 .在△ABD 中,由余弦定理,得c 2=AD 2+BD 2-2AD ꞏBD cos ∠ADB =1+4+2=7,所以c =7 .在△ADC 中,由余弦定理,得b 2=AD 2+DC 2-2AD ꞏDC ꞏcos ∠ADC =1+4-2=3,所以b =3 .在△ABC 中,由余弦定理,得cos B =c 2+a 2-b 22ac =7+16-32×4×7=5714 ,所以sin B =1-cos 2B =2114 .(2)因为D 为BC 的中点,所以BD =DC .因为∠ADB +∠ADC =π,所以cos ∠ADB =-cos ∠ADC ,则在△ABD 与△ADC 中,由余弦定理,得AD 2+BD 2-c 22AD ꞏBD =-AD 2+DC 2-b 22AD ꞏDC , 得1+BD 2-c 2=-(1+BD 2-b 2),所以2BD 2=b 2+c 2-2=6,所以BD =3 ,所以a =23 .在△ABC 中,由余弦定理,得cos ∠BAC =b 2+c 2-a 22bc =8-122bc =-2bc ,所以S △ABC =12 bc sin ∠BAC =12 bc 1-cos 2∠BAC=12 bc 1-⎝⎛⎭⎫-2bc 2=12 b 2c 2-4 =3 ,解得bc =4.则由⎩⎪⎨⎪⎧bc =4b 2+c 2=8 ,解得b =c =2. 4.答案解析:(1)由已知条件,得sin 2B +sin A sin 2B =cos A +cos A cos 2B .所以sin 2B =cos A +cos A cos 2B -sin A sin 2B =cos A +cos (A +2B )=cos [π-(B +C )]+cos [π-(B +C )+2B ]=-cos (B +C )+cos [π+(B -C )]=-2cos B cos C ,所以2sin B cos B =-2cos B cos C , 即(sin B +cos C )cos B =0.由已知条件,得1+cos 2B ≠0,则B ≠π2 ,所以cos B ≠0,所以sin B =-cos C =12 .又0<B <π3 ,所以B =π6 .(2)由(1)知sin B =-cos C >0,则B =C -π2 ,所以sin A =sin (B +C )=sin (2C -π2 )=-cos 2C .由正弦定理,得a 2+b 2c 2 =sin 2A +sin 2B sin 2C =cos 22C +cos 2Csin 2C =(1-2sin 2C )2+(1-sin 2C )sin 2C =2+4sin 4C -5sin 2C sin 2C=2sin 2C +4sin 2C -5≥22sin 2C ꞏ4sin 2C -5=42 -5,当且仅当sin 2C =22 时,等号成立,所以a 2+b 2c 2 的最小值为42 -5. 5.答案解析:(1)如图,由余弦定理得BC 2=AB 2+AC 2-2AB ꞏAC ꞏcos ∠BAC =22+12+2×2×1×12 =7,得BC =7 .方法一 由正弦定理ACsin ∠ABC =BC sin ∠BAC ,得sin ∠ABC =1×327=2114 .方法二 由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ꞏBC =4+7-12×2×7 =5714 , 所以sin ∠ABC =1-cos 2∠ABC =21 .(2)方法一 由sin ∠ABC =2114 ,得tan ∠ABC =35 ,又tan ∠ABC =DA AB =DA 2 ,所以DA =235 ,故△ADC 的面积为12 DA ꞏAC ꞏsin (120°-90°)=12 ×235 ×1×12 =3 .方法二 △ABC 的面积为12 AC ꞏAB ꞏsin ∠BAC =12 ×1×2×32 =32 ,S △ADC S △BAD=12AC ꞏAD ꞏsin ∠CAD12AB ꞏAD ꞏsin ∠BAD =sin 30°2×sin 90° =14 ,故△ADC 的面积为15 S △ABC =15 ×3 =3.6.答案解析:设AB =x ,在△ABD 中由余弦定理可得:49=x 2+25-2ꞏx ꞏ5ꞏcos π3 =x 2+25-5x , 即x 2-5x -24=0,解得x =8. 方案一 选条件①.由cos C =217 得sin C =277 , ∵A +B +C =π,∴sin A =sin (B +C )=32 ×217 +12 ×277 =5714 ,在△ABC 中由正弦定理可得:BC 5714 =8277,解得:BC =10,∴CD =BD =5. 方案二 选条件②.由正弦定理可得:a =2R sin A ,c =2R sin C ,代入条件a sin C =c cos ⎝⎛⎭⎫A -π6 得:sin A sin C =sin C ꞏ⎝⎛⎭⎫32cos A +12sin A =32 cos A sin C +12 sin A sin C ,∴12 sin A sin C =3cos A sin C ,因为A 为三角形内角,所以tan A =3 ,故A =π3 , 所以△ABC 为等边三角形,所以BC =8,∴CD =3,所以CD <BD .7.答案解析:(1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12 . 因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2 sin A +sin (120°-C )=2sin C ,即62 +3 cos C +12 sin C =2sin C ,可得cos (C +60°)=-2.由于0°<C <120°,所以sin (C +60°)=22 ,故 sin C =sin (C +60°-60°)=sin (C +60°)cos 60°-cos (C +60°)sin 60°=6+2 .8.答案解析:(1)证明:∵sin C sin (A -B )=sin B sin (C -A ),∴sin C sin A cos B -sin C cos A sin B =sin B sin C cos A -sin B cos C sin A , ∴sin C sin A cos B =2sin B sin C cos A -sin B cos C sin A . 由正弦定理,得ac cos B =2bc cos A -ab cos C .由余弦定理,得a 2+c 2-b 22 =b 2+c 2-a 2-a 2+b 2-c 22. 整理,得2a 2=b 2+c 2.(2)由(1)知2a 2=b 2+c 2.又∵a =5,∴b 2+c 2=2a 2=50.由余弦定理,得a 2=b 2+c 2-2bc cos A ,即25=50-5031 bc ,∴bc =312 .∴b +c =b 2+c 2+2bc =50+31 =9, ∴a +b +c =14.故△ABC 的周长为14.。

解三角形 综合测试题

解三角形 综合测试题

解三角形综合测试题一、选择题(每小题 5 分,共 60 分)1、在△ABC 中,角 A、B、C 所对的边分别为 a、b、c。

若 A =60°,a =√3,b = 1,则 c =()A 1B 2C √3D √22、在△ABC 中,若 a = 2,b =2√3,A = 30°,则 B 为()A 60°B 60°或 120°C 30°D 30°或 150°3、在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若 a = 1,c = 2,B = 60°,则 b =()A √3B √5C √7D 14、在△ABC 中,若 sin A : sin B : sin C = 3 : 4 : 5,则 cos C 的值为()A 1/5B 1/5C 1/4D 1/45、在△ABC 中,若 a = 5,b = 6,c = 7,则△ABC 的面积为()A 6√6B 10√3C 15√3D 20√36、在△ABC 中,若 A = 60°,b = 1,S△ABC =√3,则 a + b + c / sin A + sin B + sin C =()A 2√39 /3B 26√3 /3C 8√3 /3D 2√37、在△ABC 中,若 a = 7,b = 8,cos C = 13 / 14,则最大角的余弦值是()A 1/7B 1/8C 1/9D 1/108、在△ABC 中,若 a = 2,b = 3,C = 60°,则 c =()A √7B √19C √13D 79、在△ABC 中,若 A = 60°,a =4√3,b =4√2,则 B 等于()A 45°或 135°B 135°C 45°D 以上答案都不对10、在△ABC 中,角 A、B、C 所对的边分别为 a、b、c,若 a cosA = b cos B,则△ABC 的形状为()A 等腰三角形B 直角三角形C 等腰直角三角形D 等腰三角形或直角三角形11、在△ABC 中,角 A、B、C 所对的边分别为 a、b、c,若 a =1,b =√7,c =√3,则 B =()A 120°B 60°C 45°D 30°12、在△ABC 中,角 A、B、C 所对的边分别为 a、b、c,若(a+ b + c)(a + b c)= 3ab,则角 C 的度数为()A 30°B 45°C 60°D 90°二、填空题(每小题 5 分,共 20 分)13、在△ABC 中,若 A = 30°,B = 45°,a = 2,则 b =______。

高二解三角形练习题

高二解三角形练习题

高二解三角形练习题三角形是数学中一个重要的概念,解三角形题目是高二数学学习中的一项基础训练。

通过解题,可以加深对三角形性质和定理的理解,并提高解决实际问题的能力。

下面将为大家介绍几个高二解三角形的练习题。

一、已知三角形ABC,∠A=40°,∠B=60°,求∠C的度数。

解:根据三角形内角和为180°的性质,可以得到∠C=180°-40°-60°=80°。

因此,∠C的度数为80°。

二、已知∠A=30°,∠B=50°,边长a=5cm,边长b=8cm,求边长c的长度。

解:根据正弦定理,可以得到c/sinC=b/sinB。

将已知数据代入计算,可得c/sinC=8/sin50°。

进一步计算可得c≈8.98cm,所以边长c的长度约为8.98cm。

三、已知∠A=45°,∠B=60°,边长a=5cm,求边长b和边长c的长度。

解:根据正弦定理,可以得到b/sinB=c/sinC。

将已知数据代入计算,可得b/sin60°=5/sinC。

进一步计算可得b≈6.88cm,所以边长b的长度约为6.88cm。

而边长c可以通过补角的方式计算得到,即C=180°-45°-60°=75°,然后利用正弦定理可得c≈7.30cm,所以边长c的长度约为7.30cm。

四、已知边长a=3cm,边长b=4cm,边长c=5cm,判断该三角形是什么类型的三角形。

解:根据边长关系可以判断三角形的类型。

由于3²+4²=5²,所以该三角形是一个直角三角形。

五、已知∠A=50°,∠B=70°,边长a=6cm,边长b=8cm,求边长c的长度。

解:根据余弦定理,可以得到c²=a²+b²-2ab*cosC。

高中数学解三角形练习题

高中数学解三角形练习题

解三角形卷一一.选择题1.在△ABC 中,sin A :sin B :sin C =3:2:4,则cos C 的值为A .23B .-23C .14D .-142、在ABC △中,已知4,6a b ==,60B =,则sin A 的值为A 、3B 、2C 、3D 、23、在ABC △中,::1:2:3A B C =,则sin :sin :sin A B C =A 、1:2:3B 、C 、D 、24、在ABC △中,sin :sin :sin 4:3:2A B C =,那么cos C 的值为A 、14B 、14-C 、78D 、11165、在ABC △中,13,34,7===c b a ,则最小角为A 、3πB 、6πC 、4π D 、12π 6、在ABC △中,60,16,A b == 面积3220=S ,则c =A 、610B 、75C 、55D 、497、在ABC △中,()()()a c a c b b c +-=+,则A =A 、30B 、60C 、120D 、1508、在ABC △中,根据下列条件解三角形,则其中有二个解的是A 、10,45,70b A C ===B 、60,48,60a c B ===C 、7,5,80a b A ===D 、14,16,45a b A ===二、填空题。

9.在△ABC 中,a ,b 分别是∠A 和∠B 所对的边,若a =3,b =1,∠B =30°,则∠A 的值是 .10.在△ABC 中,已知sin B sin C =cos 22A ,则此三角形是__________三角形. 11. 在△ABC 中,∠A 最大,∠C 最小,且∠A =2∠C ,a +c =2b ,求此三角形三边之比为 .三、解答题。

12.在△ABC 中,已知∠A =30°,a ,b 分别为∠A ,∠B 的对边,且a =4=33b ,解此三角形.13.如图所示,在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端C 对于山坡的斜度为15°,向山顶前进100米后到达点B ,又从点B 测得斜度为45°,建筑物的高CD 为50米.求此山对于地平面的倾斜角 .14.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若b cos C =(2a -c )cos B ,(Ⅰ)求∠B 的大小;(Ⅱ)若b =7,a +c =4,求△ABC 的面积.(第13题)11.解析:本例主要考查正、余弦定理的综合应用. 由正弦定理得c a =C A sin sin =C C sin 2sin =2cos C ,即cos C =c a 2, 由余弦定理cos C =ab c b a 2-+222=ab b c a c a 2+-+2))((.∵ a +c =2b , ∴ cos C =ab c a b c a b 22++-2⋅)(=a c a c a 22++-2)(,∴ ca 2=a c a c a 22++-2)(. 整理得2a 2-5ac +3c 2=0.解得a =c 或a =23c . ∵∠A =2∠C ,∴ a =c 不成立,a =23c ∴ b =2c a +=223c c +=c 45, ∴ a ∶b ∶c =23c ∶c 45∶c =6∶5∶4.故此三角形三边之比为6∶5∶4. 12.b =43,c =8,∠C =90°,∠B =60°或b =43,c =4,∠C =30°,∠B =120°. 解:由正弦定理知A a sin =Bb sin ⇒︒30sin 4=B sin 34⇒sin B =23,b =43. ∠B =60°或∠B =120°⇒∠C =90°或∠C =30°⇒c =8或c =4. 13 解:在△ABC 中,∠BAC =15°,AB =100米,∠ACB =45°-15°=30°.根据正弦定理有︒30sin 100=︒15sin BC ,∴ BC =︒︒30sin 15sin 100. 又在△BCD 中,∵ CD =50,BC =︒︒30sin 15sin 100,∠CBD =45°,∠CDB =90°+θ , 根据正弦定理有︒45sin 50=)(θ+90sin 30sin 15sin 100︒︒︒.解得cos θ =3-1,∴ θ ≈42.94°. ∴ 山对于地平面的倾斜角约为42.94°.14.解:(Ⅰ)由已知及正弦定理可得sin B cos C =2sin A cos B -cos B sin C ,∴ 2sin A cos B =sin B cos C +cos B sin C =sin (B +C ).又在三角形ABC 中,sin (B +C )=sin A ≠0,∴ 2sin A cos B =sin A ,即cos B =21,B =3π. (Ⅱ)∵ b 2=7=a 2+c 2-2ac cos B ,∴ 7=a 2+c 2-ac , 又 (a +c )2=16=a 2+c 2+2ac ,∴ ac =3,∴ S △ABC =21ac sin B , 即S △ABC =21·3·23=433. (第13题)。

高中数学 解三角形练习题及答案

高中数学 解三角形练习题及答案

高中数学解三角形练习题及答案解三角形1.最大角与最小角的和为180°,因此答案为D.150°。

2.根据正弦定理,a/XXX,因此a∶b=sinA∶sinB,答案为B.3.根据正弦定理,a/XXX,因此边长之比为sin1∶sin2∶sin3,答案为B.4.根据余弦定理,c²=a²+b²-2abcosC,代入已知数值,可得cosC=1/2,因此∠C=60°,c=√(a²+b²-2abcosC)=5.5.根据正弦定理,a/sinA=2R,代入已知数值可得R=3,因此△ABC的形状大小是唯一的。

6.根据余弦定理,若a²+b²-c²<0,则△ABC是锐角三角形。

7.根据正弦定理,a/sinA=2R,代入已知数值可得R=3/√3,因此a=3√3.8.根据余弦定理,a²=b²+c²-2bccosA,代入已知数值可得cosA=1/4,因此A=75°,B=45°,C=60°,b=2a/√3=2√3.9.由题意可列方程x+3cos150°=3,解得x=3.10.由题意可列方程AB/AC=tan45°=1,XXX√3,解得AB=60米,BC=60√3米,因此电视塔的高度为AB/tan45°=60米。

11.根据正弦定理,b=10sin60°/sin45°=10√3.12.根据余弦定理,b²=a²+c²-2accosB,代入已知数值可得cosB=1/2,因此B=60°,b=2sinB=2√3-2.13.根据正弦定理,sinC=3sin60°/10=√3/5,代入反正弦函数可得∠C=60°。

14.根据正弦定理,sinC=c/2R,代入已知数值可得R=√(a²+b²-c²)/2sinC=√(20)/√3,因此△ABC的形状大小是唯一的。

解三角形练习(测试)题(含答案)

解三角形练习(测试)题(含答案)

解三角形练习(测试)题1.R t △ABC 是一防洪大堤背水坡的截面图,斜坡AB 长为12m,,它的坡角为45°,为了提高防洪能力,现将背水坡AD 的坡度改为32,则BD 长为 2.如图,某市在城区改造中,计划在一块三角形的空地上种植某种草皮美化环境,已知这种草皮的售价为a 元/㎡,AB=20m,AC=24m,∠BAC=150°,则购买这种草皮至少得 元。

3.如图,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,3cos 4BAC ∠=,则梯子长AB = 米.4.如图河对岸有一古塔AB ,小敏在C 处测得塔顶A 的仰角为30°,向塔前进20m到达D ,在D 处测得A 的仰角为45°,则塔高为 米。

5.一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西20º的方向行驶40海里到达C 地,则A 、C 两地相距 海里。

6.如图,在Rt △ABC 中,∠CAB =90°,AD 是∠CAB 的平分线,tan B =21,则CD ∶DB= . 7.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP =2,那么PP '的长为____________.(不取近似值. 以下数据供解题使用:sin15°,cos15°) 8.如图,在Rt △ABC 中,∠ACB=900,CD ⊥AB 于D ,若BD :AD=1:3,则tan ∠BCD= 。

8.9.计算:sin60°+sin45°+︒-︒30tan 60tan 1= . 1sin 60cos302-= . 10.已知α为锐角,且tan (90°-α)=3,则α的度数为( )A .30°B .60°C .45°D .75°A CB D 第1题 CA B 第2题 A B C 第3题 _ A _ B _ D _ C 第4题 第5题 第6题第7题 第8题 C BD11.在Rt △ABC 中, ∠C =90︒,AB =4,AC =1,则cos A 的值是 ( )AB .14CD .4 12.如图是一个中心对称图形,A 为对称中心,若∠C=90°,∠B=30°,BC=1,则BB ’的长为( )A .4B .33 C .332 D .334 13.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为AB 上一点且AE :EB =4:1,EF ⊥AC 于F ,连结FB ,则tan ∠CFB 的值等于( )A BCD14.数学活动课上,小敏、小颖分别画了△ABC 和△DEF ,数据如图,如果把小敏画的三角形面积记作S △ABC ,小颖画的三角形面积记作S △DEF ,那么你认为( ).A .S △ABC >S △DEFB .S △ABC <S △DEF C .S △ABC =S △DEFD .不能确定15.王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为60 o , 又知楼房与大树的水平距离为10m ,楼高AB=24m ,则树高CD 为( )A .()31024-mB .⎪⎪⎭⎫ ⎝⎛-331024mC .()3524-m D .9m 16.计算:⑴cos 230°-tan60°·sin45°+sin 230° ⑵01)41.12(45tan 32)31(-++---⑶ 1tan 45-. 32cos458-+17.已知,如图,∠ABC=∠BCD=90°,AC=15,sinA=54,BD=20, 求∠D 的三个三角函数值。

解三角形专题(高考题)练习【附答案】

解三角形专题(高考题)练习【附答案】

解三角形专题(高考题)练习1、在ABC ∆中,已知内角3A π=,边BC =设内角B x =,面积为y .(1)求函数()y f x =的解析式和定义域; (2)求y 的最大值. 2、已知ABC ∆中,1||=AC ,0120=∠ABC ,θ=∠BAC , 记→→•=BC AB f )(θ,(1)求)(θf 关于θ的表达式; (2)(2)求)(θf 的值域;3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b =2,求△ABC 面积的最大值. 4、在ABC ∆中,已知内角A 、B 、C 所对的边分别为a 、b 、c,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。

(I )求锐角B 的大小; (II )如果2b =,求ABC ∆的面积ABC S ∆的最大值。

5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=⋅BC BA ,且22=b ,求c a 和b 的值. 6、在ABC ∆中,cos A =,cos B =. (Ⅰ)求角C ;(Ⅱ)设AB =,求ABC ∆的面积.7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =,(sin ,1cos ),//,3.n A A m n b c a =++=满足 (I )求A 的大小;(II )求)sin(6π+B 的值.8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。

9、在△ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,已知11tan ,tan 23A B ==,且最长AB C120°θ边的边长为l.求:(I )角C 的大小; (II )△ABC 最短边的长.10、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a+b=5,c =7,且.272cos 2sin 42=-+C B A (1) 求角C 的大小; (2)求△ABC 的面积. 11、已知△ABC 中,AB=4,AC=2,23ABC S ∆=. (1)求△ABC 外接圆面积. (2)求cos(2B+3π)的值. 12、在ABC ∆中,角A B C 、、的对边分别为a b c 、、,(2,)b c a =-m ,(cos ,cos )A C =-n ,且⊥m n 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形
一、选择题
1.在△ABC中,角A,B,C的对边分别为a,b,c.若A=60°,c=2,b=1,则a=( ) A.1 B.3
C.2 D.3
2.设a,b,c分别是△ABC中角A,B,C所对的边,则直线l1:sin A·x+ay+c=0与l2:bx-sin B·y+sin C=0的位置关系是( )
A.平行B.重合
C.垂直D.相交但不垂直
3.在△ABC中,若2cos B sin A=sin C,则△ABC的形状一定是( )
A.等腰直角三角形B.直角三角形
C.等腰三角形D.等边三角形
4.在△ABC中,已知A∶B=1∶2,∠ACB的平分线CD把三角形分成面积为3∶2的两部分,则cos A等于( )
A.1
3 B.
1
2
C.3
4D.0
5.在△ABC中,AC=7,BC=2,B=60°,则BC边上的高等于( )
A.
3
2 B.
33
2
C.3+6
2 D.
3+39
4
6.已知锐角三角形三边长分别为3,4,a,则a的取值范围为( ) A.1<a<5 B.1<a<7
C.7<a <5
D.7<a <7
7.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若A =60°,b =1,且△ABC 的面积为
3,则a =( )
A .43-1
B.
37
C.
13 D .1
8.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( ) A .(0,π
6]
B .[π
6
,π)
C .(0,π
3]
D .[π3
,π)
9.如图,
△ADC 是等边三角形,

ABC 是等腰直角三角形,

ACB =90°,BD 与AC 交于E 点.若AB =2,则AE 的长为( )
A.
6-
2
B.1
2(
6-
2)
C.6+2
D.12
(6+2)
10.如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC,ED,则sin∠CED=( )
A.310
10 B.
10
10
C.
5
10 D.
5
15
11.在△
ABC中,角A、B、C的对边分别为a、b、c,A=π
3,a=3,b=1,则c等于( )
A.1 B.2
C.3-1
D.3
12.符合下列条件的三角形有且只有一个的是( )
A.a=1,b=2,c=3
B.a=1,b=2,A=30°
C.a=1,b=2,A=100°
D.b=c=1,B=45°
13.在△ABC中,若B=120°,则a2+ac+c2-b2的值( )
A.大于0 B.小于0
C.等于0 D.不确定
14.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab的值为( )
A.4
3B.8-43
C.1 D.2 3
15.设a,b,c为△ABC的三边,且关于x的方程(a2+bc)x2+2b2+c2 x+1=0有两个相等的实数根,则A的度数是( )
A.120°B.90°
C.60°D.30°
16.在△ABC中,a、b、c分别为A、B、C的对应边,C=60°,则
b
a+c+
a
b+c
的值为( )
A.1
2 B.
2
2
C.1 D.2
17.海上有两个小岛A、B相距10海里,从A岛望B岛和C岛成60°视角,从B岛望C岛和A岛成75°视角,则B、C间的距离是( )
A.5海里B.56海里
C.10海里D.106海里
18.在锐角三角形ABC中,已知A=2C,则a
c的范围是( )
A.(0,2) B.(2,2)
C.(2,3) D.(3,2)
19.在△ABC中,若(a-a cos B)sin B=(b-c cos C)sin A,则这个三角形是( ) A.底角不等于45°的等腰三角形
B.锐角不等于45°的直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
20.某人站在山顶看见一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车和第二辆车之间的距离d1与第二辆车和第三辆车之间的距离d2之间的关系为( )
A.d1>d2B.d1=d2
C.d1<d2D.不能确定大小
二、填空题
21.在△ABC中,已知∠BAC=60°,∠ABC=45°,BC=3,则AC=________.
22.在△ABC中,若a=2,b+c=7,cos B=-1
4,则b=________.
23.如图,海岸线上有相距5海里的两座灯塔A,B,灯塔B位于灯塔A的正南方向,海上停泊着两艘货轮,甲船位于灯塔A的北偏西75°方向,与A相距32海里的D处;乙船位于灯塔B的北偏西60°方向,与B相距5海里的C处,则两货轮的距离为________海里.
24.在△ABC中,已知(b+c)∶(c+a)∶(a+b)=8∶9∶10,则sin A∶sin B∶sin C=________.
25.设△ABC的内角A,B,C所对的边分别为a,b,c,则下列命题正确的是________(写出所有正确命题的编号).
①若a>b,则函数f(x)=(sin A-sin B)x在R上是增函数;②
若sin2A=sin2B,则A=B;③若cos2A=cos2B,则A=B;④若ab>c2,则0<C<π3.
26.在相距2 km的A、B两点处测量目标点C.若∠CAB=75°,∠CBA=60°,则A、C两点之间的距离是________km.
27.在△ABC中,B=45°,C=60°,a=2(3+1),则S△ABC=________.
28.已知在△ABC中,
7
sinA=
8
sinB=
13
sinC,则C的度数为________.
29.在△ABC中,已知b=a sin C且c=a sin(90°-B),则△ABC的形状为________.
30.如图,要在山坡上A、B两处测量与地面垂直的铁塔CD的高,由A、B两处测得塔顶C的仰角分别为60°和45°,AB长为40
m,斜坡与水平面成30°角,则铁塔CD的高为________m.
三、解答题
31.解答下列各题:
(1)在△ABC中,已知C=45°,A=60°,b=2,求此三角形最小边的长及a与B的值;
(2)在△ABC中,已知A=30°,B=120°,b=5,求C及a与c的值.
32.在△ABC中,B=30°,AB=23,AC=2,求△ABC的面积.
33.已知圆内接四边形ABCD的边长分别为AB=2,BC=6,CD=DA=4,求四边形ABCD的面积.
34.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin B(tan A+tan C)=tan A tan C.
(1)求证:b2=ac;
(2)若a=1,c=2,求△ABC的面积S.
35.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π
4,b sin ⎝ ⎛⎭


⎫π4+C -c sin ⎝ ⎛⎭
⎪⎪

π4+B =a .
(1)求证:B -C =π
2;
(2)若a =2,求△ABC 的面积.
36.已知a ,b ,c 是

ABC 中A ,B ,C 的对边,S 是

ABC 的面积,若a =4,b =5,S =5
3,求c 的长度.
37.在梯形ABCD 中,AD ∥
BC ,AB =5,AC =9,∠BCA =30°,∠
ADB =45°,求BD 的长.
38.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A .
(1)确定角C 的大小; (2)若c =
7,且△ABC 的面积为
33
2
,求a +b 的值.
39.已知△ABC的内角A,B,C的对边分别为a,b,c,a sin A+c sin C-2
a sin C=
b sin B.
(1)求B;
(2)若A=75°,b=2,求a,c.
40.如图,在南沙某海岛有一观察哨A,上午11时测得一船在海岛北偏东60°的C 处,12时20分测得船在海岛北偏西60°的B处,12时40分船到达位于海岛正西方向且距海岛5海里的E港口.如果船始终匀速直线航行,求船的速度(单位:海里/小时).
41.如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1°) ?。

相关文档
最新文档